1
|
Sun J, Liu Y, Xi Y, Coatrieux G, Coatrieux JL, Ji X, Jiang L, Chen Y. Multi-grained contrastive representation learning for label-efficient lesion segmentation and onset time classification of acute ischemic stroke. Med Image Anal 2024; 97:103250. [PMID: 39096842 DOI: 10.1016/j.media.2024.103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2024] [Accepted: 06/21/2024] [Indexed: 08/05/2024]
Abstract
Ischemic lesion segmentation and the time since stroke (TSS) onset classification from paired multi-modal MRI imaging of unwitnessed acute ischemic stroke (AIS) patients is crucial, which supports tissue plasminogen activator (tPA) thrombolysis decision-making. Deep learning methods demonstrate superiority in TSS classification. However, they often overfit task-irrelevant features due to insufficient paired labeled data, resulting in poor generalization. We observed that unpaired data are readily available and inherently carry task-relevant cues, but are less often considered and explored. Based on this, in this paper, we propose to fully excavate the potential of unpaired unlabeled data and use them to facilitate the downstream AIS analysis task. We first analyze the utility of features at the varied grain and propose a multi-grained contrastive learning (MGCL) framework to learn task-related prior representations from both coarse-grained and fine-grained levels. The former can learn global prior representations to enhance the location ability for the ischemic lesions and perceive the healthy surroundings, while the latter can learn local prior representations to enhance the perception ability for semantic relation between the ischemic lesion and other health regions. To better transfer and utilize the learned task-related representation, we designed a novel multi-task framework to simultaneously achieve ischemic lesion segmentation and TSS classification with limited labeled data. In addition, a multi-modal region-related feature fusion module is proposed to enable the feature correlation and synergy between multi-modal deep image features for more accurate TSS decision-making. Extensive experiments on the large-scale multi-center MRI dataset demonstrate the superiority of the proposed framework. Therefore, it is promising that it helps better stroke evaluation and treatment decision-making.
Collapse
Affiliation(s)
- Jiarui Sun
- Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
| | - Yuhao Liu
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Yan Xi
- Jiangsu First-Imaging Medical Equipment Co., Ltd., Nanjing 210009, China
| | | | - Jean-Louis Coatrieux
- Laboratoire Traitement du Signal et de l'Image, Université de Rennes 1, F-35000 Rennes, France; Centre de Recherche en Information Biomédicale Sino-francais, 35042 Rennes, France
| | - Xu Ji
- Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China; Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 210096, China.
| | - Liang Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Yang Chen
- Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China; Key Laboratory of New Generation Artificial Intelligence Technology and Its Interdisciplinary Applications (Southeast University), Ministry of Education, Nanjing 210096, China
| |
Collapse
|
2
|
Omileke D, Pepperall D, Bothwell SW, Mackovski N, Azarpeykan S, Beard DJ, Coupland K, Patabendige A, Spratt NJ. Ultra-Short Duration Hypothermia Prevents Intracranial Pressure Elevation Following Ischaemic Stroke in Rats. Front Neurol 2021; 12:684353. [PMID: 34616350 PMCID: PMC8488292 DOI: 10.3389/fneur.2021.684353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
There is a transient increase in intracranial pressure (ICP) 18–24 h after ischaemic stroke in rats, which is prevented by short-duration hypothermia using rapid cooling methods. Clinical trials of long-duration hypothermia have been limited by feasibility and associated complications, which may be avoided by short-duration cooling. Animal studies have cooled faster than is achievable in patients. We aimed to determine whether gradual cooling at a rate of 2°C/h to 33°C or 1°C/h to 34.5°C, with a 30 min duration at target temperatures, prevented ICP elevation and reduced infarct volume in rats. Transient middle cerebral artery occlusion was performed, followed by gradual cooling to target temperature. Hypothermia to 33°C prevented significant ICP elevation (hypothermia ΔICP = 1.56 ± 2.26 mmHg vs normothermia ΔICP = 8.93 ± 4.82 mmHg; p = 0.02) and reduced infarct volume (hypothermia = 46.4 ± 12.3 mm3 vs normothermia = 85.0 ± 17.5 mm3; p = 0.01). Hypothermia to 34.5°C did not significantly prevent ICP elevation or reduce infarct volume. We showed that gradual cooling to 33°C, at cooling rates achievable in patients, had the same ICP preventative effect as traditional rapid cooling methods. This suggests that this paradigm could be translated to prevent delayed ICP rise in stroke patients.
Collapse
Affiliation(s)
- Daniel Omileke
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Debbie Pepperall
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Steven W Bothwell
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Nikolce Mackovski
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Sara Azarpeykan
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Daniel J Beard
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Kirsten Coupland
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Adjanie Patabendige
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Neil J Spratt
- The School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton, NSW, Australia.,Department of Neurology, John Hunter Hospital, Hunter New England Local Health District, New Lambton, NSW, Australia
| |
Collapse
|
3
|
Beard DJ, Li Z, Schneider AM, Couch Y, Cipolla MJ, Buchan AM. Rapamycin Induces an eNOS (Endothelial Nitric Oxide Synthase) Dependent Increase in Brain Collateral Perfusion in Wistar and Spontaneously Hypertensive Rats. Stroke 2020; 51:2834-2843. [PMID: 32772681 DOI: 10.1161/strokeaha.120.029781] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND PURPOSE Rapamycin is a clinically approved mammalian target of rapamycin inhibitor that has been shown to be neuroprotective in animal models of stroke. However, the mechanism of rapamycin-induced neuroprotection is still being explored. Our aims were to determine if rapamycin improved leptomeningeal collateral perfusion, to determine if this is through eNOS (endothelial nitric oxide synthase)-mediated vessel dilation and to determine if rapamycin increases immediate postreperfusion blood flow. METHODS Wistar and spontaneously hypertensive rats (≈14 weeks old, n=22 and n=15, respectively) were subjected to ischemia by middle cerebral artery occlusion (90 and 120 minutes, respectively) with or without treatment with rapamycin at 30-minute poststroke. Changes in middle cerebral artery and collateral perfusion territories were measured by dual-site laser Doppler. Reactivity to rapamycin was studied using isolated and pressurized leptomeningeal anastomoses. Brain injury was measured histologically or with triphenyltetrazolium chloride staining. RESULTS In Wistar rats, rapamycin increased collateral perfusion (43±17%), increased reperfusion cerebral blood flow (16±8%) and significantly reduced infarct volume (35±6 versus 63±8 mm3, P<0.05). Rapamycin dilated leptomeningeal anastomoses by 80±9%, which was abolished by nitric oxide synthase inhibition. In spontaneously hypertensive rats, rapamycin increased collateral perfusion by 32±25%, reperfusion cerebral blood flow by 44±16%, without reducing acute infarct volume 2 hours postreperfusion. Reperfusion cerebral blood flow was a stronger predictor of brain damage than collateral perfusion in both Wistar and spontaneously hypertensive rats. CONCLUSIONS Rapamycin increased collateral perfusion and reperfusion cerebral blood flow in both Wistar and comorbid spontaneously hypertensive rats that appeared to be mediated by enhancing eNOS activation. These findings suggest that rapamycin may be an effective acute therapy for increasing collateral flow and as an adjunct therapy to thrombolysis or thrombectomy to improve reperfusion blood flow.
Collapse
Affiliation(s)
- Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom (D.J.B., A.M.S., Y.C., A.M.B.)
- School of Biomedical Science and Pharmacy, The University of Newcastle, Australia (D.J.B.)
| | - Zhaojin Li
- Department of Neurological Sciences, The University of Vermont, Burlington (Z.L., M.J.C.)
| | - Anna M Schneider
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom (D.J.B., A.M.S., Y.C., A.M.B.)
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom (D.J.B., A.M.S., Y.C., A.M.B.)
| | - Marilyn J Cipolla
- Department of Neurological Sciences, The University of Vermont, Burlington (Z.L., M.J.C.)
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, United Kingdom (D.J.B., A.M.S., Y.C., A.M.B.)
| |
Collapse
|
4
|
Ho KC, Speier W, Zhang H, Scalzo F, El-Saden S, Arnold CW. A Machine Learning Approach for Classifying Ischemic Stroke Onset Time From Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1666-1676. [PMID: 30802855 PMCID: PMC6661120 DOI: 10.1109/tmi.2019.2901445] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Current clinical practice relies on clinical history to determine the time since stroke (TSS) onset. Imaging-based determination of acute stroke onset time could provide critical information to clinicians in deciding stroke treatment options, such as thrombolysis. The patients with unknown or unwitnessed TSS are usually excluded from thrombolysis, even if their symptoms began within the therapeutic window. In this paper, we demonstrate a machine learning approach for TSS classification using routinely acquired imaging sequences. We develop imaging features from the magnetic resonance (MR) images and train machine learning models to classify the TSS. We also propose a deep-learning model to extract hidden representations for the MR perfusion-weighted images and demonstrate classification improvement by incorporating these additional deep features. The cross-validation results show that our best classifier achieved an area under the curve of 0.765, with a sensitivity of 0.788 and a negative predictive value of 0.609, outperforming existing methods. We show that the features generated by our deep-learning algorithm correlate with the MR imaging features, and validate the robustness of the model on imaging parameter variations (e.g., year of imaging). This paper advances magnetic resonance imaging analysis one-step-closer to an operational decision support tool for stroke treatment guidance.
Collapse
|
5
|
Gubskiy IL, Namestnikova DD, Cherkashova EA, Chekhonin VP, Baklaushev VP, Gubsky LV, Yarygin KN. MRI Guiding of the Middle Cerebral Artery Occlusion in Rats Aimed to Improve Stroke Modeling. Transl Stroke Res 2018; 9:417-425. [PMID: 29178027 PMCID: PMC6061245 DOI: 10.1007/s12975-017-0590-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/11/2017] [Accepted: 11/17/2017] [Indexed: 01/30/2023]
Abstract
The middle cerebral artery occlusion (MCAO) model in rats closely imitates ischemic stroke and is widely used. Existing instrumental methods provide a certain level of MCAO guidance, but monitoring of the MCA-occluding intraluminal filament position and possible complications can be improved. The goal of this study was to develop a MRI-based method of simultaneous control of the filament position, blood flow in the intracranial vessels, and hemorrhagic complications. Rats were subjected to either MRI-guided MCAO (group 1, n = 51) or MCAO without MRI control (group 2, n = 38). After operation, group 1 rats were transferred into a MRI scanner for the control of the filament position and possible complications. Ninety minutes after the onset of MCAO, the filament was removed in rats of both groups and MRI control of the infarct volume and hemorrhagic complications performed. High-resolution T1- and T2-weighted imaging performed immediately after filament insertion provided visualization of the filament position, blood flow in brain arteries, and complications related to inappropriate filament insertion. It permitted replacement of wrongly positioned filaments and exclusion of animals with complications from the experiment. MRI-based MCAO guiding provided real-time intra-operational monitoring of crucial parameters determining MCAO suitability for stroke modeling, including better assessment of the operation outcomes in individual animals and significant enhancement of the model success rate. The possibility of simultaneous visualization of the filament, blood flow in the arteries, brain tissue, and hemorrhagic complications is the principal advantage of the proposed method over other instrumental methods of MCAO quality control. Graphical Abstract MRI-guided middle cerebral artery occlusion technique permits intra-operational monitoring via direct non-invasive simultaneous visualization of the filament, blood flow in the arteries, brain tissue, and hemorrhagic complications. It provides better assessment of MCAO outcomes in individual animals and significant enhancement of MCAO success rate.
Collapse
Affiliation(s)
- Ilya L Gubskiy
- Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian National Research Medical University, Moscow, Russia.
| | - Daria D Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Elvira A Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladimir P Chekhonin
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladimir P Baklaushev
- Federal Research Clinical Center of Specialized Medical Care and Medical Technologies of the FMBA of Russia, Moscow, Russia
| | - Leonid V Gubsky
- Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
6
|
Heptanoate is neuroprotective in vitro but triheptanoin post-treatment did not protect against middle cerebral artery occlusion in rats. Neurosci Lett 2018; 683:207-214. [PMID: 30076987 DOI: 10.1016/j.neulet.2018.07.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 11/21/2022]
Abstract
Triheptanoin, the medium-chain triglyceride of heptanoate, has been shown to be anticonvulsant and neuroprotective in several neurological disorders. In the gastrointestinal tract, triheptanoin is cleaved to heptanoate, which is then taken up by the blood and most tissues, including liver, heart and brain. Here we evaluated the neuroprotective effects of heptanoate and its effects on mitochondrial oxygen consumption in vitro. We also investigated the neuroprotective effects of triheptanoin compared to long-chain triglycerides when administered after stroke onset in rats. Heptanoate pre-treatment protected cultured neurons against cell death induced by oxygen glucose deprivation and N-methyl-D-aspartate. Incubation of cultured astrocytes with heptanoate for 2 h increased mitochondrial proton leak and also enhanced basal respiration and ATP turnover, suggesting that heptanoate protects against oxidative stress and is used as fuel. However, continuous 72 h infusion of triheptanoin initiated 1 h after middle cerebral artery occlusion in rats did not alter stroke volume at 3 days or neurological deficit at 1 and 3 days relative to long-chain triglyceride control treatment.
Collapse
|
7
|
Karthik R, Menaka R. Computer-aided detection and characterization of stroke lesion – a short review on the current state-of-the art methods. IMAGING SCIENCE JOURNAL 2017. [DOI: 10.1080/13682199.2017.1370879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R. Karthik
- School of Electronics Engineering, VIT University, Chennai, India
| | - R. Menaka
- School of Electronics Engineering, VIT University, Chennai, India
| |
Collapse
|
8
|
Rostas JA, Hoffman A, Murtha LA, Pepperall D, McLeod DD, Dickson PW, Spratt NJ, Skelding KA. Ischaemia- and excitotoxicity-induced CaMKII-Mediated neuronal cell death: The relative roles of CaMKII autophosphorylation at T286 and T253. Neurochem Int 2017; 104:6-10. [DOI: 10.1016/j.neuint.2017.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/22/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022]
|
9
|
Murtha LA, Beard DJ, Bourke JT, Pepperall D, McLeod DD, Spratt NJ. Intracranial Pressure Elevation 24 h after Ischemic Stroke in Aged Rats Is Prevented by Early, Short Hypothermia Treatment. Front Aging Neurosci 2016; 8:124. [PMID: 27303291 PMCID: PMC4882323 DOI: 10.3389/fnagi.2016.00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/13/2016] [Indexed: 11/13/2022] Open
Abstract
Stroke is predominantly a senescent disease, yet most preclinical studies investigate treatment in young animals. We recently demonstrated that short-duration hypothermia-treatment completely prevented the dramatic intracranial pressure (ICP) rise seen post-stroke in young rats. Here, our aim was to investigate whether a similar ICP rise occurs in aged rats and to determine whether short-duration hypothermia is an effective treatment in aged animals. Experimental middle cerebral artery occlusion (MCAo-3 h occlusion) was performed on male Wistar rats aged 19–20 months. At 1 h after stroke-onset, rats were randomized to 2.5 h hypothermia-treatment (32.5°C) or normothermia (37°C). ICP was monitored at baseline, for 3.5 h post-occlusion, and at 24 h post-stroke. Infarct and edema volumes were calculated from histology. Baseline pre-stroke ICP was 11.2 ± 3.3 mmHg across all animals. Twenty-four hours post-stroke, ICP was significantly higher in normothermic animals compared to hypothermia-treated animals (27.4 ± 18.2 mmHg vs. 8.0 ± 5.0 mmHg, p = 0.03). Infarct and edema volumes were not significantly different between groups. These data demonstrate ICP may also increase 24 h post-stroke in aged rats, and that short-duration hypothermia treatment has a profound and sustained preventative effect. These findings may have important implications for the use of hypothermia in clinical trials of aged stroke patients.
Collapse
Affiliation(s)
- Lucy A Murtha
- Translational Stroke Research Laboratory, Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and The University of Newcastle Callaghan, NSW, Australia
| | - Daniel J Beard
- Translational Stroke Research Laboratory, Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and The University of Newcastle Callaghan, NSW, Australia
| | - Julia T Bourke
- Translational Stroke Research Laboratory, Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and The University of Newcastle Callaghan, NSW, Australia
| | - Debbie Pepperall
- Translational Stroke Research Laboratory, Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and The University of Newcastle Callaghan, NSW, Australia
| | - Damian D McLeod
- Translational Stroke Research Laboratory, Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and The University of Newcastle Callaghan, NSW, Australia
| | - Neil J Spratt
- Translational Stroke Research Laboratory, Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and The University of Newcastle Callaghan, NSW, Australia
| |
Collapse
|
10
|
Beard DJ, Logan CL, McLeod DD, Hood RJ, Pepperall D, Murtha LA, Spratt NJ. Ischemic penumbra as a trigger for intracranial pressure rise - A potential cause for collateral failure and infarct progression? J Cereb Blood Flow Metab 2016; 36:917-27. [PMID: 26759431 PMCID: PMC4853839 DOI: 10.1177/0271678x15625578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/04/2015] [Indexed: 11/17/2022]
Abstract
We have recently shown that intracranial pressure (ICP) increases dramatically 24 h after minor intraluminal thread occlusion with reperfusion, independent of edema. Some of the largest ICP rises were observed in rats with the smallest final infarcts. A possible alternate mechanism for this ICP rise is an increase of cerebrospinal fluid (CSF) volume secondary to choroid plexus damage (a known complication of the intraluminal stroke model used). Alternatively, submaximal injury may be needed to induce ICP elevation. Therefore, we aimed to determine (a) if choroid plexus damage contributes to the ICP elevation, (b) if varying the patency of an important internal collateral supply to the middle cerebral artery (MCA), the anterior choroidal artery (AChA), produces different volumes of ischemic penumbra and (c) if presence of ischemic penumbra (submaximal injury) is associated with ICP elevation. We found (a) no association between choroid plexus damage and ICP elevation, (b) animals with a good internal collateral supply through the AChA during MCAo had significantly larger penumbra volumes and (c) ICP elevation at ≈24 h post-stroke only occurred in rats with submaximal injury, shown in two different stroke models. We conclude that active cellular processes within the ischemic penumbra may be required for edema-independent ICP elevation.
Collapse
Affiliation(s)
- Daniel J Beard
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Caitlin L Logan
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Damian D McLeod
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Rebecca J Hood
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Debbie Pepperall
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Lucy A Murtha
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Neil J Spratt
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia Hunter Medical Research Institute, New Lambton, New South Wales, Australia Department of Neurology, John Hunter Hospital, Hunter New England Local Health District, New South Wales, Australia
| |
Collapse
|
11
|
Qian C, Li PC, Jiao Y, Yao HH, Chen YC, Yang J, Ding J, Yang XY, Teng GJ. Precise Characterization of the Penumbra Revealed by MRI: A Modified Photothrombotic Stroke Model Study. PLoS One 2016; 11:e0153756. [PMID: 27093556 PMCID: PMC4836676 DOI: 10.1371/journal.pone.0153756] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/04/2016] [Indexed: 11/18/2022] Open
Abstract
Aims To precisely characterize the penumbra by MRI based on a modified photothrombotic stroke mouse model. Methods The proximal middle cerebral artery was occluded by a convenient laser system in conjunction with an intravenous injection of Rose Bengal in mice. And the suture MCAO model was performed in seven mice as a comparison of the reproducibility. One hour after occlusion, the penumbra was defined in six random photothrombotic stroke mice by mismatch between perfusion-weighted imaging and the apparent diffusion coefficient map on a home-made workstation. After imaging, three random mice of them were chosen to perform the reperfusion surgery. And the other three mice were sacrificed to stain for several potential penumbra markers, such as c-fos and heart shock protein 90. In the remaining mice, the evolution of the lesions was detected on the apparent diffusion coefficient map, diffusion-weighted imaging and T2-weighted imaging at 1, 3, 6, 12 and 24 hours. After evaluating the neurological deficit scores, the brains were sectioned and stained by triphenyltetrazolium chloride and Nissl. Results The mice subjected to photothrombosis showed significant behavioral deficits. One hour after occlusion, the low perfusion areas on the perfusion-weighted imaging interlaced with the hypointense areas on the apparent diffusion coefficient map, demonstrating that the penumbra was located both surrounding and inside the lesions. This phenomenon was subsequently confirmed by the c-fos and heart shock protein 90 staining. The final T2-weighted images of the mice subjected to the reperfusion surgery were also consistent with the penumbra images at one hour. At early stages, the lesions were clearly identified on the apparent diffusion coefficient map; the volumes of the lesions on the diffusion-weighted imaging and T2-weighted imaging did not reach a maximum until 12 hours. The coefficient of variation (CV) of the final lesions in the photothrombotic stroke mice was 21.7% (0.08 of 0.37) on T2-weighted imaging and 27.8% (0.10 of 0.35) on triphenyltetrazolium chloride, representing a high reproducibility (n = 7). While the CV of the lesions in the MCAO stroke mice was only 70% (0.24 of 0.34, n = 4). Conclusions This study has provided a precise imaging definition of the penumbra based on a reproducible photothrombotic stroke mouse model.
Collapse
Affiliation(s)
- Cheng Qian
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Pei-Cheng Li
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Hong-Hong Yao
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Yu-Chen Chen
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jian Yang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jie Ding
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Xiang-Yu Yang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- * E-mail:
| |
Collapse
|
12
|
Beard DJ, McLeod DD, Logan CL, Murtha LA, Imtiaz MS, van Helden DF, Spratt NJ. Intracranial pressure elevation reduces flow through collateral vessels and the penetrating arterioles they supply. A possible explanation for 'collateral failure' and infarct expansion after ischemic stroke. J Cereb Blood Flow Metab 2015; 35:861-72. [PMID: 25669909 PMCID: PMC4420869 DOI: 10.1038/jcbfm.2015.2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 01/09/2023]
Abstract
Recent human imaging studies indicate that reduced blood flow through pial collateral vessels ('collateral failure') is associated with late infarct expansion despite stable arterial occlusion. The cause for 'collateral failure' is unknown. We recently showed that intracranial pressure (ICP) rises dramatically but transiently 24 hours after even minor experimental stroke. We hypothesized that ICP elevation would reduce collateral blood flow. First, we investigated the regulation of flow through collateral vessels and the penetrating arterioles arising from them during stroke reperfusion. Wistar rats were subjected to intraluminal middle cerebral artery (MCA) occlusion (MCAo). Individual pial collateral and associated penetrating arteriole blood flow was quantified using fluorescent microspheres. Baseline bidirectional flow changed to MCA-directed flow and increased by >450% immediately after MCAo. Collateral diameter changed minimally. Second, we determined the effect of ICP elevation on collateral and watershed penetrating arteriole flow. Intracranial pressure was artificially raised in stepwise increments during MCAo. The ICP increase was strongly correlated with collateral and penetrating arteriole flow reductions. Changes in collateral flow post-stroke appear to be primarily driven by the pressure drop across the collateral vessel, not vessel diameter. The ICP elevation reduces cerebral perfusion pressure and collateral flow, and is the possible explanation for 'collateral failure' in stroke-in-progression.
Collapse
Affiliation(s)
- Daniel J Beard
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Damian D McLeod
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Caitlin L Logan
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Lucy A Murtha
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Mohammad S Imtiaz
- 1] School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia [2] Computational Cardiology Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Neil J Spratt
- 1] School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia [2] Department of Neurology, John Hunter Hospital, Hunter New England Local Health District, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
13
|
Murtha LA, McLeod DD, Pepperall D, McCann SK, Beard DJ, Tomkins AJ, Holmes WM, McCabe C, Macrae IM, Spratt NJ. Intracranial pressure elevation after ischemic stroke in rats: cerebral edema is not the only cause, and short-duration mild hypothermia is a highly effective preventive therapy. J Cereb Blood Flow Metab 2015; 35:592-600. [PMID: 25515213 PMCID: PMC4420875 DOI: 10.1038/jcbfm.2014.230] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 01/25/2023]
Abstract
In both the human and animal literature, it has largely been assumed that edema is the primary cause of intracranial pressure (ICP) elevation after stroke and that more edema equates to higher ICP. We recently demonstrated a dramatic ICP elevation 24 hours after small ischemic strokes in rats, with minimal edema. This ICP elevation was completely prevented by short-duration moderate hypothermia soon after stroke. Here, our aims were to determine the importance of edema in ICP elevation after stroke and whether mild hypothermia could prevent the ICP rise. Experimental stroke was performed in rats. ICP was monitored and short-duration mild (35 °C) or moderate (32.5 °C) hypothermia, or normothermia (37 °C) was induced after stroke onset. Edema was measured in three studies, using wet-dry weight calculations, T2-weighted magnetic resonance imaging, or histology. ICP increased 24 hours after stroke onset in all normothermic animals. Short-duration mild or moderate hypothermia prevented this rise. No correlation was seen between ΔICP and edema or infarct volumes. Calculated rates of edema growth were orders of magnitude less than normal cerebrospinal fluid production rates. These data challenge current concepts and suggest that factors other than cerebral edema are the primary cause of the ICP elevation 24 hours after stroke onset.
Collapse
Affiliation(s)
- Lucy A Murtha
- 1] University of Newcastle and Hunter Medical Research Institute, New Lambton, New South Wales, Australia [2] Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Damian D McLeod
- University of Newcastle and Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Debbie Pepperall
- University of Newcastle and Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Sarah K McCann
- University of Newcastle and Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Daniel J Beard
- University of Newcastle and Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Amelia J Tomkins
- University of Newcastle and Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - William M Holmes
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christopher McCabe
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - I Mhairi Macrae
- Glasgow Experimental MRI Centre, Institute of Neuroscience and Psychology, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil J Spratt
- University of Newcastle and Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| |
Collapse
|
14
|
Murtha LA, Yang Q, Parsons MW, Levi CR, Beard DJ, Spratt NJ, McLeod DD. Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS 2014; 11:12. [PMID: 24932405 PMCID: PMC4057524 DOI: 10.1186/2045-8118-11-12] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many aspects of CSF dynamics are poorly understood due to the difficulties involved in quantification and visualization. In particular, there is debate surrounding the route of CSF drainage. Our aim was to quantify CSF flow, volume, and drainage route dynamics in vivo in young and aged spontaneously hypertensive rats (SHR) using a novel contrast-enhanced computed tomography (CT) method. METHODS ICP was recorded in young (2-5 months) and aged (16 months) SHR. Contrast was administered into the lateral ventricles bilaterally and sequential CT imaging was used to visualize the entire intracranial CSF system and CSF drainage routes. A customized contrast decay software module was used to quantify CSF flow at multiple locations. RESULTS ICP was significantly higher in aged rats than in young rats (11.52 ± 2.36 mmHg, versus 7.04 ± 2.89 mmHg, p = 0.03). Contrast was observed throughout the entire intracranial CSF system and was seen to enter the spinal canal and cross the cribriform plate into the olfactory mucosa within 9.1 ± 6.1 and 22.2 ± 7.1 minutes, respectively. No contrast was observed adjacent to the sagittal sinus. There were no significant differences between young and aged rats in either contrast distribution times or CSF flow rates. Mean flow rates (combined young and aged) were 3.0 ± 1.5 μL/min at the cerebral aqueduct; 3.5 ± 1.4 μL/min at the 3rd ventricle; and 2.8 ± 0.9 μL/min at the 4th ventricle. Intracranial CSF volumes (and as percentage total brain volume) were 204 ± 97 μL (8.8 ± 4.3%) in the young and 275 ± 35 μL (10.8 ± 1.9%) in the aged animals (NS). CONCLUSIONS We have demonstrated a contrast-enhanced CT technique for measuring and visualising CSF dynamics in vivo. These results indicate substantial drainage of CSF via spinal and olfactory routes, but there was little evidence of drainage via sagittal sinus arachnoid granulations in either young or aged animals. The data suggests that spinal and olfactory routes are the primary routes of CSF drainage and that sagittal sinus arachnoid granulations play a minor role, even in aged rats with higher ICP.
Collapse
Affiliation(s)
- Lucy A Murtha
- University of Newcastle and Hunter Medical Research Institute, University of Newcastle: School of Biomedical Sciences & Pharmacy, Medical Sciences Building, Callaghan, NSW 2308, Australia
| | - Qing Yang
- Apollo Medical Imaging Technology Pty Ltd, Suite 611, 365 Little Collins Street, Melbourne, Vic 3000, Australia
| | - Mark W Parsons
- Hunter New England Local Health District: Department of Neurology, John Hunter Hospital, Locked Bag 1, Hunter Region M.C, NSW 2310, Australia
| | - Christopher R Levi
- Hunter New England Local Health District: Department of Neurology, John Hunter Hospital, Locked Bag 1, Hunter Region M.C, NSW 2310, Australia
| | - Daniel J Beard
- University of Newcastle and Hunter Medical Research Institute, University of Newcastle: School of Biomedical Sciences & Pharmacy, Medical Sciences Building, Callaghan, NSW 2308, Australia
| | - Neil J Spratt
- University of Newcastle and Hunter Medical Research Institute, University of Newcastle: School of Biomedical Sciences & Pharmacy, Medical Sciences Building, Callaghan, NSW 2308, Australia
- Hunter New England Local Health District: Department of Neurology, John Hunter Hospital, Locked Bag 1, Hunter Region M.C, NSW 2310, Australia
| | - Damian D McLeod
- University of Newcastle and Hunter Medical Research Institute, University of Newcastle: School of Biomedical Sciences & Pharmacy, Medical Sciences Building, Callaghan, NSW 2308, Australia
| |
Collapse
|
15
|
McLeod DD, Beard DJ, Parsons MW, Levi CR, Calford MB, Spratt NJ. Inadvertent occlusion of the anterior choroidal artery explains infarct variability in the middle cerebral artery thread occlusion stroke model. PLoS One 2013; 8:e75779. [PMID: 24069448 PMCID: PMC3775728 DOI: 10.1371/journal.pone.0075779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/18/2013] [Indexed: 11/18/2022] Open
Abstract
Intraluminal occlusion of the middle cerebral artery (MCAo) in rodents is perhaps the most widely used model of stroke, however variability of infarct volume and the ramifications of this on sample sizes remains a problem, particularly for preclinical testing of potential therapeutics. Our data and that of others, has shown a dichotomous distribution of infarct volumes for which there had previously been no clear explanation. When studying perfusion computed tomography cerebral blood volume (CBV) maps obtained during intraluminal MCAo in rats, we observed inadvertent occlusion of the anterior choroidal artery (AChAo) in a subset of animals. We hypothesized that the combined occlusion of the MCA and AChA may be a predictor of larger infarct volume following stroke. Thus, we aimed to determine the correlation between AChAo and final infarct volume in rats with either temporary or permanent MCA occlusion (1 h, 2 h, or permanent MCAo). Outbred Wistar rats (n = 28) were imaged prior to and immediately following temporary or permanent middle cerebral artery occlusion. Presence of AChAo on CBV maps was shown to be a strong independent predictor of 24 h infarct volume (β = 0.732, p <0.001). This provides an explanation for the previously observed dichotomous distribution of infarct volumes. Interestingly, cortical infarct volumes were also larger in rats with AChAo, although the artery does not supply cortex. This suggests an important role for perfusion of the MCA territory beyond the proximal occlusion through AChA-MCA anastomotic collateral vessels in animals with a patent AChAo. Identification of combined MCAo and AChAo will allow other investigators to tailor their stroke model to reduce variability in infarct volumes, improve statistical power and reduce sample sizes in preclinical stroke research.
Collapse
Affiliation(s)
- Damian D. McLeod
- University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- * E-mail:
| | - Daniel J. Beard
- University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Mark W. Parsons
- University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- Hunter New England Local Health District, New Lambton Heights, New South Wales, Australia
| | - Christopher R. Levi
- University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- Hunter New England Local Health District, New Lambton Heights, New South Wales, Australia
| | - Mike B. Calford
- University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Neil J. Spratt
- University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
- Hunter New England Local Health District, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
16
|
Murtha LA, McLeod DD, McCann SK, Pepperall D, Chung S, Levi CR, Calford MB, Spratt NJ. Short-duration hypothermia after ischemic stroke prevents delayed intracranial pressure rise. Int J Stroke 2013; 9:553-9. [PMID: 24025084 DOI: 10.1111/ijs.12181] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/22/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND Intracranial pressure elevation, peaking three to seven post-stroke is well recognized following large strokes. Data following small-moderate stroke are limited. Therapeutic hypothermia improves outcome after cardiac arrest, is strongly neuroprotective in experimental stroke, and is under clinical trial in stroke. Hypothermia lowers elevated intracranial pressure; however, rebound intracranial pressure elevation and neurological deterioration may occur during rewarming. HYPOTHESES (1) Intracranial pressure increases 24 h after moderate and small strokes. (2) Short-duration hypothermia-rewarming, instituted before intracranial pressure elevation, prevents this 24 h intracranial pressure elevation. METHODS Long-Evans rats with two hour middle cerebral artery occlusion or outbred Wistar rats with three hour middle cerebral artery occlusion had intracranial pressure measured at baseline and 24 h. Wistars were randomized to 2·5 h hypothermia (32·5°C) or normothermia, commencing 1 h after stroke. RESULTS In Long-Evans rats (n = 5), intracranial pressure increased from 10·9 ± 4·6 mmHg at baseline to 32·4 ± 11·4 mmHg at 24 h, infarct volume was 84·3 ± 15·9 mm(3) . In normothermic Wistars (n = 10), intracranial pressure increased from 6·7 ± 2·3 mmHg to 31·6 ± 9·3 mmHg, infarct volume was 31·3 ± 18·4 mm(3) . In hypothermia-treated Wistars (n = 10), 24 h intracranial pressure did not increase (7·0 ± 2·8 mmHg, P < 0·001 vs. normothermia), and infarct volume was smaller (15·4 ± 11·8 mm(3) , P < 0·05). CONCLUSIONS We saw major intracranial pressure elevation 24 h after stroke in two rat strains, even after small strokes. Short-duration hypothermia prevented the intracranial pressure rise, an effect sustained for at least 18 h after rewarming. The findings have potentially important implications for design of future clinical trials.
Collapse
Affiliation(s)
- L A Murtha
- University of Newcastle and Hunter Medical Research Institute, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Juenemann M, Goegel S, Obert M, Schleicher N, Ritschel N, Doenges S, Eitenmueller I, Schwarz N, Kastaun S, Yeniguen M, Tschernatsch M, Gerriets T. Flat-panel volumetric computed tomography in cerebral perfusion: evaluation of three rat stroke models. J Neurosci Methods 2013; 219:113-23. [PMID: 23880321 DOI: 10.1016/j.jneumeth.2013.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 11/16/2022]
Abstract
Flat-panel volumetric computed tomography (fpVCT) is a non-invasive approach to three-dimensional small animal imaging. The capability of volumetric scanning and a high resolution in time and space enables whole organ perfusion studies. We aimed to assess feasibility and validity of fpVCT in cerebral perfusion measurement with impaired hemodynamics by evaluation of three well-established rat stroke models for temporary and permanent middle cerebral artery occlusion (MCAO). Male Wistar rats were randomly assigned to temporary (group I: suture model) and permanent (group II: suture model; III: macrosphere model) MCAO and to a control group. Perfusion scans with respect to cerebral blood flow (CBF) and volume (CBV) were performed 24h post intervention by fpVCT, using a Gantry rotation time of 1s and a total scanning time of 30s. Postmortem analysis included infarct-size calculation by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Infarct volumes did not differ significantly throughout intervention groups. After permanent MCAO, CBF significantly decreased in subcortical regions to 78.2% (group II, p=0.005) and 79.9% (group III, p=0.012) and in total hemisphere to 77.4% (group II, p=0.010) and 82.0% (group III, p=0.049). CBF was less impaired with temporary vessel occlusion. CBV measurement revealed no significant differences. Results demonstrate feasibility of cerebral perfusion quantification in rats with the fpVCT, which can be a useful tool for non-invasive dynamic imaging of cerebral perfusion in rodent stroke models. In addition to methodological advantages, CBF data confirm the macrosphere model as a useful alternative to the suture model for permanent experimental MCAO.
Collapse
Affiliation(s)
- Martin Juenemann
- Department of Neurology, Justus-Liebig-University Giessen, Klinikstrasse 33, 35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wathen CA, Foje N, van Avermaete T, Miramontes B, Chapaman SE, Sasser TA, Kannan R, Gerstler S, Leevy WM. In vivo X-ray computed tomographic imaging of soft tissue with native, intravenous, or oral contrast. SENSORS (BASEL, SWITZERLAND) 2013; 13:6957-80. [PMID: 23711461 PMCID: PMC3715264 DOI: 10.3390/s130606957] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 02/07/2023]
Abstract
X-ray Computed Tomography (CT) is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site.
Collapse
Affiliation(s)
- Connor A. Wathen
- Department of Biological Sciences, 100 Galvin Life Sciences Center, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mail:
| | - Nathan Foje
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
| | - Tony van Avermaete
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Penn High School, 55900 Bittersweet Road, Mishawaka, IN 46545, USA
| | - Bernadette Miramontes
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Penn High School, 55900 Bittersweet Road, Mishawaka, IN 46545, USA
| | - Sarah E. Chapaman
- Notre Dame Integrated Imaging Facility, Notre Dame, IN 46556, USA; E-Mail:
| | - Todd A. Sasser
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Bruker-Biospin Corporation, 4 Research Drive, Woodbridge, CT 06525, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA; E-Mail:
| | - Steven Gerstler
- Saint Joseph Regional Medical Center, Mishawaka, IN 46545, USA; E-Mail:
| | - W. Matthew Leevy
- Department of Biological Sciences, 100 Galvin Life Sciences Center, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mail:
- Notre Dame Integrated Imaging Facility, Notre Dame, IN 46556, USA; E-Mail:
- Harper Cancer Research Institute, A200 Harper Hall, Notre Dame, IN 46530, USA
| |
Collapse
|
19
|
Ström JO, Ingberg E, Theodorsson A, Theodorsson E. Method parameters' impact on mortality and variability in rat stroke experiments: a meta-analysis. BMC Neurosci 2013; 14:41. [PMID: 23548160 PMCID: PMC3637133 DOI: 10.1186/1471-2202-14-41] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/22/2013] [Indexed: 12/14/2022] Open
Abstract
Background Even though more than 600 stroke treatments have been shown effective in preclinical studies, clinically proven treatment alternatives for cerebral infarction remain scarce. Amongst the reasons for the discrepancy may be methodological shortcomings, such as high mortality and outcome variability, in the preclinical studies. A common approach in animal stroke experiments is that A) focal cerebral ischemia is inflicted, B) some type of treatment is administered and C) the infarct sizes are assessed. However, within this paradigm, the researcher has to make numerous methodological decisions, including choosing rat strain and type of surgical procedure. Even though a few studies have attempted to address the questions experimentally, a lack of consensus regarding the optimal methodology remains. Methods We therefore meta-analyzed data from 502 control groups described in 346 articles to find out how rat strain, procedure for causing focal cerebral ischemia and the type of filament coating affected mortality and infarct size variability. Results The Wistar strain and intraluminal filament procedure using a silicone coated filament was found optimal in lowering infarct size variability. The direct and endothelin methods rendered lower mortality rate, whereas the embolus method increased it compared to the filament method. Conclusions The current article provides means for researchers to adjust their middle cerebral artery occlusion (MCAo) protocols to minimize infarct size variability and mortality.
Collapse
Affiliation(s)
- Jakob O Ström
- Department of Clinical and Experimental Medicine, Clinical Chemistry, Faculty of Health Sciences, Linköping University, County Council of Östergötland, Linköping, Sweden.
| | | | | | | |
Collapse
|