1
|
Khajah MA, Hawai S, Barakat A, Albaloushi A, Alkharji M, Masocha W. Minocycline synergizes with corticosteroids in reducing colitis severity in mice via the modulation of pro-inflammatory molecules. Front Pharmacol 2023; 14:1252174. [PMID: 38034999 PMCID: PMC10687282 DOI: 10.3389/fphar.2023.1252174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Background: A few studies have highlighted the anti-inflammatory properties of minocycline in reducing colitis severity in mice, but its molecular mechanism is not fully understood. The aim of this study was to determine the anti-inflammatory properties of minocycline and the expression/activity profiles of molecules involved in pro-inflammatory signaling cascades, cytokines, and molecules involved in the apoptotic machinery. The synergistic effect between minocycline and corticosteroids was also evaluated. Methods: The effects of various treatment approaches were determined in mice using the dextran sulfate sodium (DSS) colitis model at gross and microscopic levels. The expression/activity profiles of various pro- or anti-inflammatory molecules were determined using Western blotting and polymerase chain reaction (PCR). Results: Minocycline treatment significantly reduced colitis severity using prophylactic and treatment approaches and produced a synergistic effect with budesonide and methylprednisolone in reducing the active state of colitis. This was mediated in part through reduced colonic expression/activity of pro-inflammatory molecules, cytokines, proteins involved in the apoptotic machinery, and increased expression of the anti-inflammatory cytokine IL-10. Conclusion: Minocycline synergizes with corticosteroids to reduce colitis severity, which could reduce their dose-dependent side effects and treatment cost. The reduction in colitis severity was achieved by modulating the expression/activity profiles of various pro- and anti-inflammatory signaling molecules, cytokines, and molecules involved in the apoptotic machinery.
Collapse
|
2
|
Li Y, Guo TL, Xie HQ, Xu L, Liu Y, Zheng L, Yu S, Chen G, Ji J, Jiang S, Xu D, Hang X, Zhao B. Exposure to dechlorane 602 induces perturbation of gut immunity and microbiota in female mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120141. [PMID: 36087894 DOI: 10.1016/j.envpol.2022.120141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The homeostasis of gut immunity and microbiota are associated with the health of the gut. Dechlorane 602 (Dec 602) with food web magnification potential has been detected in daily food. People who were orally exposed to Dec 602 may encounter increased risk of health problems in the gut. In order to reveal the influence of short-term exposure of Dec 602 on gut immunity and microbiota, adult female C57BL/6 mice were administered orally with Dec 602 (low/high doses: 1.0/10.0 μg/kg body weight per day) for 7 days. Lymphocytes were examined by flow cytometry. Gut microbiota was measured by 16S rRNA gene sequencing. Results showed that fecal IgA was upregulated after exposure to the high dose of Dec 602, suggesting that there might be inflammation in the gut. Then, changes of immune cells in mesenteric lymph nodes and colonic lamina propria were examined. We found that exposure to the high dose of Dec 602 decreased the percentages of the anti-inflammatory T regulatory cells in mesenteric lymph nodes. In colonic lamina propria, the production of gut protective cytokine interleukin-22 by CD4+ T cells was decreased, and a decreased trend of interleukin-22 production was also observed in type 3 innate lymphoid cells in the high dose group. Furthermore, an altered microbiota composition toward inflammation in the gut was observed after exposure to Dec 602. Additionally, the altered microbiota correlated with changes of immune parameters, suggesting that there were interactions between influenced microbiota and immune parameters after exposure to Dec 602. Taken together, short-term exposure to Dec 602 induced gut immunity and microbiota perturbations, and this might be the mechanisms for Dec 602 to elicit inflammation in the gut.
Collapse
Affiliation(s)
- Yunping Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tai L Guo
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Liping Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyuan Yu
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Guomin Chen
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Jiajia Ji
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Shuai Jiang
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Dan Xu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, 116026, China
| | - Xiaoming Hang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, 116026, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
3
|
Adamkova P, Hradicka P, Kupcova Skalnikova H, Cizkova V, Vodicka P, Farkasova Iannaccone S, Kassayova M, Gancarcikova S, Demeckova V. Dextran Sulphate Sodium Acute Colitis Rat Model: A Suitable Tool for Advancing Our Understanding of Immune and Microbial Mechanisms in the Pathogenesis of Inflammatory Bowel Disease. Vet Sci 2022; 9:238. [PMID: 35622766 PMCID: PMC9147231 DOI: 10.3390/vetsci9050238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders causing inflammation in the digestive tract. Recent data suggest that dysbiosis may play a pivotal role in the IBD pathogenesis. As microbiome-based therapeutics that modulate the gut ecology have been proposed as a novel strategy for preventing IBD, the aim of presenting study was to evaluate the dextran sulphate sodium (DSS) rat model mainly in terms of microbial shifts to confirm its suitability for dysbiosis study in IBD. Acute colitis was induced using 5% DSS solution for seven days and rats were euthanized five days after DSS removal. The faecal/caecal microbiota was analyzed by next generation sequencing. Disease activity index (DAI) score was evaluated daily. Blood and colon tissue immunophenotyping was assessed by flow cytometry and histological, haematological, and biochemical parameters were also evaluated. The colitis induction was reflected in a significantly higher DAI score and changes in all parameters measured. This study demonstrated significant shifts in the colitis-related microbial species after colitis induction. The characteristic inflammation-associated microbiota could be detected even after a five day-recovery period. Moreover, the DSS-model might contribute to an understanding of the effect of different treatments on extraintestinal organ impairments. The observation that certain bacterial species in the gut microbiota are associated with colitis raises the question of whether these organisms are contributors to, or a consequence of the disease. Despite some limitations, we confirmed the suitability of DSS-induced colitis model to monitor microbial changes during acute colitis, in order to test attractive new microbiome-based therapies.
Collapse
Affiliation(s)
- Petra Adamkova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Petra Hradicka
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Helena Kupcova Skalnikova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Veronika Cizkova
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 277 21 Libechov, Czech Republic; (H.K.S.); (V.C.); (P.V.)
| | - Silvia Farkasova Iannaccone
- Department of Forensic Medicine, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia;
| | - Monika Kassayova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Vlasta Demeckova
- Faculty of Science, Institute of Biology and Ecology, Pavol Jozef Safarik University in Kosice, 041 54 Kosice, Slovakia; (P.A.); (P.H.); (M.K.)
| |
Collapse
|
4
|
Qu Y, Li X, Xu F, Zhao S, Wu X, Wang Y, Xie J. Kaempferol Alleviates Murine Experimental Colitis by Restoring Gut Microbiota and Inhibiting the LPS-TLR4-NF-κB Axis. Front Immunol 2021; 12:679897. [PMID: 34367139 PMCID: PMC8339999 DOI: 10.3389/fimmu.2021.679897] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022] Open
Abstract
Intestinal microbiota dysbiosis is an established characteristic of ulcerative colitis (UC). Regulating the gut microbiota is an attractive alternative UC treatment strategy, considering the potential adverse effects of synthetic drugs used to treat UC. Kaempferol (Kae) is an anti-inflammatory and antioxidant flavonoid derived from a variety of medicinal plants. In this study, we determined the efficacy and mechanism of action of Kae as an anti-UC agent in dextran sulfate sodium (DSS)-induced colitis mice. DSS challenge in a mouse model of UC led to weight loss, diarrhea accompanied by mucous and blood, histological abnormalities, and shortening of the colon, all of which were significantly alleviated by pretreatment with Kae. In addition, intestinal permeability was shown to improve using fluorescein isothiocyanate (FITC)-dextran administration. DSS-induced destruction of the intestinal barrier was also significantly prevented by Kae administration via increases in the levels of ZO-1, occludin, and claudin-1. Furthermore, Kae pretreatment decreased the levels of IL-1β, IL-6, and TNF-α and downregulated transcription of an array of inflammatory signaling molecules, while it increased IL-10 mRNA expression. Notably, Kae reshaped the intestinal microbiome by elevating the Firmicutes to Bacteroidetes ratio; increasing the linear discriminant analysis scores of beneficial bacteria, such as Prevotellaceae and Ruminococcaceae; and reducing the richness of Proteobacteria in DSS-challenged mice. There was also an evident shift in the profile of fecal metabolites in the Kae treatment group. Serum LPS levels and downstream TLR4-NF-κB signaling were downregulated by Kae supplementation. Moreover, fecal microbiota transplantation from Kae-treated mice to the DSS-induced mice confirmed the effects of Kae on modulating the gut microbiota to alleviate UC. Therefore, Kae may exert protective effects against colitis mice through regulating the gut microbiota and TLR4-related signaling pathways. This study demonstrates the anti-UC effects of Kae and its potential therapeutic mechanisms, and offers novel insights into the prevention of inflammatory diseases using natural products.
Collapse
Affiliation(s)
- Yifan Qu
- Inner Mongolia Clinical College, Inner Mongolia Medical University, Hohhot, China
- Clinical Laboratory, Inner Mongolia People’s Hospital, Hohhot, China
| | - Xinyi Li
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Fengying Xu
- Inner Mongolia Clinical College, Inner Mongolia Medical University, Hohhot, China
| | - Shimin Zhao
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Xuemei Wu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuzhen Wang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Jiming Xie
- Clinical Laboratory, Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
5
|
Arginine supplementation reduces colonic injury, inflammation and oxidative stress of DSS-induced colitis in mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
6
|
Yu T, Yu Q, Chen X, Zhou L, Wang Y, Yu C. Exclusive enteral nutrition protects against inflammatory bowel disease by inhibiting NF‑κB activation through regulation of the p38/MSK1 pathway. Int J Mol Med 2018; 42:1305-1316. [PMID: 29901086 PMCID: PMC6089761 DOI: 10.3892/ijmm.2018.3713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
Although enteral nutrition therapy for inflammatory bowel disease has been confirmed to be an effective treatment method, the exact mechanism responsible for the effects of enteral nutrition remains unclear. The aim of the present study was to investigate the protective effect of exclusive enteral nutrition (EEN) against colitis, and to elucidate the potential mechanisms by inhibiting p65 activation via regulating the p38/mitogen‑ and stress‑activated protein kinase‑1 (MSK1) pathway. Experiments were performed by establishing dextran sulfate sodium (DSS)‑mice colitis and picrylsulfonic acid solution (TNBS)‑induced rat colitis, and the results demonstrated that EEN treatment attenuated body weight loss, colon length shortening and colonic pathological damage caused by colitis. EEN also inhibited inflammatory cells infiltration and decreased myeloperoxidase and inducible nitric oxide synthase activities. Furthermore, EEN significantly reduced the production of pro‑inflammatory mediators in serum and the colon. Mechanically, EEN suppressed activation of p65 by inhibiting the p38/MSK1 pathway. In conclusion, the present study demonstrated that EEN attenuated DSS‑ and TNBS‑induced colitis by inhibiting p65 activation via regulating the p38/MSK1 pathway, thus suggesting that EEN is effective in the treatment of colitis.
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, Gulou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Qian Yu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaotian Chen
- Department of Gastroenterology, Gulou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Lixing Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yuming Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Chenggong Yu
- Department of Gastroenterology, Gulou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
7
|
Ji KY, Jang JH, Lee EH, Kim SM, Song HW, Yang WK, Kim HY, Kim KH, Lee YS, Kim DS, Kang HS, Kim SH. Canavalia gladiata and Arctium lappa extracts ameliorate dextran sulphate sodium-induced inflammatory bowel disease by enhancing immune responses. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
8
|
Development of hydroxy-based sphingosine kinase inhibitors and anti-inflammation in dextran sodium sulfate induced colitis in mice. Bioorg Med Chem 2016; 24:3218-30. [DOI: 10.1016/j.bmc.2016.05.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 01/01/2023]
|
9
|
Lee KH, Park M, Ji KY, Lee HY, Jang JH, Yoon IJ, Oh SS, Kim SM, Jeong YH, Yun CH, Kim MK, Lee IY, Choi HR, Ko KS, Kang HS. Bacterial β-(1,3)-glucan prevents DSS-induced IBD by restoring the reduced population of regulatory T cells. Immunobiology 2014; 219:802-12. [PMID: 25092569 DOI: 10.1016/j.imbio.2014.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/06/2014] [Accepted: 07/12/2014] [Indexed: 02/07/2023]
Abstract
Bacterial β-(1,3)-glucan has more advantages in terms of cost, yield and efficiency than that derived from mushrooms, plants, yeasts and fungi. We have previously developed a novel and high-yield β-(1,3)-glucan produced by Agrobacterium sp. R259. This study aimed to elucidate the functional mechanism and therapeutic efficacy of bacterial β-(1,3)-glucan in dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD).Mice were orally pretreated with bacterial β-(1,3)-glucan at daily doses of 2.5 or 5mg/kg for 2 weeks. After 6 days of DSS treatment, clinical assessment of IBD severity and expression of pro-inflammatory cytokines were evaluated. In vivo cell proliferation was examined by immunohistochemistry using Ki-67 and ER-TR7 antibodies. The frequency of regulatory T cells (Tregs) was analyzed by flow cytometry. Natural killer (NK) activity and IgA level were evaluated using NK cytotoxicity assay and ELISA.The deterioration of body weight gain, colonic architecture, disease score and histological score was recovered in DSS-induced IBD mice when pretreated with bacterial β-(1,3)-glucan. The recruitment of macrophages and the gene expression of proinflammatory cytokines, such as IL-1β, IL-6 and IL-17A/F, were markedly decreased in the colon of β-(1,3)-glucan-pretreated mice. β-(1,3)-Glucan induced the recovery of Tregs in terms of their frequency in DSS-induced IBD mice. Intriguingly, β-(1,3)-glucan reversed the functional defects of NK cells and excessive IgA production in DSS-induced IBD mice.We conclude that bacterial β-(1,3)-glucan prevented the progression of DSS-induced IBD by recovering the reduction of Tregs, functional defect of NK cells and excessive IgA production.
Collapse
Affiliation(s)
- Kwang-Ho Lee
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-75, Republic of Korea
| | - Min Park
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-75, Republic of Korea
| | - Kon-Young Ji
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-75, Republic of Korea
| | - Hwa-Youn Lee
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-75, Republic of Korea
| | - Ji-Hun Jang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-75, Republic of Korea
| | - Il-Joo Yoon
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-75, Republic of Korea
| | - Seung-Su Oh
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-75, Republic of Korea
| | - Su-Man Kim
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-75, Republic of Korea
| | - Yun-Hwa Jeong
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-75, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-75, Republic of Korea
| | - Mi-Kyoung Kim
- Naturence Co., Ltd. Tanchun Industrial Complex, Road 69, Tanchun-myeon, Gongju-City, Chungcheongnam-do, Republic of Korea
| | - In-Young Lee
- Naturence Co., Ltd. Tanchun Industrial Complex, Road 69, Tanchun-myeon, Gongju-City, Chungcheongnam-do, Republic of Korea
| | - Ha-Rim Choi
- Department of Food and Nutrition, Nambu University, Gwangju 506-706, Republic of Korea
| | - Ki-sung Ko
- Department of Medicine, Medical Research Institute, College of Medicine, Chung-Ang University, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-75, Republic of Korea.
| |
Collapse
|
10
|
Effects of alanyl-glutamine dipeptide on the expression of colon-inflammatory mediators during the recovery phase of colitis induced by dextran sulfate sodium. Eur J Nutr 2012; 52:1089-98. [PMID: 22847641 DOI: 10.1007/s00394-012-0416-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/27/2012] [Indexed: 12/13/2022]
Abstract
PURPOSE Glutamine (Gln) is a nutrient with immunomodulatory effects in metabolic stressed conditions. This study investigated the effects of Gln on colonic-inflammatory-mediator expression and mucosal repair in mice with dextran sulfate sodium (DSS)-induced colitis. METHODS C57BL/6 mice received distilled water containing 3 % DSS for 5 d to induce colitis. One of the DSS-treated groups was intraperitoneally injected with an alanyl (Ala)-Gln solution 3 days before (G-DSS) while the other group was administered Ala-Gln 3 days after colitis (DSS-G) was induced. The Ala-Gln solution provided 0.5 g Gln/kg/d. The saline-DSS group (S-DSS) received an identical amount of saline before and after colitis was induced to serve as a positive control. RESULTS The S-DSS group had a shorter colon length, higher plasma haptoglobin level, and more-severe colon inflammation. Also, the toll-like receptor (TLR)4 level, nuclear factor (NF)-κB activation, and inflammatory cytokine gene expression in the colon were higher than those of the normal control group. Gln administration either before or after colitis suppressed TLR4 protein levels, decreased plasma haptoglobin, and reduced colon inflammation. Histological inflammatory scores were also lowered. Compared to the post-colitis Gln group, preventive use of Gln had higher colon length, expressions of mucin 2, trefoil factor 3, and heat shock protein 72 genes were also upregulated in the colon. CONCLUSIONS These results suggest that Gln administered either before or after the colitis mitigated inflammation of colitis that was not observed in group without Gln injection. Prophylactic treatment with Gln had more-beneficial effects on reducing inflammatory markers and enhancing the recovery of mucosa in DSS-induced colitis.
Collapse
|