1
|
Lin Y, Chu F, Huang Y, Miao J, Lai K. Inhibition of advanced glycation end-products in frozen-thawed and reheated pork by pigskin gelatin hydrolysates. Int J Biol Macromol 2025; 295:139598. [PMID: 39788263 DOI: 10.1016/j.ijbiomac.2025.139598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
This study investigated the effects of pigskin gelatin hydrolysates (PGH, 4 %) as a cryoprotectant on the formation of advanced glycation end-products (AGEs) in pre-heated pork subjected to freeze-thaw cycles and subsequent reheating. During the freeze-thaw process, PGH significantly mitigated the increase in α-dicarbonyl precursors (α-DPs) and AGEs compared to the control group. Specifically, the levels of glyoxal and methylglyoxal decreased by 4.26 % and 6.12 %, respectively, although this inhibition was not statistically significant (P > 0.05). The concentrations of Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) content in the PGH-treated group were 2.86 %-33.19 % and 4.33 %-24.02 % lower than those in the control group, respectively. After reheating (100 °C, 10 min), AGEs levels increased by 1.94 % to 123.21 %, while the levels of glyoxal and methylglyoxal decreased by 17.00 % and 15.24 %, respectively. The addition of PGH significantly reduced AGEs formation after reheating compared to the control (P < 0.01). These results suggest that PGH is effective as a cryoprotectant, inhibiting the formation of harmful AGEs during freeze-thaw cycles and subsequent reheating of pre-heated pork.
Collapse
Affiliation(s)
- Yi Lin
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
| | - Fuyu Chu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410004, Hunan, China.
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Wang S, Zheng X, Yang Y, Zheng L, Xiao D, Ai B, Sheng Z. Emerging technologies in reducing dietary advanced glycation end products in ultra-processed foods: Formation, health risks, and innovative mitigation strategies. Compr Rev Food Sci Food Saf 2025; 24:e70130. [PMID: 39970012 DOI: 10.1111/1541-4337.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
The widespread consumption of ultra-processed foods (UPFs) results from industrialization and globalization, with their elevated content of sugar, fat, salt, and additives, alongside the formation of dietary advanced glycation end products (AGEs), generating considerable health risks. These risks include an increased incidence of diabetes, cardiovascular diseases, and neurodegenerative disorders. This review explores the mechanisms of AGE formation in UPFs and evaluates emerging technologies and additives aimed at mitigating these risks. Both thermal methods (air frying, low-temperature vacuum heating, microwave heating, and infrared heating) and non-thermal techniques (high-pressure processing, pulsed electric fields, ultrasound, and cold plasma) are discussed for their potential in AGE reduction. Additionally, the review evaluates the efficacy of exogenous additives, including amino acids, polysaccharides, phenolic compounds, and nanomaterials, in inhibiting AGE formation, though results may vary depending on the specific additive and food matrix. The findings demonstrate the promise of these technologies and additives for reducing AGEs, potentially contributing to healthier food processing practices and the promotion of improved public health outcomes.
Collapse
Affiliation(s)
- Shenwan Wang
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhanwu Sheng
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
3
|
Gao HH, Gao X, Kong WQ, Yuan JY, Zhang YW, Wang XD, Liu HM, Qin Z. Effect of Chinese quince proanthocyanidins on the inhibition of heterocyclic amines and quality of fried chicken meatballs and tofu. J Food Sci 2024; 89:3759-3775. [PMID: 38706376 DOI: 10.1111/1750-3841.17092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/21/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Heterocyclic amines (HCAs) have potential carcinogenic and mutagenic activity and are generated in cooked protein-rich foods. Adding proanthocyanidins (PAs) to these foods before frying is an effective way to reduce HCAs. In this study, polymeric PAs (PPA) and ultrasound-assisted acid-catalyzed/catechin nucleophilic depolymerized PAs (UAPA, a type of oligomeric PA) were prepared from Chinese quince fruits (CQF). Different levels of PPA and UAPA (0.05%, 0.1%, and 0.15%) were added to chicken meatballs and tofu; then these foods were fried, and the content of HCAs in them after frying was investigated. The results showed that PPA and, particularly, UAPA significantly inhibited the formation of HCAs in fried meatballs and tofu, and this inhibition was dose-dependent. The inhibition of HCAs by both PPA and UAPA was stronger in the chicken meatballs than in fried tofu. The level of total HCAs was significantly reduced by 57.84% (from 11.93 to 5.03 ng/g) after treatment of meatballs with 0.15% UAPA, with inhibition rates of 78.94%, 50.37%, and 17.81% for norharman, harman, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), respectively. Of note, there was a negative correlation between water, lipid, protein, creatine, and glucose content and HCA content in the crust, interior, and whole (crust-plus-interior) measurements of all fried samples. Interestingly, PPA and UAPA were found more effective in inhibiting HCAs in the exterior crust than in the interior of the fried chicken meatballs. These results provide evidence that further studies on the reduction of the formation of harmful HCAs in fried foods by adding CQF PAs could be valuable to the fried food industry. PRACTICAL APPLICATION: Chinese quince proanthocyanidins treatments significantly inhibited the generation of heterocyclic amines (HCAs) in chicken meatballs and tofu when deep-fried. These results suggest that Chinese quince proanthocyanidins can be used as natural food additive for reducing HCAs in fried foods, laying the foundation for using Chinese quince fruit proanthocyanidins for HCA inhibition in the food industry.
Collapse
Affiliation(s)
- Hui-Hui Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Xin Gao
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Wan-Qing Kong
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Jing-Yang Yuan
- School of International Education, Henan University of Technology, Zhengzhou, China
| | - Yi-Wei Zhang
- School of International Education, Henan University of Technology, Zhengzhou, China
| | - Xue-De Wang
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua-Min Liu
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| | - Zhao Qin
- College of Food Science and Engineering & Institute of Special Oilseed Processing and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
4
|
Shi B, Wang H, Nawaz A, Khan IA, Wang Q, Zhao D, Cheng KW. Dual functional roles of nutritional additives in nutritional fortification and safety of thermally processed food: Potential, limitations, and perspectives. Compr Rev Food Sci Food Saf 2024; 23:e13268. [PMID: 38284588 DOI: 10.1111/1541-4337.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 01/30/2024]
Abstract
The Maillard reaction (MR) has been established to be a paramount contributor to the characteristic sensory property of thermally processed food products. Meanwhile, MR also gives rise to myriads of harmful byproducts (HMPs) (e.g., advanced glycation end products (AGEs) and acrylamide). Nutritional additives have attracted increasing attention in recent years owing to their potential to simultaneously improve nutritional quality and attenuate HMP formation. In this manuscript, a brief overview of various nutritional additives (vitamins, minerals, fatty acids, amino acids, dietary fibers, and miscellaneous micronutrients) in heat-processed food is provided, followed by a summary of the formation mechanisms of AGEs and acrylamide highlighting the potential crosstalk between them. The main body of the manuscript is on the capability of nutritional additives to modulate AGE and acrylamide formation besides their traditional roles as nutritional enhancers. Finally, limitations/concerns associated with their use to attenuate dietary exposure to HMPs and future perspectives are discussed. Literature data support that through careful control of the addition levels, certain nutritional additives possess promising potential for simultaneous improvement of nutritional value and reduction of AGE and acrylamide content via multiple action mechanisms. Nonetheless, there are some major concerns that may limit their wide applications for achieving such dual functions, including influence on sensory properties of food products, potential overestimation of nutrition enhancement, and introduction of hazardous alternative reaction products or derivatives. These could be overcome through comprehensive assay of dose-response relationships and systematic evaluation of the diverse combinations from the same and/or different categories of nutritional additives to establish synergistic mixtures.
Collapse
Affiliation(s)
- Baoping Shi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Huaixu Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Asad Nawaz
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Iftikhar Ali Khan
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Qi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Danyue Zhao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Ka-Wing Cheng
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Li HH, Wu J, Liu JQ, Wu QZ, He RL, Cheng ZH, Lv JL, Lin WQ, Wu J, Liu DF, Li WW. Nonsterilized Fermentation of Crude Glycerol for Polyhydroxybutyrate Production by Metabolically Engineered Vibrio natriegens. ACS Synth Biol 2023; 12:3454-3462. [PMID: 37856147 DOI: 10.1021/acssynbio.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Polyhydroxybutyrate (PHB) is an attractive biodegradable polymer that can be produced through the microbial fermentation of organic wastes or wastewater. However, its mass production has been restricted by the poor utilization of organic wastes due to the presence of inhibitory substances, slow microbial growth, and high energy input required for feedstock sterilization. Here, Vibrio natriegens, a fast-growing bacterium with a broad substrate spectrum and high tolerance to salt and toxic substances, was genetically engineered to enable efficient PHB production from nonsterilized fermentation of organic wastes. The key genes encoding the PHB biosynthesis pathway of V. natriegens were identified through base editing and overexpressed. The metabolically engineered strain showed 166-fold higher PHB content (34.95 wt %) than the wide type when using glycerol as a substrate. Enhanced PHB production was also achieved when other sugars were used as feedstock. Importantly, it outperformed the engineered Escherichia coli MG1655 in PHB productivity (0.053 g/L/h) and tolerance to toxic substances in crude glycerol, without obvious activity decline under nonsterilized fermentation conditions. Our work demonstrates the great potential of engineered V. natriegens for low-cost PHB bioproduction and lays a foundation for exploiting this strain as a next-generation model chassis microorganism in synthetic biology.
Collapse
Affiliation(s)
- Hui-Hui Li
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jia-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Qi-Zhong Wu
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ru Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Zhou-Hua Cheng
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jun-Lu Lv
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei-Qiang Lin
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jing Wu
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
| | - Wen-Wei Li
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
6
|
Wang Y, Tian F, Zhou X, Wang M, Zhang H. Screening, identification and control of unknown estrogen-like compounds in Maillard reaction products of glucose-arginine/lysine model systems. Food Res Int 2023; 173:113285. [PMID: 37803598 DOI: 10.1016/j.foodres.2023.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 10/08/2023]
Abstract
It was speculated that estrogen-like compounds may be produced by chemical reactions during food processing, such as Maillard reaction, which would disrupt the endocrine system of organisms. Herein, the Maillard reaction in the process of high temperature for long time was simulated by using model system, and unknown estrogen-like compounds produced during Maillard reaction were screened by colorimetric assay based on dual estrogen receptor (ER)-gold nanoparticles (AuNPs) and enzyme-linked immunosorbent assay (ELISA). Possible structures of estrogen-like compounds were inferred by ultra-performance liquid chromatography-quadrupole time of flight tandem mass spectrometry (UPLC-QTOF/MS) in combination with a mass database, and finally the structure of estrogen-like compound, 2, 4-dihydroxy-1, 4-benzoxazin-3-one-2-o-β-D-glucopyranoside (DIBOA-glc), was identified by high resolution orbitrap mass spectrometry (Orbitrap HRMS). This is the first study of the screening and identification of unknown estrogen-like compounds produced in Maillard reaction. Additionally, strategy of controlling the formation of DIBOA-glc by adding vitamin B6 in Maillard reaction was proposed, providing effective proposals for the safety control in actual food processing.
Collapse
Affiliation(s)
- Ying Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Fangyuan Tian
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Xiuran Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, PR China.
| |
Collapse
|
7
|
Feng N, Feng Y, Tan J, Zhou C, Xu J, Chen Y, Xiao J, He Y, Wang C, Zhou M, Wu Q. Inhibition of advance glycation end products formation, gastrointestinal digestion, absorption and toxicity: A comprehensive review. Int J Biol Macromol 2023; 249:125814. [PMID: 37451379 DOI: 10.1016/j.ijbiomac.2023.125814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Advanced glycation end-products (AGEs) are the final products of the non-enzymatic interaction between reducing sugars and amino groups in proteins, lipids and nucleic acids. In numerous diseases, such as diabetes, neuropathy, atherosclerosis, aging, nephropathy, retinopathy, and chronic renal illness, accumulation of AGEs has been proposed as a pathogenic mechanism of inflammation, oxidative stress, and structural tissue damage leading to chronic vascular issues. Current studies on the inhibition of AGEs mainly focused on food processing. However, there are few studies on the inhibition of AGEs during digestion, absorption and metabolism although there are still plenty of AGEs in our body with our daily diet. This review comprehensively expounded AGEs inhibition mechanism based on the whole process of digestion, absorption and metabolism by polyphenols, amino acids, hydrophilic colloid, carnosine and other new anti-glycation agents. Our study will provide a ground-breaking perspective on mediation or inhibition AGEs.
Collapse
Affiliation(s)
- Nianjie Feng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yingna Feng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jiangying Tan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Chen Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., LTD., Suizhou, Hubei 441300, China
| | - Yashu Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Juan Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Ministry of Education, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yi He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Mengzhou Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| | - Qian Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei, 430068, China.
| |
Collapse
|
8
|
Arasteh F, Barzegar M, Gavlighi HA. Potential inhibitory effect of fish, maize, and whey protein hydrolysates on advanced glycation end-products (AGEs). Food Sci Nutr 2023; 11:3075-3082. [PMID: 37324869 PMCID: PMC10261735 DOI: 10.1002/fsn3.3289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Advanced glycation end-products (AGEs) are produced in the final stage of the Maillard reaction. AGEs formation may be inhibited by natural hydrolysates derived from plant or animal sources. The present study aimed to investigate the antiglycation potential of fish, maize, and whey protein hydrolysates. It was carried out in four model systems, Bovine serum albumin (BSA)-Glucose, BSA-Fructose, BSA-Sorbitol, and BSA-HFCS (high fructose corn syrup), by evaluation of fluorescent intensity of AGEs after seven days of reaction at 37°C. The results showed that the highest inhibitory effect belonged to 0.16% of FPH (fish protein hydrolysate, percent inhibition ~99.0%), whereas maize protein hydrolysate (MPH) had lower antiglycation activity in comparison with FPH. Among all hydrolysates, whey protein hydrolysate with the lowest degree of hydrolysis showed the weakest inhibitory activity. Overall, our results indicated that the investigated hydrolysates, particularly FPH, have promising antiglycation potential and can be recommended for the production of functional foods.
Collapse
Affiliation(s)
- Faezeh Arasteh
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
9
|
Hu Z, Li C, Wu T, Zhou J, Han L, Liu J, Qiang S, Zhao W, Li X, Liu X, Li J, Chen X. Sulfathiazole treats type 2 diabetes by restoring metabolism through activating CYP19A1. Biochim Biophys Acta Gen Subj 2023; 1867:130303. [PMID: 36627088 DOI: 10.1016/j.bbagen.2023.130303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Globally, diabetes mellitus has been a major epidemic bringing metabolic and endocrine disorders. Currently, 1 in 11 adults suffers from diabetes mellitus, among the patients >90% contract type 2 diabetes mellitus (T2DM). Therefore, it is urgent to develop new drugs that effectively prevent and treat type 2 diabetes through new targets. With high-throughput screening, we found that sulfathiazole decreased the blood glucose and improved glucose metabolism in T2DM mice. Notably, we discovered that sulfathiazole treated T2DM by activating CYP19A1 protein to synthesize estrogen. Collectively, sulfathiazole along with CYP19A1 target bring new promise for the better therapy of T2DM.
Collapse
Affiliation(s)
- Zhuozhou Hu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Chun Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Tongyu Wu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Jing Zhou
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Liang Han
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Jingjing Liu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Shaojia Qiang
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Wenyang Zhao
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Xiangxiang Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Xiaohua Liu
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China.
| | - Xinping Chen
- School of Pharmacy, Lanzhou University, 199 West Donggang Rd., Lanzhou, Gansu 730000, PR China; Southeast Research Institute of LZU, Putian, Fujian 351152, PR China; State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
10
|
Modification of Jiuzao glutelin with pullulan through Maillard reaction: stability effect in nano-emulsion, in vitro antioxidant properties, and interaction with curcumin. Food Res Int 2022; 161:111785. [DOI: 10.1016/j.foodres.2022.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/27/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
|
11
|
Kaspchak E, Toci AT, Menezes LRA, Igarashi-Mafra L, Mafra MR. Effect of phytic acid, tannic acid and saponin on asparagine-glucose Maillard reaction. Food Chem 2022; 394:133518. [PMID: 35749878 DOI: 10.1016/j.foodchem.2022.133518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/07/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Antinutrients (ANs) interact with proteins changing its behavior and may affect Maillard reaction (MR). This work aimed to study the effect of phytic acid, tannic acid, and saponin on asparagine-glucose MR. The effect of AN concentration (0-1 mM) and reaction time (3-30 min at 150 °C) on the formation of melanoidins and acrylamide was determined. Other MR compounds were analyzed by gas chromatography and nuclear magnetic resonance. The ANs effect on asparagine-glucose thermal behavior was studied by differential scanning calorimetry. Results showed that ANs increase the melanoidins formation. Acrylamide content increased in saponin and phytic acid presence. The volatile profile was similar among the samples and formed mainly by pyrazines (>50%). ANs affect glucose's melting point, however, only phytic acid and saponin affect asparagine and glucose thermal behavior. The results presented in this work are important for food science and the industry to control MR in processed foods.
Collapse
Affiliation(s)
- Elaine Kaspchak
- Department of Chemical Engineering, Federal University of Paraná (UFPR), Polytechnic Center, 81531-990 Curitiba, PR, Brazil.
| | - Aline Theodoro Toci
- Environmental and Food Interdisciplinary Studies Laboratory (LEIMAA), Latin American Institute of Life and Nature Sciences (ILACVN), Federal University of Latin American Integration (UNILA), 85867-970 Foz do Iguaçú, PR, Brazil
| | - Leociley Rocha Alencar Menezes
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Polytechnic Center, 81531-990 Curitiba, PR, Brazil
| | - Luciana Igarashi-Mafra
- Department of Chemical Engineering, Federal University of Paraná (UFPR), Polytechnic Center, 81531-990 Curitiba, PR, Brazil
| | - Marcos R Mafra
- Department of Chemical Engineering, Federal University of Paraná (UFPR), Polytechnic Center, 81531-990 Curitiba, PR, Brazil
| |
Collapse
|
12
|
Exploring polymerisation of methylglyoxal with NH 3 or alanine to analyse the formation of typical polymers in melanoidins. Food Chem 2022; 394:133472. [PMID: 35716504 DOI: 10.1016/j.foodchem.2022.133472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
To investigate the formation of typical melanoidin polymers, methylglyoxal (MGO) with NH3 or alanine (Ala) was used to form coloured compounds, with glyoxal or acetone used as controls. The products were characterised using chromatography, mass spectrometry, and spectroscopy. Spectroscopic results showed that the coloured compounds formed were similar to melanoidins in food. GC-MS results showed that the MGO-based reaction generated similar volatile compounds using the Maillard reaction. Mass spectrometry showed that the molecular weights of structural units in the polymers were mainly 162, 169, and 176 Da, and these could be reassembled using the basic units derived from MGO alone or in combination with nitrogen. Hence, polymers recombined using basic structural units should be considered while determining melanoidin biomarkers. The preparation of coloured compounds using MGO with NH3 can be used as a novel method to produce the control compounds for melanoidin after process optimization.
Collapse
|
13
|
Lai X, Chen X, Li M, Zhou Y, Xia B. Purification and mass spectrometry study of Maillard reaction impurities in five acyclic nucleoside antiviral drugs. J Pharm Biomed Anal 2022; 212:114637. [DOI: 10.1016/j.jpba.2022.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/09/2022] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
|
14
|
Content and evolution of Maillard reaction products in commercial brown fermented milk during storage. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Bianchi F, Lomuscio E, Rizzi C, Simonato B. Predicted Shelf-Life, Thermodynamic Study and Antioxidant Capacity of Breadsticks Fortified with Grape Pomace Powders. Foods 2021; 10:foods10112815. [PMID: 34829095 PMCID: PMC8622716 DOI: 10.3390/foods10112815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022] Open
Abstract
Grape pomace (GP), is the main winemaking by-product and could represent a valuable functional food ingredient being a source of bioactive compounds, like polyphenols. Polyphenols prevent many non-communicable diseases and could contrast the oxidation reaction in foods. However, the high content in polyunsaturated fatty acid, the described pro-oxidant potential action of some polyphenols and the complex interactions with other components of matrices during food processing must be considered. Indeed, all these factors could promote oxidative reactions and require focused and specific assay. The aims of this study were to evaluate the effects of GP powder (GPP) addition (at 0%, 5% and 10% concentrations) in breadsticks formulations both on the antioxidant activity at room temperature during storage and on the shelf-life by the OXITEST predictive approach. GPP fortification increased the total polyphenols content and the antioxidant activities of breadsticks. FRAP reduced during the first two days of storage at room temperature, TPC increased during the 75 days, while ABTS showed a slight progressive decrease. However, GP negatively influenced OXITEST estimated shelf-life of breadsticks, incrementing the oxidation rate. In conclusion, even if GP fortification of breadsticks could improve the nutritional value of the products, the increased commercial perishability represents a drawback that must be considered.
Collapse
|
16
|
Song Q, Liu J, Dong L, Wang X, Zhang X. Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomed Pharmacother 2021; 140:111750. [PMID: 34051615 DOI: 10.1016/j.biopha.2021.111750] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Advanced glycation end products (AGEs) are a group of complex compounds generated by nonenzymatic interactions between proteins and reducing sugars or lipids. AGEs accumulate in vivo and activate various signaling pathways closely related to the occurrence of various chronic metabolic diseases. In this paper, we describe the process through which AGEs are formed, the classification of AGEs, and biological effects of AGEs on human health. Most importantly, we review recent progress in natural compound-based AGE formation inhibitors. Major classes of natural inhibitors, including polyphenols, polysaccharides, terpenoids, vitamins and alkaloids, have been described. Their mechanisms of action have been summarized as scavenging free radicals, chelating metal ions, capturing active carbonyl compounds, protecting protein glycation sites, and lowering blood glucose levels. Although these natural compounds have good antiglycation activity, to date, they are not widely used in the clinic, likely because of their low content levels. However, these natural compounds and their molecular frameworks will play a valuable role in inspiring drug discovery.
Collapse
Affiliation(s)
- Qinghe Song
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877, Jingshi Rd., Jinan 250001, China
| | - Junjun Liu
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877, Jingshi Rd., Jinan 250001, China
| | - Liyuan Dong
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877, Jingshi Rd., Jinan 250001, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877, Jingshi Rd., Jinan 250001, China.
| | - Xiandang Zhang
- Shandong First Medical University & Shandong Academy of Medical Sciences, 6699, Qingdao Rd., Jinan 250118, China.
| |
Collapse
|
17
|
Lei M, Peng X, Sun W, Zhang D, Wang Z, Yang Z, Zhang C, Yu B, Niu H, Ying H, Ouyang P, Liu D, Chen Y. Nonsterile l-Lysine Fermentation Using Engineered Phosphite-Grown Corynebacterium glutamicum. ACS OMEGA 2021; 6:10160-10167. [PMID: 34056170 PMCID: PMC8153679 DOI: 10.1021/acsomega.1c00226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Fermentation using Corynebacterium glutamicum is an important method for the industrial production of amino acids. However, conventional fermentation processes using C. glutamicum are susceptible to microbial contamination and therefore require equipment sterilization or antibiotic dosing. To establish a more robust fermentation process, l-lysine-producing C. glutamicum was engineered to efficiently utilize xenobiotic phosphite (Pt) by optimizing the expression of Pt dehydrogenase in the exeR genome locus. This ability provided C. glutamicum with a competitive advantage over common contaminating microbes when grown on media containing Pt as a phosphorus source instead of phosphate. As a result, the engineered strain could produce 41.00 g/L l-lysine under nonsterile conditions during batch fermentation for 60 h, whereas the original strain required 72 h to produce 40.78 g/L l-lysine under sterile conditions. Therefore, the recombinant strain can efficiently produce l-lysine under nonsterilized conditions with unaffected production efficiency. Although this anticontamination strategy has been previously reported for other species, this is the first time it has been demonstrated in C. glutamicum; these findings should aid in the further development of cost-efficient amino acid fermentation processes.
Collapse
Affiliation(s)
- Ming Lei
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiwei Peng
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wenjun Sun
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Di Zhang
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhenyu Wang
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengjiao Yang
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chong Zhang
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bin Yu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huanqing Niu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hanjie Ying
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- School
of Chemical Engineering and Energy, Zhengzhou
University, Zhengzhou 450001, China
| | - Pingkai Ouyang
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dong Liu
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- School
of Chemical Engineering and Energy, Zhengzhou
University, Zhengzhou 450001, China
| | - Yong Chen
- National
Engineering Research Center for Biotechnology, College of Biotechnology
and Pharmaceutical Engineering, Nanjing
Tech University, Nanjing 211816, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
18
|
Huq S, Das PC, Islam MA, Jubayer MF, Ranganathan TV, Mazumder MAR. Nutritional, textural, and sensory quality of oil fried donut enriched with extracted dietary fiber and okara flour. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Safinaj Huq
- Department of Food Technology and Rural Industries Bangladesh Agricultural University Mymensingh Bangladesh
| | - Pabitra Chandra Das
- Department of Chemical and Food Process Engineering Rajshahi University of Engineering & Technology Rajshahi Bangladesh
| | - Md. Ahmadul Islam
- Department of Food Technology and Rural Industries Bangladesh Agricultural University Mymensingh Bangladesh
| | - Md. Fahad Jubayer
- Department of Food Engineering and Technology Sylhet Agricultural University Sylhet Bangladesh
| | - Thottiam Vasudevan Ranganathan
- Department of Food Processing Technology School of Agriculture and Bioscience Karunya Institute of Technology and Sciences Coimbatore India
| | - Md. Anisur Rahman Mazumder
- Department of Food Technology and Rural Industries Bangladesh Agricultural University Mymensingh Bangladesh
| |
Collapse
|
19
|
Abstract
The Maillard reaction is of great significance in food, herb medicines, and life processes. It is usually occurring during the process of food and herb medicines processing and storage. The formed Maillard reaction productions (MRPs) in food and herb medicines not only generate a large number of efficacy components but also generate a small amount of harmful substance that cannot be ignored. Some of the MRPs, especially the advanced glycation end products (AGEs) are concerning humans, based on the possibility to induce cancer and mutations in laboratory animals. Numerous studies have been reported on the formation, analysis, and control of the potentially harmful MRPs (PHMRPs). Therefore, the investigation into the formation, analysis, and control of PHMRPs in food and herb medicines is very important for improving the quality and safety of food and herb medicines. This article provides a brief review of the formation, analysis (major content), and control of PHMRPs in food and herb medicines, which will provide a base and reference for safe processing and storage of food and herb medicines. Practical Applications. The formed Maillard reaction productions in food and herb medicines not only generate a large number of functional components but also generate a small amount of harmful substance that cannot be ignored. This contribution provides a brief review on the formation (including the correlative studies between MRs and the PHMRPs, mechanisms, and the main pathways); analysis (major content, pretreatment for analysis, qualitative and quantitative analysis, and structural identification analysis); and control (strategies and mechanisms) of PHMRPs in food and herb medicines, which will provide a solid theoretical foundation and a valuable reference for safe processing and storage for food and herb medicines.
Collapse
|
20
|
Gao J, Sun Y, Li L, Zhou Q, Wang M. The antiglycative effect of apple flowers in fructose/glucose-BSA models and cookies. Food Chem 2020; 330:127170. [DOI: 10.1016/j.foodchem.2020.127170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022]
|
21
|
Momin MA, Jubayer MF, Begum AA, Nupur AH, Ranganathan TV, Mazumder MAR. Substituting wheat flour with okara flour in biscuit production. FOODS AND RAW MATERIALS 2020. [DOI: 10.21603/2308-4057-2020-2-422-428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Introduction. High fiber bakery products can be a healthy snack option for consumers. Our study focused on the effect of replacing wheat flour with okara flour on the physicochemical, nutritional, textural, and sensory attributes of biscuits.
Study objects and methods. We used 2, 4, 6, and 8% w/w okara flour to prepare biscuits. Refined wheat flour (control), mixed flour (okara and wheat flour), dough, and biscuits were assessed for physicochemical, textural, and nutritional properties, as well as sensory characteristics. The volume of particles was higher in 8% okara flour (145 μm) compared to refined wheat flour (91 μm).
Results and discussion. 2, 4, 6, and 8% w/w okara flour biscuits showed significantly (P ≤ 0.05) lower spread ratio and weight loss than biscuits from wheat flour. Hardness, stickiness, and cohesiveness of 2, 4, 6, and 8% okara flour dough were significantly (P ≤ 0.05) lower compared to the control, resulting in decreased cutting strength and increased hardness of okara flour biscuits. Moisture, protein, ash, fat, and crude fiber contents of 2, 4, 6, and 8% okara biscuits were significantly (P ≤ 0.05) higher compared to the control biscuits. The sensory evaluation suggested that 4% okara biscuits had higher consumer acceptability and were superior to the control and other okara biscuits.
Conclusion. Mixed flour biscuits made from okara and wheat flours were superior in physicochemical, nutritional, textural, and sensory attributes, which allows considering them as an alternative healthy snack.
Collapse
|
22
|
Liu X, Xia B, Hu L, Ni Z, Thakur K, Wei Z. Maillard conjugates and their potential in food and nutritional industries: A review. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.43] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Xiang Liu
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Bing Xia
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Long‐Teng Hu
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Zhi‐Jing Ni
- School of Food and Biological Engineering Hefei University of Technology Hefei China
- School of Biological Science and Engineering North Minzu University Yinchuan China
- Anhui Province Key Laboratory of Functional Compound Seasoning Anhui Qiangwang Seasoning Food Co. Ltd. Jieshou China
| | - Kiran Thakur
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Zhao‐Jun Wei
- School of Food and Biological Engineering Hefei University of Technology Hefei China
- School of Biological Science and Engineering North Minzu University Yinchuan China
- Anhui Province Key Laboratory of Functional Compound Seasoning Anhui Qiangwang Seasoning Food Co. Ltd. Jieshou China
| |
Collapse
|
23
|
Cisneros-Yupanqui M, Zagotto A, Alberton A, Lante A, Zagotto G, Ribaudo G, Rizzi C. Monitoring the antioxidant activity of an eco-friendly processed grape pomace along the storage. Nat Prod Res 2020; 35:6030-6033. [PMID: 32878452 DOI: 10.1080/14786419.2020.1815741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aims of this research are to compare and to monitor two conditions for preserving the total phenolic content (TPC) and the antioxidant activity (AOA) of grape pomace (GP) processed as powder and its corresponding extract at room and freezing temperature, respectively. The highest TPC and AOA were obtained in the GP extracted in a ratio 1:10 (w/v) with ethanol at 50% for 45 min at 50 °C. After 9 months of room temperature (RT) storage, the GP powder obtained a significantly higher AOA than the initial condition and the extract frozen-stored the same time.
Collapse
Affiliation(s)
- Miluska Cisneros-Yupanqui
- Department of Agronomy, Food, Natural Resources, Animals, and Environment - DAFNAE, University of Padova, Legnaro, Italy
| | - Anna Zagotto
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Anna Lante
- Department of Agronomy, Food, Natural Resources, Animals, and Environment - DAFNAE, University of Padova, Legnaro, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Corrado Rizzi
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
24
|
Belkova B, Chytilova L, Kocourek V, Slukova M, Mastovska K, Kyselka J, Hajslova J. Influence of dough composition on the formation of processing contaminants in yeast-leavened wheat toasted bread. Food Chem 2020; 338:127715. [PMID: 32798824 DOI: 10.1016/j.foodchem.2020.127715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022]
Abstract
The influence of dough composition on acrylamide, 3-monochloropropane-1,2-diol (3-MCPD) esters, and glycidyl esters (GE) formation during bread toasting was investigated. The doughs differed in added amounts of soy lecithin, salt, and reducing agents (l-cysteine and glutathione). The toasting of bread for 2.5 min considerably enhanced the formation of acrylamide and 3-MCPD esters. The addition of lecithin (1%, w/w) resulted in four times higher content of 3-MCPD esters in toasted bread slices. No distinct relationship between dough composition and GE formation in untoasted and toasted bread was found. The addition of reducing agents (0.05%, w/w) mitigated during toasting not only the formation of 3-MCPD esters (more than six times) but also the extent of Maillard reaction that resulted in three times lower amounts of acrylamide and predominant formation of alcohol-like compounds. Toasted bread without reducing agents contained typical Maillard reaction compounds such as aldehydes, alkyl pyrazines, and derivatives of furan.
Collapse
Affiliation(s)
- Beverly Belkova
- University of Chemistry and Technology, Prague, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Lucie Chytilova
- University of Chemistry and Technology, Prague, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Vladimir Kocourek
- University of Chemistry and Technology, Prague, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Marcela Slukova
- University of Chemistry and Technology, Prague, Department of Carbohydrates and Cereals, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Katerina Mastovska
- University of Chemistry and Technology, Prague, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Jan Kyselka
- University of Chemistry and Technology, Prague, Department of Dairy, Fat and Cosmetics, Technicka 3, 166 28 Prague 6, Czech Republic
| | - Jana Hajslova
- University of Chemistry and Technology, Prague, Department of Food Analysis and Nutrition, Technicka 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
25
|
Functional and biological properties of Maillard conjugates and their potential application in medical and food: A review. Food Res Int 2020; 131:109003. [PMID: 32247496 DOI: 10.1016/j.foodres.2020.109003] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/23/2019] [Accepted: 01/12/2020] [Indexed: 01/13/2023]
Abstract
Protein and peptides are usually sensitive to environmental stresses, such as pH changes, high temperature, ionic strength, and digestive enzymes amongst other, which limit their food and medicinal applications. Maillard reaction (also called Maillard conjugation or glycation) occurs naturally without the addition of chemical agents and has been vastly applied to boost protein/peptide/amino acid functionalities and biological properties. Protein/peptide-saccharide conjugates are currently used as emulsifiers, antioxidants, antimicrobials, gelling agents, and anti-browning compounds in food model systems and products. The conjugates also possess the excellent stabilizing ability as a potent delivery system to enhance the stability and bioaccessibility of many bioactive compounds. Carbonyl scavengers such as polyphenols are able to significantly inhibit the formation of advanced glycation end products without a significant effect on early Maillard reaction products (MRPs) and melanoidins, which are currently applied as functional ingredients. This review paper highlights the technological functionality and biological properties of glycoconjugates in food model systems and products. Recent applications of MRPs in medical sciences are also presented.
Collapse
|