1
|
Li N, Li H, Chen Z, Feng J, Guo T, Guo H, Zhang X, Yan Y, He C, Zong D. Transcriptome and Metabolome Based Mechanisms Revealing the Accumulation and Transformation of Sugars and Fats in Pinus armandii Seed Kernels during the Harvesting Period. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21533-21547. [PMID: 39306861 DOI: 10.1021/acs.jafc.4c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Pinus armandii seed kernel is a nutrient-rich and widely consumed nut whose yield and quality are affected by, among other things, harvesting time and climatic conditions, which reduce economic benefits. To investigate the optimal harvesting period of P. armandii seed kernels, this study determined the nutrient composition and seed kernel morphology and analyzed the gene expression and metabolic differences of P. armandii seed kernels during the harvesting period by transcriptomics and metabolomics. The results revealed that during the maturation of P. armandii seed kernels, there was a significant increase in the width, thickness, and weight of the seed kernels, as well as a significant accumulation of sucrose, soluble sugars, proteins, starch, flavonoids, and polyphenols and a significant decrease in lipid content. In addition, transcriptomic and metabolomic analyses of P. armandii seed kernels during the harvesting period screened and identified 103 differential metabolites (DEMs) and 8899 differential genes (DEGs). Analysis of these DEMs and DEGs revealed that P. armandii seed kernel harvesting exhibited gene-metabolite differences in sugar- and lipid-related pathways. Among them, starch and sucrose metabolism, glycolysis, and gluconeogenesis were associated with the synthesis and catabolism of sugars, whereas fatty acid degradation, glyoxylate and dicarboxylic acid metabolism, and glycerophospholipid metabolism were associated with the synthesis and catabolism of lipids. Therefore, the present study hypothesized that these differences in genes and metabolites exhibited during the harvesting period of P. armandii seed kernels might be related to the accumulation and transformation of sugars and lipids. This study may provide a theoretical basis for determining the optimal harvesting time of P. armandii seed kernels, changes in the molecular mechanisms of nutrient accumulation, and quality directed breeding.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Hailin Li
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Zhihua Chen
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Jiayu Feng
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Tiansu Guo
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Haiyang Guo
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Xiaolin Zhang
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Yi Yan
- Kunming Forestry Scientific Research Institute, Kunming 650221, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
3
|
Kathuria D, Dhiman AK. Encapsulation of soy isoflavone extract by freeze drying, its stability during storage and development of isoflavone enriched yoghurt. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4945-4955. [PMID: 36276528 PMCID: PMC9579231 DOI: 10.1007/s13197-022-05583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Soybean is a natural source of isoflavone. Its extract has a bitter and astringent taste and undergoes through oxidative deterioration. The study aimed at encapsulation of isoflavone extract using different carrier material through freeze drying. Maltodextrin, β-cyclodextrin, and tapioca starch were employed in 1:3 while sodium alginate and carboxymethyl cellulose in 1:1.25 as extract to carrier material ratio for encapsulation. Carrier material reflected significant (< 0.05) effect on encapsulation efficiency, isoflavone content and morphology of encapsulated extract. Maltodextrin was selected as the best material for encapsulation of isoflavone extract reflecting significantly higher encapsulation efficiency along with homogenous coating on the particle surface as examined through SEM. The band stretching in FTIR analysis also indicates the retention of functional groups after encapsulation. The encapsulated extract packed in ambered glass vials can be stored safely for a period of 6 months with a higher withholding of isoflavones under refrigerated conditions. Furthermore, encapsulated isoflavone extract was incorporated in yoghurt @ 50 mg isoflavone which improved its functional and sensory properties. About 96.83% of isoflavone was retention in yoghurt containing encapsulated extract compared to yoghurt having extract without encapsulation.
Collapse
Affiliation(s)
- Deepika Kathuria
- Dairy Chemistry Division, NDRI, Karnal, Haryana 132001 India
- Department of Food Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173230 India
| | - Anju K. Dhiman
- Department of Food Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, HP 173230 India
| |
Collapse
|