1
|
Formstone C, Aldeiri B, Davenport M, Francis‐West P. Ventral body wall closure: Mechanistic insights from mouse models and translation to human pathology. Dev Dyn 2025; 254:102-141. [PMID: 39319771 PMCID: PMC11809137 DOI: 10.1002/dvdy.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
The ventral body wall (VBW) that encloses the thoracic and abdominal cavities arises by extensive cell movements and morphogenetic changes during embryonic development. These morphogenetic processes include embryonic folding generating the primary body wall; the initial ventral cover of the embryo, followed by directed mesodermal cell migrations, contributing to the secondary body wall. Clinical anomalies in VBW development affect approximately 1 in 3000 live births. However, the cell interactions and critical cellular behaviors that control VBW development remain little understood. Here, we describe the embryonic origins of the VBW, the cellular and morphogenetic processes, and key genes, that are essential for VBW development. We also provide a clinical overview of VBW anomalies, together with environmental and genetic influences, and discuss the insight gained from over 70 mouse models that exhibit VBW defects, and their relevance, with respect to human pathology. In doing so we propose a phenotypic framework for researchers in the field which takes into account the clinical picture. We also highlight cases where there is a current paucity of mouse models for particular clinical defects and key gaps in knowledge about embryonic VBW development that need to be addressed to further understand mechanisms of human VBW pathologies.
Collapse
Affiliation(s)
- Caroline Formstone
- Department of Clinical, Pharmaceutical and Biological SciencesUniversity of HertfordshireHatfieldUK
| | - Bashar Aldeiri
- Department of Paediatric SurgeryChelsea and Westminster HospitalLondonUK
| | - Mark Davenport
- Department of Paediatric SurgeryKing's College HospitalLondonUK
| | | |
Collapse
|
2
|
Luo J, Yang Z, Li X, Xiao C, Yuan H, Yang X, Zhou B, Zheng Y, Zhang J, Yang X. High Muscle Expression of IGF2BP1 Gene Promotes Proliferation and Differentiation of Chicken Primary Myoblasts: Results of Transcriptome Analysis. Animals (Basel) 2024; 14:2024. [PMID: 39061491 PMCID: PMC11274093 DOI: 10.3390/ani14142024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Muscle development is a multifaceted process influenced by numerous genes and regulatory networks. Currently, the regulatory network of chicken muscle development remains incompletely elucidated, and its molecular genetic mechanisms require further investigation. The Longsheng-Feng chicken, one of the elite local breeds in Guangxi, serves as an excellent resource for the selection and breeding of high-quality broiler chickens. In this study, we conducted transcriptome sequencing of the pectoral muscles of Longsheng-Feng chickens and AA broiler chickens with different growth rates. Through comprehensive bioinformatics analysis, we identified differentially expressed genes that affect muscle growth and showed that IGF2BP1 is a key participant in chicken muscle development. Subsequently, we employed QRT-PCR, EdU staining, and flow cytometry to further investigate the role of IGF2BP1 in the proliferation and differentiation of chicken myogenic cells. We identified 1143 differentially expressed genes, among which IGF2BP1 is intimately related to the muscle development process and is highly expressed in muscle tissues. Overexpression of IGF2BP1 significantly promotes the proliferation and differentiation of chicken primary myoblasts, while knockdown of IGF2BP1 significantly inhibits these processes. In summary, these results provide valuable preliminary insights into the regulatory roles of IGF2BP1 in chicken growth and development.
Collapse
Affiliation(s)
- Jintang Luo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Xianchao Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Cong Xiao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Hong Yuan
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Xueqin Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Biyan Zhou
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Yan Zheng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Jiayi Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.L.); (Z.Y.); (X.L.); (C.X.); (H.Y.); (X.Y.); (B.Z.); (Y.Z.); (J.Z.)
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
3
|
Kahane N, Dahan-Barda Y, Kalcheim C. A Spatio-Temporal-Dependent Requirement of Sonic Hedgehog in the Early Development of Sclerotome-Derived Vertebrae and Ribs. Int J Mol Sci 2024; 25:5602. [PMID: 38891790 PMCID: PMC11171667 DOI: 10.3390/ijms25115602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.
Collapse
Affiliation(s)
| | | | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 9112102, Israel; (N.K.); (Y.D.-B.)
| |
Collapse
|
4
|
Shapiro F, Wang J, Flynn E, Wu JY. Pudgy mouse rib deformities emanate from abnormal paravertebral longitudinal cartilage/bone accumulations. Biol Open 2024; 13:bio060139. [PMID: 38252118 PMCID: PMC10840853 DOI: 10.1242/bio.060139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/03/2023] [Indexed: 01/23/2024] Open
Abstract
The pudgy (pu/pu) mouse, caused by a recessive mutation in the Notch family Delta like-3 gene (Dll3), has severe rib, vertebral body and intervertebral disc abnormalities. Using whole-mount preparations and serial histologic sections we demonstrate: 1) localized paravertebral longitudinal cartilage/bone accumulations (PVLC/BAs) invariably associated with branched, fused and asymmetrically spaced ribs that emanate from it laterally; 2) abnormal rib formation immediately adjacent to abnormal vertebral body and intervertebral disc formation in asymmetric right/left fashion; and 3) patterns of rib deformation that differ in each mouse. Normal BALB/c embryo and age-matched non-affected pu/+ mice assessments allow for pu/pu comparisons. The Dll3 Notch family gene is involved in normal somitogenesis via the segmentation clock mechanism. Although pathogenesis of rib deformation is initially triggered by the Dll3 gene mutation, these findings of abnormal asymmetric costo-vertebral region structure imply that differing patterns cannot be attributed to this single gene mutation alone. All findings implicate a dual mechanism of malformation: the Dll3 gene mutation leading to subtle timing differences in traveling oscillation waves of the segmentation clock and further subsequent misdirection of tissue formation by altered chemical reaction-diffusion and epigenetic landscape responses. PVLC/BAs appear as primary supramolecular structures underlying severe rib malformation associated both with time-sensitive segmentation clock mutations and subsequent reactions.
Collapse
Affiliation(s)
- Frederic Shapiro
- Department of Medicine/Endocrinology, Stanford University School of Medicine, Palo Alto CA 94305, USA
- Department of Bioengineering, Northeastern University, Boston MA 02115, USA
| | - Jamie Wang
- Department of Medicine/Endocrinology, Stanford University School of Medicine, Palo Alto CA 94305, USA
| | - Evelyn Flynn
- Orthopaedic Research Laboratory, Boston Children's Hospital, Boston MA 02115, USA
| | - Joy Y. Wu
- Department of Medicine/Endocrinology, Stanford University School of Medicine, Palo Alto CA 94305, USA
| |
Collapse
|
5
|
Draga M, Scaal M. Building a vertebra: Development of the amniote sclerotome. J Morphol 2024; 285:e21665. [PMID: 38100740 DOI: 10.1002/jmor.21665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
In embryonic development, the vertebral column arises from the sclerotomal compartment of the somites. The sclerotome is a mesenchymal cell mass which can be subdivided into several subpopulations specified by different regulatory mechanisms and giving rise to different parts of the vertebrae like vertebral body, vertebral arch, ribs, and vertebral joints. This review gives a short overview on the molecular and cellular basis of the formation of sclerotomal subdomains and the morphogenesis of their vertebral derivatives.
Collapse
Affiliation(s)
- Margarethe Draga
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| | - Martin Scaal
- Faculty of Medicine and University Hospital Cologne, Center of Anatomy, University of Cologne, Cologne, Germany
| |
Collapse
|