1
|
Lamichhane S, Shrestha B, Tharu BPC, Koirala RK, Bhattarai BP, Poudel P, Adhikari B, Khanal G. Narrow Dietary Niche With High Overlap Between Snow Leopards and Himalayan Wolves Indicates Potential for Resource Competition in Shey Phoksundo National Park, Nepal. Ecol Evol 2025; 15:e70873. [PMID: 39844787 PMCID: PMC11751241 DOI: 10.1002/ece3.70873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Understanding species' dietary ecology and interspecific interactions is crucial for multi-species conservation planning. In Central Asia and the Himalayas, wolves have recolonized snow leopard habitats, raising considerable concern about resource competition between these apex predators. Using micro-histological analysis of prey species remains (e.g., hair) in their fecal samples, we determined the prey composition, dietary niche breadth, and the extent of diet overlap between these two apex predators in Shey Phoksundo National Park, Nepal. We analyzed 152 scat samples collected along 89 survey transects from April to June 2021. Our findings reveal a significant overlap in their diets (Pianka's index = 0.93), with snow leopard and wolf scats containing the remains of 11 and 10 prey species, respectively. However, the interspecific difference in prey selection was apparent, with significant deviations between observed and expected prey use indicating non-random prey selection relative to availability: Snow leopards exhibited a higher occurrence of wild prey items in their diet (55.28%), primarily blue sheep (Pseudois nayaur) (24.83%), whereas wolves relied predominantly on domestic livestock (67.89%), with goats (Capra hircus) accounting for over one-fourth of their diet (29.15%). Yaks (Bos grunniens) comprised a significant portion of the biomass consumed by both predators, with higher for wolves (43.68%) than snow leopards (36.47%). Overall, the narrow dietary niche breadth with high overlap indicates potential resource competition between snow leopards and wolves. However, a comprehensive understanding of resource competition will require further study on other axes of niche partitioning, including habitat and time. Nevertheless, the region's low prey richness means that, with increasing human influence, any reduction in wild prey or increase in livestock could intensify competition between snow leopards and wolves, which could have implications for livestock depredation.
Collapse
Affiliation(s)
- Sandesh Lamichhane
- School of Forestry and Natural Resource Management, Institute of ForestryTribhuvan UniversityKathmanduNepal
| | - Bikram Shrestha
- Department of Biodiversity Research, Global Change Research InstituteCzech Academy of SciencesBrnoCzech Republic
| | | | | | - Bishnu Prasad Bhattarai
- Central Department of Zoology, Institute of Science and TechnologyTribhuvan UniversityKathmanduNepal
| | | | - Binaya Adhikari
- Department of BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Gopal Khanal
- Department of National Parks and Wildlife Conservation, Government of NepalNepal
- Centre for Ecological StudiesLalitpurNepal
| |
Collapse
|
2
|
Lambe J, Raza M, Namgail T. Modeling the Distribution and Environmental Preferences of the Ladakh Urial in the Arid Himalayas. Ecol Evol 2024; 14:e70423. [PMID: 39391816 PMCID: PMC11464561 DOI: 10.1002/ece3.70423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Mountains play a crucial role in shaping the climate of an area and subsequently, the environments and species that are suited to those particular conditions. Understanding the relationships between environmental conditions and their influence on the occurrence of a species is necessary to make informed decisions when conserving relevant habitats. This study evaluated and compared the potential for different interactions between climatic variables to describe the environmental preferences and the range of the Ladakh urial, a narrowly distributed sub-species of Ovis vignei, in the arid Himalayas. Species distribution models were created from spatially thinned presence-only occurrence data of 50 locations using a Maximum Entropy (Maxent) model. For this, we subdivided the modeled distribution into environmental categories with varying degrees of suitability. We identified a high cold precipitation to annual precipitation ratio typical of cold desert climates well suited to describe the highest quality environments for urial. The inverse, low warm precipitation to annual precipitation ratio was found to better describe the urial's range at the lower end of potential habitat. In this comparison, we observed that with the exclusion of unsuitable cold steppe habitat with a higher warm precipitation to annual precipitation ratio, we were able to refine the extent of this species range but at a trade-off to the accurate description of high-quality environments. This study demonstrated the strong potential of cold arid climatic conditions to describe the distribution of urial in India, which have implications for identifying important areas for the conservation and management of the species in the high altitude rangelands of Ladakh.
Collapse
Affiliation(s)
| | - Mohd Raza
- Snow Leopard Conservancy India TrustLeh LadakhIndia
| | | |
Collapse
|
3
|
Justa P, Lyngdoh S. Understanding carnivore interactions in a cold arid trans-Himalayan landscape: What drives co-existence patterns within predator guild along varying resource gradients? Ecol Evol 2023; 13:e10040. [PMID: 37181213 PMCID: PMC10173057 DOI: 10.1002/ece3.10040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Predators compete for resources aggressively, forming trophic hierarchies that shape the structure of an ecosystem. Competitive interactions between species are modified in the human-altered environment and become particularly important where an introduced predator can have negative effects on native predator and prey species. The trans-Himalayan region of northern India has seen significant development in tourism and associated infrastructure over the last two decades, resulting in many changes to the natural setting of the landscape. While tourism, combined with unmanaged garbage can facilitate red fox (Vulpes vulpes), it also allows free-ranging dogs (Canis lupus familiaris), an introduced mesopredator to thrive, possibly more than the native red fox. We look at the little-known competitive dynamics of these two meso-carnivores, as well as their intra-guild interactions with the region's top carnivores, the snow leopard (Panthera uncia) and the Himalayan wolf (Canis lupus chanco). To study interactions between these four carnivores, we performed multispecies occupancy modeling and analyzed spatiotemporal interactions between these predators using camera trap data. We also collected scat samples to calculate dietary niche overlaps and determine the extent of competition for food resources between these carnivores. The study found that, after controlling for habitat and prey covariates, red fox site use was related positively to snow leopard site use, but negatively to dog and wolf site use. In addition, site use of the dog was associated negatively with top predators, that is, snow leopard and Himalayan wolf, while top predators themselves related negatively in their site use. As anthropogenic impacts increase, we find that these predators coexist in this resource-scarce landscape through dietary or spatiotemporal segregation, implying competition for limited resources. Our research adds to the scant ecological knowledge of the predators in the region and improves our understanding of community dynamics in human-altered ecosystems.
Collapse
Affiliation(s)
- Priyanka Justa
- Department of Landscape Level Planning & ManagementWildlife Institute of IndiaDehradunIndia
- Academy of Scientific & Innovative ResearchGhaziabadIndia
| | - Salvador Lyngdoh
- Department of Landscape Level Planning & ManagementWildlife Institute of IndiaDehradunIndia
- Academy of Scientific & Innovative ResearchGhaziabadIndia
| |
Collapse
|
4
|
Lu Q, Cheng C, Xiao L, Li J, Li X, Zhao X, Lu Z, Zhao J, Yao M. Food webs reveal coexistence mechanisms and community organization in carnivores. Curr Biol 2023; 33:647-659.e5. [PMID: 36669497 DOI: 10.1016/j.cub.2022.12.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023]
Abstract
Globally, massive carnivore guild extirpations have led to trophic downgrading and compromised ecosystem services. However, the complexity of multi-carnivore food webs complicates accurate identification of species interactions and community organization. Here, we used fecal DNA metabarcoding to investigate three communities that together encompass eight large- and meso-carnivore species and their 44 prey taxa of the Qinghai-Tibet Plateau (QTP), one of the last places on Earth that still harbors intact carnivore assemblages. Quantitative food-web analyses revealed pronounced interspecific variations in the carnivores' prey compositions and dietary partitioning both between and within guilds. Additionally, body masses of the carnivores and their prey exhibited consistent hump-shaped correlations across communities. Overall, differences in prey diversity, size category, and proportional utilization among the carnivore species result in trophic niche segregation that likely promotes carnivore coexistence in the harsh QTP environment. Network structure analyses detected significant modularity in all food webs but nestedness in only one. Furthermore, network characterization identified pikas (Ochotona spp.), bharal (Pseudois nayaur), and domestic yak (Bos grunniens) as potential keystone prey across the areas. Our results paint a holistic and detailed picture of the QTP carnivore assemblages' trophic networks and demonstrate that the combined use of the molecular dietary approach and network analysis can generate structural insights into carnivore coexistence and can identify functionally important species in complex communities. Such knowledge can help safeguard carnivore guild integrity and enhance community resilience to environmental perturbations in the sensitive QTP ecosystems.
Collapse
Affiliation(s)
- Qi Lu
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chen Cheng
- Center for Nature and Society, School of Life Sciences, Peking University, Beijing 100871, China; Shan Shui Conservation Center, Beijing 100871, China
| | - Lingyun Xiao
- School of Life Sciences, Peking University, Beijing 100871, China; Department of Health and Environmental Sciences, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu 215123, China
| | - Juan Li
- School of Life Sciences, Peking University, Beijing 100871, China; Department of Health and Environmental Sciences, Xi'an Jiaotong Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xueyang Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiang Zhao
- Shan Shui Conservation Center, Beijing 100871, China
| | - Zhi Lu
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Center for Nature and Society, School of Life Sciences, Peking University, Beijing 100871, China; Shan Shui Conservation Center, Beijing 100871, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Zhong H, Li F, Díaz‐Sacco JJ, Shi K. Dietary and temporal partitioning facilitates coexistence of sympatric carnivores in the Everest region. Ecol Evol 2022; 12:e9531. [PMID: 36440311 PMCID: PMC9682211 DOI: 10.1002/ece3.9531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 09/08/2024] Open
Abstract
Carnivores, especially top predators, are important because they maintain the structure and function of ecosystems by top-down control. Exploring the coexistence between carnivores belonging to different ecological guilds can provide the data needed for the development of effective conservation strategies of endangered species. We used scats and camera traps to molecularly analyze the dietary composition of four predators that inhabit the Everest region and assess their activity patterns. Dietary analysis revealed 22 food Molecular Operational Taxonomic Units (MOTUs) of 7 orders and 2 classes. Snow leopard (Panthera uncia) and wolf (Canis lupus) had high dietary overlap (Pianka's index = 0.95), as they both mainly preyed on ungulates (%PR = 61%, 50%), while lynx (Lynx lynx) and red fox (Vulpes vulpes) mainly consumed small mammals (%PR = 62%, 76%). We observed lower dietary overlaps (Pianka's index = 0.53-0.70) between predators with large body size difference (snow leopard versus lynx, snow leopard versus red fox, wolf versus lynx, wolf versus fox), and dietary difference was significant (p < .01), proving dietary partitioning. In activity pattern analysis, predators exhibited higher temporal overlaps with the more frequently consumed prey species, showing that predator activity can be regulated by prey availability. We observed no obvious temporal avoidance between snow leopard and wolf because they had high activity overlap (Δ = 0.87). Red fox had the lowest coefficients of activity overlap with snow leopard and wolf (Δ = 0.60, 0.59), suggesting that fox tends to avoid snow leopard and wolf temporally. In this study, we revealed how dietary and temporal partitioning facilitates the coexistence of carnivores in Everest. These results will help to increase the understanding of coexistence mechanism of carnivore communities, and provide the scientific foundation for the conservation of wildlife living in the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Hua Zhong
- Wildlife Institute, School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
- Eco‐Bridge ContinentalBeijingChina
| | - Fengjiao Li
- Wildlife Institute, School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
- Eco‐Bridge ContinentalBeijingChina
| | - Juan José Díaz‐Sacco
- Wildlife Institute, School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
| | - Kun Shi
- Wildlife Institute, School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
- Eco‐Bridge ContinentalBeijingChina
| |
Collapse
|
6
|
Pal R, Panwar A, Goyal SP, Sathyakumar S. Changes in ecological conditions may influence intraguild competition: inferring interaction patterns of snow leopard with co-predators. PeerJ 2022; 10:e14277. [PMID: 36312761 PMCID: PMC9615993 DOI: 10.7717/peerj.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023] Open
Abstract
Background Large-scale changes in habitat conditions due to human modifications and climate change require management practices to consider how species communities can alter amidst these changes. Understanding species interactions across the gradient of space, anthropogenic pressure, and season provide the opportunity to anticipate possible dynamics in the changing scenarios. We studied the interspecific interactions of carnivore species in a high-altitude ecosystem over seasonal (summer and winter) and resource gradients (livestock grazing) to assess the impact of changing abiotic and biotic settings on coexistence. Methods The study was conducted in the Upper Bhagirathi basin, Western Himalaya, India. We analyzed around 4 years of camera trap monitoring data to understand seasonal spatial and temporal interactions of the snow leopard with common leopard and woolly wolf were assessed in the greater and trans-Himalayan habitats, respectively. We used two species occupancy models to assess spatial interactions, and circadian activity patterns were used to assess seasonal temporal overlap amongst carnivores. In addition, we examined scats to understand the commonalities in prey selection. Results The result showed that although snow leopard and wolves depend on the same limited prey species and show high temporal overlap, habitat heterogeneity and differential habitat use facilitate co-occurrence between these two predators. Snow leopard and common leopard were spatially independent in the summer. Conversely, the common leopard negatively influences the space use of snow leopard in the winter. Limited prey resources (lack of livestock), restricted space (due to snow cover), and similar activity patterns in winter might result in strong competition, causing these species to avoid each other on a spatial scale. The study showed that in addition to species traits and size, ecological settings also play a significant role in deciding the intensity of competition between large carnivores. Climate change and habitat shifts are predicted to increase the spatial overlap between snow leopard and co-predators in the future. In such scenarios, wolves and snow leopards may coexist in a topographically diverse environment, provided sufficient prey are available. However, shifts in tree line might lead to severe competition between common leopards and snow leopards, which could be detrimental to the latter. Further monitoring of resource use across abiotic and biotic environments may improve our understanding of how changing ecological conditions can affect resource partitioning between snow leopards and predators.
Collapse
|
7
|
Lyngdoh S, Habib B. Understanding conflict and co-existence among Spiti Bhot community and large carnivores in high Himalaya: The case of Himalayan wolves. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.739181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The wolves in the Hindukush–Himalayan region belong to one of the most basal lineages of Canis lupus, yet little is known about their ecology and behavior. In this study, we determine wolf movement and analyze diet patterns in contrast with studies from within its distribution range. We determine conflict perception and identify hotspots using ecological, social, and remotely sensed information. Wolf diet (n = 283 scats) constituted mostly of domestic prey (79%), while wild prey constituted 17.8% of the wolf diet. Interview-based questionnaire surveys revealed that 55% of the respondents claimed to have seen wolves. Over 98% of the respondents claimed wolves as a possible threat to various livestock in the study area. Marginal response curves through the MaxEnt model showed that wolf hotspots were positive in response to their density of location, landuse-landcover, village population, village density, and depredation. Comparisons between scat- and questionnaire-based depredation data showed that the perceived levels of depredation by wolves differed significantly from the actual proportion of livestock prey species consumed by wolves (χ2 = 99.64, p-value < 0.0001). Wolf conflict hotspots showed a very high conflict zone area of 36 km2, high conflict zone of 62 km2, medium conflict zone of 196 km2, and low conflict zone of 3,636 km2. Future conflict mitigation strategies may focus on such areas primarily to reduce livestock losses and enhance conservation outcomes. Negative perceptions toward wolves can be managed through a holistic conservation action plan in concert with the existing snow leopard conservation program alongside local traditions that do not hinder livelihood security.
Collapse
|
8
|
Shrotriya S, Reshamwala HS, Lyngdoh S, Jhala YV, Habib B. Feeding Patterns of Three Widespread Carnivores—The Wolf, Snow Leopard, and Red Fox—in the Trans-Himalayan Landscape of India. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.815996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Trans-Himalayan landscape is an extreme cold desert with limited diversity and a low density of wild prey. The landscape has three widespread carnivores—the wolf Canis lupus chanco, snow leopard Panthera uncia, and red fox Vulpes vulpes—competing for similar prey. We studied predation patterns, dietary competition, and niche segregation of three sympatric carnivores in the Indian Trans-Himalayas. The Himalayan or wooly wolf is one of the oldest lineages and has adapted to extreme cold. We further studied the prey selection of the wolf in the high-altitude environment. We collected 1,600 carnivore scats (wolf = 542, snow leopard = 31, and red fox = 1,027), and additional data on 573 snow leopard scats from literature was used in the analyses. We found that livestock was a major contributor to the wolf (56.46%) and snow leopard diet (30.01%). The wolf consumed blue sheep (8.26%) and ibex (3.13%), whereas the snow leopard subsisted on blue sheep (30.79%) and ibex (17.15%), relatively more frequently. The red fox preyed upon small species like pika and marmots (18.85 %); however, livestock carrions (16.49%), fruits and seeds (15.05%), and human-derived material (11.89%) were also consumed frequently. The dietary niche of three carnivore species highly overlapped (Pianka's index = 0.503, simulated mean = 0.419, p = 0.15) due to livestock. The carnivores segregated their diet in prey items originating from the wild. We tested a relationship between carnivore diet variations and prey/predator functional traits using RLQ ordination. Predator morphology traits like body size, weight, and habitat preference significantly affected the prey selection (p < 0.05). The wolf and snow leopard avoided the competition through habitat selection, while the red fox coexisted by exploiting a broader niche. The wolf showed site-specific variation in prey preferences albeit no prey selection at the landscape level (G2 = 6.79, df = 12, p = 0.87). The wolf preferred wild prey over domestic species at the wild prey rich site. The carnivores in this pastoralist landscape have adapted to exploit livestock resources despite facing persecution. Therefore, managing livestock and simultaneously restoring wild prey is crucial for the conservation of the carnivore guild in the Trans-Himalayan ecosystem.
Collapse
|
9
|
Reshamwala HS, Bhattacharya A, Khan S, Shrotriya S, Lyngdoh SB, Goyal SP, Kanagaraj R, Habib B. Modeling Potential Impacts of Climate Change on the Distribution of Wooly Wolf (Canis lupus chanco). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.815621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Central Asian wolves form a cohort within the wolf-dog clade known as the wooly wolf (Canis lupus chanco). These wolves are poorly studied and their current extent and distribution remain unknown. Apex predators already existing at higher elevations like wooly wolves can be severely affected by climate change because of the absence of suitable refuge. Concomitantly, in the era of Anthropocene, the change in land use land cover (LULC) is rapidly increasing. Even the most adaptable species occurring in human-dominated landscapes may fail to survive under the combined impact of both climate change and human pressure. We collected 3,776 presence locations of the wooly wolf across its range from published literature and compiled 39 predictor variables for species distribution modeling, which included anthropogenic factors, climatic, vegetation, and topographic features. We predicted the change in their distribution under different anthropogenic factors, climate change, and land-use land-cover change scenarios. Wolf showed affinity toward areas with low to moderately warm temperatures and higher precipitations. It showed negative relationships with forests and farmlands. Our future projections showed an expansion of wolf distribution and habitat suitability under the combined effects of future climate and LULC change. Myanmar and Russia had the introduction of high and medium suitability areas for the wooly wolf in future scenarios. Uzbekistan and Kazakhstan showed the consistent loss in high suitability areas while Mongolia and Bhutan had the largest gain in high suitability areas. The study holds great significance for the protection and management of this species and also provides opportunities to explore the impact on associated species.
Collapse
|
10
|
Khan S, Shrotriya S, Sadhukhan S, Lyngdoh S, Goyal SP, Habib B. Comparative Ecological Perspectives of Two Ancient Lineages of Gray Wolves: Woolly Wolf (Canis lupus chanco) and Indian Wolf (Canis lupus pallipes). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.775612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Geographical isolation can often lead to speciation, and two disconnected populations of the same species living in drastically different bioclimatic regions provide an opportunity to understand the process of speciation. The Woolly wolf is found in the cold-arid, Trans-Himalayan landscape, while the Indian wolf inhabits the semi-arid grasslands of Central India. Both the lineages of wolves from India have generated scientific debate on their taxonomic status in recent years. In this study, we collected data and reviewed published literature to document the ecological and behavioral differences between the Woolly wolf and the Indian wolf. Most studies have used genetic data; hence we discuss variation in spatial ecology, habitat preferences, vocalization, diet diversity and cranial measurements of these two subspecies. The spatial ecology of two lineages was compared from the data on three Woolly and ten Indian wolves tagged with GPS collars. The telemetry data shows that there has been no difference in the day-night movement of Woolly wolves, whereas Indian wolves show significant high displacement during the night. The BBMM method indicated that Woolly wolf home ranges were three times larger than the Indian wolf. The Woolly wolf diet is comprised of 20 different types of food items, whereas the Indian wolf diet consists of 17 types. The Woolly and Indian wolf largely depend upon domestic prey base, i.e., 48.44 and 40.34%, respectively. We found no differences in the howling parameters of these subspecies. Moreover, the Woolly wolf skull was significantly longer and broader than the Indian wolf. Wolves of India are ancient and diverged from the main clade about 200,000–1,000,000 years ago. Their genetic and ecological evolution in different bioclimatic zones has resulted in considerable differences as distinct subspecies. The present study is a step in understanding ecological differences between two important, genetically unique subspecies of wolves.
Collapse
|
11
|
Sonam K, Dorjay R, Khanyari M, Bijoor A, Lobzang S, Sharma M, Suresh S, Mishra C, Suryawanshi KR. A Community-Based Conservation Initiative for Wolves in the Ladakh Trans-Himalaya, India. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.809817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe a pilot community-based conservation initiative for wolves Canis lupus that involves (i) voluntary deactivation of traditional trapping pits called Shandong, (ii) commitment to wildlife conservation by the local community, and (iii) collaborative construction and consecration of a Stupa (Buddhist shrine) in the vicinity of the Shandong as a symbol of conservation and repentance for past hunting. People and wolves have a complex relationship, in part shaped by predation on livestock, which can have severe impacts on livelihoods in pastoral societies. Consequently, wolf conservation often evokes strong and polarizing reactions. To control wolf populations, livestock herders across the Trans- Himalayan and Tibetan regions use different types of traps. Shandong is a relatively large, widely used traditional trapping pit with inverted funnel-shaped stone walls, usually built near villages or herder camps. Typically, a live domestic animal is placed in the pit to attract the wolves. Once the wolves jump into the pit, the funnel shaped walls prevent them from escaping, and trapped wolves are usually stoned to death. In an extensive survey covering over 25,000 sq. km, we enumerated 94 Shandong in 58 of the 64 surveyed villages in Ladakh between June 2019 and March 2020. Thirty of these had been used to kill wolves within the past 10 years, while 7 had been destroyed. Shandong that were not in use were of poorer condition. Since 2017, we have worked with community members, local monks, and the region’s religious leaders to support the neutralization of the Shandong while preserving their structure, and assisted the communities to build Stupas and to consecrate them. Our pilot efforts with three communities appear to generate pride locally, and hold promise for promoting wolf conservation in Ladakh and in large parts of Trans-Himalayan and Tibetan regions that share similar cultural settings.
Collapse
|
12
|
OUP accepted manuscript. J Mammal 2022. [DOI: 10.1093/jmammal/gyac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Occupancy and activity rhythms of the Siberian roe deer. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Abstract
AbstractThe increasing animosity towards wolves (Canislupus) by livestock-keeping nomads in Mongolia and the accompanying conflicts highlight the urgent need for knowledge about the feeding behavior of wolves, since information on the feeding ecology of wolves in Mongolia is rare, especially in the mountain taiga and mountain forest steppe regions of Northern Mongolia. Those regions are characterized by a relatively high wildlife diversity and are sparsely populated by humans. To face this problem, 137 wolf scats were collected in the Khentii Mountain range in Northern Mongolia between 2008 and 2012. Almost all wolf faeces contained remnants of wild ungulates, which made up 89% of the consumed biomass. Siberian roe deer (Capreoluspygargus) was the most important and positively selected prey species. It was followed by red deer (Cervuselaphus) and wild boar (Susscrofa), which was negatively selected by wolves. Wolves also fed on buffer prey species such as lagomorphs and small mammals. No evidence of domestic ungulates was found in the wolf diet. Thus, near-natural habitats with a diverse fauna of wild animals are important to limit livestock depredation.
Collapse
|
15
|
Tintner J, Hatlauf J, Weber H, Lanszki J. Molecular Recalcitrance of Hair Passing the Digestive System of a Canid. Molecules 2020; 25:molecules25194404. [PMID: 32992751 PMCID: PMC7582638 DOI: 10.3390/molecules25194404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022] Open
Abstract
Hair is an important component in scat that is commonly used for prey analyses in carnivores. Chemically, hair predominately consists of keratin. The recalcitrant fiber protein is degraded in nature only by a few insects and soil microorganisms. Common proteases such as pepsin do not decompose keratin. Infrared spectroscopy was used to detect chemical differences caused by pretreatment and fate of hairs. Three sample sets were compared: original untreated hair, original milled hair, and hairs extracted from scats of golden jackals (Canis aureus L.). The results revealed that only milling affected the infrared spectral pattern, whereas digestion had no impact. Moreover, hairs from different species (e.g., boar) could be distinguished due to their spectral characteristics. They did not change through the passage of the digestive system.
Collapse
Affiliation(s)
- Johannes Tintner
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Straße 82, 1190 Vienna, Austria;
- Correspondence: ; Tel.: +1-47654-89174
| | - Jennifer Hatlauf
- Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences, Gregor Mendel Straße 33, 1180 Vienna, Austria;
| | - Heidi Weber
- Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Straße 82, 1190 Vienna, Austria;
| | - József Lanszki
- Institute of Environmental Sciences and Nature Conservation, Kaposvár University, P.O. Box 16, 7400 Kaposvár, Hungary;
| |
Collapse
|
16
|
Joshi B, Lyngdoh S, Singh SK, Sharma R, Kumar V, Tiwari VP, Dar SA, Maheswari A, Pal R, Bashir T, Reshamwala HS, Shrotriya S, Sathyakumar S, Habib B, Kvist L, Goyal SP. Revisiting the Woolly wolf (Canis lupus chanco) phylogeny in Himalaya: Addressing taxonomy, spatial extent and distribution of an ancient lineage in Asia. PLoS One 2020; 15:e0231621. [PMID: 32298359 PMCID: PMC7162449 DOI: 10.1371/journal.pone.0231621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/27/2020] [Indexed: 11/23/2022] Open
Abstract
Of the sub-species of Holarctic wolf, the Woolly wolf (Canis lupus chanco) is uniquely adapted to atmospheric hypoxia and widely distributed across the Himalaya, Qinghai Tibetan Plateau (QTP) and Mongolia. Taxonomic ambiguity still exists for this sub-species because of complex evolutionary history anduse of limited wild samples across its range in Himalaya. We document for the first time population genetic structure and taxonomic affinity of the wolves across western and eastern Himalayan regions from samples collected from the wild (n = 19) using mitochondrial control region (225bp). We found two haplotypes in our data, one widely distributed in the Himalaya that was shared with QTP and the other confined to Himachal Pradesh and Uttarakhand in the western Himalaya, India. After combining our data withpublished sequences (n = 83), we observed 15 haplotypes. Some of these were shared among different locations from India to QTP and a few were private to geographic locations. A phylogenetic tree indicated that Woolly wolves from India, Nepal, QTP and Mongolia are basal to other wolves with shallow divergence (K2P; 0.000-0.044) and high bootstrap values. Demographic analyses based on mismatch distribution and Bayesian skyline plots (BSP) suggested a stable population over a long time (~million years) with signs of recent declines. Regional dominance of private haplotypes across its distribution range may indicate allopatric divergence. This may be due to differences in habitat characteristics, availability of different wild prey species and differential deglaciation within the range of the Woolly wolf during historic time. Presence of basal and shallow divergence within-clade along with unique ecological requirements and adaptation to hypoxia, the Woolly wolf of Himalaya, QTP, and Mongolian regions may be considered as a distinct an Evolutionary Significant Unit (ESU). Identifying management units (MUs) is needed within its distribution range using harmonized multiple genetic data for effective conservation planning.
Collapse
Affiliation(s)
| | | | | | - Reeta Sharma
- Wildlife Institute of India, Chandrabani, Dehradun, India
| | - Vinay Kumar
- Wildlife Institute of India, Chandrabani, Dehradun, India
| | | | - S. A. Dar
- Wildlife Institute of India, Chandrabani, Dehradun, India
| | | | - Ranjana Pal
- Wildlife Institute of India, Chandrabani, Dehradun, India
| | - Tawqir Bashir
- Wildlife Institute of India, Chandrabani, Dehradun, India
| | | | | | - S. Sathyakumar
- Wildlife Institute of India, Chandrabani, Dehradun, India
| | - Bilal Habib
- Wildlife Institute of India, Chandrabani, Dehradun, India
| | - Laura Kvist
- Department of Biology, University of Oulu, Oulu, Finland
| | | |
Collapse
|