1
|
Pérez-Ferrer PA, Ashraf M, Rodrigues M, Troncoso J, Nishiguchi MK. Genetic Variation in the Atlantic Bobtail Squid-Vibrio Symbiosis From the Galician Rías. Mol Ecol 2025; 34:e17596. [PMID: 39625066 DOI: 10.1111/mec.17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 12/24/2024]
Abstract
Symbiotic marine bacteria that are transmitted through the environment are susceptible to abiotic factors (salinity, temperature, physical barriers) that can influence their ability to colonize their specific hosts. Given that many symbioses are driven by host specificity, environmentally transmitted symbionts are more susceptible to extrinsic factors depending on conditions over space and time. In order to determine whether the population structure of environmentally transmitted symbionts reflects host specificity or biogeography, we analysed the genetic structure of Sepiola atlantica (Cephalopoda: Sepiolidae) and their Vibrio symbionts (V. fischeri and V. logei) in four Galician Rías (Spain). This geographical location is characterized by a jagged coastline with a deep-sea entrance into the land, ideal for testing whether such population barriers exist due to genetic isolation. We used haplotype estimates combined with nested clade analysis to determine the genetic relatedness for both S. atlantica and Vibrio bacteria. Analyses of molecular variance (AMOVA) were used to estimate variation within and between populations for both host and symbiont genetic data. Our analyses reveal a low percentage of variation among and between host populations, suggesting that these populations are panmictic. In contrast, Vibrio symbiont populations show certain degree of genetic structure, demonstrating that the hydrology of the rías is driving bacterial distribution (and not host specificity). Thus, for environmentally transmitted symbioses such as the sepiolid squid-Vibrio association, abiotic factors can be a major selective force for determining population structure for one of the partners.
Collapse
Affiliation(s)
- P A Pérez-Ferrer
- Department of Molecular and Cell Biology, Quantitative Systems Biology, University of California Merced, Merced, California, USA
| | - M Ashraf
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | - M Rodrigues
- Brookes Bell LLP, Liverpool, UK
- Universidad de Vigo, Vigo, Spain
| | | | - M K Nishiguchi
- Department of Molecular and Cell Biology, Quantitative Systems Biology, University of California Merced, Merced, California, USA
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
2
|
Bellissimo KA, Septer AN, Whistler CA, Rodríguez C, Stabb EV. Deletion of luxI increases luminescence of Vibrio fischeri. mBio 2024; 15:e0244624. [PMID: 39315803 PMCID: PMC11481858 DOI: 10.1128/mbio.02446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Bioluminescence in Vibrio fischeri is regulated by a quorum-dependent signaling system composed of LuxI and LuxR. LuxI generates N-3-oxohexanoyl homoserine lactone (3OC6-HSL), which triggers LuxR to activate transcription of the luxICDABEG operon responsible for bioluminescence. Surprisingly, a ∆luxI mutant produced more bioluminescence than the wild type in culture. In contrast, a 4 bp duplication within luxI, resulting in a frameshift mutation and null allele, decreased luminescence tenfold. A second signaling system encoded by ainSR affects bioluminescence by increasing levels of LuxR, via the transcriptional activator LitR, and the N-octanoyl homoserine lactone (C8-HSL) signal produced by AinS is considered only a weak activator of LuxR. However, ainS is required for the bright phenotype of the ∆luxI mutant in culture. When 3OC6-HSL was provided either in the medium or by expression of luxI in trans, all cultures were brighter, but the ∆luxI mutant remained significantly brighter than the luxI frameshift mutant. Taken together, these data suggest that the enhanced bioluminescence due to the LuxI product 3OC6-HSL counteracts a negative cis-acting regulatory element within the luxI gene and that when luxI is absent the C8-HSL signal is sufficient to induce luminescence. IMPORTANCE The regulation of bioluminescence by Vibrio fischeri is a textbook example of bacterial quorum-dependent pheromone signaling. The canonical regulatory model is that an autoinducer pheromone produced by LuxI accumulates as cells achieve a high density, and this LuxI-generated signal stimulates LuxR to activate transcription of the lux operon that underlies bioluminescence. The surprising observation that LuxI is dispensable for inducing bioluminescence forces a re-evaluation of the role of luxI. More broadly, the results underscore the potential deceptiveness of complex regulatory circuits, particularly those in which bacteria produce multiple related signaling molecules.
Collapse
Affiliation(s)
- Kathryn A. Bellissimo
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alecia N. Septer
- Department of Earth, Marine & Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Coralis Rodríguez
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Eric V. Stabb
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Yang L, Lawhorn S, Bongrand C, Kosmopoulos JC, Kuwabara J, VanNieuwenhze M, Mandel MJ, McFall-Ngai M, Ruby E. Bacterial growth dynamics in a rhythmic symbiosis. Mol Biol Cell 2024; 35:ar79. [PMID: 38598294 PMCID: PMC11238090 DOI: 10.1091/mbc.e24-01-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
The symbiotic relationship between the bioluminescent bacterium Vibrio fischeri and the bobtail squid Euprymna scolopes serves as a valuable system to investigate bacterial growth and peptidoglycan (PG) synthesis within animal tissues. To better understand the growth dynamics of V. fischeri in the crypts of the light-emitting organ of its juvenile host, we showed that, after the daily dawn-triggered expulsion of most of the population, the remaining symbionts rapidly proliferate for ∼6 h. At that point the population enters a period of extremely slow growth that continues throughout the night until the next dawn. Further, we found that PG synthesis by the symbionts decreases as they enter the slow-growing stage. Surprisingly, in contrast to the most mature crypts (i.e., Crypt 1) of juvenile animals, most of the symbiont cells in the least mature crypts (i.e., Crypt 3) were not expelled and, instead, remained in the slow-growing state throughout the day, with almost no cell division. Consistent with this observation, the expression of the gene encoding the PG-remodeling enzyme, L,D-transpeptidase (LdtA), was greatest during the slowly growing stage of Crypt 1 but, in contrast, remained continuously high in Crypt 3. Finally, deletion of the ldtA gene resulted in a symbiont that grew and survived normally in culture, but was increasingly defective in competing against its parent strain in the crypts. This result suggests that remodeling of the PG to generate additional 3-3 linkages contributes to the bacterium's fitness in the symbiosis, possibly in response to stresses encountered during the very slow-growing stage.
Collapse
Affiliation(s)
- Liu Yang
- Carnegie Institution for Science, Pasadena, CA 91101
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
| | - Susannah Lawhorn
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
| | - Clotilde Bongrand
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
| | - James C. Kosmopoulos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jill Kuwabara
- Carnegie Institution for Science, Pasadena, CA 91101
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
| | | | - Mark J. Mandel
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Margaret McFall-Ngai
- Carnegie Institution for Science, Pasadena, CA 91101
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Edward Ruby
- Carnegie Institution for Science, Pasadena, CA 91101
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96848
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
4
|
Septer AN, Visick KL. Lighting the way: how the Vibrio fischeri model microbe reveals the complexity of Earth's "simplest" life forms. J Bacteriol 2024; 206:e0003524. [PMID: 38695522 PMCID: PMC11112999 DOI: 10.1128/jb.00035-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Vibrio (Aliivibrio) fischeri's initial rise to fame derived from its alluring production of blue-green light. Subsequent studies to probe the mechanisms underlying this bioluminescence helped the field discover the phenomenon now known as quorum sensing. Orthologs of quorum-sensing regulators (i.e., LuxR and LuxI) originally identified in V. fischeri were subsequently uncovered in a plethora of bacterial species, and analogous pathways were found in yet others. Over the past three decades, the study of this microbe has greatly expanded to probe the unique role of V. fischeri as the exclusive symbiont of the light organ of the Hawaiian bobtail squid, Euprymna scolopes. Buoyed by this optically amenable host and by persistent and insightful researchers who have applied novel and cross-disciplinary approaches, V. fischeri has developed into a robust model for microbe-host associations. It has contributed to our understanding of how bacteria experience and respond to specific, often fluxing environmental conditions and the mechanisms by which bacteria impact the development of their host. It has also deepened our understanding of numerous microbial processes such as motility and chemotaxis, biofilm formation and dispersal, and bacterial competition, and of the relevance of specific bacterial genes in the context of colonizing an animal host. Parallels in these processes between this symbiont and bacteria studied as pathogens are readily apparent, demonstrating functional conservation across diverse associations and permitting a reinterpretation of "pathogenesis." Collectively, these advances built a foundation for microbiome studies and have positioned V. fischeri to continue to expand the frontiers of our understanding of the microbial world inside animals.
Collapse
Affiliation(s)
- Alecia N. Septer
- Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
5
|
Cecere AG, Cook RA, Miyashiro TI. A case study assessing the impact of mating frequency on the reproductive performance of the Hawaiian bobtail squid Euprymna scolopes. Lab Anim Res 2023; 39:17. [PMID: 37507806 PMCID: PMC10375782 DOI: 10.1186/s42826-023-00168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The symbiosis between the Hawaiian bobtail squid Euprymna scolopes and bacterium Vibrio fischeri serves as a model for investigating the molecular mechanisms that promote the initial formation of animal-bacterial symbioses. Research with this system frequently depends on freshly hatched E. scolopes, but the husbandry factors that promote hatchling production in a mariculture facility remain underreported. Here we report on the reproductive performance of E. scolopes in response to decreased mating frequency. RESULTS One animal cohort was maintained in a mariculture facility for 107 days, with females assigned to either a control group (mating once every 14 days) or an experimental group (mating once every 21 days). No differences between the groups were observed in survival, the number of egg clutches laid, or hatchling counts. Each group featured multiple females that were hyper-reproductive, i.e., they generated more than 8 egg clutches while in captivity. Examination of the distributions for daily hatchling counts of individual egg clutches revealed significant variation in the hatching patterns among clutches that was independent of mating frequency. Finally, an assessment of hatchling production showed that 93.5% of total hatchlings produced by the cohort were derived from egg clutches laid within the first 70 days. CONCLUSIONS These results suggest a lower mating frequency does not impede hatchling production. Furthermore, the variation in hatchling production among egg clutches provides new insight into the reproductive performance of E. scolopes as a lab animal for microbiology research.
Collapse
Affiliation(s)
- Andrew G Cecere
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Rachel A Cook
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Tim I Miyashiro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
- The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Yount TA, Murtha AN, Cecere AG, Miyashiro TI. Quorum sensing facilitates interpopulation signaling by Vibrio fischeri within the light organ of Euprymna scolopes. Isr J Chem 2023; 63:e202200061. [PMID: 38524670 PMCID: PMC10959291 DOI: 10.1002/ijch.202200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 11/06/2022]
Abstract
Quorum sensing is an intercellular signaling mechanism that enables bacterial cells to coordinate population-level behaviors. How quorum sensing functions in natural habitats remains poorly understood. Vibrio fischeri is a bacterial symbiont of the Hawaiian bobtail squid Euprymna scolopes and depends on LuxI/LuxR quorum sensing to produce the symbiotic trait of bioluminescence. A previous study demonstrated that animals emit light when co-colonized by a Δlux mutant, which lacks several genes within the lux operon that are necessary for bioluminescence production, and a LuxI- mutant, which cannot synthesize the quorum signaling molecule N-3-oxohexanoyl-homoserine lactone. Here, we build upon that observation and show that populations of LuxI- feature elevated promoter activity for the lux operon. We find that population structures comprising of Δlux and LuxI- are attenuated within the squid, but a wild-type strain enables the LuxI- strain type to be maintained in vivo. These experimental results support a model of interpopulation signaling, which provides basic insight into how quorum sensing functions within the natural habitats found within a host.
Collapse
Affiliation(s)
| | | | - Andrew G. Cecere
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA
| | - Tim I. Miyashiro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
7
|
Essock-Burns T, Lawhorn S, Wu L, McClosky S, Moriano-Gutierrez S, Ruby EG, McFall-Ngai MJ. Maturation state of colonization sites promotes symbiotic resiliency in the Euprymna scolopes-Vibrio fischeri partnership. MICROBIOME 2023; 11:68. [PMID: 37004104 PMCID: PMC10064550 DOI: 10.1186/s40168-023-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Many animals and plants acquire their coevolved symbiotic partners shortly post-embryonic development. Thus, during embryogenesis, cellular features must be developed that will promote both symbiont colonization of the appropriate tissues, as well as persistence at those sites. While variation in the degree of maturation occurs in newborn tissues, little is unknown about how this variation influences the establishment and persistence of host-microbe associations. RESULTS The binary symbiosis model, the squid-vibrio (Euprymna scolopes-Vibrio fischeri) system, offers a way to study how an environmental gram-negative bacterium establishes a beneficial, persistent, extracellular colonization of an animal host. Here, we show that bacterial symbionts occupy six different colonization sites in the light-emitting organ of the host that have both distinct morphologies and responses to antibiotic treatment. Vibrio fischeri was most resilient to antibiotic disturbance when contained within the smallest and least mature colonization sites. We show that this variability in crypt development at the time of hatching allows the immature sites to act as a symbiont reservoir that has the potential to reseed the more mature sites in the host organ when they have been cleared by antibiotic treatment. This strategy may produce an ecologically significant resiliency to the association. CONCLUSIONS The data presented here provide evidence that the evolution of the squid-vibrio association has been selected for a nascent organ with a range of host tissue maturity at the onset of symbiosis. The resulting variation in physical and chemical environments results in a spectrum of host-symbiont interactions, notably, variation in susceptibility to environmental disturbance. This "insurance policy" provides resiliency to the symbiosis during the critical period of its early development. While differences in tissue maturity at birth have been documented in other animals, such as along the infant gut tract of mammals, the impact of this variation on host-microbiome interactions has not been studied. Because a wide variety of symbiosis characters are highly conserved over animal evolution, studies of the squid-vibrio association have the promise of providing insights into basic strategies that ensure successful bacterial passage between hosts in horizontally transmitted symbioses. Video Abstract.
Collapse
Affiliation(s)
- Tara Essock-Burns
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
- Present address: Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Pasadena, CA, USA
| | - Susannah Lawhorn
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Leo Wu
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Sawyer McClosky
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Silvia Moriano-Gutierrez
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
- Present address: Department of Fundamental Biology, University of Lausanne, Lausanne, Switzerland
| | - Edward G Ruby
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA
- Present address: Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Pasadena, CA, USA
| | - Margaret J McFall-Ngai
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i, Mānoa, Honolulu, HI, USA.
- Present address: Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Pasadena, CA, USA.
| |
Collapse
|
8
|
Abstract
Developmental processes in animals are influenced by colonization and/or signaling from microbial symbionts. Here, we show that bacteria from the environment are linked to development of a symbiotic organ that houses a bacterial consortium in female Hawaiian bobtail squid, Euprymna scolopes. In addition to the well-characterized light organ association with the bioluminescent bacterium Vibrio fischeri, female E. scolopes house a simple bacterial community in a reproductive organ, the accessory nidamental gland (ANG). In order to understand the influences of bacteria on ANG development, squid were raised in the laboratory under conditions where exposure to environmental microorganisms was experimentally manipulated. Under conditions where hosts were exposed to depleted environmental bacteria, ANGs were completely absent or stunted, a result independent of the presence of the light organ symbiont V. fischeri. When squid were raised in the laboratory with substrate from the host's natural environment containing the native microbiota, normal ANG development was observed, and the bacterial communities were similar to wild-caught animals. Analysis of the bacterial communities from ANGs and substrates of wild-caught and laboratory-raised animals suggests that certain bacterial groups, namely, the Verrucomicrobia, are linked to ANG development. The ANG community composition was also experimentally manipulated. Squid raised with natural substrate supplemented with a specific ANG bacterial strain, Leisingera sp. JC1, had high proportions of this strain in the ANG, suggesting that once ANG development is initiated, specific strains can be introduced and subsequently colonize the organ. Overall, these data suggest that environmental bacteria are required for development of the ANG in E. scolopes. IMPORTANCE Microbiota have profound effects on animal and plant development. Hosts raised axenically or without symbionts often suffer negative outcomes resulting in developmental defects or reduced organ function. Using defined experimental conditions, we demonstrate that environmental bacteria are required for the formation of a female-specific symbiotic organ in the Hawaiian bobtail squid, Euprymna scolopes. Although nascent tissues from this organ that are involved with bacterial recruitment formed initially, the mature organ failed to develop and was absent or severely reduced in sexually mature animals that were not exposed to microbiota from the host's natural environment. This is the first example of complete organ development relying on exposure to symbiotic bacteria in an animal host. This study broadens the use of E. scolopes as a model organism for studying the influence of beneficial bacteria on animal development.
Collapse
|
9
|
Impact of transit time on the reproductive capacity of Euprymna scolopes as a laboratory animal. Lab Anim Res 2022; 38:25. [PMID: 35908064 PMCID: PMC9338615 DOI: 10.1186/s42826-022-00135-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Hawaiian bobtail squid Euprymna scolopes hosts various marine bacterial symbionts, and these symbioses have served as models for the animal-microbe relationships that are important for host health. Within a light organ, E. scolopes harbors populations of the bacterium Vibrio fischeri, which produce low levels of bioluminescence that the squid uses for camouflage. The symbiosis is initially established after a juvenile squid hatches from its egg and acquires bacterial symbionts from the ambient marine environment. The relative ease with which a cohort of wild-caught E. scolopes can be maintained in a mariculture facility has facilitated over 3 decades of research involving juvenile squid. However, because E. scolopes is native to the Hawaiian archipelago, their transport from Hawaii to research facilities often represents a stress that has the potential to impact their physiology. RESULTS Here, we describe animal survival and reproductive capacity associated with a cohort of squid assembled from two shipments with markedly different transit times. We found that the lower juvenile squid counts generated by animals with the longer transit time were not due to the discrepancy in shipment but instead to fewer female squid that produced egg clutches at an elevated rate, which we term hyper-reproductivity. We find that hyper-reproductive females were responsible for 58% of the egg clutches laid. CONCLUSIONS The significance of these findings for E. scolopes biology and husbandry is discussed, thereby providing a platform for future investigation and further development of this cephalopod as a valuable lab animal for microbiology research.
Collapse
|
10
|
Bongrand C, Koch E, Mende D, Romano A, Lawhorn S, McFall-Ngai M, DeLong EF, Ruby EG. Evidence of Genomic Diversification in a Natural Symbiotic Population Within Its Host. Front Microbiol 2022; 13:854355. [PMID: 35300477 PMCID: PMC8922018 DOI: 10.3389/fmicb.2022.854355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Planktonic cells of the luminous marine bacterium Vibrio fischeri establish themselves in the light-emitting organ of each generation of newly hatched Euprymna scolopes bobtail squid. A symbiont population is maintained within the 6 separated crypts of the organ for the ∼9-month life of the host. In the wild, the initial colonization step is typically accomplished by a handful of planktonic V. fischeri cells, leading to a species-specific, but often multi-strain, symbiont population. Within a few hours, the inoculating cells proliferate within the organ’s individual crypts, after which there is evidently no supernumerary colonization. Nevertheless, every day at dawn, the majority of the symbionts is expelled, and the regrowth of the remaining ∼5% of cells provides a daily opportunity for the population to evolve and diverge, thereby increasing its genomic diversity. To begin to understand the extent of this diversification, we characterized the light-organ population of an adult animal. First, we used 16S sequencing to determine that species in the V. fischeri clade were essentially the only ones detectable within a field-caught E. scolopes. Efforts to colonize the host with a minor species that appeared to be identified, V. litoralis, revealed that, although some cells could be imaged within the organ, they were <0.1% of the typical V. fischeri population, and did not persist. Next, we determined the genome sequences of seventy-two isolates from one side of the organ. While all these isolates were associated with one of three clusters of V. fischeri strains, there was considerable genomic diversity within this natural symbiotic population. Comparative analyses revealed a significant difference in both the number and the presence/absence of genes within each cluster; in contrast, there was little accumulation of single-nucleotide polymorphisms. These data suggest that, in nature, the light organ is colonized by a small number of V. fischeri strains that can undergo significant genetic diversification, including by horizontal-gene transfer, over the course of ∼1500 generations of growth in the organ. When the resulting population of symbionts is expelled into seawater, its genomic mix provides the genetic basis for selection during the subsequent environmental dispersal, and transmission to the next host.
Collapse
Affiliation(s)
- Clotilde Bongrand
- Kewalo Marine Laboratory, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Eric Koch
- Kewalo Marine Laboratory, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Daniel Mende
- Department of Oceanography, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Anna Romano
- Department of Oceanography, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Susannah Lawhorn
- Kewalo Marine Laboratory, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Margaret McFall-Ngai
- Kewalo Marine Laboratory, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Edward F DeLong
- Department of Oceanography, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Edward G Ruby
- Kewalo Marine Laboratory, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
11
|
Lynch JB, Bennett BD, Merrill BD, Ruby EG, Hryckowian AJ. Independent host- and bacterium-based determinants protect a model symbiosis from phage predation. Cell Rep 2022; 38:110376. [PMID: 35172163 PMCID: PMC8983117 DOI: 10.1016/j.celrep.2022.110376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/08/2021] [Accepted: 01/20/2022] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages (phages) are diverse and abundant constituents of microbial communities worldwide, capable of modulating bacterial populations in diverse ways. Here, we describe the phage HNL01, which infects the marine bacterium Vibrio fischeri. We use culture-based approaches to demonstrate that mutations in the exopolysaccharide locus of V. fischeri render this bacterium resistant to infection by HNL01, highlighting the extracellular matrix as a key determinant of HNL01 infection. Additionally, using the natural symbiosis between V. fischeri and the squid Euprymna scolopes, we show that, during colonization, V. fischeri is protected from phages present in the ambient seawater. Taken together, these findings shed light on independent yet synergistic host- and bacterium-based strategies for resisting symbiosis-disrupting phage predation, and we present important implications for understanding these strategies in the context of diverse host-associated microbial ecosystems.
Collapse
Affiliation(s)
- Jonathan B Lynch
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI 96822, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brittany D Bennett
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI 96822, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Bryan D Merrill
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Edward G Ruby
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI 96822, USA
| | - Andrew J Hryckowian
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA.
| |
Collapse
|
12
|
Bacterial Quorum-Sensing Regulation Induces Morphological Change in a Key Host Tissue during the Euprymna scolopes-Vibrio fischeri Symbiosis. mBio 2021; 12:e0240221. [PMID: 34579565 PMCID: PMC8546586 DOI: 10.1128/mbio.02402-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Microbes colonize the apical surfaces of polarized epithelia in nearly all animal taxa. In one example, the luminous bacterium Vibrio fischeri enters, grows to a dense population within, and persists for months inside, the light-emitting organ of the squid Euprymna scolopes. Crucial to the symbiont's success after entry is the ability to trigger the constriction of a host tissue region (the "bottleneck") at the entrance to the colonization site. Bottleneck constriction begins at about the same time as bioluminescence, which is induced in V. fischeri through an autoinduction process called quorum sensing. Here, we asked the following questions: (i) Are the quorum signals that induce symbiont bioluminescence also involved in triggering the constriction? (ii) Does improper signaling of constriction affect the normal maintenance of the symbiont population? We manipulated the presence of three factors, the two V. fischeri quorum signal synthases, AinS and LuxI, the transcriptional regulator LuxR, and light emission itself, and found that the major factor triggering and maintaining bottleneck constriction is an as yet unknown effector(s) regulated by LuxIR. Treating the animal with chemical inhibitors of actin polymerization reopened the bottlenecks, recapitulating the host's response to quorum-sensing defective symbionts, as well as suggesting that actin polymerization is the primary mechanism underlying constriction. Finally, we found that these host responses to the presence of symbionts changed as a function of tissue maturation. Taken together, this work broadens our concept of how quorum sensing can regulate host development, thereby allowing bacteria to maintain long-term tissue associations. IMPORTANCE Interbacterial signaling within a host-associated population can have profound effects on the behavior of the bacteria, for instance, in their production of virulence/colonization factors; in addition, such signaling can dictate the nature of the outcome for the host, in both pathogenic and beneficial associations. Using the monospecific squid-vibrio model of symbiosis, we examined how quorum-sensing regulation by the Vibrio fischeri population induces a biogeographic tissue phenotype that promotes the retention of this extracellular symbiont within the light organ of its host, Euprymna scolopes. Understanding the influence of bacterial symbionts on key sites of tissue architecture has implications for all horizontally transmitted symbioses, especially those that colonize an epithelial surface within the host.
Collapse
|
13
|
Nyholm SV, McFall-Ngai MJ. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat Rev Microbiol 2021; 19:666-679. [PMID: 34089010 PMCID: PMC8440403 DOI: 10.1038/s41579-021-00567-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/08/2023]
Abstract
For more than 30 years, the association between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium Vibrio fischeri has been studied as a model system for understanding the colonization of animal epithelia by symbiotic bacteria. The squid-vibrio light-organ system provides the exquisite resolution only possible with the study of a binary partnership. The impact of this relationship on the partners' biology has been broadly characterized, including their ecology and evolutionary biology as well as the underlying molecular mechanisms of symbiotic dynamics. Much has been learned about the factors that foster initial light-organ colonization, and more recently about the maturation and long-term maintenance of the association. This Review synthesizes the results of recent research on the light-organ association and also describes the development of new horizons for E. scolopes as a model organism that promises to inform biology and biomedicine about the basic nature of host-microorganism interactions.
Collapse
Affiliation(s)
- Spencer V Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| | - Margaret J McFall-Ngai
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| |
Collapse
|
14
|
Hybrid Histidine Kinase BinK Represses Vibrio fischeri Biofilm Signaling at Multiple Developmental Stages. J Bacteriol 2021; 203:e0015521. [PMID: 34031036 DOI: 10.1128/jb.00155-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and its exclusive light organ symbiont, Vibrio fischeri, provides a natural system in which to study host-microbe specificity and gene regulation during the establishment of a mutually beneficial symbiosis. Colonization of the host relies on bacterial biofilm-like aggregation in the squid mucus field. Symbiotic biofilm formation is controlled by a two-component signaling (TCS) system consisting of regulators RscS-SypF-SypG, which together direct transcription of the symbiosis polysaccharide Syp. TCS systems are broadly important for bacteria to sense environmental cues and then direct changes in behavior. Previously, we identified the hybrid histidine kinase BinK as a strong negative regulator of V. fischeri biofilm regulation, and here we further explore the function of BinK. To inhibit biofilm formation, BinK requires the predicted phosphorylation sites in both the histidine kinase (H362) and receiver (D794) domains. Furthermore, we show that RscS is not essential for host colonization when binK is deleted from strain ES114, and imaging of aggregate size revealed no benefit to the presence of RscS in a background lacking BinK. Strains lacking RscS still suffered in competition. Finally, we show that BinK functions to inhibit biofilm gene expression in the light organ crypts, providing evidence for biofilm gene regulation at later stages of host colonization. Overall, this study provides direct evidence for opposing activities of RscS and BinK and yields novel insights into biofilm regulation during the maturation of a beneficial symbiosis. IMPORTANCE Bacteria are often in a biofilm state, and transitions between planktonic and biofilm lifestyles are important for pathogenic, beneficial, and environmental microbes. The critical nature of biofilm formation during Vibrio fischeri colonization of the Hawaiian bobtail squid light organ provides an opportunity to study development of this process in vivo using a combination of genetic and imaging approaches. The current work refines the signaling circuitry of the biofilm pathway in V. fischeri, provides evidence that biofilm regulatory changes occur in the host, and identifies BinK as one of the regulators of that process. This study provides information about how bacteria regulate biofilm gene expression in an intact animal host.
Collapse
|
15
|
Dial CN, Eichinger SJ, Foxall R, Corcoran CJ, Tischler AH, Bolz RM, Whistler CA, Visick KL. Quorum Sensing and Cyclic di-GMP Exert Control Over Motility of Vibrio fischeri KB2B1. Front Microbiol 2021; 12:690459. [PMID: 34262549 PMCID: PMC8273514 DOI: 10.3389/fmicb.2021.690459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
Bacterial motility is critical for symbiotic colonization by Vibrio fischeri of its host, the squid Euprymna scolopes, facilitating movement from surface biofilms to spaces deep inside the symbiotic organ. While colonization has been studied traditionally using strain ES114, others, including KB2B1, can outcompete ES114 for colonization for a variety of reasons, including superior biofilm formation. We report here that KB2B1 also exhibits an unusual pattern of migration through a soft agar medium: whereas ES114 migrates rapidly and steadily, KB2B1 migrates slowly and then ceases migration. To better understand this phenomenon, we isolated and sequenced five motile KB2B1 suppressor mutants. One harbored a mutation in the gene for the cAMP receptor protein (crp); because this strain also exhibited a growth defect, it was not characterized further. Two other suppressors contained mutations in the quorum sensing pathway that controls bacterial bioluminescence in response to cell density, and two had mutations in the diguanylate cyclase (DGC) gene VF_1200. Subsequent analysis indicated that (1) the quorum sensing mutations shifted KB2B1 to a perceived low cell density state and (2) the high cell density state inhibited migration via the downstream regulator LitR. Similar to the initial point mutations, deletion of the VF_1200 DGC gene increased migration. Consistent with the possibility that production of the second messenger c-di-GMP inhibited the motility of KB2B1, reporter-based measurements of c-di-GMP revealed that KB2B1 produced higher levels of c-di-GMP than ES114, and overproduction of a c-di-GMP phosphodiesterase promoted migration of KB2B1. Finally, we assessed the role of viscosity in controlling the quorum sensing pathway using polyvinylpyrrolidone and found that viscosity increased light production of KB2B1 but not ES114. Together, our data indicate that while the two strains share regulators in common, they differ in the specifics of the regulatory control over downstream phenotypes such as motility.
Collapse
Affiliation(s)
- Courtney N. Dial
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Steven J. Eichinger
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Randi Foxall
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Christopher J. Corcoran
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Alice H. Tischler
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Robert M. Bolz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| | - Cheryl A. Whistler
- Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
16
|
A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat Rev Microbiol 2021; 19:654-665. [PMID: 34089008 DOI: 10.1038/s41579-021-00557-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 01/10/2023]
Abstract
As our understanding of the human microbiome progresses, so does the need for natural experimental animal models that promote a mechanistic understanding of beneficial microorganism-host interactions. Years of research into the exclusive symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium Vibrio fischeri have permitted a detailed understanding of those bacterial genes underlying signal exchange and rhythmic activities that result in a persistent, beneficial association, as well as glimpses into the evolution of symbiotic competence. Migrating from the ambient seawater to regions deep inside the light-emitting organ of the squid, V. fischeri experiences, recognizes and adjusts to the changing environmental conditions. Here, we review key advances over the past 15 years that are deepening our understanding of these events.
Collapse
|
17
|
Kerwin AH, McAnulty SJ, Nyholm SV. Development of the Accessory Nidamental Gland and Associated Bacterial Community in the Hawaiian Bobtail Squid, Euprymna scolopes. THE BIOLOGICAL BULLETIN 2021; 240:205-218. [PMID: 34129444 DOI: 10.1086/713965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe Hawaiian bobtail squid, Euprymna scolopes, has a female reproductive organ called the accessory nidamental gland that contains a symbiotic bacterial consortium. These bacteria are deposited from the accessory nidamental gland into the squid's egg cases, where the consortium prevents microbial fouling. The symbiont community is environmentally transmitted and conserved across host populations, yet little is known about how the organ develops and is colonized by bacteria. In order to understand accessory nidamental gland development in E. scolopes, we characterized the gland during maturation by using histology and confocal and transmission electron microscopy. We found that an epithelial field formed first about four weeks after hatching, followed by the proliferation of numerous pores during what we hypothesize to be the initiation of bacterial recruitment (early development). Microscopy revealed that these pores were connected to ciliated invaginations that occasionally contained bacteria. During mid development, these epithelial fields expanded, and separate colonized tubules were observed below the epithelial layer that contained the pores and invaginations. During late development, the superficial epithelial fields appeared to regress as animals approached sexual maturity and were never observed in fully mature adults (about 2-3 months post-hatching), suggesting that they help facilitate bacterial colonization of the accessory nidamental gland. An analysis of 16S rRNA gene diversity in accessory nidamental glands from females of varying size showed that the bacterial community changed as the host approached sexual maturity, increasing in community evenness and shifting from a Verrucomicrobia-dominated to an Alphaproteobacteria-dominated consortium. Given the host's relationship with the well-characterized light organ symbiont Vibrio fischeri, our work suggests that the accessory nidamental gland of E. scolopes may have similar mechanisms to recruit bacteria from the environment. Understanding the developmental and colonization processes of the accessory nidamental gland will expand the use of E. scolopes as a model organism for studying bacterial consortia in marine symbioses.
Collapse
|
18
|
Christensen DG, Visick KL. Vibrio fischeri: Laboratory Cultivation, Storage, and Common Phenotypic Assays. ACTA ACUST UNITED AC 2021; 57:e103. [PMID: 32497392 DOI: 10.1002/cpmc.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vibrio fischeri is a nonpathogenic organism related to pathogenic Vibrio species that can be readily grown and stored with common laboratory equipment. In this article, protocols for routine growth, storage, and phenotypic assessment of V. fischeri, as well as recipes for useful media, are included. Specifically, this article describes procedures and considerations for growth of this microbe in complex and minimal media. It also describes assays for biofilm formation, motility, and bioluminescence, three commonly assessed phenotypes of V. fischeri. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Growth of V. fischeri from frozen stocks Basic Protocol 2: Growth of V. fischeri in rich, undefined liquid medium Alternate Protocol 1: Growth of V. fischeri in minimal medium Basic Protocol 3: Storage of V. fischeri in frozen stocks Basic Protocol 4: Biofilm assay on solid agar Alternate Protocol 2: Biofilm assay in shaking liquid culture Alternate Protocol 3: Biofilm assay in static liquid culture Basic Protocol 5: Motility assay Basic Protocol 6: Luminescence assay.
Collapse
Affiliation(s)
- David G Christensen
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
19
|
Gould AL, Fritts-Penniman A, Gaisiner A. Museum Genomics Illuminate the High Specificity of a Bioluminescent Symbiosis for a Genus of Reef Fish. Front Ecol Evol 2021; 9:630207. [PMID: 34485316 PMCID: PMC8412414 DOI: 10.3389/fevo.2021.630207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Symbiotic relationships between bioluminescent bacteria and fishes have evolved multiple times across hundreds of fish taxa, but relatively little is known about the specificity of these associations and how stable they are over host generations. This study describes the degree of specificity of a bioluminescent symbiosis between cardinalfishes in the genus Siphamia and luminous bacteria in the Vibrio family. Primarily using museum specimens, we investigated the codivergence of host and symbiont and test for patterns of divergence that correlate with both biogeography and time. Contrary to expectations, we determined that the light organ symbionts of all 14 Siphamia species examined belong to one genetic clade of Photobacterium mandapamensis (Clade II), indicating that the association is highly specific and conserved throughout the host genus. Thus, we did not find evidence of codivergence among hosts and symbionts. We did observe that symbionts hosted by individuals sampled from colder water regions were more divergent, containing more than three times as many single nucleotide polymorphisms than the rest of the symbionts examined. Overall, our findings indicate that the symbiosis between Siphamia fishes and P. mandapamensis Clade II has been highly conserved across host taxa and over a broad geographic range despite the facultative nature of the bacterial symbiont. We also present a new approach to simultaneously recover genetic information from a bacterial symbiont and its vertebrate host from formalin-fixed specimens, enhancing the utility of museum collections.
Collapse
Affiliation(s)
- Alison L. Gould
- California Academy of Sciences, San Francisco, CA, United States
| | | | - Ana Gaisiner
- California Academy of Sciences, San Francisco, CA, United States
| |
Collapse
|
20
|
The cytokine MIF controls daily rhythms of symbiont nutrition in an animal-bacterial association. Proc Natl Acad Sci U S A 2020; 117:27578-27586. [PMID: 33067391 DOI: 10.1073/pnas.2016864117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The recent recognition that many symbioses exhibit daily rhythms has encouraged research into the partner dialogue that drives these biological oscillations. Here we characterized the pivotal role of the versatile cytokine macrophage migration inhibitory factor (MIF) in regulating a metabolic rhythm in the model light-organ symbiosis between Euprymna scolopes and Vibrio fischeri As the juvenile host matures, it develops complex daily rhythms characterized by profound changes in the association, from gene expression to behavior. One such rhythm is a diurnal shift in symbiont metabolism triggered by the periodic provision of a specific nutrient by the mature host: each night the symbionts catabolize chitin released from hemocytes (phagocytic immune cells) that traffic into the light-organ crypts, where the population of V. fischeri cells resides. Nocturnal migration of these macrophage-like cells, together with identification of an E. scolopes MIF (EsMIF) in the light-organ transcriptome, led us to ask whether EsMIF might be the gatekeeper controlling the periodic movement of the hemocytes. Western blots, ELISAs, and confocal immunocytochemistry showed EsMIF was at highest abundance in the light organ. Its concentration there was lowest at night, when hemocytes entered the crypts. EsMIF inhibited migration of isolated hemocytes, whereas exported bacterial products, including peptidoglycan derivatives and secreted chitin catabolites, induced migration. These results provide evidence that the nocturnal decrease in EsMIF concentration permits the hemocytes to be drawn into the crypts, delivering chitin. This nutritional function for a cytokine offers the basis for the diurnal rhythms underlying a dynamic symbiotic conversation.
Collapse
|
21
|
The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses. PLoS Biol 2020; 18:e3000934. [PMID: 33141816 PMCID: PMC7665748 DOI: 10.1371/journal.pbio.3000934] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/13/2020] [Accepted: 09/22/2020] [Indexed: 01/13/2023] Open
Abstract
The regulatory noncoding small RNAs (sRNAs) of bacteria are key elements influencing gene expression; however, there has been little evidence that beneficial bacteria use these molecules to communicate with their animal hosts. We report here that the bacterial sRNA SsrA plays an essential role in the light-organ symbiosis between Vibrio fischeri and the squid Euprymna scolopes. The symbionts load SsrA into outer membrane vesicles, which are transported specifically into the epithelial cells surrounding the symbiont population in the light organ. Although an SsrA-deletion mutant (ΔssrA) colonized the host to a normal level after 24 h, it produced only 2/10 the luminescence per bacterium, and its persistence began to decline by 48 h. The host's response to colonization by the ΔssrA strain was also abnormal: the epithelial cells underwent premature swelling, and host robustness was reduced. Most notably, when colonized by the ΔssrA strain, the light organ differentially up-regulated 10 genes, including several encoding heightened immune-function or antimicrobial activities. This study reveals the potential for a bacterial symbiont's sRNAs not only to control its own activities but also to trigger critical responses promoting homeostasis in its host. In the absence of this communication, there are dramatic fitness consequences for both partners.
Collapse
|
22
|
Bennett BD, Essock-Burns T, Ruby EG. HbtR, a Heterofunctional Homolog of the Virulence Regulator TcpP, Facilitates the Transition between Symbiotic and Planktonic Lifestyles in Vibrio fischeri. mBio 2020; 11:e01624-20. [PMID: 32873761 PMCID: PMC7468203 DOI: 10.1128/mbio.01624-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022] Open
Abstract
The bioluminescent bacterium Vibrio fischeri forms a mutually beneficial symbiosis with the Hawaiian bobtail squid, Euprymna scolopes, in which the bacteria, housed inside a specialized light organ, produce light used by the squid in its nocturnal activities. Upon hatching, E. scolopes juveniles acquire V. fischeri from the seawater through a complex process that requires, among other factors, chemotaxis by the bacteria along a gradient of N-acetylated sugars into the crypts of the light organ, the niche in which the bacteria reside. Once inside the light organ, V. fischeri transitions into a symbiotic, sessile state in which the quorum-signaling regulator LitR induces luminescence. In this work we show that expression of litR and luminescence are repressed by a homolog of the Vibrio cholerae virulence factor TcpP, which we have named HbtR. Further, we demonstrate that LitR represses genes involved in motility and chemotaxis into the light organ and activates genes required for exopolysaccharide production.IMPORTANCE TcpP homologs are widespread throughout the Vibrio genus; however, the only protein in this family described thus far is a V. cholerae virulence regulator. Here, we show that HbtR, the TcpP homolog in V. fischeri, has both a biological role and regulatory pathway completely unlike those in V. cholerae Through its repression of the quorum-signaling regulator LitR, HbtR affects the expression of genes important for colonization of the E. scolopes light organ. While LitR becomes activated within the crypts and upregulates luminescence and exopolysaccharide genes and downregulates chemotaxis and motility genes, it appears that HbtR, upon expulsion of V. fischeri cells into seawater, reverses this process to aid the switch from a symbiotic to a planktonic state. The possible importance of HbtR to the survival of V. fischeri outside its animal host may have broader implications for the ways in which bacteria transition between often vastly different environmental niches.
Collapse
Affiliation(s)
- Brittany D Bennett
- Pacific Biosciences Research Center, University of Hawai'i-Manoa, Honolulu, Hawaii, USA
| | - Tara Essock-Burns
- Pacific Biosciences Research Center, University of Hawai'i-Manoa, Honolulu, Hawaii, USA
| | - Edward G Ruby
- Pacific Biosciences Research Center, University of Hawai'i-Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
23
|
Koch EJ, Moriano-Gutierrez S, Ruby EG, McFall-Ngai M, Liebeke M. The impact of persistent colonization by Vibrio fischeri on the metabolome of the host squid Euprymna scolopes. J Exp Biol 2020; 223:jeb212860. [PMID: 32616546 PMCID: PMC7473655 DOI: 10.1242/jeb.212860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
Associations between animals and microbes affect not only the immediate tissues where they occur, but also the entire host. Metabolomics, the study of small biomolecules generated during metabolic processes, provides a window into how mutualistic interactions shape host biochemistry. The Hawaiian bobtail squid, Euprymna scolopes, is amenable to metabolomic studies of symbiosis because the host can be reared with or without its species-specific symbiont, Vibrio fischeri In addition, unlike many invertebrates, the host squid has a closed circulatory system. This feature allows a direct sampling of the refined collection of metabolites circulating through the body, a focused approach that has been highly successful with mammals. Here, we show that rearing E. scolopes without its natural symbiont significantly affected one-quarter of the more than 100 hemolymph metabolites defined by gas chromatography mass spectrometry analysis. Furthermore, as in mammals, which harbor complex consortia of bacterial symbionts, the metabolite signature oscillated on symbiont-driven daily rhythms and was dependent on the sex of the host. Thus, our results provide evidence that the population of even a single symbiont species can influence host hemolymph biochemistry as a function of symbiotic state, host sex and circadian rhythm.
Collapse
Affiliation(s)
- Eric J Koch
- Kewalo Marine Laboratory, University of Hawaii at Mānoa, Honolulu, HI 96813, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Silvia Moriano-Gutierrez
- Kewalo Marine Laboratory, University of Hawaii at Mānoa, Honolulu, HI 96813, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward G Ruby
- Kewalo Marine Laboratory, University of Hawaii at Mānoa, Honolulu, HI 96813, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Margaret McFall-Ngai
- Kewalo Marine Laboratory, University of Hawaii at Mānoa, Honolulu, HI 96813, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| |
Collapse
|
24
|
Chomicki G, Werner GDA, West SA, Kiers ET. Compartmentalization drives the evolution of symbiotic cooperation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190602. [PMID: 32772665 DOI: 10.1098/rstb.2019.0602] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Across the tree of life, hosts have evolved mechanisms to control and mediate interactions with symbiotic partners. We suggest that the evolution of physical structures that allow hosts to spatially separate symbionts, termed compartmentalization, is a common mechanism used by hosts. Such compartmentalization allows hosts to: (i) isolate symbionts and control their reproduction; (ii) reward cooperative symbionts and punish or stop interactions with non-cooperative symbionts; and (iii) reduce direct conflict among different symbionts strains in a single host. Compartmentalization has allowed hosts to increase the benefits that they obtain from symbiotic partners across a diversity of interactions, including legumes and rhizobia, plants and fungi, squid and Vibrio, insects and nutrient provisioning bacteria, plants and insects, and the human microbiome. In cases where compartmentalization has not evolved, we ask why not. We argue that when partners interact in a competitive hierarchy, or when hosts engage in partnerships which are less costly, compartmentalization is less likely to evolve. We conclude that compartmentalization is key to understanding the evolution of symbiotic cooperation. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Gijsbert D A Werner
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK.,Netherlands Scientific Council for Government Policy, Buitenhof 34, 2513 AH Den Haag, The Netherlands
| | - Stuart A West
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - E Toby Kiers
- Department of Ecological Science, VU University, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Interactions of Symbiotic Partners Drive the Development of a Complex Biogeography in the Squid-Vibrio Symbiosis. mBio 2020; 11:mBio.00853-20. [PMID: 32457244 PMCID: PMC7251207 DOI: 10.1128/mbio.00853-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The complexity, inaccessibility, and time scales of initial colonization of most animal microbiomes present challenges for the characterization of how the bacterial symbionts influence the form and function of tissues in the minutes to hours following the initial interaction of the partners. Here, we use the naturally occurring binary squid-vibrio association to explore this phenomenon. Imaging of the spatiotemporal landscape of this symbiosis during its onset provides a window into the impact of differences in both host-tissue maturation and symbiont strain phenotypes on the establishment of a dynamically stable symbiotic system. These data provide evidence that the symbionts shape the host-tissue landscape and that tissue maturation impacts the influence of strain-level differences on the daily rhythms of the symbiosis, the competitiveness for colonization, and antibiotic sensitivity. Microbes live in complex microniches within host tissues, but how symbiotic partners communicate to create such niches during development remains largely unexplored. Using confocal microscopy and symbiont genetics, we characterized the shaping of host microenvironments during light organ colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri. During embryogenesis, three pairs of invaginations form sequentially on the organ’s surface, producing pores that lead to interior compressed tubules at different stages of development. After hatching, these areas expand, allowing V. fischeri cells to enter and migrate ∼120 μm through three anatomically distinct regions before reaching blind-ended crypt spaces. A dynamic gatekeeper, or bottleneck, connects these crypts with the migration path. Once V. fischeri cells have entered the crypts, the bottlenecks narrow, and colonization by the symbiont population becomes spatially restricted. The actual timing of constriction and restriction varies with crypt maturity and with different V. fischeri strains. Subsequently, starting with the first dawn following colonization, the bottleneck controls a lifelong cycle of dawn-triggered expulsions of most of the symbionts into the environment and a subsequent regrowth in the crypts. Unlike other developmental phenotypes, bottleneck constriction is not induced by known microbe-associated molecular patterns (MAMPs) or by V. fischeri-produced bioluminescence, but it does require metabolically active symbionts. Further, while symbionts in the most mature crypts have a higher proportion of live cells and a greater likelihood of expulsion at dawn, they have a lower resistance to antibiotics. The overall dynamics of these distinct microenvironments reflect the complexity of the host-symbiont dialogue.
Collapse
|
26
|
Aschtgen MS, Brennan CA, Nikolakakis K, Cohen S, McFall-Ngai M, Ruby EG. Insights into flagellar function and mechanism from the squid-vibrio symbiosis. NPJ Biofilms Microbiomes 2019; 5:32. [PMID: 31666982 PMCID: PMC6814793 DOI: 10.1038/s41522-019-0106-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Flagella are essential and multifunctional nanomachines that not only move symbionts towards their tissue colonization site, but also play multiple roles in communicating with the host. Thus, untangling the activities of flagella in reaching, interacting, and signaling the host, as well as in biofilm formation and the establishment of a persistent colonization, is a complex problem. The squid-vibrio system offers a unique model to study the many ways that bacterial flagella can influence a beneficial association and, generally, other bacteria-host interactions. Vibrio fischeri is a bioluminescent bacterium that colonizes the Hawaiian bobtail squid, Euprymna scolopes. Over the last 15 years, the structure, assembly, and functions of V. fischeri flagella, including not only motility and chemotaxis, but also biofilm formation and symbiotic signaling, have been revealed. Here we discuss these discoveries in the perspective of other host-bacteria interactions.
Collapse
Affiliation(s)
- Marie-Stephanie Aschtgen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706 USA
- Present Address: Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, 171 76 Sweden
| | - Caitlin A. Brennan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706 USA
- Present Address: Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Kiel Nikolakakis
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706 USA
- Present Address: Department of Natural and Applied Sciences, University of Wisconsin – Green Bay, Green Bay, WI 54311 USA
| | - Stephanie Cohen
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, and Center for Advanced Surface Analysis, Institute of Earth Sciences, Université de Lausanne, CH-1015 Lausanne, Switzerland
- Kewalo Marine Laboratory, University of Hawaii-Manoa, Honolulu, HI 96813 USA
| | | | - Edward G. Ruby
- Kewalo Marine Laboratory, University of Hawaii-Manoa, Honolulu, HI 96813 USA
| |
Collapse
|
27
|
Bongrand C, Ruby EG. The impact of Vibrio fischeri strain variation on host colonization. Curr Opin Microbiol 2019; 50:15-19. [PMID: 31593868 DOI: 10.1016/j.mib.2019.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/17/2019] [Accepted: 09/02/2019] [Indexed: 01/06/2023]
Abstract
Strain-level epidemiology is a key approach to understanding the mechanisms underlying establishment of any host-microbe association. The squid-vibrio light organ symbiosis has proven to be an informative and tractable experimental model in which to discover these mechanisms because it involves only one bacterial species, Vibrio fischeri. In this horizontally transmitted symbiosis, the squid presents nutrients to the bacteria located in a bilobed light-emitting organ, while the symbionts provide bioluminescence to their host. To initiate this association, V. fischeri cells go through several distinct stages: from free-living in the bacterioplankton, to forming a multicellular aggregation near pores on the light organ's surface, to migrating through the pores and into crypts deep in the light organ, where the symbiont population grows and luminesces. Because individual cells must successfully navigate these distinct regions, phenotypic differences between strains will have a strong impact on the composition of the population finally colonizing the squid. Here we review recent advances in our understanding of behavioral characteristics that differentially drive a strain's success, including its effectiveness of aggregation, the rapidity with which it reaches the deep crypts, and its deployment of type VI secretion.
Collapse
|
28
|
Baker LJ, Freed LL, Easson CG, Lopez JV, Fenolio D, Sutton TT, Nyholm SV, Hendry TA. Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment. eLife 2019; 8:47606. [PMID: 31571583 PMCID: PMC6773444 DOI: 10.7554/elife.47606] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022] Open
Abstract
Deep-sea anglerfishes are relatively abundant and diverse, but their luminescent bacterial symbionts remain enigmatic. The genomes of two symbiont species have qualities common to vertically transmitted, host-dependent bacteria. However, a number of traits suggest that these symbionts may be environmentally acquired. To determine how anglerfish symbionts are transmitted, we analyzed bacteria-host codivergence across six diverse anglerfish genera. Most of the anglerfish species surveyed shared a common species of symbiont. Only one other symbiont species was found, which had a specific relationship with one anglerfish species, Cryptopsaras couesii. Host and symbiont phylogenies lacked congruence, and there was no statistical support for codivergence broadly. We also recovered symbiont-specific gene sequences from water collected near hosts, suggesting environmental persistence of symbionts. Based on these results we conclude that diverse anglerfishes share symbionts that are acquired from the environment, and that these bacteria have undergone extreme genome reduction although they are not vertically transmitted. The deep sea is home to many different species of anglerfish, a group of animals in which females often display a dangling lure on the top of their heads. This organ shelters bacteria that make light, a partnership (known as symbiosis) that benefits both parties. The bacteria get a safe environment in which to grow, while the animal may use the light to confuse predators as well as attract prey and mates. The genetic information of these bacteria has changed since they became associated with their host. Their genomes have become smaller and more specialized, limiting their ability to survive outside of the fish. This phenomenon is also observed in other symbiotic bacteria, but mostly in microorganisms that are directly transmitted from parent to offspring, never having to live on their own. Yet, some evidence suggests that the bacteria in the lure of anglerfish may be spending time in the water until they find a new host, crossing thousands of meters of ocean in the process. To explore this paradox, Baker et al. looked into the type of bacteria carried by different groups of anglerfish. If each type of fish has its own kind of bacteria, this would suggest that the microorganisms are passed from one generation to the next, and are evolving with their hosts. On the other hand, if the same sort of bacteria can be found in different anglerfish species, this would imply that the bacteria pass from host to host and evolve independently from the fish. Genetic data analysis showed that amongst six groups of anglerfishes, one species of bacteria is shared across five groups while another is specific to one type of fish. The analyses also revealed that anglerfish and their bacteria are most likely not evolving together. This means that the bacteria must make the difficult journey from host to host by persisting in the deep sea, which was confirmed by finding the genetic information of these bacteria in the water near the fish. Anglerfish and the bacteria that light up their lure are hard to study, as they live so deep in the ocean. In fact, many symbiotic relationships are equally difficult to investigate. Examining genetic information can help to give an insight into how hosts and bacteria interact across the tree of life.
Collapse
Affiliation(s)
- Lydia J Baker
- Department of Microbiology, Cornell University, New York, United States
| | - Lindsay L Freed
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States
| | - Cole G Easson
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States.,Department of Biology, Middle Tennessee State University, Murfreesboro, United States
| | - Jose V Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States
| | - Danté Fenolio
- Center for Conservation and Research, San Antonio Zoo, San Antonio, United States
| | - Tracey T Sutton
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, United States
| | - Spencer V Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States
| | - Tory A Hendry
- Department of Microbiology, Cornell University, New York, United States
| |
Collapse
|
29
|
Rader B, McAnulty SJ, Nyholm SV. Persistent symbiont colonization leads to a maturation of hemocyte response in the Euprymna scolopes/Vibrio fischeri symbiosis. Microbiologyopen 2019; 8:e858. [PMID: 31197972 PMCID: PMC6813443 DOI: 10.1002/mbo3.858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Abstract
The binary association between the squid, Euprymna scolopes, and its symbiont, Vibrio fischeri, serves as a model system to study interactions between beneficial bacteria and the innate immune system. Previous research demonstrated that binding of the squid's immune cells, hemocytes, to V. fischeri is altered if the symbiont is removed from the light organ, suggesting that host colonization alters hemocyte recognition of V. fischeri. To investigate the influence of symbiosis on immune maturation during development, we characterized hemocyte binding and phagocytosis of V. fischeri and nonsymbiotic Vibrio harveyi from symbiotic (sym) and aposymbiotic (apo) juveniles, and wild-caught and laboratory-raised sym and apo adults. Our results demonstrate that while light organ colonization by V. fischeri did not alter juvenile hemocyte response, these cells bound a similar number of V. fischeri and V. harveyi yet phagocytosed only V. harveyi. Our results also indicate that long-term colonization altered the adult hemocyte response to V. fischeri but not V. harveyi. All hemocytes from adult squid, regardless of apo or sym state, both bound and phagocytosed a similar number of V. harveyi while hemocytes from both wild-caught and sym-raised adults bound significantly fewer V. fischeri, although more V. fischeri were phagocytosed by hemocytes from wild-caught animals. In contrast, hemocytes from apo-raised squid bound similar numbers of both V. fischeri and V. harveyi, although more V. harveyi cells were engulfed, suggesting that blood cells from apo-raised adults behaved similarly to juvenile hosts. Taken together, these data suggest that persistent colonization by the light organ symbiont is required for hemocytes to differentially bind and phagocytose V. fischeri. The cellular immune system of E. scolopes likely possesses multiple mechanisms at different developmental stages to promote a specific and life-long interaction with the symbiont.
Collapse
Affiliation(s)
- Bethany Rader
- Department of MicrobiologySouthern Illinois UniversityCarbondaleIllinois
| | - Sarah J. McAnulty
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticut
| | - Spencer V. Nyholm
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticut
| |
Collapse
|
30
|
Incompatibility of Vibrio fischeri Strains during Symbiosis Establishment Depends on Two Functionally Redundant hcp Genes. J Bacteriol 2019; 201:JB.00221-19. [PMID: 31331977 DOI: 10.1128/jb.00221-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/30/2019] [Indexed: 01/23/2023] Open
Abstract
Bacteria that have the capacity to fill the same niche will compete with one another for the space and resources available within an ecosystem. Such competition is heightened among different strains of the same bacterial species. Nevertheless, different strains often inhabit the same host. The molecular mechanisms that impact competition between different strains within the same host are poorly understood. To address this knowledge gap, the type VI secretion system (T6SS), which is a mechanism for bacteria to kill neighboring cells, was examined in the marine bacterium Vibrio fischeri Different strains of V. fischeri naturally colonize the light organ of the bobtail squid Euprymna scolopes The genome of FQ-A001, a T6SS-positive strain, features two hcp genes that are predicted to encode identical subunits of the T6SS. Coincubation assays showed that either hcp gene is sufficient for FQ-A001 to kill another strain via the T6SS in vitro Additionally, induction of hcp expression is sufficient to induce killing activity in an FQ-A001 mutant lacking both hcp genes. Squid colonization assays involving inocula of FQ-A001-derived strains mixed with ES114 revealed that both hcp genes must be deleted for FQ-A001 and ES114 to occupy the same space within the light organ. These experimental results provide insight into the genetic factors necessary for the T6SS of V. fischeri to function in vivo, thereby increasing understanding of the molecular mechanisms that impact strain diversity within a host.IMPORTANCE Different bacterial strains compete to occupy the same niche. The outcome of such competition can be affected by the type VI secretion system (T6SS), an intercellular killing mechanism of bacteria. Here an animal-bacterial symbiosis is used as a platform for study of the genetic factors that promote the T6SS-mediated killing of one strain by another. Identification of the molecular determinants of T6SS function in vivo contributes to the understanding of how different strains interact within a host.
Collapse
|
31
|
Photosynthetic Endosymbionts Benefit from Host’s Phagotrophy, Including Predation on Potential Competitors. Curr Biol 2019; 29:3114-3119.e3. [DOI: 10.1016/j.cub.2019.07.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/26/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022]
|
32
|
Abstract
The symbiosis between Euprymna scolopes squid and its bioluminescent bacterial symbiont, Vibrio fischeri, is a valuable model system to study a natural, coevolved host-microbe association. Over the past 30 years, researchers have developed and optimized many experimental methods to study both partners in isolation and during symbiosis. The symbiosis between Euprymna scolopes squid and its bioluminescent bacterial symbiont, Vibrio fischeri, is a valuable model system to study a natural, coevolved host-microbe association. Over the past 30 years, researchers have developed and optimized many experimental methods to study both partners in isolation and during symbiosis. These powerful tools, along with a strong foundational knowledge about the system, position the Vibrio-squid symbiosis at the forefront of host-microbe interactions because this system is uniquely suited to investigation of symbiosis from both host and bacterial perspectives. Moreover, the ability to isolate and characterize different strains of V. fischeri has revealed exciting new insights about how different genotypes evolve to compete for a host niche, including deploying interbacterial weapons early during host colonization. This Perspective explores how interbacterial warfare influences the diversity and spatial structure of the symbiotic population, as well as the possible effects that intraspecific competition might have on the host.
Collapse
|
33
|
A Simple Microbiome in the European Common Cuttlefish, Sepia officinalis. mSystems 2019; 4:mSystems00177-19. [PMID: 31098396 PMCID: PMC6517690 DOI: 10.1128/msystems.00177-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 11/20/2022] Open
Abstract
The European common cuttlefish, Sepia officinalis, is used extensively in biological and biomedical research, yet its microbiome remains poorly characterized. We analyzed the microbiota of the digestive tract, gills, and skin in mariculture-raised S. officinalis using a combination of 16S rRNA amplicon sequencing, quantitative PCR (qPCR), and fluorescence spectral imaging. Sequencing revealed a highly simplified microbiota consisting largely of two single bacterial amplicon sequence variants (ASVs) of Vibrionaceae and Piscirickettsiaceae. The esophagus was dominated by a single ASV of the genus Vibrio. Imaging revealed bacteria in the family Vibrionaceae distributed in a discrete layer that lines the esophagus. This Vibrio was also the primary ASV found in the microbiota of the stomach, cecum, and intestine, but occurred at lower abundance, as determined by qPCR, and was found only scattered in the lumen rather than in a discrete layer via imaging analysis. Treatment of animals with the commonly used antibiotic enrofloxacin led to a nearly 80% reduction of the dominant Vibrio ASV in the esophagus but did not significantly alter the relative abundance of bacteria overall between treated versus control animals. Data from the gills were dominated by a single ASV in the family Piscirickettsiaceae, which imaging visualized as small clusters of cells. We conclude that bacteria belonging to the Gammaproteobacteria are the major symbionts of the cuttlefish Sepia officinalis cultured from eggs in captivity and that the esophagus and gills are major colonization sites. IMPORTANCE Microbes can play critical roles in the physiology of their animal hosts, as evidenced in cephalopods by the role of Vibrio (Aliivibrio) fischeri in the light organ of the bobtail squid and the role of Alpha- and Gammaproteobacteria in the reproductive system and egg defense in a variety of cephalopods. We sampled the cuttlefish microbiome throughout the digestive tract, gills, and skin and found dense colonization of an unexpected site, the esophagus, by a microbe of the genus Vibrio, as well as colonization of gills by Piscirickettsiaceae. This finding expands the range of organisms and body sites known to be associated with Vibrio and is of potential significance for understanding host-symbiont associations, as well as for understanding and maintaining the health of cephalopods in mariculture.
Collapse
|
34
|
Critical symbiont signals drive both local and systemic changes in diel and developmental host gene expression. Proc Natl Acad Sci U S A 2019; 116:7990-7999. [PMID: 30833394 DOI: 10.1073/pnas.1819897116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The colonization of an animal's tissues by its microbial partners creates networks of communication across the host's body. We used the natural binary light-organ symbiosis between the squid Euprymna scolopes and its luminous bacterial partner, Vibrio fischeri, to define the impact of colonization on transcriptomic networks in the host. A night-active predator, E. scolopes coordinates the bioluminescence of its symbiont with visual cues from the environment to camouflage against moon and starlight. Like mammals, this symbiosis has a complex developmental program and a strong day/night rhythm. We determined how symbiont colonization impacted gene expression in the light organ itself, as well as in two anatomically remote organs: the eye and gill. While the overall transcriptional signature of light organ and gill were more alike, the impact of symbiosis was most pronounced and similar in light organ and eye, both in juvenile and adult animals. Furthermore, the presence of a symbiosis drove daily rhythms of transcription within all three organs. Finally, a single mutation in V. fischeri-specifically, deletion of the lux operon, which abrogates symbiont luminescence-reduced the symbiosis-dependent transcriptome of the light organ by two-thirds. In addition, while the gills responded similarly to light-organ colonization by either the wild-type or mutant, luminescence was required for all of the colonization-associated transcriptional responses in the juvenile eye. This study defines not only the impact of symbiont colonization on the coordination of animal transcriptomes, but also provides insight into how such changes might impact the behavior and ecology of the host.
Collapse
|
35
|
Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME JOURNAL 2018; 13:698-706. [PMID: 30353039 DOI: 10.1038/s41396-018-0305-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/16/2018] [Accepted: 10/09/2018] [Indexed: 01/30/2023]
Abstract
Strain diversity, while now recognized as a key driver underlying partner dynamics in symbioses, is usually difficult to experimentally manipulate and image in hosts with complex microbiota. To address this problem, we have used the luminous marine bacterium Vibrio fischeri, which establishes a symbiosis within the crypts of the nascent light organ of the squid Euprymna scolopes. Competition assays in newly hatched juvenile squid have shown that symbiotic V. fischeri are either niche-sharing "S strains", which share the light organ when co-inoculated with other S strains, or niche-dominant "D strains", which are typically found alone in the light organ after a co-colonization. To understand this D strain advantage, we determined the minimum time that different V. fischeri strains needed to initiate colonization and used confocal microscopy to localize the symbionts along their infection track. Further, we determined whether symbiont-induced host morphogenic events also occurred earlier during a D strain colonization. We conclude that D strains colonized more quickly than S strains. Nevertheless, light-organ populations in field-caught adult squid often contain both D and S strains. We determined experimentally that this symbiont population heterogeneity might be achieved in nature by a serial encounter of different strains in the environment.
Collapse
|
36
|
Persistent Interactions with Bacterial Symbionts Direct Mature-Host Cell Morphology and Gene Expression in the Squid-Vibrio Symbiosis. mSystems 2018; 3:mSystems00165-18. [PMID: 30320217 PMCID: PMC6172772 DOI: 10.1128/msystems.00165-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022] Open
Abstract
In horizontally transmitted symbioses, structural, biochemical, and molecular features both facilitate host colonization by specific symbionts and mediate their persistent carriage. In the association between the squid Euprymna scolopes and its luminous bacterial partner Vibrio fischeri, the symbionts interact with two epithelial fields; they interact (i) transiently with the superficial ciliated field that potentiates colonization and regresses within days of colonization and (ii) persistently with the cells that line the internal crypts, whose ultrastructure changes in response to the symbionts. Development of the association creates conditions that promote the symbiotic partner over the lifetime of the host. To determine whether light organ maturation requires continuous interactions with V. fischeri or only the signaling that occurs during its initiation, we compared 4-week-old squid that were uncolonized with those colonized either persistently by wild-type V. fischeri or transiently by a V. fischeri mutant that triggers early events in morphogenesis but does not persist. Microscopic analysis of the light organs showed that, while morphogenesis of the superficial ciliated field is greatly accelerated by V. fischeri colonization, its eventual outcome is largely independent of colonization state. In contrast, the symbiont-induced changes in crypt cell shape require persistent host-symbiont interaction, reflected in the similarity between uncolonized and transiently colonized animals. Transcriptomic analyses reflected the microscopy results; host gene expression at 4 weeks was due primarily to the persistent interactions of host and symbiont cells. Further, the transcriptomic signature of specific pathways reflected the daily rhythm of symbiont release and regrowth and required the presence of the symbionts. IMPORTANCE A long-term relationship between symbiotic partners is often characterized by development and maturation of host structures that harbor the symbiont cells over the host's lifetime. To understand the mechanisms involved in symbiosis maintenance more fully, we studied the mature bobtail squid, whose light-emitting organ, under experimental conditions, can be transiently or persistently colonized by Vibrio fischeri or remain uncolonized. Superficial anatomical changes in the organ were largely independent of symbiosis. However, both the microanatomy of cells with which symbionts interact and the patterns of gene expression in the mature animal were due principally to the persistent interactions of host and symbiont cells rather than to a response to early colonization events. Further, the characteristic pronounced daily rhythm on the host transcriptome required persistent V. fischeri colonization of the organ. This experimental study provides a window into how persistent symbiotic colonization influences the form and function of host animal tissues.
Collapse
|
37
|
Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc Natl Acad Sci U S A 2018; 115:E8528-E8537. [PMID: 30127013 PMCID: PMC6130350 DOI: 10.1073/pnas.1808302115] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Competition among cooccurring bacteria can change the structure and function of a microbial community. However, little is known about the molecular mechanisms that impact such interactions in vivo. We used the association between bioluminescent bacteria and their squid host to study how environmentally transmitted bacteria compete for a limited number of host colonization sites. Our work suggests that Vibrio fischeri use a type VI secretion system, acting as a contact-dependent interbacterial “weapon,” to eliminate competing strains from cooccupying sites in the host. This work illuminates a mechanism by which strain-specific differences drive closely related bacteria to engage in lethal battles as they establish a beneficial symbiosis, revealing how genetic variation among potential colonizers directly impacts the spatial structure of the host-associated population. Intraspecific competition describes the negative interaction that occurs when different populations of the same species attempt to fill the same niche. Such competition is predicted to occur among host-associated bacteria but has been challenging to study in natural biological systems. Although many bioluminescent Vibrio fischeri strains exist in seawater, only a few strains are found in the light-organ crypts of an individual wild-caught Euprymna scolopes squid, suggesting a possible role for intraspecific competition during early colonization. Using a culture-based assay to investigate the interactions of different V. fischeri strains, we found “lethal” and “nonlethal” isolates that could kill or not kill the well-studied light-organ isolate ES114, respectively. The killing phenotype of these lethal strains required a type VI secretion system (T6SS) encoded in a 50-kb genomic island. Multiple lethal and nonlethal strains could be cultured from the light organs of individual wild-caught adult squid. Although lethal strains eliminate nonlethal strains in vitro, two lethal strains could coexist in interspersed microcolonies that formed in a T6SS-dependent manner. This coexistence was destabilized upon physical mixing, resulting in one lethal strain consistently eliminating the other. When juvenile squid were coinoculated with lethal and nonlethal strains, they occupied different crypts, yet they were observed to coexist within crypts when T6SS function was disrupted. These findings, using a combination of natural isolates and experimental approaches in vitro and in the animal host, reveal the importance of T6SS in spatially separating strains during the establishment of host colonization in a natural symbiosis.
Collapse
|
38
|
In Search of Model Ecological Systems for Understanding Specialized Metabolism. mSystems 2018; 3:mSystems00175-17. [PMID: 29629421 PMCID: PMC5881028 DOI: 10.1128/msystems.00175-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/19/2018] [Indexed: 11/20/2022] Open
Abstract
Microbes occupy diverse habitats, forming interconnected, dynamic communities. Elucidating the principles of microbial community function is a grand challenge for microbiology, and it will entail experiments that engage microbiomes across multiple levels of complexity. Microbes occupy diverse habitats, forming interconnected, dynamic communities. Elucidating the principles of microbial community function is a grand challenge for microbiology, and it will entail experiments that engage microbiomes across multiple levels of complexity. For example, community-level hypotheses often require testing at the mechanistic and/or genetic levels, while mechanistic relationships require community-level evaluation to understand their importance in context. In this Perspective, we articulate the need for model microbiome systems that enable experimentation in both community and reductionist frameworks, with an emphasis on understanding the role of specialized metabolites in microbial communities. We consider essential criteria for developing such model microbiome systems and discuss potential future models that address the ecology of specialized metabolism.
Collapse
|
39
|
van Veelen HPJ, Salles JF, Tieleman BI. Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota. ISME JOURNAL 2018; 12:1375-1388. [PMID: 29445132 DOI: 10.1038/s41396-018-0067-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates.
Collapse
Affiliation(s)
- H Pieter J van Veelen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands.
| | - Joana Falcão Salles
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. box 11103, 9700 CC, Groningen, The Netherlands
| |
Collapse
|
40
|
Daubech B, Remigi P, Doin de Moura G, Marchetti M, Pouzet C, Auriac MC, Gokhale CS, Masson-Boivin C, Capela D. Spatio-temporal control of mutualism in legumes helps spread symbiotic nitrogen fixation. eLife 2017; 6:e28683. [PMID: 29022875 PMCID: PMC5687860 DOI: 10.7554/elife.28683] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023] Open
Abstract
Mutualism is of fundamental importance in ecosystems. Which factors help to keep the relationship mutually beneficial and evolutionarily successful is a central question. We addressed this issue for one of the most significant mutualistic interactions on Earth, which associates plants of the leguminosae family and hundreds of nitrogen (N2)-fixing bacterial species. Here we analyze the spatio-temporal dynamics of fixers and non-fixers along the symbiotic process in the Cupriavidus taiwanensis-Mimosa pudica system. N2-fixing symbionts progressively outcompete isogenic non-fixers within root nodules, where N2-fixation occurs, even when they share the same nodule. Numerical simulations, supported by experimental validation, predict that rare fixers will invade a population dominated by non-fixing bacteria during serial nodulation cycles with a probability that is function of initial inoculum, plant population size and nodulation cycle length. Our findings provide insights into the selective forces and ecological factors that may have driven the spread of the N2-fixation mutualistic trait.
Collapse
Affiliation(s)
- Benoit Daubech
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| | - Philippe Remigi
- New Zealand Institute for Advanced StudyMassey UniversityAucklandNew Zealand
| | - Ginaini Doin de Moura
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| | - Marta Marchetti
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| | - Cécile Pouzet
- Fédération de Recherches Agrobiosciences, Interactions et Biodiversité, Plateforme d’Imagerie TRI, CNRS - UPSCastanet-TolosanFrance
| | - Marie-Christine Auriac
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
- Fédération de Recherches Agrobiosciences, Interactions et Biodiversité, Plateforme d’Imagerie TRI, CNRS - UPSCastanet-TolosanFrance
| | - Chaitanya S Gokhale
- Research Group for Theoretical Models of Eco-evolutionary Dynamics, Department of Evolutionary TheoryMax Planck Institute for Evolutionary BiologyPlönGermany
| | - Catherine Masson-Boivin
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| | - Delphine Capela
- The Laboratory of Plant-Microbe InteractionsUniversité de Toulouse, INRA, CNRSCastanet-TolosanFrance
| |
Collapse
|
41
|
Kimbrough JH, Stabb EV. Comparative analysis reveals regulatory motifs at the ainS/ainR pheromone-signaling locus of Vibrio fischeri. Sci Rep 2017; 7:11734. [PMID: 28916743 PMCID: PMC5601948 DOI: 10.1038/s41598-017-11967-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/01/2017] [Indexed: 11/22/2022] Open
Abstract
Vibrio fischeri uses the AinS/AinR pheromone-signaling system to control bioluminescence and other symbiotic colonization factors. The Ain system is thought to initiate cell-cell signaling at moderate cell densities and to prime the LuxI/LuxR signaling system. Here we compared and analyzed the ain locus from two V. fischeri strains and a Vibrio salmonicida strain to explore ain regulation. The ainS and ainR genes were predicted to constitute an operon, which we corroborated using RT-PCR. Comparisons between strains revealed a stark area of conservation across the ainS-ainR junction, including a large inverted repeat in ainR. We found that this inverted repeat in cis can affect accumulation of the AinS-generated pheromone N-octanoyl homoserine lactone, which may account for the previously unexplained low-signal phenotype of a ∆ainR mutant, although the mechanism behind this regulation remains elusive. We also extended the previous observation of a possible “lux box” LuxR binding site upstream of ainS by showing the conservation of this site as well as a second putative lux box. Using a plasmid-based reporter we found that LuxR can mediate repression of ainS, providing a negative feedback mechanism in the Ain/Lux signaling cascade. Our results provide new insights into the regulation, expression, and evolution of ainSR.
Collapse
Affiliation(s)
- John H Kimbrough
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
42
|
Maintenance of Microbial Cooperation Mediated by Public Goods in Single- and Multiple-Trait Scenarios. J Bacteriol 2017; 199:JB.00297-17. [PMID: 28847922 DOI: 10.1128/jb.00297-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Microbes often form densely populated communities, which favor competitive and cooperative interactions. Cooperation among bacteria often occurs through the production of metabolically costly molecules produced by certain individuals that become available to other neighboring individuals; such molecules are called public goods. This type of cooperation is susceptible to exploitation, since nonproducers of a public good can benefit from it while saving the cost of its production (cheating), gaining a fitness advantage over producers (cooperators). Thus, in mixed cultures, cheaters can increase in frequency in the population, relative to cooperators. Sometimes, and as predicted by simple game-theoretic arguments, such increases in the frequency of cheaters cause loss of the cooperative traits by exhaustion of the public goods, eventually leading to a collapse of the entire population. In other cases, however, both cooperators and cheaters remain in coexistence. This raises the question of how cooperation is maintained in microbial populations. Several strategies to prevent cheating have been studied in the context of a single trait and a unique environmental constraint. In this review, we describe current knowledge on the evolutionary stability of microbial cooperation and discuss recent discoveries describing the mechanisms operating in multiple-trait and multiple-constraint settings. We conclude with a consideration of the consequences of these complex interactions, and we briefly discuss the potential role of social interactions involving multiple traits and multiple environmental constraints in the evolution of specialization and division of labor in microbes.
Collapse
|
43
|
Pankey MS, Foxall RL, Ster IM, Perry LA, Schuster BM, Donner RA, Coyle M, Cooper VS, Whistler CA. Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria. eLife 2017; 6:e24414. [PMID: 28447935 PMCID: PMC5466423 DOI: 10.7554/elife.24414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/23/2017] [Indexed: 01/14/2023] Open
Abstract
Host immune and physical barriers protect against pathogens but also impede the establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct bioluminescent Vibrio fischeri by colonization and growth within the light organs of the squid Euprymna scolopes. Serial squid passaging of bacteria produced eight distinct mutations in the binK sensor kinase gene, which conferred an exceptional selective advantage that could be demonstrated through both empirical and theoretical analysis. Squid-adaptive binK alleles promoted colonization and immune evasion that were mediated by cell-associated matrices including symbiotic polysaccharide (Syp) and cellulose. binK variation also altered quorum sensing, raising the threshold for luminescence induction. Preexisting coordinated regulation of symbiosis traits by BinK presented an efficient solution where altered BinK function was the key to unlock multiple colonization barriers. These results identify a genetic basis for microbial adaptability and underscore the importance of hosts as selective agents that shape emergent symbiont populations.
Collapse
Affiliation(s)
- M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Randi L Foxall
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Ian M Ster
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
- Graduate Program in Biochemistry, University of New Hampshire, Durham, United States
| | - Lauren A Perry
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Graduate Program in Microbiology, University of New Hampshire, Durham, United States
| | - Brian M Schuster
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Rachel A Donner
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Matthew Coyle
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Graduate Program in Microbiology, University of New Hampshire, Durham, United States
| | - Vaughn S Cooper
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Cheryl A Whistler
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| |
Collapse
|
44
|
Kerwin AH, Nyholm SV. Symbiotic bacteria associated with a bobtail squid reproductive system are detectable in the environment, and stable in the host and developing eggs. Environ Microbiol 2017; 19:1463-1475. [DOI: 10.1111/1462-2920.13665] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 01/02/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Allison H. Kerwin
- Department of Molecular and Cell Biology; University of Connecticut; CT 06269 USA
| | - Spencer V. Nyholm
- Department of Molecular and Cell Biology; University of Connecticut; CT 06269 USA
| |
Collapse
|
45
|
McAnulty SJ, Nyholm SV. The Role of Hemocytes in the Hawaiian Bobtail Squid, Euprymna scolopes: A Model Organism for Studying Beneficial Host-Microbe Interactions. Front Microbiol 2017; 7:2013. [PMID: 28111565 PMCID: PMC5216023 DOI: 10.3389/fmicb.2016.02013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/01/2016] [Indexed: 01/06/2023] Open
Abstract
Most, if not all, animals engage in associations with bacterial symbionts. Understanding the mechanisms by which host immune systems and beneficial bacteria communicate is a fundamental question in the fields of immunology and symbiosis. The Hawaiian bobtail squid (Euprymna scolopes) engages in two known symbioses; a binary relationship with the light organ symbiont Vibrio fischeri, and a bacterial consortium within a specialized organ of the female reproductive system, the accessory nidamental gland (ANG). E. scolopes has a well-developed circulatory system that allows immune cells (hemocytes) to migrate into tissues, including the light organ and ANG. In the association with V. fischeri, hemocytes are thought to have a number of roles in the management of symbiosis, including the recognition of non-symbiotic bacteria and the contribution of chitin as a nutrient source for V. fischeri. Hemocytes are hypothesized to recognize bacteria through interactions between pattern recognition receptors and microbe-associated molecular patterns. Colonization by V. fischeri has been shown to affect the bacteria-binding behavior, gene expression, and proteome of hemocytes, indicating that the symbiont can modulate host immune function. In the ANG, hemocytes have also been observed interacting with the residing bacterial community. As a model host, E. scolopes offers a unique opportunity to study how the innate immune system interacts with both a binary and consortial symbiosis. This mini review will recapitulate what is known about the role of hemocytes in the light organ association and offer future directions for understanding how these immune cells interact with multiple types of symbioses.
Collapse
Affiliation(s)
- Sarah J McAnulty
- Department of Molecular and Cell Biology, University of Connecticut, Storrs CT, USA
| | - Spencer V Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs CT, USA
| |
Collapse
|
46
|
Mandel MJ, Dunn AK. Impact and Influence of the Natural Vibrio-Squid Symbiosis in Understanding Bacterial-Animal Interactions. Front Microbiol 2016; 7:1982. [PMID: 28018314 PMCID: PMC5156696 DOI: 10.3389/fmicb.2016.01982] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/25/2016] [Indexed: 11/13/2022] Open
Abstract
Animals are colonized by bacteria, and in many cases partners have co-evolved to perform mutually beneficial functions. An exciting and ongoing legacy of the past decade has been an expansion of technology to enable study of natural associations in situ/in vivo. As a result, more symbioses are being examined, and additional details are being revealed for well-studied systems with a focus on the interactions between partners in the native context. With this framing, we review recent literature from the Vibrio fischeri-Euprymna scolopes symbiosis and focus on key studies that have had an impact on understanding bacteria-animal interactions broadly. This is not intended to be a comprehensive review of the system, but rather to focus on particular studies that have excelled at moving from pattern to process in facilitating an understanding of the molecular basis to intriguing observations in the field of host-microbe interactions. In this review we discuss the following topics: processes regulating strain and species specificity; bacterial signaling to host morphogenesis; multiple roles for nitric oxide; flagellar motility and chemotaxis; and efforts to understand unannotated and poorly annotated genes. Overall these studies demonstrate how functional approaches in vivo in a tractable system have provided valuable insight into general principles of microbe-host interactions.
Collapse
Affiliation(s)
- Mark J Mandel
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - Anne K Dunn
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| |
Collapse
|
47
|
Bongrand C, Koch EJ, Moriano-Gutierrez S, Cordero OX, McFall-Ngai M, Polz MF, Ruby EG. A genomic comparison of 13 symbiotic Vibrio fischeri isolates from the perspective of their host source and colonization behavior. THE ISME JOURNAL 2016; 10:2907-2917. [PMID: 27128997 PMCID: PMC5148191 DOI: 10.1038/ismej.2016.69] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 11/09/2022]
Abstract
Newly hatched Euprymna scolopes squid obtain their specific light-organ symbionts from an array of Vibrio (Allivibrio) fischeri strains present in their environment. Two genetically distinct populations of this squid species have been identified, one in Kaneohe Bay (KB), and another in Maunaloa Bay (MB), Oahu. We asked whether symbionts isolated from squid in each of these populations outcompete isolates from the other population in mixed-infection experiments. No relationship was found between a strain's host source (KB or MB) and its ability to competitively colonize KB or MB juveniles in a mixed inoculum. Instead, two colonization behaviors were identified among the 11 KB and MB strains tested: a 'dominant' outcome, in which one strain outcompetes the other for colonization, and a 'sharing' outcome, in which two strains co-colonize the squid. A genome-level comparison of these and other V. fischeri strains suggested that the core genomic structure of this species is both syntenous and highly conserved over time and geographical distance. We also identified ~250 Kb of sequence, encoding 194 dispersed orfs, that was specific to those strains that expressed the dominant colonization behavior. Taken together, the results indicate a link between the genome content of V. fischeri strains and their colonization behavior when initiating a light-organ symbiosis.
Collapse
Affiliation(s)
- Clotilde Bongrand
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric J Koch
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Silvia Moriano-Gutierrez
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Margaret McFall-Ngai
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Edward G Ruby
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
48
|
Niche-Specific Impact of a Symbiotic Function on the Persistence of Microbial Symbionts within a Natural Host. Appl Environ Microbiol 2016; 82:5990-6. [PMID: 27474717 DOI: 10.1128/aem.01770-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 07/23/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED How the function of microbial symbionts is affected by their population/consortium structure within a host remains poorly understood. The symbiosis established between Euprymna scolopes and Vibrio fischeri is a well-characterized host-microbe association in which the function and structure of V. fischeri populations within the host are known: V. fischeri populations produce bioluminescence from distinct crypt spaces within a dedicated host structure called the light organ. Previous studies have revealed that luminescence is required for V. fischeri populations to persist within the light organ and that deletion of the lux gene locus, which is responsible for luminescence in V. fischeri, leads to a persistence defect. In this study, we investigated the impact of bioluminescence on V. fischeri population structure within the light organ. We report that the persistence defect is specific to crypt I, which is the most developmentally mature crypt space within the nascent light organ. This result provides insight into the structure/function relationship that will be useful for future mechanistic studies of squid-Vibrio symbiosis. In addition, our report highlights the potential impact of the host developmental program on the spatiotemporal dynamics of host-microbe interactions. IMPORTANCE Metazoan development and physiology depend on microbes. The relationship between the symbiotic function of microbes and their spatial structure within the host environment remains poorly understood. Here we demonstrate, using a binary symbiosis, that the host requirement for the symbiotic function of the microbial symbiont is restricted to a specific host environment. Our results also suggest a link between microbial function and host development that may be a fundamental aspect of the more complex host-microbe interactions.
Collapse
|
49
|
Sun Y, LaSota ED, Cecere AG, LaPenna KB, Larios-Valencia J, Wollenberg MS, Miyashiro T. Intraspecific Competition Impacts Vibrio fischeri Strain Diversity during Initial Colonization of the Squid Light Organ. Appl Environ Microbiol 2016; 82:3082-91. [PMID: 27016564 PMCID: PMC4959073 DOI: 10.1128/aem.04143-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Animal development and physiology depend on beneficial interactions with microbial symbionts. In many cases, the microbial symbionts are horizontally transmitted among hosts, thereby making the acquisition of these microbes from the environment an important event within the life history of each host. The light organ symbiosis established between the Hawaiian squid Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri is a model system for examining how hosts acquire horizontally transmitted microbial symbionts. Recent studies have revealed that the light organ of wild-caught E. scolopes squid contains polyclonal populations of V. fischeri bacteria; however, the function and development of such strain diversity in the symbiosis are unknown. Here, we report our phenotypic and phylogenetic characterizations of FQ-A001, which is a V. fischeri strain isolated directly from the light organ of an E. scolopes individual. Relative to the type strain ES114, FQ-A001 exhibits similar growth in rich medium but displays increased bioluminescence and decreased motility in soft agar. FQ-A001 outcompetes ES114 in colonizing the crypt spaces of the light organs. Remarkably, we find that animals cocolonized with FQ-A001 and ES114 harbor singly colonized crypts, in contrast to the cocolonized crypts observed from competition experiments involving single genotypes. The results with our two-strain system suggest that strain diversity within the squid light organ is a consequence of diversity in the single-strain colonization of individual crypt spaces. IMPORTANCE The developmental programs and overall physiologies of most animals depend on diverse microbial symbionts that are acquired from the environment. However, the basic principles underlying how microbes colonize their hosts remain poorly understood. Here, we report our findings of bacterial strain competition within the coevolved animal-microbe symbiosis composed of the Hawaiian squid and bioluminescent bacterium Vibrio fischeri Using fluorescent proteins to differentially label two distinct V. fischeri strains, we find that the strains are unable to coexist in the same niche within the host. Our results suggest that strain competition for distinct colonization sites dictates the strain diversity associated with the host. Our study provides a platform for studying how strain diversity develops within a host.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Elijah D LaSota
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew G Cecere
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kyle B LaPenna
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jessie Larios-Valencia
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Tim Miyashiro
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
50
|
Aschtgen MS, Wetzel K, Goldman W, McFall-Ngai M, Ruby E. Vibrio fischeri-derived outer membrane vesicles trigger host development. Cell Microbiol 2016; 18:488-99. [PMID: 26399913 PMCID: PMC4803540 DOI: 10.1111/cmi.12525] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/17/2022]
Abstract
Outer membrane vesicles (OMV) are critical elements in many host-cell/microbe interactions. Previous studies of the symbiotic association between Euprymna scolopes and Vibrio fischeri had shown that within 12 h of colonizing crypts deep within the squid's light organ, the symbionts trigger an irreversible programme of tissue development in the host. Here, we report that OMV produced by V. fischeri are powerful contributors to this process. The first detectable host response to the OMV is an increased trafficking of macrophage-like cells called haemocytes into surface epithelial tissues. We showed that exposing the squid to other Vibrio species fails to induce this trafficking; however, addition of a high concentration of their OMV, which can diffuse into the crypts, does. We also provide evidence that tracheal cytotoxin released by the symbionts, which can induce haemocyte trafficking, is not part of the OMV cargo, suggesting two distinct mechanisms to induce the same morphogenesis event. By manipulating the timing and localization of OMV signal delivery, we showed that haemocyte trafficking is fully induced only when V. fischeri, the sole species able to reach and grow in the crypts, succeeds in establishing a sustained colonization. Further, our data suggest that the host's detection of OMV serves as a symbiotic checkpoint prior to inducing irreversible morphogenesis.
Collapse
Affiliation(s)
- Marie-Stephanie Aschtgen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Keith Wetzel
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - William Goldman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Margaret McFall-Ngai
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Edward Ruby
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|