1
|
Myers TC, de Mello PLH, Hime PM, Glor RE. Environmental Variation Influences Genome Evolution in Hispaniolan Trunk Anoles (Anolis distichus). Mol Ecol 2025; 34:e17622. [PMID: 39810233 DOI: 10.1111/mec.17622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Environmental variation often drives evolutionary processes like population differentiation, local adaptation and speciation. We used genome-scale data to investigate the contribution of environmental variation to evolution of the North Caribbean bark anole (Anolis distichus), a widespread common lizard that exhibits impressive phenotypic variation across varying habitats on the island of Hispaniola. We obtained new double-digest restriction-associated DNA sequence data (ddRADseq) from nearly 200 individuals and used 53 GIS data layers representing a range of environmental variables. We first asked how environmental variation has contributed to genome-wide differentiation across Hispaniola. We found that Hispaniola's three major mountain ranges contribute to deep genome-wide divergence and patterns of migration, that some deeply genomically divergent populations occupy significantly different environments, and that environmental variation is broadly capable of explaining more range-wide genomic differentiation than geographic distance alone. We then asked whether specific loci exhibit evidence of local adaptation to environmental variation using genotype-environment association (GEA) methods. We initially identified hundreds of loci broadly distributed across the genome that are significantly correlated with one or more environmental variables, but ultimately found that fewer than 100 of these candidate loci are shared across different GEA methods applied to our entire dataset, and that only 10 candidate loci are shared by independent analyses of two regional subsets of our dataset, suggesting parallel evolution is infrequent. Our study shows that abiotic environmental variation has played a critical role in explaining the evolution and diversity of a widespread and phenotypically diverse Caribbean anole species.
Collapse
Affiliation(s)
- Tanner C Myers
- Department of Biological Sciences and Museum of Natural History, Auburn University, Auburn, Alabama, USA
| | - Pietro L H de Mello
- Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Paul M Hime
- McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Richard E Glor
- Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
2
|
Dai JX, Cao LJ, Chen JC, Yang F, Shen XJ, Ma LJ, Hoffmann AA, Chen M, Wei SJ. Testing for adaptive changes linked to range expansion following a single introduction of the fall webworm. Mol Ecol 2024; 33:e17038. [PMID: 37277936 DOI: 10.1111/mec.17038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2022] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Adaptive evolution following colonization can affect the impact of invasive species. The fall webworm (FWW) invaded China 40 years ago through a single introduction event involving a severe bottleneck and subsequently diverged into two genetic groups. The well-recorded invasion history of FWW, coupled with a clear pattern of genetic divergence, provides an opportunity to investigate whether there is any sign of adaptive evolution following the invasion. Based on genome-wide SNPs, we identified genetically separated western and eastern groups of FWW and correlated spatial variation in SNPs with geographical and climatic factors. Geographical factors explained a similar proportion of the genetic variation across all populations compared with climatic factors. However, when the two population groups were analysed separately, environmental factors explained more variation than geographical factors. SNP outliers in populations of the western group had relatively stronger response to precipitation than temperature-related variables. Functional annotation of SNP outliers identified genes associated with insect cuticle protein potentially related to desiccation adaptation in the western group and genes associated with lipase biosynthesis potentially related to temperature adaptation in the eastern group. Our study suggests that invasive species may maintain the evolutionary potential to adapt to heterogeneous environments despite a single invasion event. The molecular data suggest that quantitative trait comparisons across environments would be worthwhile.
Collapse
Affiliation(s)
- Jin-Xu Dai
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Cao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jin-Cui Chen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangyuan Yang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiu-Jing Shen
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li-Jun Ma
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ary Anthony Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Min Chen
- Beijing Key Laboratory for Forest Pests Control, Beijing Forestry University, Beijing, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
3
|
Soudi S, Jahani M, Todesco M, Owens GL, Bercovich N, Rieseberg LH, Yeaman S. Repeatability of adaptation in sunflowers reveals that genomic regions harbouring inversions also drive adaptation in species lacking an inversion. eLife 2023; 12:RP88604. [PMID: 38095362 PMCID: PMC10721221 DOI: 10.7554/elife.88604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2023] Open
Abstract
Local adaptation commonly involves alleles of large effect, which experience fitness advantages when in positive linkage disequilibrium (LD). Because segregating inversions suppress recombination and facilitate the maintenance of LD between locally adapted loci, they are also commonly found to be associated with adaptive divergence. However, it is unclear what fraction of an adaptive response can be attributed to inversions and alleles of large effect, and whether the loci within an inversion could still drive adaptation in the absence of its recombination-suppressing effect. Here, we use genome-wide association studies to explore patterns of local adaptation in three species of sunflower: Helianthus annuus, Helianthus argophyllus, and Helianthus petiolaris, which each harbour a large number of species-specific inversions. We find evidence of significant genome-wide repeatability in signatures of association to phenotypes and environments, which are particularly enriched within regions of the genome harbouring an inversion in one species. This shows that while inversions may facilitate local adaptation, at least some of the loci can still harbour mutations that make substantial contributions without the benefit of recombination suppression in species lacking a segregating inversion. While a large number of genomic regions show evidence of repeated adaptation, most of the strongest signatures of association still tend to be species-specific, indicating substantial genotypic redundancy for local adaptation in these species.
Collapse
Affiliation(s)
- Shaghayegh Soudi
- Department of Biological Sciences, University of CalgaryCalgaryCanada
| | - Mojtaba Jahani
- Department of Biological Sciences, University of CalgaryCalgaryCanada
- Department of Botany, University of British ColumbiaVancouverCanada
| | - Marco Todesco
- Department of Botany, University of British ColumbiaVancouverCanada
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
- Irving K. Barber Faculty of Science, University of British Columbia OkanaganKelownaCanada
| | | | | | | | - Sam Yeaman
- Department of Biological Sciences, University of CalgaryCalgaryCanada
| |
Collapse
|
4
|
Giraldo-Calderón GI, Harb OS, Kelly SA, Rund SS, Roos DS, McDowell MA. VectorBase.org updates: bioinformatic resources for invertebrate vectors of human pathogens and related organisms. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100860. [PMID: 34864248 PMCID: PMC9133010 DOI: 10.1016/j.cois.2021.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 06/12/2023]
Abstract
VectorBase (VectorBase.org) is part of the VEuPathDB Bioinformatics Resource Center, providing free online access to multi-omics and population biology data, focusing on arthropod vectors and invertebrates of importance to human health. VectorBase includes genomics and functional genomics data from bed bugs, biting midges, body lice, kissing bugs, mites, mosquitoes, sand flies, ticks, tsetse flies, stable flies, house flies, fruit flies, and a snail intermediate host. Tools include the Search Strategy system and MapVEu, enabling users to interrogate and visualize diverse 'omics and population-level data using a graphical interface (no programming experience required). Users can also analyze their own private data, such as transcriptomic sequences, exploring their results in the context of other publicly-available information in the database. Help Desk: help@vectorbase.org.
Collapse
Affiliation(s)
- Gloria I Giraldo-Calderón
- Department of Biological Sciences, Eck Institute for Global Health, University Notre Dame, Notre Dame, IN 46556, USA; Dept. Ciencias Biológicas & Dept. Ciencias Básicas Médicas, Universidad Icesi, Calle 18 No 122-135, Cali, Colombia
| | - Omar S Harb
- Department of Biology, University of Pennsylvania, Philadelphia 19104, PA, USA
| | - Sarah A Kelly
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Samuel Sc Rund
- Department of Biological Sciences, Eck Institute for Global Health, University Notre Dame, Notre Dame, IN 46556, USA
| | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia 19104, PA, USA
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
5
|
Rieseberg L, Warschefsky E, O'Boyle B, Taberlet P, Ortiz-Barrientos D, Kane NC, Sibbett B. Editorial 2022. Mol Ecol 2021; 31:1-30. [PMID: 34957606 DOI: 10.1111/mec.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Loren Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Pierre Taberlet
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Univ. Grenoble Alpes, Grenoble Cedex 9, France
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queenland, St. Lucia, Queensland, Australia
| | - Nolan C Kane
- University of Colorado at Boulder, Boulder, Colorado, USA
| | | |
Collapse
|
6
|
Taylor RS, Jensen EL, Coltman DW, Foote AD, Lamichhaney S. Seeing the whole picture: What molecular ecology is gaining from whole genomes. Mol Ecol 2021; 30:5917-5922. [PMID: 34845797 DOI: 10.1111/mec.16282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Rebecca S Taylor
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Evelyn L Jensen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Biology Department, Western University, London, Ontario, Canada
| | - Andrew D Foote
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | |
Collapse
|