1
|
Kaya SG, Hovan A, Fraaije MW. Engineering of LOV-domains for their use as protein tags. Arch Biochem Biophys 2025; 763:110228. [PMID: 39592071 DOI: 10.1016/j.abb.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Light-Oxygen-Voltage (LOV) domains are the protein-based light switches used in nature to trigger and regulate various processes. They allow light signals to be converted into metabolic signaling cascades. Various LOV-domain proteins have been characterized in the last few decades and have been used to develop light-sensitive tools in cell biology research. LOV-based applications exploit the light-driven regulation of effector elements to activate signaling pathways, activate genes, or locate proteins within cells. A relatively new application of an engineered small LOV-domain protein called miniSOG (mini singlet oxygen generator) is based on the light-induced formation of reactive oxygen species (ROS). The first miniSOG was engineered from a LOV domain from Arabidopsis thaliana. This engineered 14 kDa light-responsive flavin-containing protein can be exploited as protein tag for the light-triggered localized production of ROS. Such tunable ROS production by miniSOG or similarly redesigned LOV-domains can be of use in studies focused on subcellular phenomena but may also allow new light-fueled catalytic processes. This review provides an overview of the discovery of LOV domains and their development into tools for cell biology. It also highlights recent advancements in engineering LOV domains for various biotechnological applications and cell biology studies.
Collapse
Affiliation(s)
- Saniye G Kaya
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands
| | - Andrej Hovan
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, 252 41, Dolní Břežany, Czech Republic; Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54, Košice, Slovakia
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands.
| |
Collapse
|
2
|
Chen X, Alakavuklar MA, Fiebig A, Crosson S. Cross-regulation in a three-component cell envelope stress signaling system of Brucella. mBio 2023; 14:e0238723. [PMID: 38032291 PMCID: PMC10746171 DOI: 10.1128/mbio.02387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE As intracellular pathogens, Brucella must contend with a variety of host-derived stressors when infecting a host cell. The inner membrane, cell wall, and outer membrane, i.e. the cell envelope, of Brucella provide a critical barrier to host assault. A conserved regulatory mechanism known as two-component signaling (TCS) commonly controls transcription of genes that determine the structure and biochemical composition of the cell envelope during stress. We report the identification of previously uncharacterized TCS genes that determine Brucella ovis fitness in the presence of cell envelope disruptors and within infected mammalian host cells. Our study reveals a new molecular mechanism of TCS-dependent gene regulation, and thereby advances fundamental understanding of transcriptional regulatory processes in bacteria.
Collapse
Affiliation(s)
- Xingru Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Melene A. Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Chen X, Alakavuklar MA, Fiebig A, Crosson S. Cross regulation in a three-component cell envelope stress signaling system of Brucella. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.536747. [PMID: 37873345 PMCID: PMC10592609 DOI: 10.1101/2023.04.15.536747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A multi-layered structure known as the cell envelope separates the controlled interior of bacterial cells from a fluctuating physical and chemical environment. The transcription of genes that determine cell envelope structure and function is commonly regulated by two-component signaling systems (TCS), comprising a sensor histidine kinase and a cognate response regulator. To identify TCS genes that contribute to cell envelope function in the intracellular mammalian pathogen, Brucella ovis, we subjected a collection of non-essential TCS deletion mutants to compounds that disrupt cell membranes and the peptidoglycan cell wall. Our screen led to the discovery of three TCS proteins that coordinately function to confer resistance to cell envelope stressors and to support B. ovis replication in the intracellular niche. This tripartite regulatory system includes the known cell envelope regulator, CenR, and a previously uncharacterized TCS, EssR-EssS, which is widely conserved in Alphaproteobacteria. The CenR and EssR response regulators bind a shared set of sites on the B. ovis chromosomes to control transcription of an overlapping set of genes with cell envelope functions. CenR directly interacts with EssR and functions to stimulate phosphoryl transfer from the EssS kinase to EssR, while CenR and EssR control the cellular levels of each other via a post-transcriptional mechanism. Our data provide evidence for a new mode of TCS cross-regulation in which a non-cognate response regulator affects both the activity and protein levels of a cognate TCS protein pair.
Collapse
Affiliation(s)
- Xingru Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Melene A Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| |
Collapse
|
4
|
Alakavuklar MA, Fiebig A, Crosson S. The Brucella Cell Envelope. Annu Rev Microbiol 2023; 77:233-253. [PMID: 37104660 PMCID: PMC10787603 DOI: 10.1146/annurev-micro-032521-013159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The cell envelope is a multilayered structure that insulates the interior of bacterial cells from an often chaotic outside world. Common features define the envelope across the bacterial kingdom, but the molecular mechanisms by which cells build and regulate this critical barrier are diverse and reflect the evolutionary histories of bacterial lineages. Intracellular pathogens of the genus Brucella exhibit marked differences in cell envelope structure, regulation, and biogenesis when compared to more commonly studied gram-negative bacteria and therefore provide an excellent comparative model for study of the gram-negative envelope. We review distinct features of the Brucella envelope, highlighting a conserved regulatory system that links cell cycle progression to envelope biogenesis and cell division. We further discuss recently discovered structural features of the Brucella envelope that ensure envelope integrity and that facilitate cell survival in the face of host immune stressors.
Collapse
Affiliation(s)
- Melene A Alakavuklar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
5
|
Arana N, Perez Mora B, Permingeat V, Giordano R, Calderone M, Tuttobene M, Klinke S, Rinaldi J, Müller G, Mussi MA. Light regulation in critical human pathogens of clinical relevance such as Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa. Photochem Photobiol Sci 2023; 22:2019-2036. [PMID: 37269546 DOI: 10.1007/s43630-023-00437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/08/2023] [Indexed: 06/05/2023]
Abstract
It is now clearly recognized that light modulates the physiology of many bacterial chemotrophs, either directly or indirectly. An interesting case are bacterial pathogens of clinical relevance. This work summarizes, discusses, and provides novel complementary information to what is currently known about light sensing and responses in critical human pathogens such as Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus. These pathogens are associated with severe hospital and community infections difficult to treat due to resistance to multiple drugs. Moreover, light responses in Brucella abortus, an important animal and human pathogen, are also compiled. Evidence recovered so far indicates that light modulates aspects related to pathogenesis, persistence, and antibiotic susceptibility in these pathogens; such as motility, biofilm formation, iron uptake, tolerance to antibiotics, hemolysis and virulence. The pathogens elicit differential responses to light depending likely on their pathophysiology, ability to cause disease and characteristics of the host. The response to light is not restricted to discrete physiological traits but is global. In higher organisms, light provides spatial and temporal information. Then, it is crucial to understand what information light is providing in these bacterial pathogens. Our current hypothesis postulates that light serves as a signal that allows these pathogens to synchronize their behavior to the circadian rhythm of the host, to optimize infection. Advances on the molecular mechanism of light signal transduction and physiological responses to light, as well as in the relation between light and bacterial infection, would not only enlarge our understanding of bacterial pathogenesis but also could potentially provide alternative treatment options for infectious illnesses.
Collapse
Affiliation(s)
- Natalia Arana
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Bárbara Perez Mora
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Valentín Permingeat
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Rocío Giordano
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Malena Calderone
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Marisel Tuttobene
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, (C1405BWE) Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Müller
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina.
| | - María Alejandra Mussi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina.
| |
Collapse
|
6
|
Gómez LA, Molina RE, Soto RI, Flores MR, Coloma-Rivero RF, Montero DA, Oñate ÁA. Unraveling the Role of the Zinc-Dependent Metalloproteinase/HTH-Xre Toxin/Antitoxin (TA) System of Brucella abortus in the Oxidative Stress Response: Insights into the Stress Response and Virulence. Toxins (Basel) 2023; 15:536. [PMID: 37755962 PMCID: PMC10538038 DOI: 10.3390/toxins15090536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Toxin/antitoxin (TA) systems have been scarcely studied in Brucella abortus, the causative agent of brucellosis, which is one of the most prevalent zoonotic diseases worldwide. In this study, the roles of a putative type II TA system composed by a Zinc-dependent metalloproteinase (ZnMP) and a transcriptional regulator HTH-Xre were evaluated. The deletion of the open reading frame (ORF) BAB1_0270, coding for ZnMP, used to produce a mutant strain, allowed us to evaluate the survival and gene expression of B. abortus 2308 under oxidative conditions. Our results showed that the B. abortus mutant strain exhibited a significantly reduced capacity to survive under hydrogen peroxide-induced oxidative stress. Furthermore, this mutant strain showed a decreased expression of genes coding for catalase (katE), alkyl hydroperoxide reductase (ahpC) and transcriptional regulators (oxyR and oxyR-like), as well as genes involved in the general stress response, phyR and rpoE1, when compared to the wild-type strain. These findings suggest that this type II ZnMP/HTH-Xre TA system is required by B. abortus to resist oxidative stress. Additionally, previous evidence has demonstrated that this ZnMP also participates in the acidic stress resistance and virulence of B. abortus 2308. Therefore, we propose a hypothetical regulatory function for this ZnMP/HTH-Xre TA system, providing insight into the stress response and its potential roles in the pathogenesis of B. abortus.
Collapse
Affiliation(s)
- Leonardo A Gómez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Raúl E Molina
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Rodrigo I Soto
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Manuel R Flores
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Roberto F Coloma-Rivero
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - David A Montero
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| | - Ángel A Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción 4030000, Chile
| |
Collapse
|
7
|
Guo J, Zhu J, Zhao T, Sun Z, Song S, Zhang Y, Zhu D, Cao S, Deng X, Chai Y, Sun Y, Maratbek S, Chen C, Liu L, Zhang H. Survival characteristics and transcriptome profiling reveal the adaptive response of the Brucella melitensis 16M biofilm to osmotic stress. Front Microbiol 2022; 13:968592. [PMID: 36060772 PMCID: PMC9428795 DOI: 10.3389/fmicb.2022.968592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Brucella can inhabit hostile environments, including osmotic stress. How Brucella responds collectively to osmotic stress is largely unexplored, particularly in spatially structured communities such as a biofilm. To gain insight into this growth mode, we set out to characterize the Brucella melitensis 16M biofilm, describe its phenotype, and carry out a comparative transcriptomic analysis between biofilms under osmotic stress and control conditions. We determined that the bacteria challenged with 1.5 M NaCl had a reduced ability to aggregate and form clumps and develop a biofilm; however, the salt stress promoted the release of the outer membrane vesicles from the biofilm. Together with the genotypical response to osmotic stress, we identified 279 differentially expressed genes in B. melitensis 16M grown under osmotic conditions compared with control conditions; 69 genes were upregulated and 210 downregulated. Under osmotic stress, the main changed genes of biofilm were predicted to be involved in flagellar assembly, cell envelope, translation, small RNA regulation, transport and binding proteins, and energy metabolism. In addition, the ABC transporter was enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We highlight 12 essential ABC transporter genes associated with a bacterial response to osmotic stress at the biofilm stage, including one specific locus, BME_RS12880, mediating betaine accumulation in biofilms to eliminate osmotic stress. The current study results can help researchers gain insights into B. melitensis 16M biofilm adaptation to osmotic stress and provide information for developing intervention strategies to control Brucella.
Collapse
Affiliation(s)
- Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jiale Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhihua Sun
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shengnan Song
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yu Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yingjin Chai
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yongxue Sun
- Collaborative Innovation Center for Sheep Healthy Farming and Zoonotic Disease Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Suleimenov Maratbek
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- College of Veterinary, National Agricultural University of Kazakhstan, Nur-Sultan, Kazakhstan
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Liangbo Liu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- *Correspondence: Liangbo Liu,
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Hui Zhang,
| |
Collapse
|
8
|
Wülser J, Ernst C, Vetsch D, Emmenegger B, Michel A, Lutz S, Ahrens CH, Vorholt JA, Ledermann R, Fischer HM. Salt- and Osmo-Responsive Sensor Histidine Kinases Activate the Bradyrhizobium diazoefficiens General Stress Response to Initiate Functional Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:604-615. [PMID: 35322688 DOI: 10.1094/mpmi-02-22-0051-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The general stress response (GSR) enables bacteria to sense and overcome a variety of environmental stresses. In alphaproteobacteria, stress-perceiving histidine kinases of the HWE and HisKA_2 families trigger a signaling cascade that leads to phosphorylation of the response regulator PhyR and, consequently, to activation of the GSR σ factor σEcfG. In the nitrogen-fixing bacterium Bradyrhizobium diazoefficiens, PhyR and σEcfG are crucial for tolerance against a variety of stresses under free-living conditions and also for efficient infection of its symbiotic host soybean. However, the molecular players involved in stress perception and activation of the GSR remained largely unknown. In this work, we first showed that a mutant variant of PhyR where the conserved phosphorylatable aspartate residue D194 was replaced by alanine (PhyRD194A) failed to complement the ΔphyR mutant in symbiosis, confirming that PhyR acts as a response regulator. To identify the PhyR-activating kinases in the nitrogen-fixing symbiont, we constructed in-frame deletion mutants lacking single, distinct combinations, or all of the 11 predicted HWE and HisKA_2 kinases, which we named HRXXN histidine kinases HhkA through HhkK. Phenotypic analysis of the mutants and complemented derivatives identified two functionally redundant kinases, HhkA and HhkE, that are required for nodulation competitiveness and during initiation of symbiosis. Using σEcfG-activity reporter strains, we further showed that both HhkA and HhkE activate the GSR in free-living cells exposed to salt and hyperosmotic stress. In conclusion, our data suggest that HhkA and HhkE trigger GSR activation in response to osmotically stressful conditions which B. diazoefficiens encounters during soybean host infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Janine Wülser
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Chantal Ernst
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Dominik Vetsch
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | | | - Anja Michel
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Stefanie Lutz
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Christian H Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics and Swiss Institute of Bioinformatics, CH-8820 Wädenswil, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, ETH Zurich, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
9
|
de la Garza-García JA, Ouahrani-Bettache S, Lyonnais S, Ornelas-Eusebio E, Freddi L, Al Dahouk S, Occhialini A, Köhler S. Comparative Genome-Wide Transcriptome Analysis of Brucella suis and Brucella microti Under Acid Stress at pH 4.5: Cold Shock Protein CspA and Dps Are Associated With Acid Resistance of B. microti. Front Microbiol 2021; 12:794535. [PMID: 34966374 PMCID: PMC8710502 DOI: 10.3389/fmicb.2021.794535] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Brucellae are facultative intracellular coccobacilli causing brucellosis, one of the most widespread bacterial zoonosis affecting wildlife animals, livestock and humans. The genus Brucella comprises classical and atypical species, such as Brucella suis and Brucella microti, respectively. The latter is characterized by increased metabolic activity, fast growth rates, and extreme acid resistance at pH 2.5, suggesting an advantage for environmental survival. In addition, B. microti is more acid-tolerant than B. suis at the intermediate pH of 4.5. This acid-resistant phenotype of B. microti may have major implications for fitness in soil, food products and macrophages. Our study focused on the identification and characterization of acid resistance determinants of B. suis and B. microti in Gerhardt's minimal medium at pH 4.5 and 7.0 for 20 min and 2 h by comparative RNA-Seq-based transcriptome analysis, validated by RT-qPCR. Results yielded a common core response in both species with a total of 150 differentially expressed genes, and acidic pH-dependent genes regulated specifically in each species. The identified core response mechanisms comprise proton neutralization or extrusion from the cytosol, participating in maintaining physiological intracellular pH values. Differential expression of 441 genes revealed species-specific mechanisms in B. microti with rapid physiological adaptation to acid stress, anticipating potential damage to cellular components and critical energy conditions. Acid stress-induced genes encoding cold shock protein CspA, pseudogene in B. suis, and stress protein Dps were associated with survival of B. microti at pH 4.5. B. suis response with 284 specifically regulated genes suggested increased acid stress-mediated protein misfolding or damaging, triggering the set-up of repair strategies countering the consequences rather than the origin of acid stress and leading to subsequent loss of viability. In conclusion, our work supports the hypothesis that increased acid stress resistance of B. microti is based on selective pressure for the maintenance of functionality of critical genes, and on specific differential gene expression, resulting in rapid adaptation.
Collapse
Affiliation(s)
- Jorge A de la Garza-García
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | - Safia Ouahrani-Bettache
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | | | - Erika Ornelas-Eusebio
- Unité des Zoonoses Bactériennes and Unité d'Epidémiologie, Laboratoire de Santé Animale, ANSES, University Paris-Est, Maisons-Alfort, France
| | - Luca Freddi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | | | - Alessandra Occhialini
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| | - Stephan Köhler
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, University Montpellier, INSERM, Montpellier, France
| |
Collapse
|
10
|
Brucella ovis Cysteine Biosynthesis Contributes to Peroxide Stress Survival and Fitness in the Intracellular Niche. Infect Immun 2021; 89:IAI.00808-20. [PMID: 33753413 DOI: 10.1128/iai.00808-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Brucella ovis is an ovine intracellular pathogen with tropism for the male genital tract. To establish and maintain infection, B. ovis must survive stressful conditions inside host cells, including low pH, nutrient limitation, and reactive oxygen species. The same conditions are often encountered in axenic cultures during stationary phase. Studies of stationary phase may thus inform our understanding of Brucella infection biology, yet the genes and pathways that are important in Brucella stationary-phase physiology remain poorly defined. We measured fitness of a barcoded pool of B. ovis Tn-himar mutants as a function of growth phase and identified cysE as a determinant of fitness in stationary phase. CysE catalyzes the first step in cysteine biosynthesis from serine, and we provide genetic evidence that two related enzymes, CysK1 and CysK2, function redundantly to catalyze cysteine synthesis at steps downstream of CysE. Deleting cysE (ΔcysE) or both cysK1 and cysK2 (ΔcysK1 ΔcysK2) results in premature entry into stationary phase, reduced culture yield, and sensitivity to exogenous hydrogen peroxide. These phenotypes can be chemically complemented by cysteine or glutathione. ΔcysE and ΔcysK1 ΔcysK2 strains have no defect in host cell entry in vitro but have significantly diminished intracellular fitness between 2 and 24 h postinfection. Our study has uncovered unexpected redundancy at the CysK step of cysteine biosynthesis in B. ovis and demonstrates that cysteine anabolism is a determinant of peroxide stress survival and fitness in the intracellular niche.
Collapse
|
11
|
Abstract
Bacteria employ two-component systems (TCSs) to sense and respond to changes in their surroundings. At the core of the TCS signaling pathway is the multidomain sensor histidine kinase, where the enzymatic activity of its output domain is allosterically controlled by the input signal perceived by the sensor domain. The ability to sense and respond to environmental cues is essential for adaptation and survival in living organisms. In bacteria, this process is accomplished by multidomain sensor histidine kinases that undergo autophosphorylation in response to specific stimuli, thereby triggering downstream signaling cascades. However, the molecular mechanism of allosteric activation is not fully understood in these important sensor proteins. Here, we report the full-length crystal structure of a blue light photoreceptor LOV histidine kinase (LOV-HK) involved in light-dependent virulence modulation in the pathogenic bacterium Brucella abortus. Joint analyses of dark and light structures determined in different signaling states have shown that LOV-HK transitions from a symmetric dark structure to a highly asymmetric light state. The initial local and subtle structural signal originated in the chromophore-binding LOV domain alters the dimer asymmetry via a coiled-coil rotary switch and helical bending in the helical spine. These amplified structural changes result in enhanced conformational flexibility and large-scale rearrangements that facilitate the phosphoryl transfer reaction in the HK domain.
Collapse
|
12
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
13
|
Eckstein A, Grzyb J, Hermanowicz P, Zgłobicki P, Łabuz J, Strzałka W, Dziga D, Banaś AK. Arabidopsis Phototropins Participate in the Regulation of Dark-Induced Leaf Senescence. Int J Mol Sci 2021; 22:ijms22041836. [PMID: 33673252 PMCID: PMC7918785 DOI: 10.3390/ijms22041836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Senescence is the final stage of plant development, affecting individual organs or the whole organism, and it can be induced by several environmental factors, including shading or darkness. Although inevitable, senescence is a complex and tightly regulated process, ensuring optimal remobilization of nutrients and cellular components from senescing organs. Photoreceptors such as phytochromes and cryptochromes are known to participate in the process of senescence, but the involvement of phototropins has not been studied to date. We investigated the role of these blue light photoreceptors in the senescence of individually darkened Arabidopsis thaliana leaves. We compared several physiological and molecular senescence markers in darkened leaves of wild-type plants and phototropin mutants (phot1, phot2, and phot1phot2). In general, all the symptoms of senescence (lower photochemical activity of photosystem II, photosynthetic pigment degradation, down-regulation of photosynthetic genes, and up-regulation of senescence-associated genes) were less pronounced in phot1phot2, as compared to the wild type, and some also in one of the single mutants, indicating delayed senescence. This points to different mechanisms of phototropin operation in the regulation of senescence-associated processes, either with both photoreceptors acting redundantly, or only one of them, phot1, playing a dominant role.
Collapse
Affiliation(s)
- Aleksandra Eckstein
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.E.); (P.Z.); (W.S.)
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Grzyb
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Fryderyka Joliot-Curie 14a, 50-383 Wroclaw, Poland;
| | - Paweł Hermanowicz
- Laboratory of Photobiology, The Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (P.H.); (J.Ł.)
| | - Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.E.); (P.Z.); (W.S.)
| | - Justyna Łabuz
- Laboratory of Photobiology, The Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (P.H.); (J.Ł.)
| | - Wojciech Strzałka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.E.); (P.Z.); (W.S.)
| | - Dariusz Dziga
- Laboratory of Metabolomics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (A.E.); (P.Z.); (W.S.)
- Correspondence:
| |
Collapse
|
14
|
Chen H, Li K, Cai Y, Wang P, Gong W, Wu LF, Song T. Light regulation of resistance to oxidative damage and magnetic crystal biogenesis in Magnetospirillum magneticum mediated by a Cys-less LOV-like protein. Appl Microbiol Biotechnol 2020; 104:7927-7941. [PMID: 32780289 DOI: 10.1007/s00253-020-10807-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/01/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Light-oxygen-voltage (LOV) proteins are ubiquitous photoreceptors that can interact with other regulatory proteins and then mediate their activities, which results in cellular adaptation and subsequent physiological changes. Upon blue-light irradiation, a conserved cysteine (Cys) residue in LOV covalently binds to flavin to form a flavin-Cys adduct, which triggers a subsequent cascade of signal transduction and reactions. We found a group of natural Cys-less LOV-like proteins in magnetotactic bacteria (MTB) and investigated its physiological functions by conducting research on one of these unusual LOV-like proteins, Amb2291, in Magnetospirillum magneticum. In-frame deletion of amb2291 or site-directive substitution of alanine-399 for Cys mutants impaired the protective responses against hydrogen peroxide, thereby causing stress and growth impairment. Consequently, gene expression and magnetosome formation were affected, which led to high sensitivity to oxidative damage and defective phototactic behaviour. The purified wild-type and A399C-mutated LOV-like proteins had similar LOV blue-light response spectra, but Amb2291A399C exhibited a faster reaction to blue light. We especially showed that LOV-like protein Amb2291 plays a role in magnetosome synthesis and resistance to oxidative stress of AMB-1 when this bacterium was exposed to red light and hydrogen peroxide. This finding expands our knowledge of the physiological function of this widely distributed group of photoreceptors and deepens our understanding of the photoresponse of MTB. KEY POINTS: • We found a group of Cys-less light-oxygen-voltage (LOV) photoreceptors in magnetotactic bacteria, which prompted us to study the light-response and biological roles of these proteins in these non-photosynthetic bacteria. • The Cys-less LOV-like protein participates in the light-regulated signalling pathway and improves resistance to oxidative damage and magnetic crystal biogenesis in Magnetospirillum magneticum. • This result will contribute to our understanding of the structural and functional diversity of the LOV-like photoreceptor and help us understand the complexity of light-regulated model organisms.
Collapse
Affiliation(s)
- Haitao Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China
| | - Kefeng Li
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,Shandong Sport University, Jinan, 250102, China
| | - Yao Cai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Pingping Wang
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China
| | - Weimin Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Long-Fei Wu
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China. .,Aix Marseille University, CNRS, LCB, 13402, Marseille, France.
| | - Tao Song
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China.
| |
Collapse
|
15
|
Jain-Gupta N, Waldrop SG, Tenpenny NM, Witonsky SG, Boyle SM, Sriranganathan N. Rough Brucella neotomae provides protection against Brucella suis challenge in mice. Vet Microbiol 2019; 239:108447. [PMID: 31767087 DOI: 10.1016/j.vetmic.2019.108447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
Brucellosis is one of the most common zoonotic diseases worldwide. Almost 500,000 new human cases occur each year; yet there is no vaccine for human use. Moreover, there is no universal Brucella vaccine that would provide protection against all pathogenic species of Brucella. We generated a rough, live-attenuated B. neotomae strain by deleting the wboA gene encoding a glycosyltransferase. This strain lacks the O-side chain in its lipopolysaccharide (LPS) and thus the vaccinated animals can be differentiated serologically from the field-infected animals. We tested the efficacy of rough B. neotomae strain to stimulate dendritic cells compared to the smooth wild type strain. Based on TNF-α production, our data suggests that a significantly higher stimulation was obtained when dendritic cells were stimulated with the rough vaccine strain compared to the smooth wild type B. neotomae. Furthermore, the rough mutant was cleared from mice within 6 weeks even at a dose as high as 2 x 108 CFU. Vaccinated mice showed significantly higher level of protection against a virulent B. suis 1330 challenge compared to the control mice. Antibody titers in the mice and cytokine production by the splenocytes from the vaccinated mice showed a Th1 mediated immune response that correlated with the protection.
Collapse
Affiliation(s)
- Neeta Jain-Gupta
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA
| | - Steven G Waldrop
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA
| | - Nancy M Tenpenny
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA
| | - Sharon G Witonsky
- Department of Large Animal Clinical Sciences, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA
| | - Stephen M Boyle
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA.
| |
Collapse
|
16
|
Gottschlich L, Geiser P, Bortfeld-Miller M, Field CM, Vorholt JA. Complex general stress response regulation in Sphingomonas melonis Fr1 revealed by transcriptional analyses. Sci Rep 2019; 9:9404. [PMID: 31253827 PMCID: PMC6599016 DOI: 10.1038/s41598-019-45788-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/12/2019] [Indexed: 01/31/2023] Open
Abstract
The general stress response (GSR) represents an important trait to survive in the environment by leading to multiple stress resistance. In alphaproteobacteria, the GSR is under the transcriptional control of the alternative sigma factor EcfG. Here we performed transcriptome analyses to investigate the genes controlled by EcfG of Sphingomonas melonis Fr1 and the plasticity of this regulation under stress conditions. We found that EcfG regulates genes for proteins that are typically associated with stress responses. Moreover, EcfG controls regulatory proteins, which likely fine-tune the GSR. Among these, we identified a novel negative GSR feedback regulator, termed NepR2, on the basis of gene reporter assays, phenotypic analyses, and biochemical assays. Transcriptional profiling of signaling components upstream of EcfG under complex stress conditions showed an overall congruence with EcfG-regulated genes. Interestingly however, we found that the GSR is transcriptionally linked to the regulation of motility and biofilm formation via the single domain response regulator SdrG and GSR-activating histidine kinases. Altogether, our findings indicate that the GSR in S. melonis Fr1 underlies a complex regulation to optimize resource allocation and resilience in stressful and changing environments.
Collapse
Affiliation(s)
- Lisa Gottschlich
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Petra Geiser
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Miriam Bortfeld-Miller
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Christopher M Field
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| |
Collapse
|
17
|
Fiebig A, Varesio LM, Alejandro Navarreto X, Crosson S. Regulation of the Erythrobacter litoralis DSM 8509 general stress response by visible light. Mol Microbiol 2019; 112:442-460. [PMID: 31125464 DOI: 10.1111/mmi.14310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/23/2023]
Abstract
Extracytoplasmic function (ECF) sigma factors are environmentally responsive transcriptional regulators. In Alphaproteobacteria, σEcfG activates general stress response (GSR) transcription and protects cells from multiple stressors. A phosphorylation-dependent protein partner switching mechanism, involving HWE/HisKA_2-family histidine kinases, underlies σEcfG activation. The identity of these sensor kinases and the signals that regulate them remain largely uncharacterized. We have developed the aerobic anoxygenic photoheterotroph (AAP), Erythrobacter litoralis DSM 8509, as a comparative genetic model to investigate GSR. Using this system, we sought to define the role of visible light and a photosensory HWE kinase, LovK, in regulation of GSR transcription. We identified three HWE kinase genes that collectively control GSR: gsrK and lovK are activators, while gsrP is a repressor. In wild-type cells, GSR transcription is activated in the dark and nearly off in the light, and the opposing activities of gsrK and gsrP are sufficient to modulate GSR transcription in response to illumination. In the absence of gsrK and gsrP, lovK alone is sufficient to activate GSR transcription. lovK is a more robust activator in the dark, and light-dependent regulation by LovK requires that its N-terminal LOV domain be photochemically active. Our studies establish a role for visible light and an ensemble of HWE kinases in light-dependent regulation of GSR transcription in E. litoralis.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Lydia M Varesio
- The Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.,The Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
18
|
Dikiy I, Gardner KH. Shining light on the alphaproteobacterial general stress response: Comment on: Fiebig et al., Mol Microbiol, 2019. Mol Microbiol 2019; 112:438-441. [PMID: 31120626 DOI: 10.1111/mmi.14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 11/26/2022]
Abstract
The general stress response (GSR) allows many bacterial species to react to myriad different stressors. In Alphaproteobacteria, this signaling pathway proceeds through the partner-switching PhyR-EcfG sigma-factor mechanism and is involved in multiple life processes, including virulence in Brucella abortus. To date, details of the alphaproteobacterial GSR signaling pathway have been determined using genetic and biochemical work on a diverse set of species distributed throughout the clade. Fiebig and co-workers establish Erythrobacter litoralis DSM 8509 as a genetically tractable lab strain and use it to both directly and indirectly delineate photoresponsive GSR pathways mediated by multiple HWE/HisKA_2 histidine kinases. The existence of a new phototrophic lab strain allows researchers to compare the GSR across different Alphaproteobacteria, as well as study the interplay between the GSR and phototrophy. Additionally, the discovery of new HWE/HisKA_2 kinases regulating the GSR poses new questions about how different stimuli feed into this widespread stress pathway.
Collapse
Affiliation(s)
- Igor Dikiy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, USA
| | - Kevin H Gardner
- Department of Chemistry and Biochemistry, City College of New York, New York, NY, USA.,Programs in Biochemistry, Biology and Chemistry, CUNY Graduate Center, New York, NY, USA
| |
Collapse
|
19
|
Brucella Periplasmic Protein EipB Is a Molecular Determinant of Cell Envelope Integrity and Virulence. J Bacteriol 2019; 201:JB.00134-19. [PMID: 30936371 DOI: 10.1128/jb.00134-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/25/2019] [Indexed: 01/18/2023] Open
Abstract
The Gram-negative cell envelope is a remarkable structure with core components that include an inner membrane, an outer membrane, and a peptidoglycan layer in the periplasmic space between. Multiple molecular systems function to maintain integrity of this essential barrier between the interior of the cell and its surrounding environment. We show that a conserved DUF1849 family protein, EipB, is secreted to the periplasmic space of Brucella species, a monophyletic group of intracellular pathogens. In the periplasm, EipB folds into an unusual 14-stranded β-spiral structure that resembles the LolA and LolB lipoprotein delivery system, though the overall fold of EipB is distinct from LolA/LolB. Deletion of eipB results in defects in Brucella cell envelope integrity in vitro and in maintenance of spleen colonization in a mouse model of Brucella abortus infection. Transposon disruption of ttpA, which encodes a periplasmic protein containing tetratricopeptide repeats, is synthetically lethal with eipB deletion. ttpA is a reported virulence determinant in Brucella, and our studies of ttpA deletion and overexpression strains provide evidence that this gene also contributes to cell envelope function. We conclude that eipB and ttpA function in the Brucella periplasmic space to maintain cell envelope integrity, which facilitates survival in a mammalian host.IMPORTANCE Brucella species cause brucellosis, a global zoonosis. A gene encoding a conserved DUF1849-family protein, which we have named EipB, is present in all sequenced Brucella and several other genera in the class Alphaproteobacteria The manuscript provides the first functional and structural characterization of a DUF1849 protein. We show that EipB is secreted to the periplasm where it forms a spiral-shaped antiparallel β protein that is a determinant of cell envelope integrity in vitro and virulence in an animal model of disease. eipB genetically interacts with ttpA, which also encodes a periplasmic protein. We propose that EipB and TtpA function as part of a system required for cell envelope homeostasis in select Alphaproteobacteria.
Collapse
|
20
|
Aqueous peat extract exposes rhizobia to sub-lethal stress which may prime cells for improved desiccation tolerance. Appl Microbiol Biotechnol 2018; 102:7521-7539. [DOI: 10.1007/s00253-018-9086-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 01/25/2023]
|
21
|
Herrou J, Czyż DM, Fiebig A, Willett JW, Kim Y, Wu R, Babnigg G, Crosson S. Molecular control of gene expression by Brucella BaaR, an IclR-type transcriptional repressor. J Biol Chem 2018; 293:7437-7456. [PMID: 29567835 PMCID: PMC5949995 DOI: 10.1074/jbc.ra118.002045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/19/2018] [Indexed: 01/06/2023] Open
Abstract
The general stress response sigma factor σE1 directly and indirectly regulates the transcription of dozens of genes that influence stress survival and host infection in the zoonotic pathogen Brucella abortus Characterizing the functions of σE1-regulated genes therefore would contribute to our understanding of B. abortus physiology and infection biology. σE1 indirectly activates transcription of the IclR family regulator Bab2_0215, but the function of this regulator remains undefined. Here, we present a structural and functional characterization of Bab2_0215, which we have named B rucella adipic acid-activated regulator (BaaR). We found that BaaR adopts a classic IclR-family fold and directly represses the transcription of two operons with predicted roles in carboxylic acid oxidation. BaaR binds two sites on chromosome II between baaR and a divergently transcribed hydratase/dehydrogenase (acaD2), and it represses transcription of both genes. We identified three carboxylic acids (adipic acid, tetradecanedioic acid, and ϵ-aminocaproic acid) and a lactone (ϵ-caprolactone) that enhance transcription from the baaR and acaD2 promoters. However, neither the activating acids nor caprolactone enhanced transcription by binding directly to BaaR. Induction of baaR transcription by adipic acid required the gene bab2_0213, which encodes a major facilitator superfamily transporter, suggesting that Bab2_0213 transports adipic acid across the inner membrane. We conclude that a suite of structurally related organic molecules activate transcription of genes repressed by BaaR. Our study provides molecular-level understanding of a gene expression program in B. abortus that is downstream of σE1.
Collapse
Affiliation(s)
- Julien Herrou
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | - Daniel M Czyż
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | - Aretha Fiebig
- Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | - Jonathan W Willett
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | | | - Ruiying Wu
- Argonne National Laboratory, Argonne, Illinois 60439
| | | | - Sean Crosson
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439; Microbiology, University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
22
|
Gottschlich L, Bortfeld-Miller M, Gäbelein C, Dintner S, Vorholt JA. Phosphorelay through the bifunctional phosphotransferase PhyT controls the general stress response in an alphaproteobacterium. PLoS Genet 2018; 14:e1007294. [PMID: 29652885 PMCID: PMC5898713 DOI: 10.1371/journal.pgen.1007294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/06/2018] [Indexed: 11/19/2022] Open
Abstract
Two-component systems constitute phosphotransfer signaling pathways and enable adaptation to environmental changes, an essential feature for bacterial survival. The general stress response (GSR) in the plant-protecting alphaproteobacterium Sphingomonas melonis Fr1 involves a two-component system consisting of multiple stress-sensing histidine kinases (Paks) and the response regulator PhyR; PhyR in turn regulates the alternative sigma factor EcfG, which controls expression of the GSR regulon. While Paks had been shown to phosphorylate PhyR in vitro, it remained unclear if and under which conditions direct phosphorylation happens in the cell, as Paks also phosphorylate the single domain response regulator SdrG, an essential yet enigmatic component of the GSR signaling pathway. Here, we analyze the role of SdrG and investigate an alternative function of the membrane-bound PhyP (here re-designated PhyT), previously assumed to act as a PhyR phosphatase. In vitro assays show that PhyT transfers a phosphoryl group from SdrG to PhyR via phosphoryl transfer on a conserved His residue. This finding, as well as complementary GSR reporter assays, indicate the participation of SdrG and PhyT in a Pak-SdrG-PhyT-PhyR phosphorelay. Furthermore, we demonstrate complex formation between PhyT and PhyR. This finding is substantiated by PhyT-dependent membrane association of PhyR in unstressed cells, while the response regulator is released from the membrane upon stress induction. Our data support a model in which PhyT sequesters PhyR, thereby favoring Pak-dependent phosphorylation of SdrG. In addition, PhyT assumes the role of the SdrG-phosphotransferase to activate PhyR. Our results place SdrG into the GSR signaling cascade and uncover a dual role of PhyT in the GSR.
Collapse
Affiliation(s)
| | | | | | | | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Bouillet S, Arabet D, Jourlin-Castelli C, Méjean V, Iobbi-Nivol C. Regulation of σ factors by conserved partner switches controlled by divergent signalling systems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:127-139. [PMID: 29393573 DOI: 10.1111/1758-2229.12620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
Partner-Switching Systems (PSS) are widespread regulatory systems, each comprising a kinase-anti-σ, a phosphorylatable anti-σ antagonist and a phosphatase module. The anti-σ domain quickly sequesters or delivers the target σ factor according to the phosphorylation state of the anti-σ antagonist induced by environmental signals. The PSS components are proteins alone or merged to other domains probably to adapt to the input signals. PSS are involved in major cellular processes including stress response, sporulation, biofilm formation and pathogenesis. Surprisingly, the target σ factors are often unknown and the sensing modules acting upstream from the PSS diverge according to the bacterial species. Indeed, they belong to either two-component systems or complex pathways as the stressosome or Chemosensory Systems (CS). Based on a phylogenetic analysis, we propose that the sensing module in Gram-negative bacteria is often a CS.
Collapse
Affiliation(s)
- Sophie Bouillet
- Aix-Marseille University, CNRS, BIP UMR7281, 13402 Marseille, France
| | - Dallel Arabet
- Université des Frères Mentouri Constantine 1, Constantine, Algeria
| | | | - Vincent Méjean
- Aix-Marseille University, CNRS, BIP UMR7281, 13402 Marseille, France
| | | |
Collapse
|
24
|
Tien M, Fiebig A, Crosson S. Gene network analysis identifies a central post-transcriptional regulator of cellular stress survival. eLife 2018. [PMID: 29537368 PMCID: PMC5869019 DOI: 10.7554/elife.33684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cells adapt to shifts in their environment by remodeling transcription. Measuring changes in transcription at the genome scale is now routine, but defining the functional significance of individual genes within large gene expression datasets remains a major challenge. We applied a network-based algorithm to interrogate publicly available gene expression data to predict genes that serve major functional roles in Caulobacter crescentus stress survival. This approach identified GsrN, a conserved small RNA that is directly activated by the general stress sigma factor, σT, and functions as a potent post-transcriptional regulator of survival across distinct conditions including osmotic and oxidative stress. Under hydrogen peroxide stress, GsrN protects cells by base pairing with the leader of katG mRNA and activating expression of KatG catalase/peroxidase protein. We conclude that GsrN convenes a post-transcriptional layer of gene expression that serves a central functional role in Caulobacter stress physiology.
Collapse
Affiliation(s)
- Matthew Tien
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States.,Department of Microbiology, University of Chicago, Chicago, United States
| |
Collapse
|
25
|
Luebke JL, Eaton DS, Sachleben JR, Crosson S. Allosteric control of a bacterial stress response system by an anti-σ factor. Mol Microbiol 2018; 107:164-179. [PMID: 29052909 PMCID: PMC5760481 DOI: 10.1111/mmi.13868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 11/28/2022]
Abstract
Bacterial signal transduction systems commonly use receiver (REC) domains, which regulate adaptive responses to the environment as a function of their phosphorylation state. REC domains control cell physiology through diverse mechanisms, many of which remain understudied. We have defined structural features that underlie activation of the multi-domain REC protein, PhyR, which functions as an anti-anti-σ factor and regulates transcription of genes required for stress adaptation and host-microbe interactions in Alphaproteobacteria. Though REC phosphorylation is necessary for PhyR function in vivo, we did not detect expected changes in inter-domain interactions upon phosphorylation by solution X-ray scattering. We sought to understand this result by defining additional molecular requirements for PhyR activation. We uncovered specific interactions between unphosphorylated PhyR and an intrinsically disordered region (IDR) of the anti-σ factor, NepR, by solution NMR spectroscopy. Our data support a model whereby nascent NepR(IDR)-PhyR interactions and REC phosphorylation coordinately impart the free energy to shift PhyR to an open, active conformation that binds and inhibits NepR. This mechanism ensures PhyR is activated only when NepR and an activating phosphoryl signal are present. Our study provides new structural understanding of the molecular regulatory logic underlying a conserved environmental response system.
Collapse
Affiliation(s)
- Justin L. Luebke
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Daniel S. Eaton
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Joseph R. Sachleben
- Biomolecular NMR Core Facility, Biological Sciences Division, The University of Chicago, Chicago, Illinois, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
26
|
Conserved ABC Transport System Regulated by the General Stress Response Pathways of Alpha- and Gammaproteobacteria. J Bacteriol 2017; 199:JB.00746-16. [PMID: 27994018 DOI: 10.1128/jb.00746-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/13/2016] [Indexed: 01/24/2023] Open
Abstract
Brucella abortus σE1 is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon, bab1_0223-bab1_0226, is among the most highly activated gene sets in the σE1 regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription of yehZYXW is activated by the general stress sigma factor σS in Enterobacteriaceae, which suggests a functional role for this transport system in bacterial stress response across the classes Alphaproteobacteria and Gammaproteobacteria We present evidence that B. abortus YehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σE1-null strain. The sole in vitro phenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li+ ion concentrations. A crystal structure of B. abortus YehZ revealed a class II periplasmic binding protein fold with significant structural homology to Archaeoglobus fulgidus ProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers.IMPORTANCEBrucella abortus σE1 regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the majority of genes regulated by σE1 remain undefined. We present a functional/structural analysis of a conserved putative membrane transport system (YehZYXW) whose expression is strongly activated by σE1 Though annotated as a quaternary ammonium osmolyte uptake system, experimental physiological studies and measured ligand-binding properties of the periplasmic binding protein (PBP), YehZ, are inconsistent with this function. A crystal structure of B. abortus YehZ provides molecular insight into differences between bona fide quaternary ammonium osmolyte importers and YehZ-related proteins, which form a distinct phylogenetic and functional group of PBPs.
Collapse
|
27
|
Herrou J, Crosson S, Fiebig A. Structure and function of HWE/HisKA2-family sensor histidine kinases. Curr Opin Microbiol 2017; 36:47-54. [PMID: 28193573 DOI: 10.1016/j.mib.2017.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 02/01/2023]
Abstract
Sensor histidine kinases regulate adaptive cellular responses to changes in the chemical or physical state of the environment. HWE/HisKA2-family kinases comprise a subset of histidine kinases that is defined by unique sequence motifs in both the catalytic and non-catalytic regions. Recent crystal structures have defined conserved intramolecular interactions that inform models of kinase regulation that are unique to the HWE/HisKA2 superfamily. Emerging genetic, biochemical and genomic data indicate that, unlike typical histidine kinases, HWE/HisKA2 kinases do not generally signal via classical DNA-binding response regulators. Rather, these unusual kinases are often part of atypical regulatory pathways that control changes in gene expression via modulation of protein-protein interactions or transcription anti-termination.
Collapse
Affiliation(s)
- Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA; Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
28
|
Losi A, Gärtner W. Solving Blue Light Riddles: New Lessons from Flavin-binding LOV Photoreceptors. Photochem Photobiol 2017; 93:141-158. [PMID: 27861974 DOI: 10.1111/php.12674] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/22/2016] [Indexed: 12/15/2022]
Abstract
Detection of blue light (BL) via flavin-binding photoreceptors (Fl-Blues) has evolved throughout all three domains of life. Although the main BL players, that is light, oxygen and voltage (LOV), blue light sensing using flavins (BLUF) and Cry (cryptochrome) proteins, have been characterized in great detail with respect to structure and function, still several unresolved issues at different levels of complexity remain and novel unexpected findings were reported. Here, we review the most prevailing riddles of LOV-based photoreceptors, for example: the relevance of water and/or small metabolites for the dynamics of the photocycle; molecular details of light-to-signal transduction events; the interplay of BL sensing by LOV domains with other environmental stimuli, such as BL plus oxygen-mediating photodamage and its impact on microbial lifestyles; the importance of the cell or chromophore redox state in determining the fate of BL-driven reactions; the evolutionary pathways of LOV-based BL sensing and associated functions through the diverse phyla. We will discuss major novelties emerged during the last few years on these intriguing aspects of LOV proteins by presenting paradigmatic examples from prokaryotic photosensors that exhibit the largest complexity and richness in associated functions.
Collapse
Affiliation(s)
- Aba Losi
- Department of Physics and Earth Sciences, University of Parma, Parma, Italy
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim, Germany
| |
Collapse
|
29
|
Kwon AJ, Moon JY, Kim WK, Kim S, Hur J. Protection efficacy of the Brucella abortus ghost vaccine candidate lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid antimicrobial peptide 36) in murine models. J Vet Med Sci 2016; 78:1541-1548. [PMID: 27349900 PMCID: PMC5095622 DOI: 10.1292/jvms.16-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brucella abortus cells were lysed by the N-terminal 24-amino acid fragment (GI24) of the 36-amino acid peptide PMAP-36 (porcine myeloid
antimicrobial peptide 36). Next, the protection efficacy of the lysed fragment as a vaccine candidate was evaluated. Group A mice were immunized with sterile
PBS, group B mice were intraperitoneally (ip) immunized with 3 × 108 colony-forming units (CFUs) of B. abortus strain RB51, group C
mice were immunized ip with 3 × 108 cells of the B. abortus vaccine candidate, and group D mice were orally immunized with 3 ×
109 cells of the B. abortus vaccine candidate. Brucella lipopolysaccharide (LPS)-specific serum IgG titers were
considerably higher in groups C and D than in group A. The levels of interleukin (IL)-4, IL-10, tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ)
were significantly higher in groups B–D than in group A. After an ip challenge with B. abortus 544, only group C mice showed a significant
level of protection as compared to group A. Overall, these results show that ip immunization with a vaccine candidate lysed by GI24 can effectively protect mice
from systemic infection with virulent B. abortus.
Collapse
Affiliation(s)
- Ae Jeong Kwon
- Veterinary Public Health, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | | | | | | | | |
Collapse
|
30
|
Willett JW, Herrou J, Czyz DM, Cheng JX, Crosson S. Brucella abortus ΔrpoE1 confers protective immunity against wild type challenge in a mouse model of brucellosis. Vaccine 2016; 34:5073-5081. [PMID: 27591954 DOI: 10.1016/j.vaccine.2016.08.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 11/28/2022]
Abstract
The Brucella abortus general stress response (GSR) system regulates activity of the alternative sigma factor, σ(E1), which controls transcription of approximately 100 genes and is required for persistence in a BALB/c mouse chronic infection model. We evaluated the host response to infection by a B. abortus strain lacking σ(E1) (ΔrpoE1), and identified pathological and immunological features that distinguish ΔrpoE1-infected mice from wild-type (WT), and that correspond with clearance of ΔrpoE1 from the host. ΔrpoE1 infection was indistinguishable from WT in terms of splenic bacterial burden, inflammation and histopathology up to 6weeks post-infection. However, Brucella-specific serum IgG levels in ΔrpoE1-infected mice were 5 times higher than WT by 4weeks post-infection, and remained significantly higher throughout the course of a 12-week infection. Total IgG and Brucella-specific IgG levels peaked strongly in ΔrpoE1-infected mice at 6weeks, which correlated with reduced splenomegaly and bacterial burden relative to WT-infected mice. Given the difference in immune response to infection with wild-type and ΔrpoE1, we tested whether ΔrpoE1 confers protective immunity to wild-type challenge. Mice immunized with ΔrpoE1 completely resisted WT infection and had significantly higher serum titers of Brucella-specific IgG, IgG2a and IFN-γ after WT challenge relative to age-matched naïve mice. We conclude that immunization of BALB/c mice with the B. abortus GSR pathway mutant, ΔrpoE1, elicits an adaptive immune response that confers significant protective immunity against WT infection.
Collapse
Affiliation(s)
- Jonathan W Willett
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA
| | - Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA
| | - Daniel M Czyz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA
| | - Jason X Cheng
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.,Howard Taylor Ricketts Laboratory, University of Chicago, Argonne National Laboratory, Argonne, IL, USA.,Department of Microbiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Corrêa F, Gardner KH. Basis of Mutual Domain Inhibition in a Bacterial Response Regulator. Cell Chem Biol 2016; 23:945-954. [PMID: 27524295 DOI: 10.1016/j.chembiol.2016.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/12/2016] [Accepted: 07/08/2016] [Indexed: 01/12/2023]
Abstract
Information transmission in biological signaling networks is commonly considered to be a unidirectional flow of information between protein partners. According to this view, many bacterial response regulator proteins utilize input receiver (REC) domains to "switch" functional outputs, using REC phosphorylation to shift pre-existing equilibria between inactive and active conformations. However, recent data indicate that output domains themselves also shift such equilibria, implying a "mutual inhibition" model. Here we use solution nuclear magnetic resonance to provide a mechanistic basis for such control in a PhyR-type response regulator. Our structure of the isolated, non-phosphorylated REC domain surprisingly reveals a fully active conformation, letting us identify structural and dynamic changes imparted by the output domain to inactivate the full-length protein. Additional data reveal transient structural changes within the full-length protein, facilitating activation. Our data provide a basis for understanding the changes that REC and output domains undergo to set a default "inactive" state.
Collapse
Affiliation(s)
- Fernando Corrêa
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031, USA; Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031, USA; Biochemistry, Chemistry and Biology PhD Programs, Graduate Center, The City University of New York, New York, NY 10016, USA.
| |
Collapse
|
32
|
WrpA Is an Atypical Flavodoxin Family Protein under Regulatory Control of the Brucella abortus General Stress Response System. J Bacteriol 2016; 198:1281-93. [PMID: 26858101 DOI: 10.1128/jb.00982-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The general stress response (GSR) system of the intracellular pathogen Brucella abortus controls the transcription of approximately 100 genes in response to a range of stress cues. The core genetic regulatory components of the GSR are required for B. abortus survival under nonoptimal growth conditions in vitro and for maintenance of chronic infection in an in vivo mouse model. The functions of the majority of the genes in the GSR transcriptional regulon remain undefined. bab1_1070 is among the most highly regulated genes in this regulon: its transcription is activated 20- to 30-fold by the GSR system under oxidative conditions in vitro. We have solved crystal structures of Bab1_1070 and demonstrate that it forms a homotetrameric complex that resembles those of WrbA-type NADH:quinone oxidoreductases, which are members of the flavodoxin protein family. However, B. abortus WrbA-related protein (WrpA) does not bind flavin cofactors with a high affinity and does not function as an NADH:quinone oxidoreductase in vitro. Soaking crystals with flavin mononucleotide (FMN) revealed a likely low-affinity binding site adjacent to the canonical WrbA flavin binding site. Deletion of wrpA (ΔwrpA) does not compromise cell survival under acute oxidative stress in vitro or attenuate infection in cell-based or mouse models. However, a ΔwrpA strain does elicit increased splenomegaly in a mouse model, suggesting that WrpA modulates B. abortus interaction with its mammalian host. Despite high structural homology with canonical WrbA proteins, we propose that B. abortus WrpA represents a functionally distinct member of the diverse flavodoxin family. IMPORTANCE Brucella abortus is an etiological agent of brucellosis, which is among the most common zoonotic diseases worldwide. The general stress response (GSR) regulatory system of B. abortus controls the transcription of approximately 100 genes and is required for maintenance of chronic infection in a murine model; the majority of GSR-regulated genes remain uncharacterized. We present in vitro and in vivo functional and structural analyses of WrpA, whose expression is strongly induced by GSR under oxidative conditions. Though WrpA is structurally related to NADH:quinone oxidoreductases, it does not bind redox cofactors in solution, nor does it exhibit oxidoreductase activity in vitro. However, WrpA does affect spleen inflammation in a murine infection model. Our data provide evidence that WrpA forms a new functional class of WrbA/flavodoxin family proteins.
Collapse
|
33
|
Multiple σEcfG and NepR Proteins Are Involved in the General Stress Response in Methylobacterium extorquens. PLoS One 2016; 11:e0152519. [PMID: 27028226 PMCID: PMC4814048 DOI: 10.1371/journal.pone.0152519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/26/2016] [Indexed: 11/19/2022] Open
Abstract
In Alphaproteobacteria, the general stress response (GSR) is controlled by a conserved partner switch composed of the sigma factor σEcfG, its anti-sigma factor NepR and the anti-sigma factor antagonist PhyR. Many species possess paralogues of one or several components of the system, but their roles remain largely elusive. Among Alphaproteobacteria that have been genome-sequenced so far, the genus Methylobacterium possesses the largest number of σEcfG proteins. Here, we analyzed the six σEcfG paralogues of Methylobacterium extorquens AM1. We show that these sigma factors are not truly redundant, but instead exhibit major and minor contributions to stress resistance and GSR target gene expression. We identify distinct levels of regulation for the different sigma factors, as well as two NepR paralogues that interact with PhyR. Our results suggest that in M. extorquens AM1, ecfG and nepR paralogues have diverged in order to assume new roles that might allow integration of positive and negative feedback loops in the regulatory system. Comparison of the core elements of the GSR regulatory network in Methylobacterium species provides evidence for high plasticity and rapid evolution of the GSR core network in this genus.
Collapse
|
34
|
Characterization of the general stress response in Bartonella henselae. Microb Pathog 2015; 92:1-10. [PMID: 26724735 DOI: 10.1016/j.micpath.2015.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 11/20/2022]
Abstract
Bacteria utilize a general stress response system to combat stresses from their surrounding environments. In alpha-proteobacteria, the general stress response uses an alternate sigma factor as the main regulator and incorporates it with a two-component system into a unique regulatory circuit. This system has been described in several alpha-proteobacterial species, including the pathogens Bartonella quintana and Brucella abortus. Most of the studies have focused on characterizing the PhyR anti-anti-sigma factor, the NepR anti-sigma factor, and the alternate sigma factor. However, not enough attention is directed toward studying the role of histidine kinases in the general stress response. Our study identifies the general stress response system in Bartonella henselae, where the gene synteny is conserved and both the PhyR and alternate sigma factor have similar sequence and domain structures with other alpha-proteobacteria. Our data showed that the general stress response genes are up-regulated under conditions that mimic the cat flea vector. Furthermore, we showed that both RpoE and PhyR positively regulate this system and that RpoE also affects transcription of genes encoding heme-binding proteins and the gene encoding the BadA adhesin. Finally, we identified a histidine kinase, annotated as BH13820 that can potentially phosphorylate PhyR.
Collapse
|
35
|
Abstract
The Alphaproteobacteria uniquely integrate features of two-component signal transduction and alternative σ factor regulation to control transcription of genes that ensure growth and survival across a range of stress conditions. Research over the past decade has led to the discovery of the key molecular players of this general stress response (GSR) system, including the sigma factor σ(EcfG), its anti-σ factor NepR, and the anti-anti-σ factor PhyR. The central molecular event of GSR activation entails aspartyl phosphorylation of PhyR, which promotes its binding to NepR and thereby releases σ(EcfG) to associate with RNAP and direct transcription. Recent studies are providing a new understanding of complex, multilayered sensory networks that activate and repress this central protein partner switch. This review synthesizes our structural and functional understanding of the core GSR regulatory proteins and highlights emerging data that are defining the systems that regulate GSR transcription in a variety of species.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637;
| | - Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637;
| | - Jonathan Willett
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637;
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
36
|
Losi A, Mandalari C, Gärtner W. The Evolution and Functional Role of Flavin-based Prokaryotic Photoreceptors. Photochem Photobiol 2015; 91:1021-31. [DOI: 10.1111/php.12489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Aba Losi
- Department of Physics and Earth Sciences; University of Parma; Parma Italy
| | - Carmen Mandalari
- Department of Physics and Earth Sciences; University of Parma; Parma Italy
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion; Mülheim Germany
| |
Collapse
|
37
|
Structural asymmetry in a conserved signaling system that regulates division, replication, and virulence of an intracellular pathogen. Proc Natl Acad Sci U S A 2015; 112:E3709-18. [PMID: 26124143 DOI: 10.1073/pnas.1503118112] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have functionally and structurally defined an essential protein phosphorelay that regulates expression of genes required for growth, division, and intracellular survival of the global zoonotic pathogen Brucella abortus. Our study delineates phosphoryl transfer through this molecular pathway, which initiates from the sensor kinase CckA and proceeds through the ChpT phosphotransferase to two regulatory substrates: CtrA and CpdR. Genetic perturbation of this system results in defects in cell growth and division site selection, and a specific viability deficit inside human phagocytic cells. Thus, proper control of B. abortus division site polarity is necessary for survival in the intracellular niche. We further define the structural foundations of signaling from the central phosphotransferase, ChpT, to its response regulator substrate, CtrA, and provide evidence that there are at least two modes of interaction between ChpT and CtrA, only one of which is competent to catalyze phosphoryltransfer. The structure and dynamics of the active site on each side of the ChpT homodimer are distinct, supporting a model in which quaternary structure of the 2:2 ChpT-CtrA complex enforces an asymmetric mechanism of phosphoryl transfer between ChpT and CtrA. Our study provides mechanistic understanding, from the cellular to the atomic scale, of a conserved transcriptional regulatory system that controls the cellular and infection biology of B. abortus. More generally, our results provide insight into the structural basis of two-component signal transduction, which is broadly conserved in bacteria, plants, and fungi.
Collapse
|
38
|
The general stress response in Alphaproteobacteria. Trends Microbiol 2015; 23:164-71. [DOI: 10.1016/j.tim.2014.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/18/2022]
|
39
|
Two-tiered histidine kinase pathway involved in heat shock and salt sensing in the general stress response of Sphingomonas melonis Fr1. J Bacteriol 2015; 197:1466-77. [PMID: 25666137 DOI: 10.1128/jb.00019-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The general stress response (GSR) allows bacteria to monitor and defend against a broad set of unrelated, adverse environmental conditions. In Alphaproteobacteria, the key step in GSR activation is phosphorylation of the response regulator PhyR. In Sphingomonas melonis Fr1, seven PhyR-activating kinases (Paks), PakA to PakG, are thought to directly phosphorylate PhyR under different stress conditions, but the nature of the activating signals remains obscure. PakF, a major sensor of NaCl and heat shock, lacks a putative sensor domain but instead harbors a single receiver (REC) domain (PakFREC) N-terminal to its kinase catalytic core. Such kinases are called "hybrid response regulators" (HRRs). How HRRs are able to perceive signals in the absence of a true sensor domain has remained largely unexplored. In the present work, we show that stresses are actually sensed by another kinase, KipF (kinase of PakF), which phosphorylates PakFREC and thereby activates PakF. KipF is a predicted transmembrane kinase, harboring a periplasmic CHASE3 domain flanked by two transmembrane helices in addition to its cytoplasmic kinase catalytic core. We demonstrate that KipF senses different salts through its CHASE3 domain but is not a sensor of general osmotic stress. While salt sensing depends on the CHASE3 domain, heat shock sensing does not, suggesting that these stresses are perceived by different mechanisms. In summary, our results establish a two-tiered histidine kinase pathway involved in activation of the GSR in S. melonis Fr1 and provide the first experimental evidence for the so far uncharacterized CHASE3 domain as a salt sensor. IMPORTANCE Hybrid response regulators (HRRs) represent a particular class of histidine kinases harboring an N-terminal receiver (REC) domain instead of a true sensor domain. This suggests that the actual input for HRRs may be phosphorylation of the REC domain. In the present study, we addressed this question by using the HRR PakF. Our results suggest that PakF is activated through phosphorylation of its REC domain and that this is achieved by another kinase, KipF. KipF senses heat shock and salt stress, with the latter requiring the periplasmic CHASE3 domain. This work not only suggests that HRRs work in two-tiered histidine kinase pathways but also provides the first experimental evidence for a role of the so far uncharacterized CHASE3 domain in salt sensing.
Collapse
|
40
|
Sycz G, Carrica MC, Tseng TS, Bogomolni RA, Briggs WR, Goldbaum FA, Paris G. LOV Histidine Kinase Modulates the General Stress Response System and Affects the virB Operon Expression in Brucella abortus. PLoS One 2015; 10:e0124058. [PMID: 25993430 PMCID: PMC4438053 DOI: 10.1371/journal.pone.0124058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Brucella is the causative agent of the zoonotic disease brucellosis, and its success as an intracellular pathogen relies on its ability to adapt to the harsh environmental conditions that it encounters inside the host. The Brucella genome encodes a sensor histidine kinase containing a LOV domain upstream from the kinase, LOVHK, which plays an important role in light-regulated Brucella virulence. In this report we study the intracellular signaling pathway initiated by the light sensor LOVHK using an integrated biochemical and genetic approach. From results of bacterial two-hybrid assays and phosphotransfer experiments we demonstrate that LOVHK functionally interacts with two response regulators: PhyR and LovR, constituting a functional two-component signal-transduction system. LOVHK contributes to the activation of the General Stress Response (GSR) system in Brucella via PhyR, while LovR is proposed to be a phosphate-sink for LOVHK, decreasing its phosphorylation state. We also show that in the absence of LOVHK the expression of the virB operon is down-regulated. In conclusion, our results suggest that LOVHK positively regulates the GSR system in vivo, and has an effect on the expression of the virB operon. The proposed regulatory network suggests a similar role for LOVHK in other microorganisms.
Collapse
Affiliation(s)
- Gabriela Sycz
- Laboratorio de Inmunología y Microbiología Molecular, Fundación Instituto Leloir (IIBBA-CONICET), Buenos Aires, Argentina
| | - Mariela Carmen Carrica
- Laboratorio de Inmunología y Microbiología Molecular, Fundación Instituto Leloir (IIBBA-CONICET), Buenos Aires, Argentina
| | - Tong-Seung Tseng
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Roberto A. Bogomolni
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Winslow R. Briggs
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Fernando A. Goldbaum
- Laboratorio de Inmunología y Microbiología Molecular, Fundación Instituto Leloir (IIBBA-CONICET), Buenos Aires, Argentina
| | - Gastón Paris
- Laboratorio de Inmunología y Microbiología Molecular, Fundación Instituto Leloir (IIBBA-CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|