1
|
Pan X, Zheng T, Zhao Y, Bao J, Fan X, Sha L, Li Y, Zhu W, Xu L, Wang Y, Cheng Y, Zhang H, Kang H, Zhou Y, Wu D. Phylogeny and taxonomy of the polyploid species that contain St genome (Triticeae; Poaceae) based on four nuclear DNA and three chloroplast genes. BMC PLANT BIOLOGY 2025; 25:183. [PMID: 39934652 DOI: 10.1186/s12870-025-06179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND The genus Pseudoroegneria (Nevski) Á.Löve contributes the St genome for more than 60% of perennial Triticeae species. However, the strong dominant character of the St genome makes it challenging to distinguish each species and/or even genus based on single or combined morphological traits. Moreover, the phylogeny and taxonomy of the St-genome containing polyploid genera remain controversial. RESULTS In this study, we used nuclear and chloroplast DNA-based phylogenetic analyses to reveal the systematic relationships between the St-genome containing polyploid species. The maximum likelihood (ML) tree based on nuclear ribosomal internal transcribed spacer region (nrITS) and three single-copy nuclear genes data (Acc1 + Pgk1 + DMC1) showed that polyploid species with the St genome were separated into seven genera with StStHH, StStYY, StStYYHH, StStYYPP, StStYYWW, StStPP, and StStEE genome constitutions, moreover, the polyploid species in Caucasus, America, and Australia have independent polyploidization events. The ML tree for the chloroplast DNA fragments (matK + rbcL + trnL-trnF) displayed that the P genome served as a maternal donor of Kengyilia melanthera and K. dingqinensis from the Hengduan Mountains region, while the St or StY genome served as the maternal donor of other St-genome containing species. Herein, we reported the genomic constitution of Kengyilia tibetica, K. changduensis, and K. dingqinensis with the StStYYPP genome for the first time. CONCLUSIONS The St-genome-containing polyploid species should be treated as distinct genera according to different genome constitutions, and those species experienced independent allo-polyploidization events in different distribution regions and had two relatively independent maternal origins from the P or St/StY genomes. Besides, the Xp genome might have contributed to the unknown Y genome formation.
Collapse
Affiliation(s)
- Xiaoyang Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tingting Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuxin Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junhao Bao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yinghui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lili Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
2
|
Fang G, Jiang H, Zhang J, Wang R, Chen X, Hu T, Wu X, Ru Z. Characterization of the complete chloroplast genome of Chasmanthium latifolium (Michx.) H.O.Yates, 1966 (Poaceae). Mitochondrial DNA B Resour 2025; 10:155-161. [PMID: 39912108 PMCID: PMC11792151 DOI: 10.1080/23802359.2025.2460781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Chasmanthium latifolium (Michx.) H.O.Yates is a popular ornamental plant native to southeastern North America. Genomic data and genetic studies related to Chasmanthium latifolium are limited. Therefore, the complete chloroplast genome of Chasmanthium latifolium was sequenced, assembled, and characterized in this study. The complete chloroplast genome was 138,934 bp in length and contained 105 unique genes (77 protein-coding genes, 24 tRNA genes, and 4 rRNA genes). Phylogenetic analyses showed that Chasmanthium latifolium and Chasmanthium laxum clustered into a separate clade with the closest affinity to the clade comprising Zeugites pittieri Hack and Lophatherum gracile Brongn. In conclusion, our study describes the complete chloroplast genome of Chasmanthium latifolium for the first time, contributing to a better understanding of its taxonomy and evolution.
Collapse
Affiliation(s)
- Ge Fang
- Center of Wheat Research, Henan Institute of Science and Technology, Xinxiang, China
- School of Agriculture, Henan Key Laboratory of Hybrid Wheat, Xinxiang, China
- Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Hao Jiang
- Center of Wheat Research, Henan Institute of Science and Technology, Xinxiang, China
- School of Agriculture, Henan Key Laboratory of Hybrid Wheat, Xinxiang, China
- Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Jinting Zhang
- Center of Wheat Research, Henan Institute of Science and Technology, Xinxiang, China
- School of Agriculture, Henan Key Laboratory of Hybrid Wheat, Xinxiang, China
- Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Ren Wang
- Center of Wheat Research, Henan Institute of Science and Technology, Xinxiang, China
- School of Agriculture, Henan Key Laboratory of Hybrid Wheat, Xinxiang, China
- Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Xiangdong Chen
- Center of Wheat Research, Henan Institute of Science and Technology, Xinxiang, China
- School of Agriculture, Henan Key Laboratory of Hybrid Wheat, Xinxiang, China
- Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Tiezhu Hu
- Center of Wheat Research, Henan Institute of Science and Technology, Xinxiang, China
- School of Agriculture, Henan Key Laboratory of Hybrid Wheat, Xinxiang, China
- Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Xiaojun Wu
- Center of Wheat Research, Henan Institute of Science and Technology, Xinxiang, China
- School of Agriculture, Henan Key Laboratory of Hybrid Wheat, Xinxiang, China
- Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| | - Zhengang Ru
- Center of Wheat Research, Henan Institute of Science and Technology, Xinxiang, China
- School of Agriculture, Henan Key Laboratory of Hybrid Wheat, Xinxiang, China
- Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, China
| |
Collapse
|
3
|
Peirce ES, Evers B, Winn ZJ, Raupp WJ, Guttieri M, Fritz AK, Poland J, Akhunov E, Haley S, Mason E, Nachappa P. Identifying novel sources of resistance to wheat stem sawfly in five wild wheat species. PEST MANAGEMENT SCIENCE 2024; 80:2976-2990. [PMID: 38318926 DOI: 10.1002/ps.8008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND The wheat stem sawfly (WSS, Cephus cinctus) is a major pest of wheat (Triticum aestivum) and can cause significant yield losses. WSS damage results from stem boring and/or cutting, leading to the lodging of wheat plants. Although solid-stem wheat genotypes can effectively reduce larval survival, they may have lower yields than hollow-stem genotypes and show inconsistent solidness expression. Because of limited resistance sources to WSS, evaluating diverse wheat germplasm for novel resistance genes is crucial. We evaluated 91 accessions across five wild wheat species (Triticum monococcum, T. urartu, T. turgidum, T. timopheevii, and Aegilops tauschii) and common wheat cultivars (T. aestivum) for antixenosis (host selection) and antibiosis (host suitability) to WSS. Host selection was measured as the number of eggs after adult oviposition, and host suitability was determined by examining the presence or absence of larval infestation within the stem. The plants were grown in the greenhouse and brought to the field for WSS infestation. In addition, a phylogenetic analysis was performed to determine the relationship between the WSS traits and phylogenetic clustering. RESULTS Overall, Ae. tauschii, T. turgidum and T. urartu had lower egg counts and larval infestation than T. monococcum, and T. timopheevii. T. monococcum, T. timopheevii, T. turgidum, and T. urartu had lower larval weights compared with T. aestivum. CONCLUSION This study shows that wild relatives of wheat could be a valuable source of alleles for enhancing resistance to WSS and identifies specific germplasm resources that may be useful for breeding. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Erika S Peirce
- Rangeland Resources and Systems Research Unit, USDA-ARS, Fort Collins, CO, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Zachary J Winn
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - W John Raupp
- Wheat Genetics Resource Center and Department of Plant Pathology, Throckmorton Hall, Kansas Wheat Innovation Center, Manhattan, KS, USA
| | - Mary Guttieri
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Allan K Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Jesse Poland
- King Abdullah University of Science and Technology, Center for Desert Agriculture, KAUST Thuwal, Kingdom of Saudi Arabia
| | - Eduard Akhunov
- Wheat Genetics Resource Center and Department of Plant Pathology, Throckmorton Hall, Kansas Wheat Innovation Center, Manhattan, KS, USA
| | - Scott Haley
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Esten Mason
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Wang Y, Wang Z, Chen Y, Lan T, Wang X, Liu G, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Guo W, Peng H. Genomic insights into the origin and evolution of spelt (Triticum spelta L.) as a valuable gene pool for modern wheat breeding. PLANT COMMUNICATIONS 2024; 5:100883. [PMID: 38491771 PMCID: PMC11121738 DOI: 10.1016/j.xplc.2024.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Spelt (Triticum aestivum ssp. spelta) is an important wheat subspecies mainly cultivated in Europe before the 20th century that has contributed to modern wheat breeding as a valuable genetic resource. However, relatively little is known about the origins and maintenance of spelt populations. Here, using resequencing data from 416 worldwide wheat accessions, including representative spelt wheat, we demonstrate that European spelt emerged when primitive hexaploid wheat spread to the west and hybridized with pre-settled domesticated emmer, the putative maternal donor. Genomic introgression regions from domesticated emmer confer spelt's primitive morphological characters used for species taxonomy, such as tenacious glumes and later flowering. We propose a haplotype-based "spelt index" to identify spelt-type wheat varieties and to quantify utilization of the spelt gene pool in modern wheat cultivars. This study reveals the genetic basis for the establishment of the spelt wheat subspecies in a specific ecological niche and the vital role of the spelt gene pool as a unique germplasm resource in modern wheat breeding.
Collapse
Affiliation(s)
- Yongfa Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Tianyu Lan
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China; Institute for Plant Genetics, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Xiaobo Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Gang Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Yadav IS, Singh N, Wu S, Raupp J, Wilson DL, Rawat N, Gill BS, Poland J, Tiwari VK. Exploring genetic diversity of wild and related tetraploid wheat species Triticum turgidum and Triticum timopheevii. J Adv Res 2023; 48:47-60. [PMID: 36084813 PMCID: PMC10248793 DOI: 10.1016/j.jare.2022.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION The domestication bottleneck has reduced genetic diversity inwheat, necessitating the use of wild relatives in breeding programs. Wild tetraploid wheat are widely used in the breeding programs but with morphological characters, it is difficult to distinguish these, resulting in misclassification/mislabeling or duplication of accessions in the Gene bank. OBJECTIVES The study aims to exploreGenotyping by sequencing (GBS) to characterize wild and domesticated tetraploid wheat accessions to generate a core set of accessions to be used in the breeding program. METHODS TASSEL-GBS pipeline was used for SNP discovery, fastStructure was used to determine the population structure and PowerCore was used to generate a core sets. Nucleotide diversity matrices of Nie's and F-statistics (FST) index were used to determine the center of genetic diversity. RESULTS We found 65 % and 47 % duplicated accessions in Triticum timopheevii and T. turgidum respectively. Genome-wide nucleotide diversity and FST scan uncovered a lower intra and higher inter-species differentiation. Distinct FST regions were identified in genomic regions belonging to domestication genes: non-brittle rachis (Btr1) and vernalization (VRN-1).Our results suggest that Israel, Jordan, Syria, and Lebanonas the hub of genetic diversity of wild emmer;Turkey, and Georgia for T. durum; and Iraq, Azerbaijan, and Armenia for theT. timopheevii. Identified core set accessions preserved more than 93 % of the available genetic diversity. Genome wide association study (GWAS) indicated the potential chromosomal segment for resistance to leaf rust in T. timopheevii. CONCLUSION The present study explored the potential of GBS technology in data reduction while maintaining the significant genetic diversity of the species. Wild germplasm showed more differentiation than domesticated accessions, indicating the availability of sufficient diversity for crop improvement. With reduced complexity, the core set preserves the genetic diversity of the gene bank collections and will aid in a more robust characterization of wild germplasm.
Collapse
Affiliation(s)
- Inderjit S. Yadav
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | | | - Shuangye Wu
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Jon Raupp
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Duane L. Wilson
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Nidhi Rawat
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Bikram S. Gill
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State University, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Jesse Poland
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Vijay K. Tiwari
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
6
|
Piña JS, Orozco-Arias S, Tobón-Orozco N, Camargo-Forero L, Tabares-Soto R, Guyot R. G-SAIP: Graphical Sequence Alignment Through Parallel Programming in the Post-Genomic Era. Evol Bioinform Online 2023; 19:11769343221150585. [PMID: 36703866 PMCID: PMC9871978 DOI: 10.1177/11769343221150585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/22/2023] Open
Abstract
A common task in bioinformatics is to compare DNA sequences to identify similarities between organisms at the sequence level. An approach to such comparison is the dot-plots, a 2-dimensional graphical representation to analyze DNA or protein alignments. Dot-plots alignment software existed before the sequencing revolution, and now there is an ongoing limitation when dealing with large-size sequences, resulting in very long execution times. High-Performance Computing (HPC) techniques have been successfully used in many applications to reduce computing times, but so far, very few applications for graphical sequence alignment using HPC have been reported. Here, we present G-SAIP (Graphical Sequence Alignment in Parallel), a software capable of spawning multiple distributed processes on CPUs, over a supercomputing infrastructure to speed up the execution time for dot-plot generation up to 1.68× compared with other current fastest tools, improve the efficiency for comparative structural genomic analysis, phylogenetics because the benefits of pairwise alignments for comparison between genomes, repetitive structure identification, and assembly quality checking.
Collapse
Affiliation(s)
- Johan S. Piña
- Department of Data Science, People
Contact, Manizales, Caldas, Colombia,Department of Computer Science,
Universidad Autónoma de Manizales, Manizales, Caldas, Colombia,Johan S. Piña, Department of Computer
Science, Universidad Autónoma de Manizales, Antigua estación del ferrocarril,
Manizales, Caldas 170004, Colombia.
| | - Simon Orozco-Arias
- Department of Computer Science,
Universidad Autónoma de Manizales, Manizales, Caldas, Colombia,Department of Systems and Informatics,
Universidad de Caldas, Manizales, Caldas, Colombia
| | - Nicolas Tobón-Orozco
- Department of Computer Science,
Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| | | | - Reinel Tabares-Soto
- Department of Electronics and
Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia
| | - Romain Guyot
- Department of Electronics and
Automation, Universidad Autónoma de Manizales, Manizales, Caldas, Colombia,Institut de Recherche pour le
Développement, CIRAD, University of Montpellier, Montpellier, France
| |
Collapse
|
7
|
Molecular characterization and evolutionary relationships of avenin-like b gene in Aegilops speltoides. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Zeibig F, Kilian B, Frei M. The grain quality of wheat wild relatives in the evolutionary context. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4029-4048. [PMID: 34919152 PMCID: PMC9729140 DOI: 10.1007/s00122-021-04013-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/06/2021] [Indexed: 05/17/2023]
Abstract
KEY MESSAGE We evaluated the potential of wheat wild relatives for the improvement in grain quality characteristics including micronutrients (Fe, Zn) and gluten and identified diploid wheats and the timopheevii lineage as the most promising resources. Domestication enabled the advancement of civilization through modification of plants according to human requirements. Continuous selection and cultivation of domesticated plants induced genetic bottlenecks. However, ancient diversity has been conserved in crop wild relatives. Wheat (Triticum aestivum L.; Triticum durum Desf.) is one of the most important staple foods and was among the first domesticated crop species. Its evolutionary diversity includes diploid, tetraploid and hexaploid species from the Triticum and Aegilops taxa and different genomes, generating an AA, BBAA/GGAA and BBAADD/GGAAAmAm genepool, respectively. Breeding and improvement in wheat altered its grain quality. In this review, we identified evolutionary patterns and the potential of wheat wild relatives for quality improvement regarding the micronutrients Iron (Fe) and Zinc (Zn), the gluten storage proteins α-gliadins and high molecular weight glutenin subunits (HMW-GS), and the secondary metabolite phenolics. Generally, the timopheevii lineage has been neglected to date regarding grain quality studies. Thus, the timopheevii lineage should be subject to grain quality research to explore the full diversity of the wheat gene pool.
Collapse
Affiliation(s)
- Frederike Zeibig
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding I, Justus-Liebig-University, 35392, Giessen, Germany
| | | | - Michael Frei
- Department of Agronomy and Crop Physiology, Institute of Agronomy and Plant Breeding I, Justus-Liebig-University, 35392, Giessen, Germany.
| |
Collapse
|
9
|
Nasiri A, Kazempour-Osaloo S, Hamzehee B, Bull RD, Saarela JM. A phylogenetic analysis of Bromus (Poaceae: Pooideae: Bromeae) based on nuclear ribosomal and plastid data, with a focus on Bromus sect. Bromus. PeerJ 2022; 10:e13884. [PMID: 36193423 PMCID: PMC9526414 DOI: 10.7717/peerj.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023] Open
Abstract
To investigate phylogenetic relationships among and within major lineages of Bromus, with focus on Bromus sect. Bromus, we analyzed DNA sequences from two nuclear ribosomal (ITS, ETS) and two plastid (rpl32-trnLUAG , matK) regions. We sampled 103 ingroup accessions representing 26 taxa of B. section Bromus and 15 species of other Bromus sections. Our analyses confirm the monophyly of Bromus s.l. and identify incongruence between nuclear ribosomal and plastid data partitions for relationships within and among major Bromus lineages. Results support classification of B. pumilio and B. gracillimus within B. sect. Boissiera and B. sect. Nevskiella, respectively. These species are sister groups and are closely related to B. densus (B. sect. Mexibromus) in nrDNA trees and Bromus sect. Ceratochloa in plastid trees. Bromus sect. Bromopsis is paraphyletic. In nrDNA trees, species of Bromus sects. Bromopsis, Ceratochloa, Neobromus, and Genea plus B. rechingeri of B. sect. Bromus form a clade, in which B. tomentellus is sister to a B. sect. Genea-B. rechingeri clade. In the plastid trees, by contrast, B. sect. Bromopsis species except B. tomentosus form a clade, and B. tomentosus is sister to a clade comprising B. sect. Bromus and B. sect. Genea species. Affinities of B. gedrosianus, B. pulchellus, and B. rechingeri (members of the B. pectinatus complex), as well as B. oxyodon and B. sewerzowii, are discordant between nrDNA and plastid trees. We infer these species may have obtained their plastomes via chloroplast capture from species of B. sect. Bromus and B. sect. Genea. Within B. sect. Bromus, B. alopecuros subsp. caroli-henrici, a clade comprising B. hordeaceus and B. interruptus, and B. scoparius are successive sister groups to the rest of the section in the nrDNA phylogeny. Most relationships among the remaining species of B. sect. Bromus are unresolved in the nrDNA and plastid trees. Given these results, we infer that most B. sect. Bromus species likely diversified relatively recently. None of the subdivisional taxa proposed for Bromus sect. Bromus over the last century correspond to natural groups identified in our phylogenetic analyses except for a group including B. hordeaceus and B. interruptus.
Collapse
Affiliation(s)
- Akram Nasiri
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran,Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Shahrokh Kazempour-Osaloo
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnam Hamzehee
- Botany Research Division, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Roger D. Bull
- Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Jeffery M. Saarela
- Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Comparative and Phylogenetic Analysis of Complete Chloroplast Genomes in Leymus (Triticodae, Poaceae). Genes (Basel) 2022; 13:genes13081425. [PMID: 36011336 PMCID: PMC9408388 DOI: 10.3390/genes13081425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
Leymus is a perennial genus that belongs to the tribe Triticeae (Poaceae) which has an adaptive capacity to ecological conditions and strong resistance to cold, drought, and salinity. Most Leymus species are fine herbs that can be used for agriculture, conservation, and landscaping. Due to confusion taxonomy within genera, the complete chloroplast (cp) genome of 13 Leymus species was sequenced, assembled, and compared with those of three other previously published Leymus species (Leymus condensatus, Leymus angustus, and Leymus mollis) to clarify the issue. Overall, the whole cp genome size ranged between 135,057 (L. condensatus) and 136,906 bp (Leymus coreanus) and showed a typical quadripartite structure. All studied species had 129 genes, including 83 protein-coding genes, 38 transfer RNAs, and 8 ribosomal RNAs. In total, 800 tandem repeats and 707 SSR loci were detected, most of which were distributed in the large single-copy region, followed by the inverted repeat (IR) and small single-copy regions. The sequence identity of all sequences was highly similar, especially concerning the protein-coding and IR regions; in particular, the protein-coding regions were significantly similar to those in the IR regions, regardless of small sequence differences in the whole cp genome. Moreover, the coding regions were more conserved than the non-coding regions. Comparisons of the IR boundaries showed that IR contraction and expansion events were reflected in different locations of rpl22, rps19, ndhH, and psbA genes. The close phylogenetic relationship of Leymus and Psathyrostachys indicated that Psathyrostachys possibly is the donor of the Ns genome sequence identified in Leymus. Altogether, the complete cp genome sequence of Leymus will lay a solid foundation for future population genetics and phylogeography studies, as well as for the analysis of the evolution of economically valuable plants.
Collapse
|
11
|
Salina E, Muterko A, Kiseleva A, Liu Z, Korol A. Dissection of Structural Reorganization of Wheat 5B Chromosome Associated With Interspecies Recombination Suppression. FRONTIERS IN PLANT SCIENCE 2022; 13:884632. [PMID: 36340334 PMCID: PMC9629394 DOI: 10.3389/fpls.2022.884632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/08/2022] [Indexed: 06/16/2023]
Abstract
Chromosomal rearrangements that lead to recombination suppression can have a significant impact on speciation, and they are also important for breeding. The regions of recombination suppression in wheat chromosome 5B were identified based on comparisons of the 5B map of a cross between the Chinese Spring (CS) variety of hexaploid wheat and CS-5Bdic (genotype CS with 5B substituted with its homologue from tetraploid Triticum dicoccoides) with several 5B maps of tetraploid and hexaploid wheat. In total, two regions were selected in which recombination suppression occurred in cross CS × CS-5Bdic when compared with other maps: one on the short arm, 5BS_RS, limited by markers BS00009810/BS00022336, and the second on the long arm, 5BL_RS, between markers Ra_c10633_2155 and BS00087043. The regions marked as 5BS_RS and 5BL_RS, with lengths of 5 Mb and 3.6 Mb, respectively, were mined from the 5B pseudomolecule of CS and compared to the homoeologous regions (7.6 and 3.8 Mb, respectively) of the 5B pseudomolecule of Zavitan (T. dicoccoides). It was shown that, in the case of 5BS_RS, the local heterochromatin islands determined by the satellite DNA (119.2) and transposable element arrays, as well as the dissimilarity caused by large insertions/deletions (chromosome rearrangements) between 5BSs aestivum/dicoccoides, are likely the key determinants of recombination suppression in the region. Two major and two minor segments with significant loss of similarity were recognized within the 5BL_RS region. It was shown that the loss of similarity, which can lead to suppression of recombination in the 5BL_RS region, is caused by chromosomal rearrangements, driven by the activity of mobile genetic elements (both DNA transposons and long terminal repeat retrotransposons) and their divergence during evolution. It was noted that the regions marked as 5BS_RS and 5BL_RS are associated with chromosomal rearrangements identified earlier by С-banding analysis of intraspecific polymorphism of tetraploid emmer wheat. The revealed divergence in 5BS_RS and 5BL_RS may be a consequence of interspecific hybridization, plant genetic adaptation, or both.
Collapse
Affiliation(s)
- Elena Salina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - Alexander Muterko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Antonina Kiseleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
- Kurchatov Genomic Center of ICG SB RAS, Novosibirsk, Russia
| | - Zhiyong Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Abraham Korol
- Institute of Evolution, University of Haifa, Haifa, Israel
| |
Collapse
|
12
|
Sharbrough J, Conover JL, Fernandes Gyorfy M, Grover CE, Miller ER, Wendel JF, Sloan DB. Global Patterns of Subgenome Evolution in Organelle-Targeted Genes of Six Allotetraploid Angiosperms. Mol Biol Evol 2022; 39:msac074. [PMID: 35383845 PMCID: PMC9040051 DOI: 10.1093/molbev/msac074] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Whole-genome duplications (WGDs) are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes on cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend on successful interaction between the 3,000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between the nuclear and cytoplasmic genes that were inherited from different species. Because the cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary "mismatches" between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to the accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We report evidence from six independently formed allotetraploids that the subgenomes exhibit unequal rates of protein-sequence evolution, but we found no evidence that cytonuclear incompatibilities result in altered evolutionary trajectories of the paternal homoeologs of organelle-targeted genes. The analyses of gene content revealed mixed evidence for whether the organelle-targeted genes are lost more rapidly than the non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that the allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Justin L. Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Fu T, Xu C, Li H, Wu X, Tang M, Xiao B, Lv R, Zhang Z, Gao X, Liu B, Yang C. Salinity Tolerance in a Synthetic Allotetraploid Wheat (S lS lAA) Is Similar to Its Higher Tolerant Parent Aegilops longissima (S lS l) and Linked to Flavonoids Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:835498. [PMID: 35371151 PMCID: PMC8968947 DOI: 10.3389/fpls.2022.835498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Allotetraploidization between A and S (closely related to B) genome species led to the speciation of allotetraploid wheat (genome BBAA). However, the immediate metabolic outcomes and adaptive changes caused by the allotetraploidization event are poorly understood. Here, we investigated how allotetraploidization affected salinity tolerance using a synthetic allotetraploid wheat line (genome SlSlAA, labeled as 4x), its Aegilops longissima (genome SlSl, labeled as SlSl) and Triticum urartu (AA genome, labeled as AA) parents. We found that the degree of salinity tolerance of 4x was similar to its SlSl parent, and both were substantially more tolerant to salinity stress than AA. This suggests that the SlSl subgenome exerts a dominant effect for this trait in 4x. Compared with SlSl and 4x, the salinity-stressed AA plants did not accumulate a higher concentration of Na+ in leaves, but showed severe membrane peroxidation and accumulated a higher concentration of ROS (H2O2 and O2 ⋅-) and a lesser concentration of flavonoids, indicating that ROS metabolism plays a key role in saline sensitivity. Exogenous flavonoid application to roots of AA plants significantly relieved salinity-caused injury. Our results suggest that the higher accumulation of flavonoids in SlSl may contribute to ROS scavenging and salinity tolerance, and these physiological properties were stably inherited by the nascent allotetraploid SlSlAA.
Collapse
|
14
|
Li LF, Zhang ZB, Wang ZH, Li N, Sha Y, Wang XF, Ding N, Li Y, Zhao J, Wu Y, Gong L, Mafessoni F, Levy AA, Liu B. Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. MOLECULAR PLANT 2022; 15:488-503. [PMID: 34979290 DOI: 10.1016/j.molp.2021.12.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 05/23/2023]
Abstract
Common wheat (Triticum aestivum, BBAADD) is a major staple food crop worldwide. The diploid progenitors of the A and D subgenomes have been unequivocally identified; that of B, however, remains ambiguous and controversial but is suspected to be related to species of Aegilops, section Sitopsis. Here, we report the assembly of chromosome-level genome sequences of all five Sitopsis species, namely Aegilops bicornis, Ae. longissima, Ae. searsii, Ae. sharonensis, and Ae. speltoides, as well as the partial assembly of the Amblyopyrum muticum (synonym Aegilops mutica) genome for phylogenetic analysis. Our results reveal that the donor of the common wheat B subgenome is a distinct, and most probably extinct, diploid species that diverged from an ancestral progenitor of the B lineage to which the still extant Ae. speltoides and Am. muticum belong. In addition, we identified interspecific genetic introgressions throughout the evolution of the Triticum/Aegilops species complex. The five Sitopsis species have various assembled genome sizes (4.11-5.89 Gb) with high proportions of repetitive sequences (85.99%-89.81%); nonetheless, they retain high collinearity with other genomes or subgenomes of species in the Triticum/Aegilops complex. Differences in genome size were primarily due to independent post-speciation amplification of transposons. We also identified a set of Sitopsis genes pertinent to important agronomic traits that can be harnessed for wheat breeding. These newly assembled genome resources provide a new roadmap for evolutionary and genetic studies of the Triticum/Aegilops complex, as well as for wheat improvement.
Collapse
Affiliation(s)
- Lin-Feng Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Zhi-Bin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China; Department of Plant and Environmental Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zhen-Hui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yan Sha
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Xin-Feng Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ning Ding
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yang Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Fabrizio Mafessoni
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Avraham A Levy
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
15
|
The Plastome Sequences of Triticum sphaerococcum (ABD) and Triticum turgidum subsp. durum (AB) Exhibit Evolutionary Changes, Structural Characterization, Comparative Analysis, Phylogenomics and Time Divergence. Int J Mol Sci 2022; 23:ijms23052783. [PMID: 35269924 PMCID: PMC8911259 DOI: 10.3390/ijms23052783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/10/2022] Open
Abstract
The mechanism and course of Triticum plastome evolution is currently unknown; thus, it remains unclear how Triticum plastomes evolved during recent polyploidization. Here, we report the complete plastomes of two polyploid wheat species, Triticum sphaerococcum (AABBDD) and Triticum turgidum subsp. durum (AABB), and compare them with 19 available and complete Triticum plastomes to create the first map of genomic structural variation. Both T. sphaerococcum and T. turgidum subsp. durum plastomes were found to have a quadripartite structure, with plastome lengths of 134,531 bp and 134,015 bp, respectively. Furthermore, diploid (AA), tetraploid (AB, AG) and hexaploid (ABD, AGAm) Triticum species plastomes displayed a conserved gene content and commonly harbored an identical set of annotated unique genes. Overall, there was a positive correlation between the number of repeats and plastome size. In all plastomes, the number of tandem repeats was higher than the number of palindromic and forward repeats. We constructed a Triticum phylogeny based on the complete plastomes and 42 shared genes from 71 plastomes. We estimated the divergence of Hordeum vulgare from wheat around 11.04-11.9 million years ago (mya) using a well-resolved plastome tree. Similarly, Sitopsis species diverged 2.8-2.9 mya before Triticum urartu (AA) and Triticum monococcum (AA). Aegilops speltoides was shown to be the maternal donor of polyploid wheat genomes and diverged ~0.2-0.9 mya. The phylogeny and divergence time estimates presented here can act as a reference framework for future studies of Triticum evolution.
Collapse
|
16
|
Wicker T, Stritt C, Sotiropoulos AG, Poretti M, Pozniak C, Walkowiak S, Gundlach H, Stein N. Transposable Element Populations Shed Light on the Evolutionary History of Wheat and the Complex Co-Evolution of Autonomous and Non-Autonomous Retrotransposons. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100022. [PMID: 36619351 PMCID: PMC9744471 DOI: 10.1002/ggn2.202100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 01/11/2023]
Abstract
Wheat has one of the largest and most repetitive genomes among major crop plants, containing over 85% transposable elements (TEs). TEs populate genomes much in the way that individuals populate ecosystems, diversifying into different lineages, sub-families and sub-populations. The recent availability of high-quality, chromosome-scale genome sequences from ten wheat lines enables a detailed analysis how TEs evolved in allohexaploid wheat, its diploids progenitors, and in various chromosomal haplotype segments. LTR retrotransposon families evolved into distinct sub-populations and sub-families that were active in waves lasting several hundred thousand years. Furthermore, It is shown that different retrotransposon sub-families were active in the three wheat sub-genomes, making them useful markers to study and date polyploidization events and chromosomal rearrangements. Additionally, haplotype-specific TE sub-families are used to characterize chromosomal introgressions in different wheat lines. Additionally, populations of non-autonomous TEs co-evolved over millions of years with their autonomous partners, leading to complex systems with multiple types of autonomous, semi-autonomous and non-autonomous elements. Phylogenetic and TE population analyses revealed the relationships between non-autonomous elements and their mobilizing autonomous partners. TE population analysis provided insights into genome evolution of allohexaploid wheat and genetic diversity of species, and may have implication for future crop breeding.
Collapse
Affiliation(s)
- Thomas Wicker
- Department of Plant and Microbial BiologyUniversity of ZurichZurich8008Switzerland
| | - Christoph Stritt
- Department of Plant and Microbial BiologyUniversity of ZurichZurich8008Switzerland
- Present address:
Department of Medical Parasitology and Infection BiologySwiss Tropical and Public Health InstituteBasel4123Switzerland
- Present address:
University of BaselBasel4001Switzerland
| | | | - Manuel Poretti
- Department of Plant and Microbial BiologyUniversity of ZurichZurich8008Switzerland
| | - Curtis Pozniak
- Crop Development CentreUniversity of SaskatchewanSaskatoonSaskatchewanSK S7N 5A8Canada
| | - Sean Walkowiak
- Crop Development CentreUniversity of SaskatchewanSaskatoonSaskatchewanSK S7N 5A8Canada
- Grain Research LaboratoryCanadian Grain CommissionWinnipegManitobaR3C 3G8Canada
| | - Heidrun Gundlach
- PGSB Plant Genome and Systems BiologyHelmholtz Center MunichGerman Research Center for Environmental HealthNeuherberg85764Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Seeland06466Germany
- Center of Integrated Breeding Research (CiBreed)Department of Crop SciencesGeorg‐August‐UniversityGöttingen37075Germany
| |
Collapse
|
17
|
Badaeva ED, Konovalov FA, Knüpffer H, Fricano A, Ruban AS, Kehel Z, Zoshchuk SA, Surzhikov SA, Neumann K, Graner A, Hammer K, Filatenko A, Bogaard A, Jones G, Özkan H, Kilian B. Genetic diversity, distribution and domestication history of the neglected GGA tA t genepool of wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:755-776. [PMID: 34283259 PMCID: PMC8942905 DOI: 10.1007/s00122-021-03912-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/07/2021] [Indexed: 05/03/2023]
Abstract
We present a comprehensive survey of cytogenetic and genomic diversity of the GGAtAt genepool of wheat, thereby unlocking these plant genetic resources for wheat improvement. Wheat yields are stagnating around the world and new sources of genes for resistance or tolerances to abiotic traits are required. In this context, the tetraploid wheat wild relatives are among the key candidates for wheat improvement. Despite its potential huge value for wheat breeding, the tetraploid GGAtAt genepool is largely neglected. Understanding the population structure, native distribution range, intraspecific variation of the entire tetraploid GGAtAt genepool and its domestication history would further its use for wheat improvement. The paper provides the first comprehensive survey of genomic and cytogenetic diversity sampling the full breadth and depth of the tetraploid GGAtAt genepool. According to the results obtained, the extant GGAtAt genepool consists of three distinct lineages. We provide detailed insights into the cytogenetic composition of GGAtAt wheats, revealed group- and population-specific markers and show that chromosomal rearrangements play an important role in intraspecific diversity of T. araraticum. The origin and domestication history of the GGAtAt lineages is discussed in the context of state-of-the-art archaeobotanical finds. We shed new light on the complex evolutionary history of the GGAtAt wheat genepool and provide the basis for an increased use of the GGAtAt wheat genepool for wheat improvement. The findings have implications for our understanding of the origins of agriculture in southwest Asia.
Collapse
Affiliation(s)
- Ekaterina D Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Fedor A Konovalov
- Independent Clinical Bioinformatics Laboratory, Moscow, Russia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Helmut Knüpffer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Agostino Fricano
- Council for Agricultural Research and Economics - Research Centre for Genomics & Bioinformatics, Fiorenzuola d'Arda (PC), Italy
| | - Alevtina S Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Zakaria Kehel
- International Center for the Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Svyatoslav A Zoshchuk
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Karl Hammer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Anna Filatenko
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Independent Researcher, St. Petersburg, Russia
| | | | - Glynis Jones
- Department of Archaeology, University of Sheffield, Sheffield, UK
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana, Turkey
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Global Crop Diversity Trust, Bonn, Germany
| |
Collapse
|
18
|
Sharma S, Schulthess AW, Bassi FM, Badaeva ED, Neumann K, Graner A, Özkan H, Werner P, Knüpffer H, Kilian B. Introducing Beneficial Alleles from Plant Genetic Resources into the Wheat Germplasm. BIOLOGY 2021; 10:982. [PMID: 34681081 PMCID: PMC8533267 DOI: 10.3390/biology10100982] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022]
Abstract
Wheat (Triticum sp.) is one of the world's most important crops, and constantly increasing its productivity is crucial to the livelihoods of millions of people. However, more than a century of intensive breeding and selection processes have eroded genetic diversity in the elite genepool, making new genetic gains difficult. Therefore, the need to introduce novel genetic diversity into modern wheat has become increasingly important. This review provides an overview of the plant genetic resources (PGR) available for wheat. We describe the most important taxonomic and phylogenetic relationships of these PGR to guide their use in wheat breeding. In addition, we present the status of the use of some of these resources in wheat breeding programs. We propose several introgression schemes that allow the transfer of qualitative and quantitative alleles from PGR into elite germplasm. With this in mind, we propose the use of a stage-gate approach to align the pre-breeding with main breeding programs to meet the needs of breeders, farmers, and end-users. Overall, this review provides a clear starting point to guide the introgression of useful alleles over the next decade.
Collapse
Affiliation(s)
- Shivali Sharma
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Albert W. Schulthess
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Filippo M. Bassi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco;
| | - Ekaterina D. Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia;
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey;
| | - Peter Werner
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| | - Helmut Knüpffer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstr. 3, D-06466 Seeland, Germany; (A.W.S.); (K.N.); (A.G.); (H.K.)
| | - Benjamin Kilian
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, D-53113 Bonn, Germany; (S.S.); (P.W.)
| |
Collapse
|
19
|
Chen S, Yan H, Sha L, Chen N, Zhang H, Zhou Y, Fan X. Chloroplast Phylogenomic Analyses Resolve Multiple Origins of the Kengyilia Species (Poaceae: Triticeae) via Independent Polyploidization Events. FRONTIERS IN PLANT SCIENCE 2021; 12:682040. [PMID: 34421940 PMCID: PMC8377392 DOI: 10.3389/fpls.2021.682040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Kengyilia is a group of allohexaploid species that arose from two hybridization events followed by genome doubling of three ancestral diploid species with different genomes St, Y, and P in the Triticeae. Estimating the phylogenetic relationship in resolution of the maternal lineages has been difficult, owing to the extremely low rate of sequence divergence. Here, phylogenetic reconstructions based on the plastome sequences were used to explore the role of maternal progenitors in the establishment of Kengyilia polyploid species. The plastome sequences of 11 Kengyilia species were analyzed together with 12 tetraploid species (PP, StP, and StY) and 33 diploid taxa representing 20 basic genomes in the Triticeae. Phylogenomic analysis and genetic divergence patterns suggested that (1) Kengyilia is closely related to Roegneria, Pseudoroegneria, Agropyron, Lophopyrum, Thinopyrum, and Dasypyrum; (2) both the StY genome Roegneria tetraploids and the PP genome Agropyron tetraploids served as the maternal donors during the speciation of Kengyilia species; (3) the different Kengyilia species derived their StY genome from different Roegneria species. Multiple origins of species via independent polyploidization events have occurred in the genus Kengyilia, resulting in a maternal haplotype polymorphism. This helps explain the rich diversity and wide adaptation of polyploid species in the genus Kengyilia.
Collapse
Affiliation(s)
- Shiyong Chen
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an, China
| | - Ning Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
20
|
Fu YB. Characterizing chloroplast genomes and inferring maternal divergence of the Triticum-Aegilops complex. Sci Rep 2021; 11:15363. [PMID: 34321524 PMCID: PMC8319314 DOI: 10.1038/s41598-021-94649-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/13/2021] [Indexed: 11/09/2022] Open
Abstract
The Triticum (wheat)-Aegilops (goatgrass) complex has been extensively studied, but the evolutionary history of polyploid wheats has not been fully elucidated. The chloroplast (cp) with maternal inheritance and homoplasy can simplify the sequence-based evolutionary inferences, but informative inferences would require a complete and accurate cp genome sequence. In this study, 16 cp genomes representing five Aegilops and 11 Triticum species and subspecies were sequenced, assembled and annotated, yielding five novel circular cp genome sequences. Analyzing the assembled cp genomes revealed no marked differences in genome structure and gene arrangement across the assayed species. A polymorphism analysis of 72 published cp genome sequences representing 10 Aegilops and 15 Triticum species and subspecies detected 1183 SNPs and 1881 SSRs. More than 80% SNPs detected resided on the downstream and upstream gene regions and only 2.78% or less SNPs were predicted to be deleterious. The largest nucleotide diversity was observed in the short single-copy genomic region. Relatively weak selection pressure on cp coding genes was detected. Different phylogenetic analyses confirmed that the maternal divergence of the Triticum-Aegilops complex had three deep lineages each representing a diploid species with nuclear A, B, or D genome. Dating the maternal divergence yielded age estimates of divergence that matched well with those reported previously. The divergence between emmer and bread wheats occurred at 8200-11,200 years ago. These findings are useful for further genomic studies, provide insight into cp genome evolvability and allow for better understanding of the maternal divergence of the Triticum-Aegilops complex.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| |
Collapse
|
21
|
Badaeva ED, Chikida NN, Fisenko AN, Surzhikov SA, Belousova MK, Özkan H, Dragovich AY, Kochieva EZ. Chromosome and Molecular Analyses Reveal Significant Karyotype Diversity and Provide New Evidence on the Origin of Aegilops columnaris. PLANTS (BASEL, SWITZERLAND) 2021; 10:956. [PMID: 34064905 PMCID: PMC8151338 DOI: 10.3390/plants10050956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
Aegilops columnaris Zhuk. is tetraploid grass species (2n = 4x = 28, UcUcXcXc) closely related to Ae. neglecta and growing in Western Asia and a western part of the Fertile Crescent. Genetic diversity of Ae. columnaris was assessed using C-banding, FISH, nuclear and chloroplast (cp) DNA analyses, and gliadin electrophoresis. Cytogenetically Ae. columnaris was subdivided into two groups, C-I and C-II, showing different karyotype structure, C-banding, and FISH patterns. C-I group was more similar to Ae. neglecta. All types of markers revealed significant heterogeneity in C-II group, although group C-I was also polymorphic. Two chromosomal groups were consistent with plastogroups identified in a current study based on sequencing of three chloroplast intergenic spacer regions. The similarity of group C-I of Ae. columnaris with Ae. neglecta and their distinctness from C-II indicate that divergence of the C-I group was associated with minor genome modifications. Group C-II could emerge from C-I relatively recently, probably due to introgression from another Aegilops species followed by a reorganization of the parental genomes. Most C-II accessions were collected from a very narrow geographic region, and they might originate from a common ancestor. We suggest that the C-II group is at the initial stage of species divergence and undergoing an extensive speciation process.
Collapse
Affiliation(s)
- Ekaterina D. Badaeva
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, GSP–1, 119991 Moscow, Russia; (A.N.F.); (A.Y.D.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Street 34, GSP–1, 119991 Moscow, Russia;
| | - Nadezhda N. Chikida
- Federal Research Center, N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street 44, 190121 St. Petersburg, Russia; (N.N.C.); (M.K.B.)
| | - Andrey N. Fisenko
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, GSP–1, 119991 Moscow, Russia; (A.N.F.); (A.Y.D.)
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Street 34, GSP–1, 119991 Moscow, Russia;
| | - Maria K. Belousova
- Federal Research Center, N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street 44, 190121 St. Petersburg, Russia; (N.N.C.); (M.K.B.)
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, 01330 Adana, Turkey;
| | - Alexandra Y. Dragovich
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, GSP–1, 119991 Moscow, Russia; (A.N.F.); (A.Y.D.)
| | - Elena Z. Kochieva
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 60 let Oktjabrya Prospect 7, Build. 1, 117312 Moscow, Russia;
| |
Collapse
|
22
|
Chen N, Sha LN, Wang YL, Yin LJ, Zhang Y, Wang Y, Wu DD, Kang HY, Zhang HQ, Zhou YH, Sun GL, Fan X. Variation in Plastome Sizes Accompanied by Evolutionary History in Monogenomic Triticeae (Poaceae: Triticeae). FRONTIERS IN PLANT SCIENCE 2021; 12:741063. [PMID: 34966398 PMCID: PMC8710740 DOI: 10.3389/fpls.2021.741063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/02/2021] [Indexed: 05/17/2023]
Abstract
To investigate the pattern of chloroplast genome variation in Triticeae, we comprehensively analyzed the indels in protein-coding genes and intergenic sequence, gene loss/pseudonization, intron variation, expansion/contraction in inverted repeat regions, and the relationship between sequence characteristics and chloroplast genome size in 34 monogenomic Triticeae plants. Ancestral genome reconstruction suggests that major length variations occurred in four-stem branches of monogenomic Triticeae followed by independent changes in each genus. It was shown that the chloroplast genome sizes of monogenomic Triticeae were highly variable. The chloroplast genome of Pseudoroegneria, Dasypyrum, Lophopyrum, Thinopyrum, Eremopyrum, Agropyron, Australopyrum, and Henradia in Triticeae had evolved toward size reduction largely because of pseudogenes elimination events and length deletion fragments in intergenic. The Aegilops/Triticum complex, Taeniatherum, Secale, Crithopsis, Herteranthelium, and Hordeum in Triticeae had a larger chloroplast genome size. The large size variation in major lineages and their subclades are most likely consequences of adaptive processes since these variations were significantly correlated with divergence time and historical climatic changes. We also found that several intergenic regions, such as petN-trnC and psbE-petL containing unique genetic information, which can be used as important tools to identify the maternal relationship among Triticeae species. Our results contribute to the novel knowledge of plastid genome evolution in Triticeae.
Collapse
Affiliation(s)
- Ning Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi-Ling Wang
- College of Life Science, Shanxi Normal University, Shanxi, China
| | - Ling-Juan Yin
- Lijiang Nationality Secondary Specialized School, Lijiang, China
| | - Yue Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dan-Dan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Gen-Lou Sun
- Saint Mary’s University, Halifax, NS, Canada
- *Correspondence: Gen-Lou Sun,
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Xing Fan,
| |
Collapse
|
23
|
Jiang Y, Yuan Z, Hu H, Ye X, Zheng Z, Wei Y, Zheng YL, Wang YG, Liu C. Differentiating homoploid hybridization from ancestral subdivision in evaluating the origin of the D lineage in wheat. THE NEW PHYTOLOGIST 2020; 228:409-414. [PMID: 32255512 DOI: 10.1111/nph.16578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| | - Haiyan Hu
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Xueling Ye
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| | - Zhi Zheng
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - You-Liang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - You-Gan Wang
- Science and Engineering Facility, Queensland University of Technology, Brisbane, Qld, 4000, Australia
| | - Chunji Liu
- CSIRO Agriculture and Food, St Lucia, Qld, 4067, Australia
| |
Collapse
|
24
|
Qiao J, Zhang X, Chen B, Huang F, Xu K, Huang Q, Huang Y, Hu Q, Wu X. Comparison of the cytoplastic genomes by resequencing: insights into the genetic diversity and the phylogeny of the agriculturally important genus Brassica. BMC Genomics 2020; 21:480. [PMID: 32660507 PMCID: PMC7359470 DOI: 10.1186/s12864-020-06889-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Background The genus Brassica mainly comprises three diploid and three recently derived allotetraploid species, most of which are highly important vegetable, oil or ornamental crops cultivated worldwide. Despite being extensively studied, the origination of B. napus and certain detailed interspecific relationships within Brassica genus remains undetermined and somewhere confused. In the current high-throughput sequencing era, a systemic comparative genomic study based on a large population is necessary and would be crucial to resolve these questions. Results The chloroplast DNA and mitochondrial DNA were synchronously resequenced in a selected set of Brassica materials, which contain 72 accessions and maximally integrated the known Brassica species. The Brassica genomewide cpDNA and mtDNA variations have been identified. Detailed phylogenetic relationships inside and around Brassica genus have been delineated by the cpDNA- and mtDNA- variation derived phylogenies. Different from B. juncea and B. carinata, the natural B. napus contains three major cytoplasmic haplotypes: the cam-type which directly inherited from B. rapa, polima-type which is close to cam-type as a sister, and the mysterious but predominant nap-type. Certain sparse C-genome wild species might have primarily contributed the nap-type cytoplasm and the corresponding C subgenome to B. napus, implied by their con-clustering in both phylogenies. The strictly concurrent inheritance of mtDNA and cpDNA were dramatically disturbed in the B. napus cytoplasmic male sterile lines (e.g., mori and nsa). The genera Raphanus, Sinapis, Eruca, Moricandia show a strong parallel evolutional relationships with Brassica. Conclusions The overall variation data and elaborated phylogenetic relationships provide further insights into genetic understanding of Brassica, which can substantially facilitate the development of novel Brassica germplasms.
Collapse
Affiliation(s)
- Jiangwei Qiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Xiaojun Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Biyun Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qian Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qiong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
25
|
Homoeologous exchanges occur through intragenic recombination generating novel transcripts and proteins in wheat and other polyploids. Proc Natl Acad Sci U S A 2020; 117:14561-14571. [PMID: 32518116 DOI: 10.1073/pnas.2003505117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recombination between homeologous chromosomes, also known as homeologous exchange (HE), plays a significant role in shaping genome structure and gene expression in interspecific hybrids and allopolyploids of several plant species. However, the molecular mechanisms that govern HEs are not well understood. Here, we studied HE events in the progeny of a nascent allotetraploid (genome AADD) derived from two diploid progenitors of hexaploid bread wheat using cytological and whole-genome sequence analyses. In total, 37 HEs were identified and HE junctions were mapped precisely. HEs exhibit typical patterns of homologous recombination hotspots, being biased toward low-copy, subtelomeric regions of chromosome arms and showing association with known recombination hotspot motifs. But, strikingly, while homologous recombination preferentially takes place upstream and downstream of coding regions, HEs are highly enriched within gene bodies, giving rise to novel recombinant transcripts, which in turn are predicted to generate new protein fusion variants. To test whether this is a widespread phenomenon, a dataset of high-resolution HE junctions was analyzed for allopolyploid Brassica, rice, Arabidopsis suecica, banana, and peanut. Intragenic recombination and formation of chimeric genes was detected in HEs of all species and was prominent in most of them. HE thus provides a mechanism for evolutionary novelty in transcript and protein sequences in nascent allopolyploids.
Collapse
|
26
|
Chen N, Chen WJ, Yan H, Wang Y, Kang HY, Zhang HQ, Zhou YH, Sun GL, Sha LN, Fan X. Evolutionary patterns of plastome uncover diploid-polyploid maternal relationships in Triticeae. Mol Phylogenet Evol 2020; 149:106838. [PMID: 32304825 DOI: 10.1016/j.ympev.2020.106838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 03/25/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
To investigate the diploid-polyploid relationships and the role of maternal progenitors in establishment of polyploid richness in Triticeae, 35 polyploids representing almost all genomic constitutions together with 48 diploid taxa representing 20 basic genomes in the tribe were analyzed. Phylogenomic reconstruction, genetic distance matrix, and nucleotide diversity patterns of plastome sequences indicated that (1) The maternal donor of the annual polyploid species with the U- and D-genome are related to extant Ae. umbellulata and Ae. tauschii, respectively. The maternal donor to the annual polyploid species with the S-, G-, and B-genome originated from the species of Sitopsis section of the genus Aegilops. The annual species with the Xe-containing polyploids were donated by Eremopyrum as the female parent; (2) Pseudoroegneria and Psathyrostachys were the maternal donor of perennial species with the St- and Ns-containing polyploids, respectively; (3) The Lophopyrum, Thinopyrum and Dasypyrum genomes contributed cytoplasm genome to Pseudoroegneria species as a result of incomplete lineage sorting and/or chloroplast captures, and these lineages were genetically transmitted to the St-containing polyploid species via polyploidization; (4) There is a reticulate relationship among the St-containing polyploid species. It can be suggested that genetic heterogeneity might associate with the richness of the polyploids in Triticeae.
Collapse
Affiliation(s)
- Ning Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Wen-Jie Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China; Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, Qinghai, China
| | - Hao Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Gen-Lou Sun
- Biology Department, Saint Mary's University, Halifax NS B3H 3C3, Canada
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| |
Collapse
|
27
|
Siniauskaya MG, Makarevich AM, Goloenko IM, Pankratov VS, Liaudanski AD, Danilenko NG, Lukhanina NV, Shimkevich AM, Davydenko OG. The study of organelle DNA variability in alloplasmic barley lines in the NGS era. Vavilovskii Zhurnal Genet Selektsii 2020; 24:12-19. [PMID: 33659776 PMCID: PMC7716555 DOI: 10.18699/vj19.589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Alloplasmic lines are a suitable model for studying molecular coevolution and interrelations between genetic systems of plant cells. Whole chloroplast (cp) and mitochondrial (mt) genome sequences were obtained by the MiSeq System (Illumina). Organelle DNA samples were prepared from a set of 12 alloplasmic barley lines with different cytoplasms of Hordeum vulgare ssp. spontaneum and H. vulgare ssp. vulgare, as well as from their paternal varieties. A bioinformatic approach for analysis of NGS data obtained on an organellar DNA mix has been developed and verified. A comparative study of Hordeum organelle genomes’ variability and disposition of polymorphic loci was conducted. Eight types of chloroplast DNA and 5 types of mitochondrial DNA were distinguished for the barley sample set examined. These results were compared with the previous data of a restriction fragment length polymorphism (RFLP) study of organelle DNAs for the same material. Formerly established data about a field evaluation of alloplasmic barley lines were revised in the light of information about organelle genomes gained after NGS. Totally 17 polymorphic loci were found at exons of chloroplast genomes. Seven of the SNPs were located in the genes of the Ndh complex. The nonsynonymous changes of nucleotides were detected in the matK, rpoC1, ndhK, ndhG and infA genes. Some of the SNPs detected are very similar in codon position and in the type of amino acid substitution to the places where RNA editing can occur. Thus, these results outline new perspectives for the future study of nuclear-cytoplasmic interactions in alloplasmic lines.
Collapse
Affiliation(s)
- M G Siniauskaya
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - A M Makarevich
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - I M Goloenko
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - V S Pankratov
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - A D Liaudanski
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - N G Danilenko
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - N V Lukhanina
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - A M Shimkevich
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - O G Davydenko
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
28
|
Su Q, Liu L, Zhao M, Zhang C, Zhang D, Li Y, Li S. The complete chloroplast genomes of seventeen Aegilops tauschii: genome comparative analysis and phylogenetic inference. PeerJ 2020; 8:e8678. [PMID: 32181055 PMCID: PMC7060751 DOI: 10.7717/peerj.8678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/03/2020] [Indexed: 11/20/2022] Open
Abstract
The D genome progenitor of bread wheat, Aegilops tauschii Cosson (DD, 2n = 2x = 14), which is naturally distributed in Central Eurasia, ranging from northern Syria and Turkey to western China, is considered a potential genetic resource for improving bread wheat. In this study, the chloroplast (cp) genomes of 17 Ae. tauschii accessions were reconstructed. The cp genome sizes ranged from 135,551 bp to 136,009 bp and contained a typical quadripartite structure of angiosperms. Within these genomes, we identified a total of 124 functional genes, including 82 protein-coding genes, 34 transfer RNA genes and eight ribosomal RNA genes, with 17 duplicated genes in the IRs. Although the comparative analysis revealed that the genomic structure (gene order, gene number and IR/SC boundary regions) is conserved, a few variant loci were detected, predominantly in the non-coding regions (intergenic spacer regions). The phylogenetic relationships determined based on the complete genome sequences were consistent with the hypothesis that Ae. tauschii populations in the Yellow River region of China originated in South Asia not Xinjiang province or Iran, which could contribute to more effective utilization of wild germplasm resources. Furthermore, we confirmed that Ae. tauschii was derived from monophyletic speciation rather than hybrid speciation at the cp genome level. We also identified four variable genomic regions, rpl32-trnL-UAG, ccsA-ndhD, rbcL-psaI and rps18-rpl20, showing high levels of nucleotide polymorphisms, which may accordingly prove useful as cpDNA markers in studying the intraspecific genetic structure and diversity of Ae. tauschii.
Collapse
Affiliation(s)
- Qing Su
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Luxian Liu
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Mengyu Zhao
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Cancan Zhang
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Dale Zhang
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Youyong Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Suoping Li
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| |
Collapse
|
29
|
Oliveira HR, Jacocks L, Czajkowska BI, Kennedy SL, Brown TA. Multiregional origins of the domesticated tetraploid wheats. PLoS One 2020; 15:e0227148. [PMID: 31968001 PMCID: PMC6975532 DOI: 10.1371/journal.pone.0227148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
We used genotyping-by-sequencing (GBS) to investigate the evolutionary history of domesticated tetraploid wheats. With a panel of 189 wild and domesticated wheats, we identified 1,172,469 single nucleotide polymorphisms (SNPs) with a read depth ≥3. Principal component analyses (PCAs) separated the Triticum turgidum and Triticum timopheevii accessions, as well as wild T. turgidum from the domesticated emmers and the naked wheats, showing that SNP typing by GBS is capable of providing robust information on the genetic relationships between wheat species and subspecies. The PCAs and a neighbour-joining analysis suggested that domesticated tetraploid wheats have closest affinity with wild emmers from the northern Fertile Crescent, consistent with the results of previous genetic studies on the origins of domesticated wheat. However, a more detailed examination of admixture and allele sharing between domesticates and different wild populations, along with genome-wide association studies (GWAS), showed that the domesticated tetraploid wheats have also received a substantial genetic input from wild emmers from the southern Levant. Taking account of archaeological evidence that tetraploid wheats were first cultivated in the southern Levant, we suggest that a pre-domesticated crop spread from this region to southeast Turkey and became mixed with a wild emmer population from the northern Fertile Crescent. Fixation of the domestication traits in this mixed population would account for the allele sharing and GWAS results that we report. We also propose that feralization of the component of the pre-domesticated population that did not acquire domestication traits has resulted in the modern wild population from southeast Turkey displaying features of both the domesticates and wild emmer from the southern Levant, and hence appearing to be the sole progenitor of domesticated tetraploids when the phylogenetic relationships are studied by methods that assume a treelike pattern of evolution.
Collapse
Affiliation(s)
- Hugo R Oliveira
- School of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, England, United Kingdom
| | - Lauren Jacocks
- School of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, England, United Kingdom
| | - Beata I Czajkowska
- School of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, England, United Kingdom
| | - Sandra L Kennedy
- School of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, England, United Kingdom
| | - Terence A Brown
- School of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, Manchester, England, United Kingdom
| |
Collapse
|
30
|
Hyun DY, Sebastin R, Lee KJ, Lee GA, Shin MJ, Kim SH, Lee JR, Cho GT. Genotyping-by-Sequencing Derived Single Nucleotide Polymorphisms Provide the First Well-Resolved Phylogeny for the Genus Triticum (Poaceae). FRONTIERS IN PLANT SCIENCE 2020; 11:688. [PMID: 32625218 PMCID: PMC7311657 DOI: 10.3389/fpls.2020.00688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
Wheat (Triticum spp.) has been an important staple food crop for mankind since the beginning of agriculture. The genus Triticum L. is composed of diploid, tetraploid, and hexaploid species, majority of which have not yet been discriminated clearly, and hence their phylogeny and classification remain unresolved. Genotyping-by-sequencing (GBS) is an easy and affordable method that allows us to generate genome-wide single nucleotide polymorphism (SNP) markers. In this study, we used GBS to obtain SNPs covering all seven chromosomes from 283 accessions of Triticum-related genera. After filtering low-quality and redundant SNPs based on haplotype information, the GBS assay provided 14,188 high-quality SNPs that were distributed across the A (71%), B (26%), and D (2.4%) genomes. Cluster analysis and discriminant analysis of principal components (DAPC) allowed us to distinguish six distinct groups that matched well with Triticum species complexity. We constructed a Bayesian phylogenetic tree using 14,188 SNPs, in which 17 Triticum species and subspecies were discriminated. Dendrogram analysis revealed that the polyploid wheat species could be divided into groups according to the presence of A, B, D, and G genomes with strong nodal support and provided new insight into the evolution of spelt wheat. A total of 2,692 species-specific SNPs were identified to discriminate the common (T. aestivum) and durum (T. turgidum) wheat cultivar and landraces. In principal component analysis grouping, the two wheat species formed individual clusters and the SNPs were able to distinguish up to nine groups of 10 subspecies. This study demonstrated that GBS-derived SNPs could be used efficiently in genebank management to classify Triticum species and subspecies that are very difficult to distinguish by their morphological characters.
Collapse
|
31
|
Li C, Sun X, Conover JL, Zhang Z, Wang J, Wang X, Deng X, Wang H, Liu B, Wendel JF, Gong L. Cytonuclear Coevolution following Homoploid Hybrid Speciation in Aegilops tauschii. Mol Biol Evol 2019; 36:341-349. [PMID: 30445640 PMCID: PMC6367959 DOI: 10.1093/molbev/msy215] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The diploid D-genome lineage of the Triticum/Aegilops complex has an evolutionary history involving genomic contributions from ancient A- and B/S-genome species. We explored here the possible cytonuclear evolutionary responses to this history of hybridization. Phylogenetic analysis of chloroplast DNAs indicates that the D-genome lineage has a maternal origin of the A-genome or some other closely allied lineage. Analyses of the nuclear genome in the D-genome species Aegilops tauschii indicate that accompanying and/or following this ancient hybridization, there has been biased maintenance of maternal A-genome ancestry in nuclear genes encoding cytonuclear enzyme complexes (CECs). Our study provides insights into mechanisms of cytonuclear coevolution accompanying the evolution and eventual stabilization of homoploid hybrid species. We suggest that this coevolutionary process includes likely rapid fixation of A-genome CEC orthologs as well as biased retention of A-genome nucleotides in CEC homologs following population level recombination during the initial generations.
Collapse
Affiliation(s)
- Changping Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xuhan Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Justin L Conover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jinbin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xiaofei Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Xin Deng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, China
| |
Collapse
|
32
|
Glémin S, Scornavacca C, Dainat J, Burgarella C, Viader V, Ardisson M, Sarah G, Santoni S, David J, Ranwez V. Pervasive hybridizations in the history of wheat relatives. SCIENCE ADVANCES 2019; 5:eaav9188. [PMID: 31049399 PMCID: PMC6494498 DOI: 10.1126/sciadv.aav9188] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/20/2019] [Indexed: 05/18/2023]
Abstract
Cultivated wheats are derived from an intricate history of three genomes, A, B, and D, present in both diploid and polyploid species. It was recently proposed that the D genome originated from an ancient hybridization between the A and B lineages. However, this result has been questioned, and a robust phylogeny of wheat relatives is still lacking. Using transcriptome data from all diploid species and a new methodological approach, our comprehensive phylogenomic analysis revealed that more than half of the species descend from an ancient hybridization event but with a more complex scenario involving a different parent than previously thought-Aegilops mutica, an overlooked wild species-instead of the B genome. We also detected other extensive gene flow events that could explain long-standing controversies in the classification of wheat relatives.
Collapse
Affiliation(s)
- Sylvain Glémin
- CNRS, Univ Rennes, ECOBIO (Ecosystèmes, biodiversité, évolution)–UMR 6553, F-35042 Rennes, France
- Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Celine Scornavacca
- Institut des Sciences de l’Evolution Université de Montpellier, CNRS, IRD, EPHE CC 064, Place Eugène Bataillon, 34095 Montpellier, cedex 05, France
| | - Jacques Dainat
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Uppsala Biomedicinska Centrum (BMC), Husargatan 3, S-751 23 Uppsala, Sweden
- IMBIM–Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedicinska Centrum (BMC), Husargatan 3, Box 582, S-751 23 Uppsala, Sweden
| | - Concetta Burgarella
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, F-34398 Montpellier, France
| | - Véronique Viader
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Morgane Ardisson
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Gautier Sarah
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- South Green Bioinformatics Platform, BIOVERSITY, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Sylvain Santoni
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jacques David
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Vincent Ranwez
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
33
|
A discriminatory test for the wheat B and G genomes reveals misclassified accessions of Triticum timopheevii and Triticum turgidum. PLoS One 2019; 14:e0215175. [PMID: 30969996 PMCID: PMC6457550 DOI: 10.1371/journal.pone.0215175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/27/2019] [Indexed: 11/22/2022] Open
Abstract
The tetraploid wheat species Triticum turgidum and Triticum timopheevii are morphologically similar, and misidentification of material collected from the wild is possible. We compared published sequences for the Ppd-A1, Ppd-B1 and Ppd-G1 genes from multiple accessions of T. turgidum and T. timopheevii and devised a set of four polymerase chain reactions (PCRs), two specific for Ppd-B1 and two for Ppd-G1. We used these PCRs with 51 accessions of T. timopheevii and 20 of T. turgidum. Sixty of these accessions gave PCR products consistent with their taxon identifications, but the other eleven accessions gave anomalous results: ten accessions that were classified as T. turgidum were identified as T. timopheevii by the PCRs, and one T. timopheevii accession was typed as T. turgidum. We believe that these anomalies are not due to errors in the PCR tests because the results agree with a more comprehensive analysis of genome-wide single nucleotide polymorphisms, which similarly suggest that these eleven accessions have been misclassified. Our results therefore show that the accepted morphological tests for discrimination between T. turgidum and T. timopheevii might not be entirely robust, but that species identification can be made cheaply and quickly by PCRs directed at the Ppd-1 gene.
Collapse
|
34
|
Janáková E, Jakobson I, Peusha H, Abrouk M, Škopová M, Šimková H, Šafář J, Vrána J, Doležel J, Järve K, Valárik M. Divergence between bread wheat and Triticum militinae in the powdery mildew resistance QPm.tut-4A locus and its implications for cloning of the resistance gene. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1061-1072. [PMID: 30535646 PMCID: PMC6449310 DOI: 10.1007/s00122-018-3259-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
A segment of Triticum militinae chromosome 7G harbors a gene(s) conferring powdery mildew resistance which is effective at both the seedling and the adult plant stages when transferred into bread wheat (T. aestivum). The introgressed segment replaces a piece of wheat chromosome arm 4AL. An analysis of segregating materials generated to positionally clone the gene highlighted that in a plant heterozygous for the introgression segment, only limited recombination occurs between the introgressed region and bread wheat 4A. Nevertheless, 75 genetic markers were successfully placed within the region, thereby confining the gene to a 0.012 cM window along the 4AL arm. In a background lacking the Ph1 locus, the localized rate of recombination was raised 33-fold, enabling the reduction in the length of the region containing the resistance gene to a 480 kbp stretch harboring 12 predicted genes. The substituted segment in the reference sequence of bread wheat cv. Chinese Spring is longer (640 kbp) and harbors 16 genes. A comparison of the segments' sequences revealed a high degree of divergence with respect to both their gene content and nucleotide sequence. Of the 12 T. militinae genes, only four have a homolog in cv. Chinese Spring. Possible candidate genes for the resistance have been identified based on function predicted from their sequence.
Collapse
Affiliation(s)
- Eva Janáková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Irena Jakobson
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 19086, Tallinn, Estonia
| | - Hilma Peusha
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 19086, Tallinn, Estonia
| | - Michael Abrouk
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Monika Škopová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
- Limagrain Central Europe Cereals, s.r.o., Hrubčice 111, 79821, Bedihošť, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jan Vrána
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic
| | - Kadri Järve
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 19086, Tallinn, Estonia
| | - Miroslav Valárik
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371, Olomouc, Czech Republic.
| |
Collapse
|
35
|
Experimental evolutionary studies on the genetic autonomy of the cytoplasmic genome "plasmon" in the Triticum (wheat)- Aegilops complex. Proc Natl Acad Sci U S A 2019; 116:3082-3090. [PMID: 30728293 DOI: 10.1073/pnas.1817037116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The term "plasmon" is used to indicate the whole cytoplasmic genetic system, whereas "genome" refers to the whole nuclear genetic system. Although maternal inheritance of the plasmon is well documented in angiosperms, its genetic autonomy from the coexisting nuclear genome still awaits critical examination. We tested this autonomy in two related studies: One was to determine the persistence of the genetic effect of the plasmon of Aegilops caudata (genome CC) on the phenotype of common wheat, Triticum aestivum strain "Tve" (genome AABBDD), during 63 y (one generation per year) of repeated backcrosses of Ae. caudata and its offspring with pollen of the same Tve wheat, and the second was to reconstruct an Ae. caudata strain from the genome of this strain and its plasmon that had been resident in Tve wheat for 50 generations, and to compare the phenotypic and organellar DNA characteristics between the native and reconstructed strains. Results indicated no change in the effect of Ae. caudata plasmon on Tve wheat during its stay in wheat for more than half a century, and no difference between the native and reconstructed caudata strains in their phenotype and simple sequence repeats in their organellar DNAs, thus demonstrating the prolonged genetic autonomy of the plasmon from the coexisting genomes of wheat and several other species that were used in the reconstruction of Ae. caudata The relationship between the proven genetic autonomy of the plasmon under changing nuclear conditions and its diversification during evolution of the Triticum-Aegilops complex is discussed.
Collapse
|
36
|
Edet OU, Gorafi YSA, Nasuda S, Tsujimoto H. DArTseq-based analysis of genomic relationships among species of tribe Triticeae. Sci Rep 2018; 8:16397. [PMID: 30401925 PMCID: PMC6219600 DOI: 10.1038/s41598-018-34811-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/26/2018] [Indexed: 11/10/2022] Open
Abstract
Precise utilization of wild genetic resources to improve the resistance of their cultivated relatives to environmental growth limiting factors, such as salinity stress and diseases, requires a clear understanding of their genomic relationships. Although seriously criticized, analyzing these relationships in tribe Triticeae has largely been based on meiotic chromosome pairing in hybrids of wide crosses, a specialized and labourious strategy. In this study, DArTseq, an efficient genotyping-by-sequencing platform, was applied to analyze the genomes of 34 Triticeae species. We reconstructed the phylogenetic relationships among diploid and polyploid Aegilops and Triticum species, including hexaploid wheat. Tentatively, we have identified the diploid genomes that are likely to have been involved in the evolution of five polyploid species of Aegilops, which have remained unresolved for decades. Explanations which cast light on the progenitor of the A genomes and the complex genomic status of the B/G genomes of polyploid Triticum species in the Emmer and Timopheevi lineages of wheat have also been provided. This study has, therefore, demonstrated that DArTseq genotyping can be effectively applied to analyze the genomes of plants, especially where their genome sequence information are not available.
Collapse
Affiliation(s)
- Offiong U Edet
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.,United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553, Japan
| | - Yasir S A Gorafi
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.,Agricultural Research Corporation (ARC), P. O. Box 126, Wad Madani, Sudan
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
| |
Collapse
|
37
|
Dvorak J, Wang L, Zhu T, Jorgensen CM, Deal KR, Dai X, Dawson MW, Müller HG, Luo MC, Ramasamy RK, Dehghani H, Gu YQ, Gill BS, Distelfeld A, Devos KM, Qi P, You FM, Gulick PJ, McGuire PE. Structural variation and rates of genome evolution in the grass family seen through comparison of sequences of genomes greatly differing in size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:487-503. [PMID: 29770515 DOI: 10.1111/tpj.13964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 05/05/2023]
Abstract
Homology was searched with genes annotated in the Aegilops tauschii pseudomolecules against genes annotated in the pseudomolecules of tetraploid wild emmer wheat, Brachypodium distachyon, sorghum and rice. Similar searches were performed with genes annotated in the rice pseudomolecules. Matrices of collinear genes and rearrangements in their order were constructed. Optical BioNano genome maps were constructed and used to validate rearrangements unique to the wild emmer and Ae. tauschii genomes. Most common rearrangements were short paracentric inversions and short intrachromosomal translocations. Intrachromosomal translocations outnumbered segmental intrachromosomal duplications. The densities of paracentric inversion lengths were approximated by exponential distributions in all six genomes. Densities of collinear genes along the Ae. tauschii chromosomes were highly correlated with meiotic recombination rates but those of rearrangements were not, suggesting different causes of the erosion of gene collinearity and evolution of major chromosome rearrangements. Frequent rearrangements sharing breakpoints suggested that chromosomes have been rearranged recurrently at some sites. The distal 4 Mb of the short arms of rice chromosomes Os11 and Os12 and corresponding regions in the sorghum, B. distachyon and Triticeae genomes contain clusters of interstitial translocations including from 1 to 7 collinear genes. The rates of acquisition of major rearrangements were greater in the large wild emmer wheat and Ae. tauschii genomes than in the lineage preceding their divergence or in the B. distachyon, rice and sorghum lineages. It is suggested that synergy between large quantities of dynamic transposable elements and annual growth habit have been the primary causes of the fast evolution of the Triticeae genomes.
Collapse
Affiliation(s)
- Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Chad M Jorgensen
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Xiongtao Dai
- Department of Statistics, University of California, Davis, CA, USA
| | - Matthew W Dawson
- Department of Statistics, University of California, Davis, CA, USA
| | | | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Ramesh K Ramasamy
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Hamid Dehghani
- Department of Plant Sciences, University of California, Davis, CA, USA
- Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Yong Q Gu
- Crop Improvement & Genetics Research, USDA-ARS, Albany, CA, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Assaf Distelfeld
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop & Soil Sciences), University of Georgia, Athens, GA, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop & Soil Sciences), University of Georgia, Athens, GA, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Frank M You
- Agriculture & Agri-Food Canada, Morden, MB, Canada
| | - Patrick J Gulick
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
38
|
Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, He Z, Rajaram S. Wheat genetic resources in the post-genomics era: promise and challenges. ANNALS OF BOTANY 2018; 121:603-616. [PMID: 29240874 PMCID: PMC5852999 DOI: 10.1093/aob/mcx148] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/13/2017] [Indexed: 05/18/2023]
Abstract
Background Wheat genetic resources have been used for genetic improvement since 1876, when Stephen Wilson (Transactions and Proceedings of the Botanical Society of Edinburgh 12: 286) consciously made the first wide hybrid involving wheat and rye in Scotland. Wide crossing continued with sporadic attempts in the first half of 19th century and became a sophisticated scientific discipline during the last few decades with considerable impact in farmers' fields. However, a large diversity of untapped genetic resources could contribute in meeting future wheat production challenges. Perspectives and Conclusion Recently the complete reference genome of hexaploid (Chinese Spring) and tetraploid (Triticum turgidum ssp. dicoccoides) wheat became publicly available coupled with on-going international efforts on wheat pan-genome sequencing. We anticipate that an objective appraisal is required in the post-genomics era to prioritize genetic resources for use in the improvement of wheat production if the goal of doubling yield by 2050 is to be met. Advances in genomics have resulted in the development of high-throughput genotyping arrays, improved and efficient methods of gene discovery, genomics-assisted selection and gene editing using endonucleases. Likewise, ongoing advances in rapid generation turnover, improved phenotyping, envirotyping and analytical methods will significantly accelerate exploitation of exotic genes and increase the rate of genetic gain in breeding. We argue that the integration of these advances will significantly improve the precision and targeted identification of potentially useful variation in the wild relatives of wheat, providing new opportunities to contribute to yield and quality improvement, tolerance to abiotic stresses, resistance to emerging biotic stresses and resilience to weather extremes.
Collapse
Affiliation(s)
- Awais Rasheed
- International Maize and Wheat Improvement Center (CIMMYT), c/o Chinese Academy of Agricultural Sciences (CAAS), China
- Institute of Crop Sciences, CAAS, China
| | | | | | - Zhonghu He
- International Maize and Wheat Improvement Center (CIMMYT), c/o Chinese Academy of Agricultural Sciences (CAAS), China
- Institute of Crop Sciences, CAAS, China
| | | |
Collapse
|
39
|
Jiao W, Yuan J, Jiang S, Liu Y, Wang L, Liu M, Zheng D, Ye W, Wang X, Chen ZJ. Asymmetrical changes of gene expression, small RNAs and chromatin in two resynthesized wheat allotetraploids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:828-842. [PMID: 29265531 DOI: 10.1111/tpj.13805] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/04/2017] [Indexed: 05/26/2023]
Abstract
Polyploidy occurs in some animals and all flowering plants, including important crops such as wheat. The consequences of polyploidy in crops remain elusive, partly because their progenitors are unknown. Using two resynthesized wheat allotetraploids Sl Sl AA and AADD with known diploid progenitors, we analyzed mRNA and small RNA transcriptomes in the endosperm, compared transcriptomes between endosperm and root in AADD, and examined chromatin changes in the allotetraploids. In the endosperm, there were more non-additively expressed genes in Sl Sl AA than in AADD. In AADD, non-additively expressed genes were developmentally regulated, and the majority (62-70%) were repressed. The repressed genes in AADD included a group of histone methyltransferase gene homologs, which correlated with reduced histone H3K9me2 levels and activation of various transposable elements in AADD. In Sl Sl AA, there was a tendency for expression dominance of Sl over A homoeologs, but the histone methyltransferase gene homologs were additively expressed, correlating with insignificant changes in histone H3K9me2 levels. Moreover, more 24-nucleotide small inferring RNAs (siRNAs) in the A subgenome were disrupted in AADD than in Sl Sl AA, which were associated with expression changes of siRNA-associated genes. Our results indicate that asymmetrical changes in siRNAs, chromatin modifications, transposons and gene expression coincide with unstable AADD genomes and stable Sl Sl AA genomes, which could help explain the evolutionary trajectories of wheat allotetraploids formed by different progenitors.
Collapse
Affiliation(s)
- Wu Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Jingya Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Shan Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Yanfeng Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Lili Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Mingming Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Dewei Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Wenxue Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Z Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
40
|
Saarela JM, Burke SV, Wysocki WP, Barrett MD, Clark LG, Craine JM, Peterson PM, Soreng RJ, Vorontsova MS, Duvall MR. A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions. PeerJ 2018; 6:e4299. [PMID: 29416954 PMCID: PMC5798404 DOI: 10.7717/peerj.4299] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
The systematics of grasses has advanced through applications of plastome phylogenomics, although studies have been largely limited to subfamilies or other subgroups of Poaceae. Here we present a plastome phylogenomic analysis of 250 complete plastomes (179 genera) sampled from 44 of the 52 tribes of Poaceae. Plastome sequences were determined from high throughput sequencing libraries and the assemblies represent over 28.7 Mbases of sequence data. Phylogenetic signal was characterized in 14 partitions, including (1) complete plastomes; (2) protein coding regions; (3) noncoding regions; and (4) three loci commonly used in single and multi-gene studies of grasses. Each of the four main partitions was further refined, alternatively including or excluding positively selected codons and also the gaps introduced by the alignment. All 76 protein coding plastome loci were found to be predominantly under purifying selection, but specific codons were found to be under positive selection in 65 loci. The loci that have been widely used in multi-gene phylogenetic studies had among the highest proportions of positively selected codons, suggesting caution in the interpretation of these earlier results. Plastome phylogenomic analyses confirmed the backbone topology for Poaceae with maximum bootstrap support (BP). Among the 14 analyses, 82 clades out of 309 resolved were maximally supported in all trees. Analyses of newly sequenced plastomes were in agreement with current classifications. Five of seven partitions in which alignment gaps were removed retrieved Panicoideae as sister to the remaining PACMAD subfamilies. Alternative topologies were recovered in trees from partitions that included alignment gaps. This suggests that ambiguities in aligning these uncertain regions might introduce a false signal. Resolution of these and other critical branch points in the phylogeny of Poaceae will help to better understand the selective forces that drove the radiation of the BOP and PACMAD clades comprising more than 99.9% of grass diversity.
Collapse
Affiliation(s)
- Jeffery M. Saarela
- Beaty Centre for Species Discovery and Botany Section, Canadian Museum of Nature, Ottawa, ON, Canada
| | - Sean V. Burke
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - William P. Wysocki
- Center for Data Intensive Sciences, University of Chicago, Chicago, IL, USA
| | - Matthew D. Barrett
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, WA, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Lynn G. Clark
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Paul M. Peterson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Robert J. Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Maria S. Vorontsova
- Comparative Plant & Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Melvin R. Duvall
- Plant Molecular and Bioinformatics Center, Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
41
|
Chen N, Sha LN, Dong ZZ, Tang C, Wang Y, Kang HY, Zhang HQ, Yan XB, Zhou YH, Fan X. Complete structure and variation of the chloroplast genome of Agropyron cristatum (L.) Gaertn. Gene 2018; 640:86-96. [PMID: 29030254 DOI: 10.1016/j.gene.2017.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
Abstract
Agropyron cristatum (L.) Gaertner, a perennial grass in the tribe Triticeae (Poaceae), is a wild relative of cereal crops that is suitable for genetic improvement. In this study, we first sequenced the complete chloroplast (cp) genome of Ag. cristatum using Hiseq4000 PE150. The Ag. cristatum chloroplast genome is 135,554bp in length, has a typical quadripartite structure and contains 76 protein-coding genes, 29 tRNA genes and four rRNA genes. The cp genome of Ag. cristatum was used for comparison with other seven Triticeae species. One large variable region (800bp), which primarily contained the rpl23 (non-reciprocally translocated from IRs) and accD genes, was detected between rbcL gene and psaI gene within LSC region. The deletion of the accD and translocated rpl23 genes in Ag. cristatum indicated an independent gene-loss events or an additional divergence in Triticeae. Analyses of the dn/ds ratio and K2-P's genetic distance for 76 protein-coding genes showed that genes with evolutionary divergence might suffer from the effect of sequence regional constraints or gene functional constraints in Triticeae species. Our research will generally contribute to the knowledge of plastid genome evolution in Triticeae.
Collapse
Affiliation(s)
- Ning Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zhen-Zhen Dong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Chao Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xue-Bin Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| |
Collapse
|
42
|
Ruban AS, Badaeva ED. Evolution of the S-Genomes in Triticum-Aegilops Alliance: Evidences From Chromosome Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1756. [PMID: 30564254 PMCID: PMC6288319 DOI: 10.3389/fpls.2018.01756] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/12/2018] [Indexed: 05/20/2023]
Abstract
Five diploid Aegilops species of the Sitopsis section: Ae. speltoides, Ae. longissima, Ae. sharonensis, Ae. searsii, and Ae. bicornis, two tetraploid species Ae. peregrina (= Ae. variabilis) and Ae. kotschyi (Aegilops section) and hexaploid Ae. vavilovii (Vertebrata section) carry the S-genomes. The B- and G-genomes of polyploid wheat are also the derivatives of the S-genome. Evolution of the S-genome species was studied using Giemsa C-banding and fluorescence in situ hybridization (FISH) with DNA probes representing 5S (pTa794) and 18S-5.8S-26S (pTa71) rDNAs as well as nine tandem repeats: pSc119.2, pAesp_SAT86, Spelt-1, Spelt-52, pAs1, pTa-535, and pTa-s53. To correlate the C-banding and FISH patterns we used the microsatellites (CTT)10 and (GTT)9, which are major components of the C-banding positive heterochromatin in wheat. According to the results obtained, diploid species split into two groups corresponding to Emarginata and Truncata sub-sections, which differ in the C-banding patterns, distribution of rDNA and other repeats. The B- and G-genomes of polyploid wheat are most closely related to the S-genome of Ae. speltoides. The genomes of allopolyploid wheat have been evolved as a result of different species-specific chromosome translocations, sequence amplification, elimination and re-patterning of repetitive DNA sequences. These events occurred independently in different wheat species and in Ae. speltoides . The 5S rDNA locus of chromosome 1S was probably lost in ancient Ae. speltoides prior to formation of Timopheevii wheat, but after the emergence of ancient emmer. Evolution of Emarginata species was associated with an increase of C-banding and (CTT)10-positive heterochromatin, amplification of Spelt-52, re-pattering of the pAesp_SAT86, and a gradual decrease in the amount of the D-genome-specific repeats pAs1, pTa-535, and pTa-s53. The emergence of Ae. peregrina and Ae. kotschyi did not lead to significant changes of the S*-genomes. However, partial elimination of 45S rDNA repeats from 5S* and 6S* chromosomes and alterations of C-banding and FISH-patterns have been detected. Similarity of the Sv-genome of Ae. vavilovii with the Ss genome of diploid Ae. searsii confirmed the origin of this hexaploid. A model of the S-genome evolution is suggested.
Collapse
Affiliation(s)
- Alevtina S. Ruban
- Laboratory of Chromosome Structure and Function, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ekaterina D. Badaeva
- Laboratory of Genetic Basis of Plant Identification, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Molecular Karyology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Ekaterina D. Badaeva
| |
Collapse
|
43
|
Jorgensen C, Luo MC, Ramasamy R, Dawson M, Gill BS, Korol AB, Distelfeld A, Dvorak J. A High-Density Genetic Map of Wild Emmer Wheat from the Karaca Dağ Region Provides New Evidence on the Structure and Evolution of Wheat Chromosomes. FRONTIERS IN PLANT SCIENCE 2017; 8:1798. [PMID: 29104581 PMCID: PMC5655018 DOI: 10.3389/fpls.2017.01798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/03/2017] [Indexed: 05/05/2023]
Abstract
Wild emmer (Triticum turgidum ssp. dicoccoides) is a progenitor of all cultivated wheat grown today. It has been hypothesized that emmer was domesticated in the Karaca Dağ region in southeastern Turkey. A total of 445 recombinant inbred lines of T. turgidum ssp. durum cv. 'Langdon' x wild emmer accession PI 428082 from this region was developed and genotyped with the Illumina 90K single nucleotide polymorphism Infinium assay. A genetic map comprising 2,650 segregating markers was constructed. The order of the segregating markers and an additional 8,264 co-segregating markers in the Aegilops tauschii reference genome sequence was used to compare synteny of the tetraploid wheat with the Brachypodium distachyon, rice, and sorghum. These comparisons revealed the presence of 15 structural chromosome rearrangements, in addition to the already known 4A-5A-7B rearrangements. The most common type was an intra-chromosomal translocation in which the translocated segment was short and was translocated only a short distance along the chromosome. A large reciprocal translocation, one small non-reciprocal translocation, and three large and one small paracentric inversions were also discovered. The use of inversions for a phylogeny reconstruction in the Triticum-Aegilops alliance was illustrated. The genetic map was inconsistent with the current model of evolution of the rearranged chromosomes 4A-5A-7B. Genetic diversity in the rearranged chromosome 4A showed that the rearrangements might have been contemporary with wild emmer speciation. A selective sweep was found in the centromeric region of chromosome 4A in Karaca Dağ wild emmer but not in 4A of T. aestivum. The absence of diversity from a large portion of chromosome 4A of wild emmer, believed to be ancestral to all domesticated wheat, is puzzling.
Collapse
Affiliation(s)
- Chad Jorgensen
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ramesh Ramasamy
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Mathew Dawson
- Department of Statistics, University of California, Davis, Davis, CA, United States
| | - Bikram S. Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | | | - Assaf Distelfeld
- Institute for Cereal Crops Improvement, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
44
|
Abstract
An interesting and possibly unique pattern of genome evolution following polyploidy can be observed among allopolyploids of the Triticum and Aegilops genera (wheat group). Most polyploids in this group are presumed to share a common unaltered (pivotal) subgenome (U, D, or A) together with one or two modified (differential) subgenomes, a status that has been referred to as 'pivotal-differential' genome evolution. In this review we discuss various mechanisms that could be responsible for this evolutionary pattern, as well as evidence for and against the putative evolutionary mechanisms involved. We suggest that, in light of recent advances in genome sequencing and related technologies in the wheat group, the time has come to reopen the investigation into pivotal-differential genome evolution.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, PO Box 416, Sanandaj, Iran
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Research Center for Biosystems, Land Use, and Nutrition (IFZ), Heinrich-Buff-Ring 26-32, Giessen 35392, Germany.
| |
Collapse
|
45
|
Bernhardt N, Brassac J, Kilian B, Blattner FR. Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae. BMC Evol Biol 2017; 17:141. [PMID: 28622761 PMCID: PMC5474006 DOI: 10.1186/s12862-017-0989-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/03/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Triticeae, the tribe of wheat grasses, harbours the cereals barley, rye and wheat and their wild relatives. Although economically important, relationships within the tribe are still not understood. We analysed the phylogeny of chloroplast lineages among nearly all monogenomic Triticeae taxa and polyploid wheat species aiming at a deeper understanding of the tribe's evolution. We used on- and off-target reads of a target-enrichment experiment followed by Illumina sequencing. RESULTS The read data was used to assemble the plastid locus ndhF for 194 individuals and the whole chloroplast genome for 183 individuals, representing 53 Triticeae species and 15 genera. We conducted Bayesian and multispecies coalescent analyses to infer relationships and estimate divergence times of the taxa. We present the most comprehensive dated Triticeae chloroplast phylogeny and review previous hypotheses in the framework of our results. Monophyly of Triticeae chloroplasts could not be confirmed, as either Bromus or Psathyrostachys captured a chloroplast from a lineage closely related to a Bromus-Triticeae ancestor. The most recent common ancestor of Triticeae occurred approximately between ten and 19 million years ago. CONCLUSIONS The comparison of the chloroplast phylogeny with available nuclear data in several cases revealed incongruences indicating past hybridizations. Recent events of chloroplast capture were detected as individuals grouped apart from con-specific accessions in otherwise monopyhletic groups.
Collapse
Affiliation(s)
- Nadine Bernhardt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| | - Jonathan Brassac
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Present address: Crop Trust, Bonn, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
46
|
Rendón-Anaya M, Montero-Vargas JM, Saburido-Álvarez S, Vlasova A, Capella-Gutierrez S, Ordaz-Ortiz JJ, Aguilar OM, Vianello-Brondani RP, Santalla M, Delaye L, Gabaldón T, Gepts P, Winkler R, Guigó R, Delgado-Salinas A, Herrera-Estrella A. Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol 2017; 18:60. [PMID: 28356141 PMCID: PMC5370463 DOI: 10.1186/s13059-017-1190-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/07/2017] [Indexed: 11/19/2022] Open
Abstract
Background Modern civilization depends on only a few plant species for its nourishment. These crops were derived via several thousands of years of human selection that transformed wild ancestors into high-yielding domesticated descendants. Among cultivated plants, common bean (Phaseolus vulgaris L.) is the most important grain legume. Yet, our understanding of the origins and concurrent shaping of the genome of this crop plant is limited. Results We sequenced the genomes of 29 accessions representing 12 Phaseolus species. Single nucleotide polymorphism-based phylogenomic analyses, using both the nuclear and chloroplast genomes, allowed us to detect a speciation event, a finding further supported by metabolite profiling. In addition, we identified ~1200 protein coding genes (PCGs) and ~100 long non-coding RNAs with domestication-associated haplotypes. Finally, we describe asymmetric introgression events occurring among common bean subpopulations in Mesoamerica and across hemispheres. Conclusions We uncover an unpredicted speciation event in the tropical Andes that gave rise to a sibling species, formerly considered the “wild ancestor” of P. vulgaris, which diverged before the split of the Mesoamerican and Andean P. vulgaris gene pools. Further, we identify haplotypes strongly associated with genes underlying the emergence of domestication traits. Our findings also reveal the capacity of a predominantly autogamous plant to outcross and fix loci from different populations, even from distant species, which led to the acquisition by domesticated beans of adaptive traits from wild relatives. The occurrence of such adaptive introgressions should be exploited to accelerate breeding programs in the near future. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1190-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martha Rendón-Anaya
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), 36821, Irapuato, Guanajuato, Mexico
| | - Josaphat M Montero-Vargas
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Cinvestav, 36821, Irapuato, Guanajuato, Mexico
| | - Soledad Saburido-Álvarez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), 36821, Irapuato, Guanajuato, Mexico
| | - Anna Vlasova
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Salvador Capella-Gutierrez
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - José Juan Ordaz-Ortiz
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), 36821, Irapuato, Guanajuato, Mexico
| | - O Mario Aguilar
- Instituto de Biotecnología y Biología Molecular (IBBM), UNLP-CONICET, 1900, La Plata, Argentina
| | | | - Marta Santalla
- Mision Biológica de Galicia (MBG)-National Spanish Research Council (CSIC), 36080, Pontevedra, Spain
| | - Luis Delaye
- Departamento de Ingeniería Genética, Unidad Irapuato, Cinvestav, Irapuato, Guanajuato, Mexico
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Paul Gepts
- Department of Plant Sciences, University of California, Davis, CA, 95616-8780, USA
| | - Robert Winkler
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Cinvestav, 36821, Irapuato, Guanajuato, Mexico
| | - Roderic Guigó
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Alfonso Delgado-Salinas
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
47
|
Identification and Analysis of RNA Editing Sites in the Chloroplast Transcripts of Aegilops tauschii L. Genes (Basel) 2016; 8:genes8010013. [PMID: 28042823 PMCID: PMC5295008 DOI: 10.3390/genes8010013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022] Open
Abstract
RNA editing is an important way to convert cytidine (C) to uridine (U) at specific sites within RNA molecules at a post-transcriptional level in the chloroplasts of higher plants. Although it has been systematically studied in many plants, little is known about RNA editing in the wheat D genome donor Aegilops tauschii L. Here, we investigated the chloroplast RNA editing of Ae. tauschii and compared it with other wheat relatives to trace the evolution of wheat. Through bioinformatics prediction, a total of 34 C-to-U editing sites were identified, 17 of which were validated using RT-PCR product sequencing. Furthermore, 60 sites were found by the RNA-Seq read mapping approach, 24 of which agreed with the prediction and six were validated experimentally. The editing sites were biased toward tCn or nCa trinucleotides and 5′-pyrimidines, which were consistent with the flanking bases of editing sites of other seed plants. Furthermore, the editing events could result in the alteration of the secondary structures and topologies of the corresponding proteins, suggesting that RNA editing might impact the function of target genes. Finally, comparative analysis found some evolutionarily conserved editing sites in wheat and two species-specific sites were also obtained. This study is the first to report on RNA editing in Aegilops tauschii L, which not only sheds light on the evolution of wheat from the point of view of RNA editing, but also lays a foundation for further studies to identify the mechanisms of C-to-U alterations.
Collapse
|
48
|
Recurrence of Chromosome Rearrangements and Reuse of DNA Breakpoints in the Evolution of the Triticeae Genomes. G3-GENES GENOMES GENETICS 2016; 6:3837-3847. [PMID: 27729435 PMCID: PMC5144955 DOI: 10.1534/g3.116.035089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chromosomal rearrangements (CRs) play important roles in karyotype diversity and speciation. While many CR breakpoints have been characterized at the sequence level in yeast, insects, and primates, little is known about the structure of evolutionary CR breakpoints in plant genomes, which are much more dynamic in genome size and sequence organization. Here, we report identification of breakpoints of a translocation between chromosome arms 4L and 5L of Triticeae, which is fixed in several species, including diploid wheat and rye, by comparative mapping and analysis of the draft genome and chromosome survey sequences of the Triticeae species. The wheat translocation joined the ends of breakpoints downstream of a WD40 gene on 4AL and a gene of the PMEI family on 5AL. A basic helix-loop-helix transcription factor gene in 5AL junction was significantly restructured. Rye and wheat share the same position for the 4L breakpoint, but the 5L breakpoint positions are not identical, although very close in these two species, indicating the recurrence of 4L/5L translocations in the Triticeae. Although barley does not carry the translocation, collinearity across the breakpoints was violated by putative inversions and/or transpositions. Alignment with model grass genomes indicated that the translocation breakpoints coincided with ancient inversion junctions in the Triticeae ancestor. Our results show that the 4L/5L translocation breakpoints represent two CR hotspots reused during Triticeae evolution, and support breakpoint reuse as a widespread mechanism in all eukaryotes. The mechanisms of the recurrent translocation and its role in Triticeae evolution are also discussed.
Collapse
|
49
|
Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution. Sci Rep 2016; 6:32224. [PMID: 27561724 PMCID: PMC4999822 DOI: 10.1038/srep32224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/20/2016] [Indexed: 11/08/2022] Open
Abstract
Microsatellites are an important constituent of plant genome and distributed across entire genome. In this study, genome-wide analysis of microsatellites in 8 Triticeae species and 9 model plants revealed that microsatellite characteristics were similar among the Triticeae species. Furthermore, genome-wide microsatellite markers were designed in wheat and then used to analyze the evolutionary relationship of wheat and other Triticeae species. Results displayed that Aegilops tauschii was found to be the closest species to Triticum aestivum, followed by Triticum urartu, Triticum turgidum and Aegilops speltoides, while Triticum monococcum, Aegilops sharonensis and Hordeum vulgare showed a relatively lower PCR amplification effectivity. Additionally, a significantly higher PCR amplification effectivity was found in chromosomes at the same subgenome than its homoeologous when these markers were subjected to search against different chromosomes in wheat. After a rigorous screening process, a total of 20,666 markers showed high amplification and polymorphic potential in wheat and its relatives, which were integrated with the public available wheat markers and then anchored to the genome of wheat (CS). This study not only provided the useful resource for SSR markers development in Triticeae species, but also shed light on the evolution of polyploid wheat from the perspective of microsatellites.
Collapse
|
50
|
Liu F, Si H, Wang C, Sun G, Zhou E, Chen C, Ma C. Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum. Sci Rep 2016; 6:31706. [PMID: 27526862 PMCID: PMC4985644 DOI: 10.1038/srep31706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022] Open
Abstract
The allohexaploid bread wheat originally derived from three closely related species with A, B and D genome. Although numerous studies were performed to elucidate its origin and phylogeny, no consensus conclusion has reached. In this study, we cloned and sequenced the genes Wcor15-2A, Wcor15-2B and Wcor15-2D in 23 diploid, 10 tetraploid and 106 hexaploid wheat varieties and analyzed their molecular evolution to reveal the origin of the A, B and D genome in Triticum aestivum. Comparative analyses of sequences in diploid, tetraploid and hexaploid wheats suggest that T. urartu, Ae. speltoides and Ae. tauschii subsp. strangulata are most likely the donors of the Wcor15-2A, Wcor15-2B and Wcor15-2D locus in common wheat, respectively. The Wcor15 genes from subgenomes A and D were very conservative without insertion and deletion of bases during evolution of diploid, tetraploid and hexaploid. Non-coding region of Wcor15-2B gene from B genome might mutate during the first polyploidization from Ae. speltoides to tetraploid wheat, however, no change has occurred for this gene during the second allopolyploidization from tetraploid to hexaploid. Comparison of the Wcor15 gene shed light on understanding of the origin of the A, B and D genome of common wheat.
Collapse
Affiliation(s)
- Fangfang Liu
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow &Huai River Valley, Ministry of Agriculture, Hefei 230036, China
| | - Hongqi Si
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow &Huai River Valley, Ministry of Agriculture, Hefei 230036, China
| | - Chengcheng Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow &Huai River Valley, Ministry of Agriculture, Hefei 230036, China
| | - Genlou Sun
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Biology Department, Saint Mary's University, Halifax, NS, B3H 3C3 Canada
| | - Erting Zhou
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Can Chen
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.,Key Laboratory of Wheat Biology and Genetic Improvement on South Yellow &Huai River Valley, Ministry of Agriculture, Hefei 230036, China.,National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei 230036, China.,Anhui Key Laboratory of Crop Biology, Hefei 230036, China
| |
Collapse
|