1
|
Amaro HM, Pagels F, Melo R, Fort A, Sulpice R, Lopes G, Costa I, Sousa-Pinto I. Light Spectra, a Promising Tool to Modulate Ulva lacinulata Productivity and Composition. Mar Drugs 2024; 22:404. [PMID: 39330285 PMCID: PMC11433255 DOI: 10.3390/md22090404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Light quality is a key factor affecting algal growth and biomass composition, particularly pigments such as carotenoids, known for their antioxidant properties. Light-emitting diodes (LEDs) are becoming a cost-effective solution for indoor seaweed production when compared to fluorescent bulbs, allowing full control of the light spectra. However, knowledge of its effects on Ulva biomass production is still scarce. In this study, we investigated the effects of LEDs on the phenotype of an Ulva lacinulata strain, collected on the Northern Portuguese coast. Effects of white (W), green (G), red (R), and blue (B) LEDs were evaluated for growth (fresh weight and area), photosynthetic activity, sporulation, and content of pigments and antioxidant compounds. The results showed that there were no significant differences in terms of fresh weight accumulation and reduced sporulation among the tested LEDs, while W light induced the highest expansion rate. Under G, U. lacinulata attained a quicker photoacclimation, and the highest content of pigments and total antioxidant activity; but with R and W, antioxidant compounds against the specific radicals O2•- and •NO were produced in a higher content when compared to other LEDs. Altogether, this study demonstrated that it is possible to modulate the bioactive properties of U. lacinulata by using W, R, and G light, opening the path to the production of biomass tailored for specific nutraceutical applications.
Collapse
Affiliation(s)
- Helena M Amaro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Fernando Pagels
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP-Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rosa Melo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Antoine Fort
- Department of Bioveterinary and Microbial Sciences, Technological University of the Shannon, Midlands, N37 HD68 Athlone, Ireland
| | - Ronan Sulpice
- Plant Systems Biology Lab, School of Biological & Chemical Sciences, MaREI Centre for Marine, Climate and Energy, Ryan Institute, University of Galway, H91 TK33 Galway, Ireland
| | - Graciliana Lopes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Isabel Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Isabel Sousa-Pinto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR-LA), University of Porto, Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- FCUP-Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Su P, Ding S, Wang D, Kan W, Yuan M, Chen X, Tang C, Hou J, Wu L. Plant morphology, secondary metabolites and chlorophyll fluorescence of Artemisia argyi under different LED environments. PHOTOSYNTHESIS RESEARCH 2024; 159:153-164. [PMID: 37204684 PMCID: PMC10197053 DOI: 10.1007/s11120-023-01026-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/17/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Different light spectra from light-emitting diodes (LEDs) trigger species-specific adaptive responses in plants. We exposed Artemisia argyi (A. argyi) to four LED spectra: white (the control group), monochromatic red light (R), monochromatic blue light (B), or a mixture of R and B light of photon flux density ratio is 3 (RB), with equivalent photoperiod (14 h) and light intensity (160 μmol s-1 m-2). R light accelerated photomorphogenesis but decreased biomass, while B light significantly increased leaf area and short-term exposure (7 days) to B light increased total phenols and flavonoids. HPLC identified chlorogenic acid, 3,5-dicaffeoylquinic acid, gallic acid, jaceosidin, eupatilin, and taxol compounds, with RB and R light significantly accumulating chlorogenic acid, 3,5-dicaffeoylquinic acid, and gallic acid, and B light promoting jaceosidin, eupatilin, and taxol. OJIP measurements showed that B light had the least effect on the effective quantum yield ΦPSII, with higher rETR(II), Fv/Fm, qL and PIabs, followed by RB light. R light led to faster photomorphology but lower biomass than RB and B lights and produced the most inadaptability, as shown by reduced ΦPSII and enlarged ΦNPQ and ΦNO. Overall, short-term B light promoted secondary metabolite production while maintaining effective quantum yield and less energy dissipation.
Collapse
Affiliation(s)
- Pengfei Su
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Shuangshuang Ding
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Wenjie Kan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Meng Yuan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Xue Chen
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Caiguo Tang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Jinyan Hou
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
- Zhongke Taihe Experimental Station, Taihe, 236626, Anhui, People's Republic of China.
| |
Collapse
|
3
|
Park B, Wi S, Chung H, Lee H. Chlorophyll Fluorescence Imaging for Environmental Stress Diagnosis in Crops. SENSORS (BASEL, SWITZERLAND) 2024; 24:1442. [PMID: 38474977 DOI: 10.3390/s24051442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/17/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The field of plant phenotype is used to analyze the shape and physiological characteristics of crops in multiple dimensions. Imaging, using non-destructive optical characteristics of plants, analyzes growth characteristics through spectral data. Among these, fluorescence imaging technology is a method of evaluating the physiological characteristics of crops by inducing plant excitation using a specific light source. Through this, we investigate how fluorescence imaging responds sensitively to environmental stress in garlic and can provide important information on future stress management. In this study, near UV LED (405 nm) was used to induce the fluorescence phenomenon of garlic, and fluorescence images were obtained to classify and evaluate crops exposed to abiotic environmental stress. Physiological characteristics related to environmental stress were developed from fluorescence sample images using the Chlorophyll ratio method, and classification performance was evaluated by developing a classification model based on partial least squares discrimination analysis from the image spectrum for stress identification. The environmental stress classification performance identified from the Chlorophyll ratio was 14.9% in F673/F717, 25.6% in F685/F730, and 0.209% in F690/F735. The spectrum-developed PLS-DA showed classification accuracy of 39.6%, 56.2% and 70.7% in Smoothing, MSV, and SNV, respectively. Spectrum pretreatment-based PLS-DA showed higher discrimination performance than the existing image-based Chlorophyll ratio.
Collapse
Affiliation(s)
- Beomjin Park
- Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju-si 28644, Republic of Korea
| | - Seunghwan Wi
- Vegetable Research Division, National Institute of Horticultural & Herbal Science, Wanju 55365, Republic of Korea
| | - Hwanjo Chung
- Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju-si 28644, Republic of Korea
| | - Hoonsoo Lee
- Department of Biosystems Engineering, College of Agriculture, Life & Environment Science, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju-si 28644, Republic of Korea
| |
Collapse
|
4
|
Saeedi SA, Vahdati K, Sarikhani S, Daylami SD, Davarzani M, Gruda NS, Aliniaeifard S. Growth, photosynthetic function, and stomatal characteristics of Persian walnut explants in vitro under different light spectra. FRONTIERS IN PLANT SCIENCE 2023; 14:1292045. [PMID: 38046599 PMCID: PMC10690960 DOI: 10.3389/fpls.2023.1292045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/10/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Light plays a crucial role in photosynthesis, which is an essential process for plantlets produced during in vitro tissue culture practices and ex vitro acclimatization. LED lights are an appropriate technology for in vitro lighting but their effect on propagation and photosynthesis under in vitro condition is not well understood. This study aimed to investigate the impact of different light spectra on growth, photosynthetic functionality, and stomatal characteristics of micropropagated shoots of Persian walnut (cv. Chandler). Tissue-cultured walnut nodal shoots were grown under different light qualities including white, blue, red, far-red, green, combination of red and blue (70:30), combination of red and far-red (70:30), and fluorescent light as the control. Results showed that the best growth and vegetative characteristics of in vitro explants of Persian walnut were achieved under combination of red and blue light. The biggest size of stomata was detected under white and blue lights. Red light stimulated stomatal closure, while stomatal opening was induced under blue and white lights. Although the red and far-red light spectra resulted in the formation of elongated explants with more lateral shoots and anthocyanin content, they significantly reduced the photosynthetic functionality. Highest soluble carbohydrate content and maximum quantum yield of photosystem II were detected in explants grown under blue and white light spectra. In conclusion, growing walnut explants under combination of red and blue lights leads to better growth, photosynthesis functionality, and the emergence of functional stomata in in vitro explants of Persian walnuts.
Collapse
Affiliation(s)
- Seyyed Arash Saeedi
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Kourosh Vahdati
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Saadat Sarikhani
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | - Maryam Davarzani
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Nazim S. Gruda
- Department of Horticultural Science, INRES–Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Sasan Aliniaeifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
- Controlled Environment Agriculture Center (CEAC), College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Idowu AT, Amigo-Benavent M, Whelan S, Edwards MD, FitzGerald RJ. Impact of Different Light Conditions on the Nitrogen, Protein, Colour, Total Phenolic Content and Amino Acid Profiles of Cultured Palmaria palmata. Foods 2023; 12:3940. [PMID: 37959059 PMCID: PMC10647453 DOI: 10.3390/foods12213940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The impact of different light conditions during culture on the nitrogen, protein, colour, total phenolic content (TPC) and amino acid profile of Palmaria palmata biomass was investigated. P. palmata was cultured using different light regimes, i.e., white (1 and 2), red, blue and green over 12 days. A significant decrease (p < 0.05) in total nitrogen (TN), non-protein nitrogen (NPN) and protein nitrogen (PN) was observed on day 6 while an increase was observed on day 12 in P. palmata samples cultured under blue light. The protein content (nitrogen conversion factor of 4.7) of the initial sample on day 0 was 15.0% (w/w) dw whereas a maximum protein content of 16.7% (w/w) was obtained during exposure to blue light following 12 days culture, corresponding to an 11.2% increase in protein content. Electrophoretic along with amino acid profile and score analyses showed light-related changes in protein composition. The lighting regime used during culture also influenced the colour parameters (lightness L*, redness a*, yellowness b* and colour difference ΔE) of milled algal biomass along with the TPC. Judicious selection of lighting regime during culture may allow the targeted production of sustainable high-quality proteins from P. palmata.
Collapse
Affiliation(s)
- Anthony Temitope Idowu
- Proteins and Peptides Research Group, Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (A.T.I.); (M.A.-B.)
- BioMaterial Research Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Miryam Amigo-Benavent
- Proteins and Peptides Research Group, Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (A.T.I.); (M.A.-B.)
- BioMaterial Research Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Susan Whelan
- Irish Seaweed Consultancy Ltd., H91 TK33 Galway, Ireland; (S.W.); (M.D.E.)
| | - Maeve D. Edwards
- Irish Seaweed Consultancy Ltd., H91 TK33 Galway, Ireland; (S.W.); (M.D.E.)
| | - Richard J. FitzGerald
- Proteins and Peptides Research Group, Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (A.T.I.); (M.A.-B.)
- BioMaterial Research Cluster, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
6
|
Le AT, Choi IL, Han GD, Kang HM, Jung DH, Park WP, Yildiz M, Do TK, Chung YS. Colored LED Lights: Use One Color Alone or with Others for Growth in Hedyotis corymbosa In Vitro? PLANTS (BASEL, SWITZERLAND) 2022; 12:93. [PMID: 36616224 PMCID: PMC9823912 DOI: 10.3390/plants12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
In recent years, light-emitting diode (LED) technology has been applied to improve crop production and induce targeted biochemical or physiological responses in plants. This study investigated the effect of different ratios of blue 450 nm and red 660 nm LEDs on the overall plant growth, photosynthetic characteristics, and total triterpenoid production in the leaves of Hedyotis corymbosa in vitro plants. The results showed that a high proportion of blue LED lights had a positive effect on enhancing photosynthesis and the overall biomass. In addition, blue LED lights were shown to be more effective in controlling the production of the total triterpenoid content compared with the red LED lights. Moreover, it was also found that plants grown under a high proportion of red LEDs exhibited reduced photosynthetic properties and even induced damage to the photosynthetic apparatus, which indicated that the blue or red LED lights played contrary roles in Hedyotis corymbosa.
Collapse
Affiliation(s)
- Anh Tuan Le
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea
- Department of Plant Physiology, Faculty of Biology—Biotechnology, University of Sciences, VNU-HCM, Ho Chi Minh 70000, Vietnam
| | - In-Lee Choi
- Agricultural and Life Science Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gyung-Deok Han
- Department of Practical Arts Education, Cheongju National University of Education, Cheongju 28690, Republic of Korea
| | - Ho-Min Kang
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dae Ho Jung
- Division of Smart Horticulture, Yonam College, Cheonan 31005, Republic of Korea
| | - Won-Pyo Park
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea
| | - Mehtap Yildiz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Thuong Kiet Do
- Department of Plant Physiology, Faculty of Biology—Biotechnology, University of Sciences, VNU-HCM, Ho Chi Minh 70000, Vietnam
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
7
|
Yang J, Song J, Jeong BR. Low-Intensity Blue Light Supplemented during Photoperiod in Controlled Environment Induces Flowering and Antioxidant Production in Kalanchoe. Antioxidants (Basel) 2022; 11:811. [PMID: 35624675 PMCID: PMC9137757 DOI: 10.3390/antiox11050811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Kalanchoe (Kalanchoe blossfeldiana) is a qualitative short-day plant with a high aesthetic value. When the night length is less than a specified cultivar-dependent critical value, however, it does not develop flowers. This study investigated the effects of low-intensity supplementary or night interrupting (NI) blue (B) light on the plant performance and flower induction in kalanchoe 'Rudak'. During the photoperiod in a closed-type plant factory with day/night temperatures of 23 °C/18 °C, white (W) LEDs were utilized to produce a photosynthetic photon flux density (PPFD) of 300 μmol m-2 s-1, and B LEDs were used to give supplementary/NI light at a PPFD of 10 μmol m-2 s-1. The control plants were exposed to a 10-h short day (SD, positive control) or a 13-h long day (LD, negative control) treatment without any B light. The B light was used for 4 h either (1) to supplement the W LEDs at the end of the SD (SD + 4B) and LD (LD + 4B), or (2) to provide night interruption (NI) in the SD (SD + NI-4B) and LD (LD + NI-4B). The LD + 4B and LD + NI-4B significantly enhanced plant growth and development, followed by the SD + 4B and SD + NI-4B treatments. In addition, the photosynthesis, physiological parameters, and activity of antioxidant systems were improved in those treatments. Except in the LD and LD + NI-4B, all plants flowered. It is noteworthy that kalanchoe 'Rudak' flowered in the LD + 4B treatment and induced the greatest number of flowers, followed by SD + NI-4B and SD + 4B. Plants grown in the LD + 4B treatment had the highest expression levels of certain monitored genes related to flowering. The results indicate that a 4-h supplementation of B light during the photoperiod in both the SD and LD treatments increased flower bud formation, promoted flowering, and enhanced plant performance. Kalanchoe 'Rudak' flowered especially well in the LD + 4B, presenting a possibility of practically inducing flowering in long-day seasons with B light application.
Collapse
Affiliation(s)
- Jingli Yang
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.Y.); (J.S.)
| | - Jinnan Song
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.Y.); (J.S.)
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.Y.); (J.S.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
8
|
The Effect of Supplementary LED Lighting on the Morphological and Physiological Traits of Miniature Rosa × Hybrida 'Aga' and the Development of Powdery Mildew ( Podosphaera pannosa) under Greenhouse Conditions. PLANTS 2021; 10:plants10020417. [PMID: 33672400 PMCID: PMC7926578 DOI: 10.3390/plants10020417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022]
Abstract
We investigated the growth traits, flower bud formation, photosynthetic performance, and powdery mildew development in miniature Rosa × hybrida 'Aga' plants grown in the greenhouse under different light-emitting diode (LED) light spectra. Fluorescence-based sensors that detect the maximum photochemical efficiency of photosystem II (PS II) as well as chlorophyll and flavonol indices were used in this study. Five different LED light treatments as a supplement to natural sunlight with red (R), blue (B), white (W), RBW+FR (far-red) (high R:FR), and RBW+FR (low R:FR) were used. Control plants were illuminated only by natural sunlight. Plants were grown under different spectra of LED lighting and the same photosynthetic photon flux density (PPFD) (200 µmol m-2 s-1) at a photoperiod of 18 h. Plants grown under both RBW+FR lights were the highest, and had the greatest total shoot length, irrespective of R:FR. These plants also showed the highest maximum quantum yield of PS II (average 0.805) among the light treatments. Red monochromatic light and RBW+FR at high R:FR stimulated flower bud formation. Moreover, plants grown under red LEDs were more resistant to Podosphaera pannosa than those grown under other light treatments. The increased flavonol index in plants exposed to monochromatic blue light, compared to the W and control plants, did not inhibit powdery mildew development.
Collapse
|
9
|
Effect of Light-Emitting Diodes (LEDs) on the Quality of Fruits and Vegetables During Postharvest Period: a Review. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02534-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
|
10
|
Gul FZ, Hanif S, Abbasi BH, Asad B, Khan A, Hano C, Zia M. Interactive Effect of Light and CdO Nanoparticles on Dodonaea viscosa Morphological, Antioxidant, and Phytochemical Properties. ACS OMEGA 2020; 5:24211-24221. [PMID: 33015437 PMCID: PMC7528174 DOI: 10.1021/acsomega.0c01878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/23/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Cadmium nanoparticles (NPs) used in semiconducting devices are photosensitive and optically active. The objective of this study was to investigate the interactive effect of different spectral lights and CdO NPs on morphological, antioxidant, and phytochemical characteristics of Dodonaea viscosa. The plants were grown on media in the presence of green and chemically synthesized CdO NPs and under red, yellow, green, blue, and white light intensities. Results illustrated that plant morphological parameters changed in the presence of different spectral lights and NPs behaved differentially under different spectral lights. Fresh and dry weights of plants decreased in the presence of NPs in the media; however, the concentration and route of synthesis of NPs have a significant effect on these parameters. The same was observed in the case of shoot and root lengths; however, green synthesized NPs were found to be less toxic under different spectral lights. The total antixodant response increased under yellow, blue, and white lights, while the total reducing potential of plant extracts significantly varied depending upon the NP concentration and light spectrum. Different spectral lights significantly influenced the syntheses of phenolics and flavonoids under CdO NP stress and light regimes. It is concluded that toxicity of NPs also depends upon the wavelength of striking light that varies the morphological, biochemical, and antioxidative response of the plants. Furthermore, the white light might have synergistic effects of different wavelengths.
Collapse
Affiliation(s)
- Faiza Zareen Gul
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saad Hanif
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Bushra Asad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Aisha Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328/Université d’Orléans, 28000 Chartres, France
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
11
|
Zafar H, Gul FZ, Mannan A, Zia M. ZnO NPs reveal distinction in toxicity under different spectral lights: An in vitro experiment on Brassica nigra (Linn.) Koch. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
|
12
|
Xu Y, Yang M, Cheng F, Liu S, Liang Y. Effects of LED photoperiods and light qualities on in vitro growth and chlorophyll fluorescence of Cunninghamia lanceolata. BMC PLANT BIOLOGY 2020; 20:269. [PMID: 32517650 PMCID: PMC7285490 DOI: 10.1186/s12870-020-02480-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/07/2019] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cunninghamia lanceolata (C. lanceolata) is the main fast-growing timber species in southern China. As an alternative to conventional lighting systems, LED has been demonstrated to be an artificial flexible lighting source for commercial micropropagation. The application of LED can provide rapid propagation of C. lanceolata in vitro culture. RESULTS We applied two-factor randomized block design to study the effects of LED photoperiods and light qualities on the growth and chlorophyll fluorescence of C. lanceolata in vitro culture plantlets. In this study, plantlets were exposed to 20 μmol·m- 2·s- 1 irradiance for three photoperiods, 8, 16, and 24 h under the three composite lights, 88.9% red+ 11.1% blue (R/B), 80.0% red+ 10.0% blue+ 10.0% purple (R/B/P), 72.7% red+ 9.1% blue+ 9.1% purple+ 9.1% green (R/B/P/G), as well as white light (12.7% red+ 3.9% blue+ 83.4% green, W) as control. The results showed that: (1) Plant height, dry weight, rooting rate, average root number, length, surface area and volume, chlorophyll, and chlorophyll fluorescence parameters were significantly affected by photoperiods, light qualities and their interactions. (2) Plantlets subjected to photoperiod 16 h had longer root, higher height, rooting rate, root number, and the higher levels of chlorophyll, chlorophyll a/b, Y (II), qP, NPQ/4 and ETRII compared to photoperiods 8 h and 24 h, while Fv/Fm during photoperiod 16 h was lower than 8 h and 24 h. Plantlets exposed to R/B/P/G generated more root and presented higher chlorophyll, Fv/Fo, Y (II), qP, and ETRII than W during photoperiods 8 and 16 h. (3) Total chlorophyll content and ETRII were significant correlated with rooting rate, root length and root volume, while Fv/Fm and ETRII were significant correlated with plant height, average root number and root surface area. (4) 16-R/B/P/G is best for growing C. lanceolata plantlets in vitro. CONCLUSIONS This study demonstrated the effectiveness of photoperiods and light qualities using LEDs for micropropagation of C. lanceolata. The best plantlets were harvested under 16-R/B/P/G treatment. And there was a correlation between the growth and the chlorophyll and chlorophyll fluorescence of their leaves under different photoperiod and light quality. These results can contribute to improve the micropropagation process of this species.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004 Guangxi PR China
- College of Forestry, Beijing Forestry University, Beijing, 100083 PR China
| | - Mei Yang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004 Guangxi PR China
| | - Fei Cheng
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004 Guangxi PR China
| | - Shinan Liu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004 Guangxi PR China
| | - Yuyao Liang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian PR China
| |
Collapse
|
13
|
Gao S, Liu X, Liu Y, Cao B, Chen Z, Xu K. Photosynthetic characteristics and chloroplast ultrastructure of welsh onion (Allium fistulosum L.) grown under different LED wavelengths. BMC PLANT BIOLOGY 2020; 20:78. [PMID: 32066376 PMCID: PMC7027053 DOI: 10.1186/s12870-020-2282-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/22/2019] [Accepted: 02/07/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND The optimized illumination of plants using light-emitting diodes (LEDs) is beneficial to their photosynthetic performance, and in recent years, LEDs have been widely used in horticultural facilities. However, there are significant differences in the responses of different crops to different wavelengths of light. Thus, the influence of artificial light on photosynthesis requires further investigation to provide theoretical guidelines for the light environments used in industrial crop production. In this study, we tested the effects of different LEDs (white, W; blue, B; green, G; yellow, Y; and red, R) with the same photon flux density (300 μmol/m2·s) on the growth, development, photosynthesis, chlorophyll fluorescence characteristics, leaf structure, and chloroplast ultrastructure of Welsh onion (Allium fistulosum L.) plants. RESULTS Plants in the W and B treatments had significantly higher height, leaf area, and fresh weight than those in the other treatments. The photosynthetic pigment content and net photosynthetic rate (Pn) in the W treatment were significantly higher than those in the monochromatic light treatments, the transpiration rate (E) and stomatal conductance (Gs) were the highest in the B treatment, and the intercellular CO2 concentration (Ci) was the highest in the Y treatment. The non-photochemical quenching coefficient (NPQ) was the highest in the Y treatment, but the other chlorophyll fluorescence characteristics differed among treatments in the following order: W > B > R > G > Y. This includes the maximum photochemical efficiency of photosystem II (PSII) under dark adaptation (Fv/Fm), maximum photochemical efficiency of PSII under light adaptation (Fv'/Fm'), photochemical quenching coefficient (qP), actual photochemical efficiency (ΦPSII), and apparent electron transport rate (ETR). Finally, the leaf structure and chloroplast ultrastructure showed the most complete development in the B treatment. CONCLUSIONS White and blue light significantly improved the photosynthetic efficiency of Welsh onions, whereas yellow light reduced the photosynthetic efficiency.
Collapse
Affiliation(s)
- Song Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Xuena Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Ying Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Zijing Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Tai'an, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, Tai'an, People's Republic of China.
- State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| |
Collapse
|
14
|
Influence of Mixed Substrate and Arbuscular Mycorrhizal Fungi on Photosynthetic Efficiency, Nutrient and Water Status and Yield in Tomato Plants Irrigated with Saline Reclaimed Waters. WATER 2020. [DOI: 10.3390/w12020438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The use of reclaimed water (RW) is considered as a means of maintaining agricultural productivity under drought conditions. However, RW may contain high concentrations of salts. The use of some practices, such as biofertilizers and organic substrates, is also becoming increasingly important in agricultural. production. The aim of this study was to evaluate the application of a mixed substrate (with coconut fibre) and arbuscular mycorrhizal fungi (AMF) on water relations, nutrient uptake and productivity in tomato plants irrigated with saline RW in a commercial greenhouse. Saline RW on its own caused a nutrient imbalance and negatively affected several physiological parameters. However, the high water-holding capacity of coconut fibre in the mixed substrate increased water and nutrient availability for the plants. As a consequence, leaf water potential, gas exchange, some fluorescence parameters (PhiPSII, Fv’/Fm’, qP and ETR) and fruit size and weight improved, even in control irrigation conditions. The use of AMF improved only some parameters because of the low percentage of colonization, suggesting that AMF effectiveness in commercial field conditions is slower and dependent of several factors.
Collapse
|
15
|
Silva TD, Batista DS, Fortini EA, Castro KMD, Felipe SHS, Fernandes AM, Sousa RMDJ, Chagas K, Silva JVSD, Correia LNDF, Farias LM, Leite JPV, Rocha DI, Otoni WC. Blue and red light affects morphogenesis and 20-hydroxyecdisone content of in vitro Pfaffia glomerata accessions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111761. [PMID: 31896050 DOI: 10.1016/j.jphotobiol.2019.111761] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/28/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 01/17/2023]
Abstract
The combination of different colors from light-emitting diodes (LEDs) may influence growth and production of secondary metabolites in plants. In the present study, the effect of light quality on morphophysiology and content of 20-hydroxyecdysone (20E), a phytoecdysteroid, was evaluated in accessions of an endangered medicinal species, Pfaffia glomerata, grown in vitro. Two accessions (Ac22 and Ac43) were cultured in vitro under three different ratios of red (R) and blue (B) LEDs: (i) 1R:1B, (ii) 1R:3B, and (iii) 3R:1B. An equal ratio of red and blue light (1R:1B) increased biomass accumulation, anthocyanin content, and 20E production (by 30-40%). Moreover, 1R:1B treatment increased the size of vascular bundles and vessel elements, as well as strengthened xylem lignification and thickening of the cell wall of shoots. The 1R:3B treatment induced the highest photosynthetic and electron transport rates and enhanced the activity of oxidative stress-related enzymes. Total Chl content, Chl/Car ratio, and NPQ varied more by accession type than by light source. Spectral quality affected primary metabolism differently in each accession. Specifically, in Ac22 plants, fructose content was higher under 1R:1B and 1R:3B treatments, whereas starch accumulation was higher under 1R:3B, and sucrose under 3R:1B. In Ac43 plants, sugars were not influenced by light spectral quality, but starch content was higher under 3R:1B conditions. In conclusion, red and blue LEDs enhance biomass and 20E production in P. glomerata grown in vitro.
Collapse
Affiliation(s)
- Tatiane Dulcineia Silva
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Diego Silva Batista
- Departamento de Agricultura, Universidade Federal da Paraíba, Campus III, Bananeiras, PB, Brazil
| | | | - Kamila Motta de Castro
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Amanda Mendes Fernandes
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Kristhiano Chagas
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | - Letícia Monteiro Farias
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - João Paulo Viana Leite
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Diego Ismael Rocha
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Jataí, GO, Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
16
|
Zheng L, Ceusters J, Van Labeke MC. Light quality affects light harvesting and carbon sequestration during the diel cycle of crassulacean acid metabolism in Phalaenopsis. PHOTOSYNTHESIS RESEARCH 2019; 141:195-207. [PMID: 30756292 DOI: 10.1007/s11120-019-00620-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/26/2017] [Accepted: 01/23/2019] [Indexed: 05/14/2023]
Abstract
Crassulacean acid metabolism (CAM) is a specialized photosynthetic pathway present in a variety of genera including many epiphytic orchids. CAM is under circadian control and can be subdivided into four discrete phases during a diel cycle. Inherent to this specific mode of metabolism, carbohydrate availability is a limiting factor for nocturnal CO2 uptake and biomass production. To evaluate the effects of light quality on the photosynthetic performance and diel changes in carbohydrates during the CAM cycle. Phalaenopsis plants were grown under four different light qualities (red, blue, red + blue and full spectrum white light) at a fluence of 100 µmol m-2 s-1 and a photoperiod of 12 h for 8 weeks. In contrast to monochromatic blue light, plants grown under monochromatic red light showed already a significant decline of the quantum efficiency (ΦPSII) after 5 days and of the maximum quantum yield (Fv/Fm) after 10 days under this treatment. This was also reflected in a compromised chlorophyll and carotenoid content and total diel CO2 uptake under red light in comparison with monochromatic blue and full spectrum white light. In particular, CO2 uptake during nocturnal phase I was affected under red illumination resulting in a reduced amount of vacuolar malate. In addition, red light caused the rate of decarboxylation of malate during the day to be consistently lower and malic acid breakdown persisted until 4 h after dusk. Because the intrinsic activity of PEPC was not affected, the restricted availability of storage carbohydrates such as starch was likely to cause these adverse effects under red light. Addition of blue to the red light spectrum restored the diel fluxes of carbohydrates and malate and resulted in a significant enhancement of the daily CO2 uptake, pigment concentration and biomass formation.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Plants and Crops, Ghent University, Coupure links 653, 9000, Ghent, Belgium
- College of Water Resource and Civil Engineering, China Agricultural University, Qinghua east road 17, Beijing, 10083, People's Republic of China
| | - Johan Ceusters
- Department of Biosystems, Division of Crop Biotechnics, Research group for Sustainable Crop Production & Protection, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440, Geel, Belgium
- Centre for Environmental Sciences, Environmental Biology, UHasselt, Campus Diepenbeek, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | | |
Collapse
|
17
|
Kaiser E, Ouzounis T, Giday H, Schipper R, Heuvelink E, Marcelis LFM. Adding Blue to Red Supplemental Light Increases Biomass and Yield of Greenhouse-Grown Tomatoes, but Only to an Optimum. FRONTIERS IN PLANT SCIENCE 2019; 9:2002. [PMID: 30693012 PMCID: PMC6339924 DOI: 10.3389/fpls.2018.02002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/31/2018] [Accepted: 12/27/2018] [Indexed: 05/05/2023]
Abstract
Greenhouse crop production in northern countries often relies heavily on supplemental lighting for year-round yield and product quality. Among the different spectra used in supplemental lighting, red is often considered the most efficient, but plants do not develop normally when grown solely under monochromatic red light ("red light syndrome"). Addition of blue light has been shown to aid normal development, and typical lighting spectra in greenhouse production include a mixture of red and blue light. However, it is unclear whether sunlight, as part of the light available to plants in the greenhouse, may be sufficient as a source of blue light. In a greenhouse high-wire tomato (Solanum lycopersicum), we varied the percentage of blue supplemental light (in a red background) as 0, 6, 12, and 24%, while keeping total photosynthetically active radiation constant. Light was supplied as a mixture of overhead (99 μmol m-2 s-1) and intracanopy (48 μmol m-2 s-1) LEDs, together with sunlight. Averaged over the whole experiment (111 days), sunlight comprised 58% of total light incident onto the crop. Total biomass, yield and number of fruits increased with the addition of blue light to an optimum, suggesting that both low (0%) and high (24%) blue light intensities were suboptimal for growth. Stem and internode lengths, as well as leaf area, decreased with increases in blue light percentage. While photosynthetic capacity increased linearly with increases in blue light percentage, photosynthesis in the low blue light treatment (0%) was not low enough to suggest the occurrence of the red light syndrome. Decreased biomass at low (0%) blue light was likely caused by decreased photosynthetic light use efficiency. Conversely, decreased biomass at high (24%) blue light was likely caused by reductions in canopy light interception. We conclude that while it is not strictly necessary to add blue light to greenhouse supplemental red light to obtain a functional crop, adding some (6-12%) blue light is advantageous for growth and yield while adding 24% blue light is suboptimal for growth.
Collapse
Affiliation(s)
| | | | | | | | | | - Leo F. M. Marcelis
- Horticulture and Product Physiology Group, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Chen Y, Zhou B, Li J, Tang H, Tang J, Yang Z. Formation and Change of Chloroplast-Located Plant Metabolites in Response to Light Conditions. Int J Mol Sci 2018; 19:E654. [PMID: 29495387 PMCID: PMC5877515 DOI: 10.3390/ijms19030654] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022] Open
Abstract
Photosynthesis is the central energy conversion process for plant metabolism and occurs within mature chloroplasts. Chloroplasts are also the site of various metabolic reactions involving amino acids, lipids, starch, and sulfur, as well as where the production of some hormones takes place. Light is one of the most important environmental factors, acting as an essential energy source for plants, but also as an external signal influencing their growth and development. Plants experience large fluctuations in the intensity and spectral quality of light, and many attempts have been made to improve or modify plant metabolites by treating them with different light qualities (artificial lighting) or intensities. In this review, we discuss how changes in light intensity and wavelength affect the formation of chloroplast-located metabolites in plants.
Collapse
Affiliation(s)
- Yiyong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Bo Zhou
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Hao Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
19
|
Lobiuc A, Vasilache V, Pintilie O, Stoleru T, Burducea M, Oroian M, Zamfirache MM. Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens. Molecules 2017; 22:molecules22122111. [PMID: 29189746 PMCID: PMC6150032 DOI: 10.3390/molecules22122111] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022] Open
Abstract
Microgreens are an excellent source of health-maintaining compounds, and the accumulation of these compounds in plant tissues may be stimulated by exogenous stimuli. While light quality effects on green basil microgreens are known, the present paper aims at improving the quality of acyanic (green) and cyanic (red) basil microgreens with different ratios of LED blue and red illumination. Growth, assimilatory and anthocyanin pigments, chlorophyll fluorescence, total phenolic, flavonoids, selected phenolic acid contents and antioxidant activity were assessed in microgreens grown for 17 days. Growth of microgreens was enhanced with predominantly blue illumination, larger cotyledon area and higher fresh mass. The same treatment elevated chlorophyll a and anthocyanin pigments contents. Colored light treatments decreased chlorophyll fluorescence ΦPSII values significantly in the green cultivar. Stimulation of phenolic synthesis and free radical scavenging activity were improved by predominantly red light in the green cultivar (up to 1.87 fold) and by predominantly blue light in the red cultivar (up to 1.73 fold). Rosmarinic and gallic acid synthesis was higher (up to 15- and 4-fold, respectively, compared to white treatment) in predominantly blue illumination. Red and blue LED ratios can be tailored to induce superior growth and phenolic contents in both red and green basil microgreens, as a convenient tool for producing higher quality foods.
Collapse
Affiliation(s)
- Andrei Lobiuc
- Faculty of Food Engineering, Stefan Cel Mare University, Universitatii Street 13, 720229 Suceava, Romania.
- CERNESIM Research Center, Alexandru Ioan Cuza University, Carol I Boulevard 20A, 700506 Iasi, Romania.
| | - Viorica Vasilache
- Interdisciplinary Research Department-Field Science, Alexandru Ioan Cuza University, Lascar Catargi 54, 700107 Iasi, Romania.
| | - Olga Pintilie
- Faculty of Chemistry, Alexandru Ioan Cuza University, Carol I Boulevard 20A, 700506 Iasi, Romania.
| | - Toma Stoleru
- Faculty of Biology, Alexandru Ioan Cuza University, Carol I Boulevard 20A, 700506 Iasi, Romania.
| | - Marian Burducea
- Faculty of Biology, Alexandru Ioan Cuza University, Carol I Boulevard 20A, 700506 Iasi, Romania.
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan Cel Mare University, Universitatii Street 13, 720229 Suceava, Romania.
| | | |
Collapse
|
20
|
Cantabella D, Piqueras A, Acosta-Motos JR, Bernal-Vicente A, Hernández JA, Díaz-Vivancos P. Salt-tolerance mechanisms induced in Stevia rebaudiana Bertoni: Effects on mineral nutrition, antioxidative metabolism and steviol glycoside content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:484-496. [PMID: 28500994 DOI: 10.1016/j.plaphy.2017.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/03/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 04/30/2023]
Abstract
In order to cope with challenges linked to climate change such as salinity, plants must develop a wide spectrum of physiological and molecular mechanisms to rapidly adapt. Stevia rebaudiana Bertoni plants are a case in point. According to our findings, salt stress has no significant effect on plant growth in these plants, which accumulate sodium (Na+) in their roots, thus avoiding excessive Na+ accumulation in leaves. Furthermore, salt stress (NaCl stress) increases the potassium (K+), calcium (Ca2+), chloride ion (Cl-) and proline concentrations in Stevia leaves, which could contribute to osmotic adjustment. We also found that long-term NaCl stress does not produce changes in chlorophyll concentrations in Stevia leaves, reflecting a mechanism to protect the photosynthesis process. Interestingly, an increase in chlorophyll b (Chlb) content occured in the oldest plants studied. In addition, we found that NaCl induced reactive oxygen species (ROS) accumulation in Stevia leaves and that this accumulation was more evident in the presence of 5 g/L NaCl, the highest concentration used in the study. Nevertheless, Stevia plants are able to induce (16 d) or maintain (25 d) antioxidant enzymes to cope with NaCl-induced oxidative stress. Low salt levels did not affect steviolbioside and rebaudioside A contents. Our results suggest that Stevia plants induce tolerance mechanisms in order to minimize the deleterious effects of salt stress. We can thus conclude that saline waters can be used to grow Stevia plants and for Steviol glycosides (SGs) production.
Collapse
Affiliation(s)
- Daniel Cantabella
- Fruit Tree Biotechnology Group, Dept. of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, P.O. Box 164, E-30100, Spain
| | - Abel Piqueras
- Fruit Tree Biotechnology Group, Dept. of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, P.O. Box 164, E-30100, Spain
| | - José Ramón Acosta-Motos
- Fruit Tree Biotechnology Group, Dept. of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, P.O. Box 164, E-30100, Spain
| | - Agustina Bernal-Vicente
- Fruit Tree Biotechnology Group, Dept. of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, P.O. Box 164, E-30100, Spain
| | - José A Hernández
- Fruit Tree Biotechnology Group, Dept. of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, P.O. Box 164, E-30100, Spain
| | - Pedro Díaz-Vivancos
- Fruit Tree Biotechnology Group, Dept. of Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, P.O. Box 164, E-30100, Spain.
| |
Collapse
|
21
|
Effect of Different Light Qualities on Growth, Pigment Content, Chlorophyll Fluorescence, and Antioxidant Enzyme Activity in the Red Alga Pyropia haitanensis (Bangiales, Rhodophyta). BIOMED RESEARCH INTERNATIONAL 2016; 2016:7383918. [PMID: 27642603 PMCID: PMC5011508 DOI: 10.1155/2016/7383918] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/22/2016] [Revised: 07/13/2016] [Accepted: 07/31/2016] [Indexed: 12/01/2022]
Abstract
Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different algae species. The aim of this study is to investigate the photosynthetic characteristics of the red macroalgae grown under different spectrum environments. In this study, Pyropia haitanensis were cultured under blue, red, and green LED and fluorescent tubes light. The growth rate, photopigment composition, chlorophyll fluorescence, and antioxidative enzymes activities in different light spectrums were investigated. The results revealed that growth rate was significantly higher in the thalli grown under blue, green, and fluorescent tubes light. Contents of Chl a and phycobiliprotein in red light were lower among all the growth conditions. Furthermore, a striking increase in SOD and CAT activity was observed in red light treatment along with the NPQ increase. The results revealed that the photosynthetic efficiency and increased growth rate of P. haitanensis benefitted from light spectrums such as blue, green, and fluorescent tubes light by pigment composition and photochemical efficiency manipulation, whereas red light has disadvantageous effects. Accordingly, the results for improving quality and the economic yield of algae species in some extent and the combination of different wavelengths could allow better economic resource exploitation.
Collapse
|
22
|
Ouzounis T, Razi Parjikolaei B, Fretté X, Rosenqvist E, Ottosen CO. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa. FRONTIERS IN PLANT SCIENCE 2015; 6:19. [PMID: 25767473 PMCID: PMC4341431 DOI: 10.3389/fpls.2015.00019] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/14/2014] [Accepted: 01/09/2015] [Indexed: 05/06/2023]
Abstract
To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. "Batavia" (green) and cv. "Lollo Rossa" (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m(-2) s(-1) for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m(-2) s(-1) from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m(-2) s(-1) from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m(-2) s(-1) from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m(-2) s(-1) from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent.
Collapse
Affiliation(s)
- Theoharis Ouzounis
- Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern DenmarkOdense, Denmark
- *Correspondence: Theoharis Ouzounis, Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern Denmark, Niels Bohrs Allé 1, Odense M, 5200, Denmark e-mail:
| | - Behnaz Razi Parjikolaei
- Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern DenmarkOdense, Denmark
| | - Xavier Fretté
- Department of Chemical Engineering, Biotechnology, and Environmental Technology, University of Southern DenmarkOdense, Denmark
| | - Eva Rosenqvist
- Section for Crop Sciences, Department of Plant and Environmental Sciences, University of CopenhagenTaastrup, Denmark
| | - Carl-Otto Ottosen
- Department of Food Science, Plant, Food & Climate, Aarhus UniversityAarslev, Denmark
| |
Collapse
|