1
|
Gou T, Matulis CA, Clark DA. Adaptation to visual sparsity enhances responses to isolated stimuli. Curr Biol 2024; 34:5697-5713.e8. [PMID: 39577424 PMCID: PMC11834764 DOI: 10.1016/j.cub.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2024] [Revised: 09/17/2024] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
Sensory systems adapt their response properties to the statistics of their inputs. For instance, visual systems adapt to low-order statistics like mean and variance to encode stimuli efficiently or to facilitate specific downstream computations. However, it remains unclear how other statistical features affect sensory adaptation. Here, we explore how Drosophila's visual motion circuits adapt to stimulus sparsity, a measure of the signal's intermittency not captured by low-order statistics alone. Early visual neurons in both ON and OFF pathways alter their responses dramatically with stimulus sparsity, responding positively to both light and dark sparse stimuli but linearly to dense stimuli. These changes extend to downstream ON and OFF direction-selective neurons, which are activated by sparse stimuli of both polarities but respond with opposite signs to light and dark regions of dense stimuli. Thus, sparse stimuli activate both ON and OFF pathways, recruiting a larger fraction of the circuit and potentially enhancing the salience of isolated stimuli. Overall, our results reveal visual response properties that increase the fraction of the circuit responding to sparse, isolated stimuli.
Collapse
Affiliation(s)
- Tong Gou
- Department of Electrical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Damon A Clark
- Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA; Wu Tsai Institute, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
2
|
Kaylor JJ, Frederiksen R, Bedrosian CK, Huang M, Stennis-Weatherspoon D, Huynh T, Ngan T, Mulamreddy V, Sampath AP, Fain GL, Travis GH. RDH12 allows cone photoreceptors to regenerate opsin visual pigments from a chromophore precursor to escape competition with rods. Curr Biol 2024; 34:3342-3353.e6. [PMID: 38981477 PMCID: PMC11303097 DOI: 10.1016/j.cub.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2024] [Revised: 05/11/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
Capture of a photon by an opsin visual pigment isomerizes its 11-cis-retinaldehyde (11cRAL) chromophore to all-trans-retinaldehyde (atRAL), which subsequently dissociates. To restore light sensitivity, the unliganded apo-opsin combines with another 11cRAL to make a new visual pigment. Two enzyme pathways supply chromophore to photoreceptors. The canonical visual cycle in retinal pigment epithelial cells supplies 11cRAL at low rates. The photic visual cycle in Müller cells supplies cones with 11-cis-retinol (11cROL) chromophore precursor at high rates. Although rods can only use 11cRAL to regenerate rhodopsin, cones can use 11cRAL or 11cROL to regenerate cone visual pigments. We performed a screen in zebrafish retinas and identified ZCRDH as a candidate for the enzyme that converts 11cROL to 11cRAL in cone inner segments. Retinoid analysis of eyes from Zcrdh-mutant zebrafish showed reduced 11cRAL and increased 11cROL levels, suggesting impaired conversion of 11cROL to 11cRAL. By microspectrophotometry, isolated Zcrdh-mutant cones lost the capacity to regenerate visual pigments from 11cROL. ZCRDH therefore possesses all predicted properties of the cone 11cROL dehydrogenase. The human protein most similar to ZCRDH is RDH12. By immunocytochemistry, ZCRDH was abundantly present in cone inner segments, similar to the reported distribution of RDH12. Finally, RDH12 was the only mammalian candidate protein to exhibit 11cROL-oxidase catalytic activity. These observations suggest that RDH12 in mammals is the functional ortholog of ZCRDH, which allows cones, but not rods, to regenerate visual pigments from 11cROL provided by Müller cells. This capacity permits cones to escape competition from rods for visual chromophore in daylight-exposed retinas.
Collapse
Affiliation(s)
- Joanna J Kaylor
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Rikard Frederiksen
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Christina K Bedrosian
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Melody Huang
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - David Stennis-Weatherspoon
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Theodore Huynh
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Tiffany Ngan
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Varsha Mulamreddy
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Alapakkam P Sampath
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Gordon L Fain
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Gabriel H Travis
- University of California, Los Angeles, David Geffen School of Medicine, Department of Ophthalmology, 405 Hilgard Avenue, Los Angeles, CA 90095, USA; University of California Los Angeles, Department of Biological Chemistry, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Morshedian A, Jiang Z, Radu RA, Fain GL, Sampath AP. Genetic manipulation of rod-cone differences in mouse retina. PLoS One 2024; 19:e0300584. [PMID: 38709779 PMCID: PMC11073714 DOI: 10.1371/journal.pone.0300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2023] [Accepted: 03/01/2024] [Indexed: 05/08/2024] Open
Abstract
Though rod and cone photoreceptors use similar phototransduction mechanisms, previous model calculations have indicated that the most important differences in their light responses are likely to be differences in amplification of the G-protein cascade, different decay rates of phosphodiesterase (PDE) and pigment phosphorylation, and different rates of turnover of cGMP in darkness. To test this hypothesis, we constructed TrUx;GapOx rods by crossing mice with decreased transduction gain from decreased transducin expression, with mice displaying an increased rate of PDE decay from increased expression of GTPase-activating proteins (GAPs). These two manipulations brought the sensitivity of TrUx;GapOx rods to within a factor of 2 of WT cone sensitivity, after correcting for outer-segment dimensions. These alterations did not, however, change photoreceptor adaptation: rods continued to show increment saturation though at a higher background intensity. These experiments confirm model calculations that rod responses can mimic some (though not all) of the features of cone responses after only a few changes in the properties of transduction proteins.
Collapse
Affiliation(s)
- Ala Morshedian
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Zhichun Jiang
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Roxana A. Radu
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Gordon L. Fain
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Alapakkam P. Sampath
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
4
|
Abtout A, Reingruber J. Analysis of dim-light responses in rod and cone photoreceptors with altered calcium kinetics. J Math Biol 2023; 87:69. [PMID: 37823947 PMCID: PMC10570263 DOI: 10.1007/s00285-023-02005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2022] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Rod and cone photoreceptors in the retina of vertebrates are the primary sensory neurons underlying vision. They convert light into an electrical current using a signal transduction pathway that depends on Ca[Formula: see text] feedback. It is known that manipulating the Ca[Formula: see text] kinetics affects the response shape and the photoreceptor sensitivity, but a precise quantification of these effects remains unclear. We have approached this task in mouse retina by combining numerical simulations with mathematical analysis. We consider a parsimonious phototransduction model that incorporates negative Ca[Formula: see text] feedback onto the synthesis of cyclic GMP, and fast buffering reactions to alter the Ca[Formula: see text] kinetics. We derive analytic results for the photoreceptor functioning in sufficiently dim light conditions depending on the photoreceptor type. We exploit these results to obtain conceptual and quantitative insight into how response waveform and amplitude depend on the underlying biophysical processes and the Ca[Formula: see text] feedback. With a low amount of buffering, the Ca[Formula: see text] concentration changes in proportion to the current, and responses to flashes of light are monophasic. With more buffering, the change in the Ca[Formula: see text] concentration becomes delayed with respect to the current, which gives rise to a damped oscillation and a biphasic waveform. This shows that biphasic responses are not necessarily a manifestation of slow buffering reactions. We obtain analytic approximations for the peak flash amplitude as a function of the light intensity, which shows how the photoreceptor sensitivity depends on the biophysical parameters. Finally, we study how changing the extracellular Ca[Formula: see text] concentration affects the response.
Collapse
Affiliation(s)
- Annia Abtout
- Institute of Biology, Ecole Normale Supérieure, Paris, France
| | - Jürgen Reingruber
- Institute of Biology, Ecole Normale Supérieure, Paris, France.
- INSERM, U1024, Paris, France.
| |
Collapse
|
5
|
Saha A, Capowski E, Fernandez Zepeda MA, Nelson EC, Gamm DM, Sinha R. Cone photoreceptors in human stem cell-derived retinal organoids demonstrate intrinsic light responses that mimic those of primate fovea. Cell Stem Cell 2022; 29:460-471.e3. [PMID: 35104442 PMCID: PMC9093561 DOI: 10.1016/j.stem.2022.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2021] [Revised: 11/11/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023]
Abstract
High-definition vision in humans and nonhuman primates is initiated by cone photoreceptors located within a specialized region of the retina called the fovea. Foveal cone death is the ultimate cause of central blindness in numerous retinal dystrophies, including macular degenerative diseases. 3D retinal organoids (ROs) derived from human pluripotent stem cells (hPSCs) hold tremendous promise to model and treat such diseases. To achieve this goal, RO cones should elicit robust and intrinsic light-evoked electrical responses (i.e., phototransduction) akin to adult foveal cones, which has not yet been demonstrated. Here, we show strong, graded, repetitive, and wavelength-specific light-evoked responses from RO cones. The photoresponses and membrane physiology of a significant fraction of these lab-generated cones are comparable with those of intact ex vivo primate fovea. These results greatly increase confidence in ROs as potential sources of functional human cones for cell replacement therapies, drug testing, and in vitro models of retinal dystrophies.
Collapse
Affiliation(s)
- Aindrila Saha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Biology Training Program, University of Wisconsin, Madison, WI, USA
| | | | | | - Emma C Nelson
- Waisman Center, University of Wisconsin, Madison, WI, USA
| | - David M Gamm
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Biology Training Program, University of Wisconsin, Madison, WI, USA; Waisman Center, University of Wisconsin, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA
| | - Raunak Sinha
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, USA; Cellular and Molecular Biology Training Program, University of Wisconsin, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
6
|
Iseri E, Kosta P, Paknahad J, Bouteiller JMC, Lazzi G. A Computational Model Simulates Light-Evoked Responses in the Retinal Cone Pathway. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4482-4486. [PMID: 34892214 PMCID: PMC10578446 DOI: 10.1109/embc46164.2021.9630642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2023]
Abstract
Partial vision restoration on degenerated retina can be achieved by electrically stimulating the surviving retinal ganglion cells via implanted electrodes to elicit a signal corresponding to the natural response of the cells. Realistic computational models of electrical stimulation of the retina can prove useful to test different stimulation strategies and improve the performance of retinal implants. Simulation of healthy retinal networks and their dynamical response to natural light stimulation may also help us understand how retinal processing takes place via a series of electrical signals flowing through different stages of retinal processing, ultimately giving rise to visual percepts. Such models may provide further insights on retinal network processing and thus guide the design of retinal prostheses and their stimulation protocols to generate more natural percepts. This work aims to characterize the photocurrent generated by healthy cone photoreceptors in response to a light flash stimulation and the resulting membrane potential for the photoreceptors and its postsynaptic cone bipolar cells. A simple network of ten cone photoreceptors synapsing with a cone bipolar cell is simulated using the NEURON environment and validated against patch-clamp recordings of cone photoreceptors and ON-type bipolar cells (ON-BC). The results presented will be valuable in modeling light-evoked or electrically stimulated retinal networks that comprise cone pathways. The computational models and methods developed in this work will serve as an integral building block in the development of large and realistic retinal networks.Clinical Relevance- Accurate computational model of a retinal neural network can help in predicting cell responses to electrical stimulation in vision restoration therapies using prostheses. It can be leveraged to optimize the stimulation parameters to match the natural light response of the network as closely as possible.
Collapse
|
7
|
Light responses of mammalian cones. Pflugers Arch 2021; 473:1555-1568. [PMID: 33742309 DOI: 10.1007/s00424-021-02551-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Cone photoreceptors provide the foundation of most of human visual experience, but because they are smaller and less numerous than rods in most mammalian retinas, much less is known about their physiology. We describe new techniques and approaches which are helping to provide a better understanding of cone function. We focus on several outstanding issues, including the identification of the features of the phototransduction cascade that are responsible for the more rapid kinetics and decreased sensitivity of the cone response, the roles of inner-segment voltage-gated and Ca2+-activated channels, the means by which cones remain responsive even in the brightest illumination, mechanisms of cone visual pigment regeneration in constant light, and energy consumption of cones in comparison to that of rods.
Collapse
|
8
|
Ingram NT, Sampath AP, Fain GL. Voltage-clamp recordings of light responses from wild-type and mutant mouse cone photoreceptors. J Gen Physiol 2019; 151:1287-1299. [PMID: 31562185 PMCID: PMC6829558 DOI: 10.1085/jgp.201912419] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 01/16/2023] Open
Abstract
We describe the first extensive study of voltage-clamp current responses of cone photoreceptors in unlabeled, dark-adapted mouse retina using only the position and appearance of cone somata as a guide. Identification was confirmed from morphology after dye filling. Photocurrents recorded from wild-type mouse cones were biphasic with a fast cone component and a slower rod component. The rod component could be eliminated with dim background light and was not present in mouse lines lacking the rod transducin-α subunit (Gnat1-/- ) or connexin 36 (Cx36-/- ). Cones from Gnat1-/- or Cx36-/- mice had resting membrane potentials between -45 and -55 mV, peak photocurrents of 20-25 picoamps (pA) at a membrane potential Vm = -50 mV, sensitivities 60-70 times smaller than rods, and a total membrane capacitance two to four times greater than rods. The rate of activation (amplification constant) was largely independent of the brightness of the flash and was 1-2 s-2, less than half that of rods. The role of Ca2+-dependent transduction modulation was investigated by recording from cones in mice lacking rod transducin (Gnat1), recoverin, and/or the guanylyl-cyclase-activating proteins (GCAPs). In confirmation of previous results, responses of Gnat1-/- ;Gcaps-/- cones and triple-mutant Gnat1-/- ;Gcaps-/- ;Rv-/- cones recovered more slowly both to light flashes and steps and were more sensitive than cones expressing the GCAPs. Cones from all four mouse lines showed significant recovery and escaped saturation even in bright background light. This recovery occurred too rapidly to be caused by pigment bleaching or metaII decay and appears to reflect some modulation of response inactivation in addition to those produced by recoverin and the GCAPs. Our experiments now make possible a more detailed understanding of the cellular physiology of mammalian cone photoreceptors and the role of conductances in the inner and outer segment in producing cone light responses.
Collapse
Affiliation(s)
- Norianne T Ingram
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA
| | - Alapakkam P Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
9
|
Bocchero U, Tam BM, Chiu CN, Torre V, Moritz OL. Electrophysiological Changes During Early Steps of Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 60:933-943. [PMID: 30840038 DOI: 10.1167/iovs.18-25347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The rhodopsin mutation P23H is responsible for a significant portion of autosomal-dominant retinitis pigmentosa, a disorder characterized by rod photoreceptor death. The mechanisms of toxicity remain unclear; previous studies implicate destabilization of P23H rhodopsin during light exposure, causing decreased endoplasmic reticulum (ER) exit and ER stress responses. Here, we probed phototransduction in Xenopus laevis rods expressing bovine P23H rhodopsin, in which retinal degeneration is inducible by light exposure, in order to examine early physiological changes that occur during retinal degeneration. Methods We recorded single-cell and whole-retina responses to light stimuli using electrophysiology. Moreover, we monitored morphologic changes in rods after different periods of light exposure. Results Initially, P23H rods had almost normal photoresponses, but following a brief light exposure varying from 4 to 32 photoisomerizations per disc, photoresponses became irreversibly prolonged. In intact retinas, rods began to shed OS fragments after a rod-saturating exposure of 12 minutes, corresponding to approximately 10 to 100 times more photoisomerizations. Conclusions Our results indicate that in P23H rods light-induced degeneration occurs in at least two stages, the first involving impairment of phototransduction and the second involving initiation of morphologic changes.
Collapse
Affiliation(s)
- Ulisse Bocchero
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Beatrice M Tam
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colette N Chiu
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vincent Torre
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Zang J, Neuhauss SCF. The Binding Properties and Physiological Functions of Recoverin. Front Mol Neurosci 2018; 11:473. [PMID: 30618620 PMCID: PMC6306944 DOI: 10.3389/fnmol.2018.00473] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
Recoverin (Rcv) is a low molecular-weight, neuronal calcium sensor (NCS) primarily located in photoreceptor outer segments of the vertebrate retina. Calcium ions (Ca2+)-bound Rcv has been proposed to inhibit G-protein-coupled receptor kinase (GRKs) in darkness. During the light response, the Ca2+-free Rcv releases GRK, which in turn phosphorylates visual pigment, ultimately leading to the cessation of the visual transduction cascade. Technological advances over the last decade have contributed significantly to a deeper understanding of Rcv function. These include both biophysical and biochemical approaches that will be discussed in this review article. Furthermore, electrophysiological experiments uncovered additional functions of Rcv, such as regulation of the lifetime of Phosphodiesterase-Transducin complex. Recently, attention has been drawn to different roles in rod and cone photoreceptors.This review article focuses on Rcv binding properties to Ca2+, disc membrane and GRK, and its physiological functions in phototransduction and signal transmission.
Collapse
Affiliation(s)
- Jingjing Zang
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
11
|
Vinberg F, Chen J, Kefalov VJ. Regulation of calcium homeostasis in the outer segments of rod and cone photoreceptors. Prog Retin Eye Res 2018; 67:87-101. [PMID: 29883715 DOI: 10.1016/j.preteyeres.2018.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
Calcium plays important roles in the function and survival of rod and cone photoreceptor cells. Rapid regulation of calcium in the outer segments of photoreceptors is required for the modulation of phototransduction that drives the termination of the flash response as well as light adaptation in rods and cones. On a slower time scale, maintaining proper calcium homeostasis is critical for the health and survival of photoreceptors. Decades of work have established that the level of calcium in the outer segments of rods and cones is regulated by a dynamic equilibrium between influx via the transduction cGMP-gated channels and extrusion via rod- and cone-specific Na+/Ca2+, K+ exchangers (NCKXs). It had been widely accepted that the only mechanism for extrusion of calcium from rod outer segments is via the rod-specific NCKX1, while extrusion from cone outer segments is driven exclusively by the cone-specific NCKX2. However, recent evidence from mice lacking NCKX1 and NCKX2 have challenged that notion and have revealed a more complex picture, including a NCKX-independent mechanism in rods and two separate NCKX-dependent mechanisms in cones. This review will focus on recent findings on the molecular mechanisms of extrusion of calcium from the outer segments of rod and cone photoreceptors, and the functional and structural changes in photoreceptors when normal extrusion is disrupted.
Collapse
Affiliation(s)
- Frans Vinberg
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA; John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Vladimir J Kefalov
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
12
|
Sarria I, Cao Y, Wang Y, Ingram NT, Orlandi C, Kamasawa N, Kolesnikov AV, Pahlberg J, Kefalov VJ, Sampath AP, Martemyanov KA. LRIT1 Modulates Adaptive Changes in Synaptic Communication of Cone Photoreceptors. Cell Rep 2018; 22:3562-3573. [PMID: 29590623 PMCID: PMC5902029 DOI: 10.1016/j.celrep.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2017] [Revised: 02/10/2018] [Accepted: 02/28/2018] [Indexed: 12/15/2022] Open
Abstract
Cone photoreceptors scale dynamically the sensitivity of responses to maintain responsiveness across wide range of changes in luminance. Synaptic changes contribute to this adaptation, but how this process is coordinated at the molecular level is poorly understood. Here, we report that a cell adhesion-like molecule, LRIT1, is enriched selectively at cone photoreceptor synapses where it engages in a trans-synaptic interaction with mGluR6, the principal receptor in postsynaptic ON-bipolar cells. The levels of LRIT1 are regulated by the neurotransmitter release apparatus that controls photoreceptor output. Knockout of LRIT1 in mice increases the sensitivity of cone synaptic signaling while impairing its ability to adapt to background light without overtly influencing the morphology or molecular composition of photoreceptor synapses. Accordingly, mice lacking LRIT1 show visual deficits under conditions requiring temporally challenging discrimination of visual signals in steady background light. These observations reveal molecular mechanisms involved in scaling synaptic communication in the retina.
Collapse
Affiliation(s)
- Ignacio Sarria
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yuchen Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Norianne T Ingram
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute, Jupiter, FL 33458, USA
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Johan Pahlberg
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alapakkam P Sampath
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
13
|
Morshedian A, Fain GL. Light adaptation and the evolution of vertebrate photoreceptors. J Physiol 2017; 595:4947-4960. [PMID: 28488783 DOI: 10.1113/jp274211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2017] [Accepted: 05/02/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Lamprey are cyclostomes, a group of vertebrates that diverged from lines leading to jawed vertebrates (including mammals) in the late Cambrian, 500 million years ago. It may therefore be possible to infer properties of photoreceptors in early vertebrate progenitors by comparing lamprey to other vertebrates. We show that lamprey rods and cones respond to light much like rods and cones in amphibians and mammals. They operate over a similar range of light intensities and adapt to backgrounds and bleaches nearly identically. These correspondences are pervasive and detailed; they argue for the presence of rods and cones very early in the evolution of vertebrates with properties much like those of rods and cones in existing vertebrate species. ABSTRACT The earliest vertebrates were agnathans - fish-like organisms without jaws, which first appeared near the end of the Cambrian radiation. One group of agnathans became cyclostomes, which include lamprey and hagfish. Other agnathans gave rise to jawed vertebrates or gnathostomes, the group including all other existing vertebrate species. Because cyclostomes diverged from other vertebrates 500 million years ago, it may be possible to infer some of the properties of the retina of early vertebrate progenitors by comparing lamprey to other vertebrates. We have previously shown that rods and cones in lamprey respond to light much like photoreceptors in other vertebrates and have a similar sensitivity. We now show that these affinities are even closer. Both rods and cones adapt to background light and to bleaches in a manner almost identical to other vertebrate photoreceptors. The operating range in darkness is nearly the same in lamprey and in amphibian or mammalian rods and cones; moreover background light shifts response-intensity curves downward and to the right over a similar range of ambient intensities. Rods show increment saturation at about the same intensity as mammalian rods, and cones never saturate. Bleaches decrease sensitivity in part by loss of quantum catch and in part by opsin activation of transduction. These correspondences are so numerous and pervasive that they are unlikely to result from convergent evolution but argue instead that early vertebrate progenitors of both cyclostomes and mammals had photoreceptors much like our own.
Collapse
Affiliation(s)
- Ala Morshedian
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095-7239, USA
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA, 90095-7239, USA.,Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, 90095-7000, USA
| |
Collapse
|
14
|
Ingram NT, Sampath AP, Fain GL. Why are rods more sensitive than cones? J Physiol 2016; 594:5415-26. [PMID: 27218707 DOI: 10.1113/jp272556] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2016] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
One hundred and fifty years ago Max Schultze first proposed the duplex theory of vision, that vertebrate eyes have two types of photoreceptor cells with differing sensitivity: rods for dim light and cones for bright light and colour detection. We now know that this division is fundamental not only to the photoreceptors themselves but to the whole of retinal and visual processing. But why are rods more sensitive, and how did the duplex retina first evolve? Cells resembling cones are very old, first appearing among cnidarians; the emergence of rods was a key step in the evolution of the vertebrate eye. Many transduction proteins have different isoforms in rods and cones, and others are expressed at different levels. Moreover rods and cones have a different anatomy, with only rods containing membranous discs enclosed by the plasma membrane. These differences must be responsible for the difference in absolute sensitivity, but which are essential? Recent research particularly expressing cone proteins in rods or changing the level of expression seem to show that many of the molecular differences in the activation and decay of the response may have each made a small contribution as evolution proceeded stepwise with incremental increases in sensitivity. Rod outer-segment discs were not essential and developed after single-photon detection. These experiments collectively provide a new understanding of the two kinds of photoreceptors and help to explain how gene duplication and the formation of rod-specific proteins produced the duplex retina, which has remained remarkably constant in physiology from amphibians to man.
Collapse
Affiliation(s)
- Norianne T Ingram
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095-7239, USA
| | - Alapakkam P Sampath
- Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA, 90095-7000, USA
| | - Gordon L Fain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095-7239, USA. .,Department of Ophthalmology and Jules Stein Eye Institute, University of California, Los Angeles, CA, 90095-7000, USA.
| |
Collapse
|
15
|
Greene E. Recognizing Words and Reading Sentences with Microsecond Flash Displays. PLoS One 2016; 11:e0145697. [PMID: 26800027 PMCID: PMC4723150 DOI: 10.1371/journal.pone.0145697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/17/2015] [Accepted: 12/08/2015] [Indexed: 11/19/2022] Open
Abstract
Strings of dots can be used to construct easily identifiable letters, and these in turn can be used to write words and sentences. Prior work found that respondents could identify individual letters when all the dots were simultaneously flashed for an ultra-brief duration. Four of the experiments reported here constructed five-letter words with these dot-letters and a fifth experiment used them to write complete sentences. Respondents were able to recognize individual words that were displayed with a single, simultaneous ultra-brief flash of all the letters. Further, sentences could be efficiently read with a sequence of simultaneous flashes at a frequency that produced perceptual fusion. One experiment determined the frequency range that would produce flicker-fusion. Two experiments established the relation of intensity to probability of recognition with single flashes and with fused-flicker frequencies. Another established the intensities at which flicker-fused and steady displays were judged to be equal in brightness. The final experiment used those flicker-fused and steady intensities to display sentences. The two display conditions were read with equal efficiency, even though the flicker-fused displays provided light stimulation only 0.003% of the time.
Collapse
Affiliation(s)
- Ernest Greene
- Laboratory for Neurometric Research, Department of Psychology, University of Southern California, Los Angeles, California, 90089–1061, United States of America
| |
Collapse
|
16
|
Aquila M, Benedusi M, Fasoli A, Rispoli G. Characterization of Zebrafish Green Cone Photoresponse Recorded with Pressure-Polished Patch Pipettes, Yielding Efficient Intracellular Dialysis. PLoS One 2015; 10:e0141727. [PMID: 26513584 PMCID: PMC4626105 DOI: 10.1371/journal.pone.0141727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2015] [Accepted: 10/12/2015] [Indexed: 11/18/2022] Open
Abstract
The phototransduction enzymatic cascade in cones is less understood than in rods, and the zebrafish is an ideal model with which to investigate vertebrate and human vision. Therefore, here, for the first time, the zebrafish green cone photoresponse is characterized also to obtain a firm basis for evaluating how it is modulated by exogenous molecules. To this aim, a powerful method was developed to obtain long-lasting recordings with low access resistance, employing pressure-polished patch pipettes. This method also enabled fast, efficient delivery of molecules via a perfusion system coupled with pulled quartz or plastic perfusion tubes, inserted very close to the enlarged pipette tip. Sub-saturating flashes elicited responses in different cells with similar rising phase kinetics but with very different recovery kinetics, suggesting the existence of physiologically distinct cones having different Ca2+ dynamics. Theoretical considerations demonstrate that the different recovery kinetics can be modelled by simulating changes in the Ca2+-buffering capacity of the outer segment. Importantly, the Ca2+-buffer action preserves the fast response rising phase, when the Ca2+-dependent negative feedback is activated by the light-induced decline in intracellular Ca2+.
Collapse
Affiliation(s)
- Marco Aquila
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mascia Benedusi
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Anna Fasoli
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giorgio Rispoli
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
- * E-mail:
| |
Collapse
|
17
|
Activation and quenching of the phototransduction cascade in retinal cones as inferred from electrophysiology and mathematical modeling. Mol Vis 2015; 21:244-63. [PMID: 25866462 PMCID: PMC4392649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2014] [Accepted: 03/05/2015] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To experimentally identify and quantify factors responsible for the lower sensitivity of retinal cones compared to rods. METHODS Electrical responses of frog rods and fish (Carassius) cones to short flashes of light were recorded using the suction pipette technique. A fast solution changer was used to apply a solution that fixed intracellular Ca2+ concentration at the prestimulus level, thereby disabling Ca2+ feedback, to the outer segment (OS). The results were analyzed with a specially designed mathematical model of phototransduction. The model included all basic processes of activation and quenching of the phototransduction cascade but omitted unnecessary mechanistic details of each step. RESULTS Judging from the response versus intensity curves, Carassius cones were two to three orders of magnitude less sensitive than frog rods. There was a large scatter in sensitivity among individual cones, with red-sensitive cones being on average approximately two times less sensitive than green-sensitive ones. The scatter was mostly due to different signal amplification, since the kinetic parameters of the responses among cones were far less variable than sensitivity. We argue that the generally accepted definition of the biochemical amplification in phototransduction cannot be used for comparing amplification in rods and cones, since it depends on an irrelevant factor, that is, the cell's volume. We also show that the routinely used simplified parabolic curve fitting to an initial phase of the response leads to a few-fold underestimate of the amplification. We suggest a new definition of the amplification that only includes molecular parameters of the cascade activation, and show how it can be derived from experimental data. We found that the mathematical model with unrestrained parameters can yield an excellent fit to experimental responses. However, the fits with wildly different sets of parameters can be virtually indistinguishable, and therefore cannot provide meaningful data on underlying mechanisms. Based on results of Ca2+-clamp experiments, we developed an approach to strongly constrain the values of many key parameters that set the time course and sensitivity of the photoresponse (such as the dark turnover rate of cGMP, rates of turnoffs of the photoactivated visual pigment and phosphodiesterase, and kinetics of Ca2+ feedback). We show that applying these constraints to our mathematical model enables accurate determination of the biochemical amplification in phototransduction. It appeared that, contrary to many suggestions, maximum biochemical amplification derived for "best" Carassius cones was as high as in frog rods. On the other hand, all turnoff and recovery reactions in cones proceeded approximately 10 times faster than in rods. CONCLUSIONS The main cause of the differing sensitivity of rods and cones is cones' ability to terminate their photoresponse faster.
Collapse
|
18
|
Abstract
In the vertebrate retina, there are two types of photoreceptors, rods and cones. Rods are highly light-sensitive and cones are less light-sensitive. One of the possible mechanisms accounting for the lower light-sensitivity in cones would be lower signal amplification, i.e., lower gain in the phototransduction cascade in cones. In this study, we compared the difference in the gain between rods and cones electrophysiologically in carp. The initial rising phases of the light responses were analyzed to determine an index of the gain, G, a parameter that can be used to compare the gain among cells of varying outer segment volumes. G (in fL · sec(-2)) was 91.2 ± 14.8 (n = 5) in carp rods and 25.3 ± 3.2 (n = 4) in carp red cones, so that the gain in carp red cones is ∼1/4 of that in carp rods. G was also determined in bullfrog rods and was 81.0 ± 17.2 (n = 3) which was very similar to that in carp rods. The difference in the gain between rods and cones in carp determined in this study (∼1/4 in cones compared with rods) is consistent with that we recently determined biochemically (∼1/5 in cones compared with rods). Together with the result obtained in bullfrog rods in this study and the results obtained by others, we concluded that the gain in the cascade is several-fold lower in cones than in rods in carp and probably in other animal species also.
Collapse
|
19
|
Namboodiri VMK, Mihalas S, Hussain Shuler MG. A temporal basis for Weber's law in value perception. Front Integr Neurosci 2014; 8:79. [PMID: 25352791 PMCID: PMC4196632 DOI: 10.3389/fnint.2014.00079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2014] [Accepted: 09/22/2014] [Indexed: 01/08/2023] Open
Abstract
Weber's law—the observation that the ability to perceive changes in magnitudes of stimuli is proportional to the magnitude—is a widely observed psychophysical phenomenon. It is also believed to underlie the perception of reward magnitudes and the passage of time. Since many ecological theories state that animals attempt to maximize reward rates, errors in the perception of reward magnitudes and delays must affect decision-making. Using an ecological theory of decision-making (TIMERR), we analyze the effect of multiple sources of noise (sensory noise, time estimation noise, and integration noise) on reward magnitude and subjective value perception. We show that the precision of reward magnitude perception is correlated with the precision of time perception and that Weber's law in time estimation can lead to Weber's law in value perception. The strength of this correlation is predicted to depend on the reward history of the animal. Subsequently, we show that sensory integration noise (either alone or in combination with time estimation noise) also leads to Weber's law in reward magnitude perception in an accumulator model, if it has balanced Poisson feedback. We then demonstrate that the noise in subjective value of a delayed reward, due to the combined effect of noise in both the perception of reward magnitude and delay, also abides by Weber's law. Thus, in our theory we prove analytically that the perception of reward magnitude, time, and subjective value change all approximately obey Weber's law.
Collapse
|
20
|
Abstract
Retinal cones are photoreceptors for daylight vision. For lower vertebrates, cones are known to give monophasic, hyperpolarizing responses to light flashes. For primate cones, however, they have been reported to give strongly biphasic flash responses, with an initial hyperpolarization followed by a depolarization beyond the dark level, now a textbook dogma. We have reexamined this primate-cone observation and, surprisingly, found predominantly monophasic cone responses. Correspondingly, we found that primate cones began to adapt to steady light at much lower intensities than previously reported, explainable by a larger steady response to background light for a monophasic than for a biphasic response. Similarly, we have found a monophasic cone response for several other mammalian species. Thus, a monophasic flash response may in fact be the norm for primate and other mammalian cones as for lower-vertebrate cones. This revised information is important for ultimately understanding human retinal signal processing and correlating with psychophysical data.
Collapse
|
21
|
Clark DA, Benichou R, Meister M, Azeredo da Silveira R. Dynamical adaptation in photoreceptors. PLoS Comput Biol 2013; 9:e1003289. [PMID: 24244119 PMCID: PMC3828139 DOI: 10.1371/journal.pcbi.1003289] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2011] [Accepted: 09/03/2013] [Indexed: 11/18/2022] Open
Abstract
Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300[Formula: see text] ms-i. e., over the time scale of the response itself-and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant.
Collapse
Affiliation(s)
- Damon A. Clark
- Department of Physics, Ecole Normale Supérieure, Paris, France
| | | | - Markus Meister
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Rava Azeredo da Silveira
- Department of Physics, Ecole Normale Supérieure, Paris, France
- Laboratoire de Physique Statistique, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Denis Diderot, Paris, France
| |
Collapse
|
22
|
Adaptation to steady light by intrinsically photosensitive retinal ganglion cells. Proc Natl Acad Sci U S A 2013; 110:7470-5. [PMID: 23589882 DOI: 10.1073/pnas.1304039110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are recently discovered photoreceptors in the mammalian eye. These photoreceptors mediate primarily nonimage visual functions, such as pupillary light reflex and circadian photoentrainment, which are generally expected to respond to the absolute light intensity. The classical rod and cone photoreceptors, on the other hand, mediate image vision by signaling contrast, accomplished by adaptation to light. Experiments by others have indicated that the ipRGCs do, in fact, light-adapt. We found the same but, in addition, have now quantified this light adaptation for the M1 ipRGC subtype. Interestingly, in incremental-flash-on-background experiments, the ipRGC's receptor current showed a flash sensitivity that adapted in background light according to the Weber-Fechner relation, well known to describe the adaptation behavior of rods and cones. Part of this light adaptation by ipRGCs appeared to be triggered by a Ca(2+) influx, in that the flash response elicited in the absence of extracellular Ca(2+) showed a normal rising phase but a slower decay phase, resulting in longer time to peak and higher sensitivity. There is, additionally, a prominent Ca(2+)-independent component of light adaptation not typically seen in rods and cones or in invertebrate rhabdomeric photoreceptors.
Collapse
|
23
|
Kashikar ND, Alvarez L, Seifert R, Gregor I, Jäckle O, Beyermann M, Krause E, Kaupp UB. Temporal sampling, resetting, and adaptation orchestrate gradient sensing in sperm. ACTA ACUST UNITED AC 2013; 198:1075-91. [PMID: 22986497 PMCID: PMC3444779 DOI: 10.1083/jcb.201204024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
Sperm use temporal sampling, resetting of intracellular calcium level, and adaptation of their sensitivity to respond to a wide range of chemoattractant concentrations during their voyage toward the egg. Sperm, navigating in a chemical gradient, are exposed to a periodic stream of chemoattractant molecules. The periodic stimulation entrains Ca2+ oscillations that control looping steering responses. It is not known how sperm sample chemoattractant molecules during periodic stimulation and adjust their sensitivity. We report that sea urchin sperm sampled molecules for 0.2–0.6 s before a Ca2+ response was produced. Additional molecules delivered during a Ca2+ response reset the cell by causing a pronounced Ca2+ drop that terminated the response; this reset was followed by a new Ca2+ rise. After stimulation, sperm adapted their sensitivity following the Weber–Fechner law. Taking into account the single-molecule sensitivity, we estimate that sperm can register a minimal gradient of 0.8 fM/µm and be attracted from as far away as 4.7 mm. Many microorganisms sense stimulus gradients along periodic paths to translate a spatial distribution of the stimulus into a temporal pattern of the cell response. Orchestration of temporal sampling, resetting, and adaptation might control gradient sensing in such organisms as well.
Collapse
Affiliation(s)
- Nachiket D Kashikar
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, 53175 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zang J, Matthews HR. Origin and control of the dominant time constant of salamander cone photoreceptors. ACTA ACUST UNITED AC 2012; 140:219-33. [PMID: 22802362 PMCID: PMC3409105 DOI: 10.1085/jgp.201110762] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Abstract
Recovery of the light response in vertebrate photoreceptors requires the shutoff of both active intermediates in the phototransduction cascade: the visual pigment and the transducin–phosphodiesterase complex. Whichever intermediate quenches more slowly will dominate photoresponse recovery. In suction pipette recordings from isolated salamander ultraviolet- and blue-sensitive cones, response recovery was delayed, and the dominant time constant slowed when internal [Ca2+] was prevented from changing after a bright flash by exposure to 0Ca2+/0Na+ solution. Taken together with a similar prior observation in salamander red-sensitive cones, these observations indicate that the dominance of response recovery by a Ca2+-sensitive process is a general feature of amphibian cone phototransduction. Moreover, changes in the external pH also influenced the dominant time constant of red-sensitive cones even when changes in internal [Ca2+] were prevented. Because the cone photopigment is, uniquely, exposed to the external solution, this may represent a direct effect of protons on the equilibrium between its inactive Meta I and active Meta II forms, consistent with the notion that the process dominating recovery of the bright flash response represents quenching of the active Meta II form of the cone photopigment.
Collapse
Affiliation(s)
- Jingjing Zang
- Physiological Laboratory, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3EG, England, UK
| | | |
Collapse
|
25
|
Lin YB, Liu JH, Chang Y. Hypoxia reduces the effect of photoreceptor bleaching. J Physiol Sci 2012; 62:309-15. [PMID: 22544448 PMCID: PMC10717264 DOI: 10.1007/s12576-012-0201-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2011] [Accepted: 02/07/2012] [Indexed: 11/27/2022]
Abstract
Hypoxia and light illumination can both decrease oxygen consumption in the photoreceptor layers. The purpose of the present study was to investigate whether the mutual effects of hypoxia and intense illumination to the photoreceptors are additive. The a-wave of flash electroretinogram (fERG) was recorded to indirectly measure the photoreceptors function under given conditions. Six normal healthy subjects, mean age 34.0 ± 3.8 years, all of whom had high-altitude (>3,000 m) mountain hiking experience, were recruited for the study. Flash a-wave electroretinography was examined under four conditions: (1) normal (D/N); (2) systemic hypoxia induced by inhaling a mixture of O(2) and N(2) gases, which caused oxyhemoglobin saturation (SaO(2)) ≈ 80% (D/H); (3) intense light illumination, which resulted in photoreceptor bleaching (B/N); and (4) a combination of conditions b and c (B/H). Thirty light stimuli, each with a 20-ms ON and 1,980-ms OFF cycle, were given and ERG performed to probe the photoreceptor function. The results showed that a-wave at the various conditions did not respond to all stimuli. The average a-wave amplitudes were 91.4 ± 46.5, 22.8 ± 42.5, 15.5 ± 28.9, and 35.2 ± 41.1 μV for D/N, D/H, B/N, and B/H, respectively. Nonparametric Friedman test for a-wave amplitude indicated that significant differences occurred in D/N-D/H, D/N-B/N, D/N-B/H, D/H-B/H, and B/N-B/H (all p values were <0.001, but D/H-B/N was 0.264). Thus, systemic hypoxia or strong illumination to the retina can cause an absence of the ERG a-wave or change its response, although individual differences were observed. In this study, systemic hypoxia appeared to reduce photoreceptor bleaching, an interesting finding in itself. The mechanisms underlying the disappearance of the ERG a-wave following hypoxia or intense illumination to the photoreceptors seem to differ.
Collapse
Affiliation(s)
- Yun-Bin Lin
- Institute of Biomedical Engineering, National Yang-Ming University, 155 Section 2 Li-Nong Street, Shih-Pi, Bei-Tou Dist., Taipei, 11221 Taiwan
| | - Jorn-Hon Liu
- Department of Ophthalmology, Cheng Hsin General Hospital, 45 Cheng Hsin Street, Shih-Pi, Bei-Tou Dist., Taipei, 11220 Taiwan
| | - Yin Chang
- Institute of Biomedical Engineering, National Yang-Ming University, 155 Section 2 Li-Nong Street, Shih-Pi, Bei-Tou Dist., Taipei, 11221 Taiwan
- Institute of Biophotonics, National Yang-Ming University, 155 Section 2 Li-Nong Street, Shih-Pi, Bei-Tou Dist., Taipei, 11221 Taiwan
| |
Collapse
|
26
|
Korenbrot JI. Speed, adaptation, and stability of the response to light in cone photoreceptors: the functional role of Ca-dependent modulation of ligand sensitivity in cGMP-gated ion channels. ACTA ACUST UNITED AC 2012; 139:31-56. [PMID: 22200947 PMCID: PMC3250101 DOI: 10.1085/jgp.201110654] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
Abstract
The response of cone photoreceptors to light is stable and reproducible because of the exceptional regulation of the cascade of enzymatic reactions that link visual pigment (VP) excitation to the gating of cyclic GMP (cGMP)-gated ion channels (cyclic nucleotide–gated [CNG]) in the outer segment plasma membrane. Regulation is achieved in part through negative feedback control of some of these reactions by cytoplasmic free Ca2+. As part of the control process, Ca2+ regulates the phosphorylation of excited VP, the activity of guanylate cyclase, and the ligand sensitivity of the CNG ion channels. We measured photocurrents elicited by stimuli in the form of flashes, steps, and flashes superimposed on steps in voltage-clamped single bass cones isolated from striped bass retina. We also developed a computational model that comprises all the known molecular events of cone phototransduction, including all Ca-dependent controls. Constrained by available experimental data in bass cones and cone transduction biochemistry, we achieved an excellent match between experimental photocurrents and those simulated by the model. We used the model to explore the physiological role of CNG ion channel modulation. Control of CNG channel activity by both cGMP and Ca2+ causes the time course of the light-dependent currents to be faster than if only cGMP controlled their activity. Channel modulation also plays a critical role in the regulation of the light sensitivity and light adaptation of the cone photoresponse. In the absence of ion channel modulation, cone photocurrents would be unstable, oscillating during and at the offset of light stimuli.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
27
|
Korenbrot JI. Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: facts and models. Prog Retin Eye Res 2012; 31:442-66. [PMID: 22658984 DOI: 10.1016/j.preteyeres.2012.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2011] [Revised: 05/19/2012] [Accepted: 05/21/2012] [Indexed: 01/06/2023]
Abstract
The light responses of rod and cone photoreceptors in the vertebrate retina are quantitatively different, yet extremely stable and reproducible because of the extraordinary regulation of the cascade of enzymatic reactions that link photon absorption and visual pigment excitation to the gating of cGMP-gated ion channels in the outer segment plasma membrane. While the molecular scheme of the phototransduction pathway is essentially the same in rods and cones, the enzymes and protein regulators that constitute the pathway are distinct. These enzymes and regulators can differ in the quantitative features of their functions or in concentration if their functions are similar or both can be true. The molecular identity and distinct function of the molecules of the transduction cascade in rods and cones are summarized. The functional significance of these molecular differences is examined with a mathematical model of the signal-transducing enzymatic cascade. Constrained by available electrophysiological, biochemical and biophysical data, the model simulates photocurrents that match well the electrical photoresponses measured in both rods and cones. Using simulation computed with the mathematical model, the time course of light-dependent changes in enzymatic activities and second messenger concentrations in non-mammalian rods and cones are compared side by side.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA 94920, USA.
| |
Collapse
|
28
|
Abstract
The visual system is one of the most energetically demanding systems in the brain. The currency of energy is ATP, which is generated most efficiently from oxidative metabolism in the mitochondria. ATP supports multiple neuronal functions. Foremost is repolarization of the membrane potential after depolarization. Neuronal activity, ATP generation, blood flow, oxygen consumption, glucose utilization, and mitochondrial oxidative metabolism are all interrelated. In the retina, phototransduction, neurotransmitter utilization, and protein/organelle transport are energy-dependent, yet repolarization-after-depolarization consumes the bulk of the energy. Repolarization in photoreceptor inner segments maintains the dark current. Repolarization by all neurons along the visual pathway following depolarizing excitatory glutamatergic neurotransmission preserves cellular integrity and permits reactivation. The higher metabolic activity in the magno- versus the parvo-cellular pathway, the ON- versus the OFF-pathway in some (and the reverse in other) species, and in specialized functional representations in the visual cortex all reflect a greater emphasis on the processing of specific visual attributes. Neuronal activity and energy metabolism are tightly coupled processes at the cellular and even at the molecular levels. Deficiencies in energy metabolism, such as in diabetes, mitochondrial DNA mutation, mitochondrial protein malfunction, and oxidative stress can lead to retinopathy, visual deficits, neuronal degeneration, and eventual blindness.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
29
|
Matthews HR, Sampath AP. Photopigment quenching is Ca2+ dependent and controls response duration in salamander L-cone photoreceptors. ACTA ACUST UNITED AC 2010; 135:355-66. [PMID: 20231373 PMCID: PMC2847922 DOI: 10.1085/jgp.200910394] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/02/2022]
Abstract
The time scale of the photoresponse in photoreceptor cells is set by the slowest of the steps that quench the light-induced activity of the phototransduction cascade. In vertebrate photoreceptor cells, this rate-limiting reaction is thought to be either shutoff of catalytic activity in the photopigment or shutoff of the pigment's effector, the transducin-GTP–phosphodiesterase complex. In suction pipette recordings from isolated salamander L-cones, we found that preventing changes in internal [Ca2+] delayed the recovery of the light response and prolonged the dominant time constant for recovery. Evidence that the Ca2+-sensitive step involved the pigment itself was provided by the observation that removal of Cl− from the pigment's anion-binding site accelerated the dominant time constant for response recovery. Collectively, these observations indicate that in L-cones, unlike amphibian rods where the dominant time constant is insensitive to [Ca2+], pigment quenching rate limits recovery and provides an additional mechanism for modulating the cone response during light adaptation.
Collapse
Affiliation(s)
- Hugh R Matthews
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Cambridge, England, UK.
| | | |
Collapse
|
30
|
Abstract
The time course of the light-induced activity of phototrandsuction effector enzyme cGMP-phosphodiesterase (PDE) is shaped by kinetics of rhodopsin and transducin shut-offs. The two processes are among the key factors that set the speed and sensitivity of the photoresponse and whose regulation contributes to light adaptation. The aim of this study was to determine time courses of flash-induced PDE activity in frog rods that were dark adapted or subjected to nonsaturating steady background illumination. PDE activity was computed from the responses recorded from solitary rods with the suction pipette technique in Ca2+-clamping solution. A flash applied in the dark-adapted state elicits a wave of PDE activity whose rising and decaying phases have characteristic times near 0.5 and 2 seconds, respectively. Nonsaturating steady background shortens both phases roughly to the same extent. The acceleration may exceed fivefold at the backgrounds that suppress ≈70% of the dark current. The time constant of the process that controls the recovery from super-saturating flashes (so-called dominant time constant) is adaptation independent and, hence, cannot be attributed to either of the processes that shape the main part of the PDE wave. We hypothesize that the dominant time constant in frog rods characterizes arrestin binding to rhodopsin partially inactivated by phosphorylation. A mathematical model of the cascade that considers two-stage rhodopsin quenching and transducin inactivation can mimic experimental PDE activity quite well. The effect of light adaptation on the PDE kinetics can be reproduced in the model by concomitant acceleration on both rhodopsin phosphorylation and transducin turn-off, but not by accelerated arrestin binding. This suggests that not only rhodopsin but also transducin shut-off is under adaptation control.
Collapse
Affiliation(s)
- Luba A Astakhova
- Sechenov Institute for Evolutionary Physiology & Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | | | | |
Collapse
|
31
|
Okawa H, Sampath AP, Laughlin SB, Fain GL. ATP consumption by mammalian rod photoreceptors in darkness and in light. Curr Biol 2008; 18:1917-21. [PMID: 19084410 DOI: 10.1016/j.cub.2008.10.029] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2008] [Revised: 10/06/2008] [Accepted: 10/08/2008] [Indexed: 11/30/2022]
Abstract
Why do vertebrates use rods and cones that hyperpolarize, when in insect eyes a single depolarizing photoreceptor can function at all light levels? We answer this question at least in part with a comprehensive assessment of ATP consumption for mammalian rods from voltages and currents and recently published physiological and biochemical data. In darkness, rods consume 10(8) ATP s(-1), about the same as Drosophila photoreceptors. Ion fluxes associated with phototransduction and synaptic transmission dominate; as in CNS, the contribution of enzymes of the second-messenger cascade is surprisingly small. Suppression of rod responses in daylight closes light-gated channels and reduces total energy consumption by >75%, but in Drosophila light opens channels and increases consumption 5-fold. Rods therefore provide an energy-efficient mechanism not present in rhabdomeric photoreceptors. Rods are metabolically less "costly" than cones, because cones do not saturate in bright light and use more ATP s(-1) for transducin activation and rhodopsin phosphorylation. This helps to explain why the vertebrate retina is duplex, and why some diurnal animals like primates have a small number of cones, concentrated in a region of high acuity.
Collapse
Affiliation(s)
- Haruhisa Okawa
- Neuroscience Graduate Program, Zilkha Neurogenetic Institute, USC Keck School of Medicine, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
32
|
Kawamura S, Tachibanaki S. Rod and cone photoreceptors: molecular basis of the difference in their physiology. Comp Biochem Physiol A Mol Integr Physiol 2008; 150:369-77. [PMID: 18514002 DOI: 10.1016/j.cbpa.2008.04.600] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 02/02/2023]
Abstract
Vertebrate retinal photoreceptors consist of two types of cells, the rods and cones. Rods are highly light-sensitive but their flash response time course is slow, so that they can detect a single photon in the dark but are not good at detecting an object moving quickly. Cones are less light-sensitive and their flash response time course is fast, so that cones mediate daylight vision and are more suitable to detect a moving object than rods. The phototransduction mechanism was virtually known by the mid 80s, and detailed mechanisms of the generation of a light response are now understood in a highly quantitative manner at the molecular level. However, most of these studies were performed in rods, but not in cones. Therefore, the mechanisms of low light-sensitivity or fast flash response time course in cones have not been known. The major reason for this slow progress in the study of cone phototransduction was due to the inability of getting a large quantity of purified cones to study them biochemically. We succeeded in its purification using carp retina, and have shown that each step responsible for generation of a light response is less effective in cones and that the reactions responsible for termination of a light response are faster in cones. Based on these findings, we speculated a possible mechanism of evolution of rods that diverged from cones.
Collapse
Affiliation(s)
- Satoru Kawamura
- Graduate School of Frontier Biosciences and Department of Biology, Osaka University, Yamada-Oka 1-3, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
33
|
Abstract
The responses of individual salamander L-cones to light steps of moderate intensity (bleaching 0.3-3% of the total photopigment) and duration (between 5 and 90 s) were recorded using suction electrodes. Light initially suppressed the circulating current, which partially recovered or "sagged" over several seconds. The sensitivity of the cone to dim flashes decreased rapidly after light onset and approached a minimum within 500 ms. Background light did not affect the rising phase of the dim flash response, a measure of the initial gain of phototransduction. When the light was extinguished, the circulating current transiently exceeded or "overshot" its level in darkness. During the overshoot, the sensitivity of the cone required several seconds to recover. The sag and overshoot remained in voltage-clamped cones. Comparison with theory suggests that three mechanisms cause the sag, overshoot, and slow recovery of sensitivity after the light step: a gradual increase in the rate of inactivation of the phototransduction cascade during the light step, residual activity of the transduction cascade after the step is extinguished, and an increase in guanylate cyclase activity during the light step that persists after the light is extinguished.
Collapse
|
34
|
Dunn FA, Lankheet MJ, Rieke F. Light adaptation in cone vision involves switching between receptor and post-receptor sites. Nature 2007; 449:603-6. [PMID: 17851533 DOI: 10.1038/nature06150] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2007] [Accepted: 08/06/2007] [Indexed: 11/09/2022]
Abstract
We see over an enormous range of mean light levels, greater than the range of output signals retinal neurons can produce. Even highlights and shadows within a single visual scene can differ approximately 10,000-fold in intensity-exceeding the range of distinct neural signals by a factor of approximately 100. The effectiveness of daylight vision under these conditions relies on at least two retinal mechanisms that adjust sensitivity in the approximately 200 ms intervals between saccades. One mechanism is in the cone photoreceptors (receptor adaptation) and the other is at a previously unknown location within the retinal circuitry that benefits from convergence of signals from multiple cones (post-receptor adaptation). Here we find that post-receptor adaptation occurs as signals are relayed from cone bipolar cells to ganglion cells. Furthermore, we find that the two adaptive mechanisms are essentially mutually exclusive: as light levels increase the main site of adaptation switches from the circuitry to the cones. These findings help explain how human cone vision encodes everyday scenes, and, more generally, how sensory systems handle the challenges posed by a diverse physical environment.
Collapse
Affiliation(s)
- Felice A Dunn
- Program in Neurobiology and Behavior, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
35
|
Leung YT, Fain GL, Matthews HR. Simultaneous measurement of current and calcium in the ultraviolet-sensitive cones of zebrafish. J Physiol 2006; 579:15-27. [PMID: 17124271 PMCID: PMC2075373 DOI: 10.1113/jphysiol.2006.120162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023] Open
Abstract
In rods and visible cone photoreceptors, multiple measurements cannot be made of intracellular Ca2+ concentration from the same cell using fluorescent dyes, because a single exposure of the measuring light bleaches too large a fraction of the rod or cone photopigment. We have therefore identified and characterized UV-sensitive cones of the zebrafish, whose wavelength of maximum sensitivity is at 360 nm which is far enough from the wavelength of our measuring light (514.5 nm) so that it has been possible to make multiple determinations of photocurrent and Ca2+ concentration from the same cells. We show that for a limited number of measurements, for which the bleaching of the cone photopigment is too small to affect flash kinetics, the outer segment Ca2+ concentration closely follows the wave form of the flash response convolved with the dominant time constant for Ca2+ removal by Na+-Ca2+-K+ exchange. For a larger number of measurements, significant acceleration of the response kinetics by pigment bleaching inevitably occurs, but the Ca2+ concentration nevertheless rises and falls in approximate agreement with the flash wave form. During exposure to steady background light, the Ca2+ concentration falls in proportion to the steady-state current for dim backgrounds at all times and for bright backgrounds at steady state. At early times following the onset of bright backgrounds, however, the Ca2+ concentration is markedly higher than expected from the current of the cone. We show this to be the result of light-dependent Ca2+ release by bright background light, which can be abolished by pre-exposure of the cone to the membrane-permeant acetoxymethyl ester of the Ca2+ chelator BAPTA. Our results therefore demonstrate that the cone outer segment Ca2+ concentration is predominantly a function of the rate of influx and efflux of Ca2+ across the plasma membrane, but that a release of Ca2+ in bright light most probably from buffer sites within the cell can transiently elevate the Ca2+ concentration above the level expected from the open probability of the light-dependent channels.
Collapse
Affiliation(s)
- Yiu Tak Leung
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
36
|
Wong KY, Dunn FA, Berson DM. Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 2006; 48:1001-10. [PMID: 16364903 DOI: 10.1016/j.neuron.2005.11.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2005] [Revised: 10/13/2005] [Accepted: 11/08/2005] [Indexed: 01/28/2023]
Abstract
A rare type of mammalian retinal ganglion cell (RGC) expresses the photopigment melanopsin and is a photoreceptor. These intrinsically photosensitive RGCs (ipRGCs) drive circadian-clock resetting, pupillary constriction, and other non-image-forming photic responses. Both the light responses of ipRGCs and the behaviors they drive are remarkably sustained, raising the possibility that, unlike rods and cones, ipRGCs do not adjust their sensitivity according to lighting conditions ("adaptation"). We found, to the contrary, that ipRGC sensitivity is plastic, strongly influenced by lighting history. When exposed to a constant, bright background, the background-evoked response decayed, and responses to superimposed flashes grew in amplitude, indicating light adaptation. After extinction of a light-adapting background, sensitivity recovered progressively in darkness, indicating dark adaptation. Because these adjustments in sensitivity persisted when synapses were blocked, they constitute "photoreceptor adaptation" rather than "network adaptation." Implications for the mechanisms generating various non-image-forming visual responses are discussed.
Collapse
Affiliation(s)
- Kwoon Y Wong
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
37
|
Holcman D, Korenbrot JI. The limit of photoreceptor sensitivity: molecular mechanisms of dark noise in retinal cones. ACTA ACUST UNITED AC 2005; 125:641-60. [PMID: 15928405 PMCID: PMC2234084 DOI: 10.1085/jgp.200509277] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Detection threshold in cone photoreceptors requires the simultaneous absorption of several photons because single photon photocurrent is small in amplitude and does not exceed intrinsic fluctuations in the outer segment dark current (dark noise). To understand the mechanisms that limit light sensitivity, we characterized the molecular origin of dark noise in intact, isolated bass single cones. Dark noise is caused by continuous fluctuations in the cytoplasmic concentrations of both cGMP and Ca2+ that arise from the activity in darkness of both guanylate cyclase (GC), the enzyme that synthesizes cGMP, and phosphodiesterase (PDE), the enzyme that hydrolyzes it. In cones loaded with high concentration Ca2+ buffering agents, we demonstrate that variation in cGMP levels arise from fluctuations in the mean PDE enzymatic activity. The rates of PDE activation and inactivation determine the quantitative characteristics of the dark noise power density spectrum. We developed a mathematical model based on the dynamics of PDE activity that accurately predicts this power spectrum. Analysis of the experimental data with the theoretical model allows us to determine the rates of PDE activation and deactivation in the intact photoreceptor. In fish cones, the mean lifetime of active PDE at room temperature is ∼55 ms. In nonmammalian rods, in contrast, active PDE lifetime is ∼555 ms. This remarkable difference helps explain why cones are noisier than rods and why cone photocurrents are smaller in peak amplitude and faster in time course than those in rods. Both these features make cones less light sensitive than rods.
Collapse
Affiliation(s)
- David Holcman
- Keck Center for Theoretical Neurobiology and Department of Physiology, School of Medicine, University of California at San Francisco, 94143, USA
| | | |
Collapse
|
38
|
Kennedy MJ, Dunn FA, Hurley JB. Visual pigment phosphorylation but not transducin translocation can contribute to light adaptation in zebrafish cones. Neuron 2004; 41:915-28. [PMID: 15046724 DOI: 10.1016/s0896-6273(04)00086-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2003] [Revised: 12/22/2003] [Accepted: 02/03/2004] [Indexed: 11/20/2022]
Abstract
The ability of cone photoreceptors to adapt to light is extraordinary. In this study we evaluated two biochemical processes, visual pigment phosphorylation and transducin translocation, for their ability to contribute to light adaptation in zebrafish cones. Since cytoplasmic Ca2+ regulates light adaptation, the sensitivities of these processes to both light and Ca2+ were examined. Cytoplasmic Ca2+ regulates the sites of light-stimulated phosphorylation. Unexpectedly, we found that Ca2+ also regulates the extent of phosphorylation of unbleached cone pigments. Immunocytochemical analyses revealed that neither light nor cytoplasmic Ca2+ influences the localization of transducin in zebrafish cones.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
39
|
Calvert PD, Makino CL. The time course of light adaptation in vertebrate retinal rods. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:37-60. [PMID: 12596914 DOI: 10.1007/978-1-4615-0121-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023]
Abstract
The photoresponse of a rod wanes over time in steady illumination, as light loses its efficacy in generating the response. Such desensitization is adaptive because it extends the range of ambient light levels over which the rod signals changes in light intensity by several orders of magnitude. Adaptation begins to unfold rapidly after the onset of light with a time constant of approximately 1 s, causing the rod's sensitivity to steady light to decrease by nearly two log units. Thereafter, a much slower phase of adaptation evolves with a time constant of 9 s. During this phase the rod's sensitivity decreases by an additional log unit. Both phases are dependent upon the light-induced fall in intracellular Ca2+. The fast phase of light adaptation can be attributed to Ca2+ feedback processes regulating the lifetime ofphotoactivated rhodopsin, cGMP synthesis and sensitivity of the cGMP-gated channel to cGMP. Although the mechanism(s) of the slow phase is not yet known, it appears to include further regulation of the lifetime of photoactivated rhodopsin.
Collapse
Affiliation(s)
- Peter D Calvert
- Department of Ophthalmology, Harvard Medical School and the Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| | | |
Collapse
|
40
|
Korenbrot JI, Rebrik TI. Tuning outer segment Ca2+ homeostasis to phototransduction in rods and cones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 514:179-203. [PMID: 12596922 DOI: 10.1007/978-1-4615-0121-3_11] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Cone photoreceptors respond to light with less sensitivity, faster kinetics and adapt over a much wider range of intensities than do rods. These differences can be explained, in part, by the quantitative differences in the molecular processes that regulate the cytoplasmic free Ca2+ concentration in the outer segment of both receptor types. Ca2+ concentration is regulated through the kinetic balance between the ions' influx and efflux and the action of intracellular buffers. Influx is passive and mediated by the cyclic-GMP gated ion channels. In cones, Ca2+ ions carry about 35% of the ionic current flowing through the channels in darkness. In rods, in contrast, this fraction is about 20%. We present a kinetic rate model of the ion channels that helps explain the differences in their Ca2+ fractional flux. In cones, but not in rods, the cGMP-sensitivity of the cyclic GMP-gated ion channels changes with Ca2+ at the concentrations expected in dark-adapted photoreceptors. Ca2+ efflux is active and mediated by a Na+ and K+-dependent exchanger. The rate of Ca2+ clearance mediated by the exchanger in cones, regardless of the absolute size of their outer segment is of the order of tens of milliseconds. In rod outer segments, and again independently of their size, Ca2+ clearance rate is of the order of hundreds of milliseconds to seconds. We investigate the functional consequences of these differences in Ca2+ homeostasis using computational models of the phototransduction signal in rods and cones. Consistent with experimental observation, differences in Ca2+ homeostasis can make the cone's flash response faster and less sensitive to light than that of rods. In the simulations, however, changing Ca2+ homeostasis is not sufficient to recreate authentic cone responses. Accelerating the rate of inactivation (but NOT activation) of the enzymes of the transduction cascade, in addition, to changes in Ca2+ homeostasis are needed to explain the differences between rod and cone photosignals. The large gain and precise kinetic control of the electrical photoresponse of rod and cone retinal receptors suggested a long time back that phototransduction is mediated by cytoplasmic second messengers that, in turn, control membrane ionic conductance. (1) The unquestionable identification of cyclic GMP as the phototransduction messenger, however, did not come until the mid 1980's with the discovery that the light-regulated membrane conductance in both rods and cones is gated by this nucleotide (2-4) and is, in fact, an ion channel. (7) The cyclic nucleotide gated (CNG) channels, now we know, are not just the compliant targets of light-dependent change in cytoplasmic cGMP, but actively participate in the regulation transduction through Ca2+ feedback signals. The precise magnitude and time course of the concentration changes of cGMP and Ca2+ in either rods or cones remains controversial. It is clear, however, that whereas cGMP directly controls the opening and closing of the plasma membrane channels, Ca2+ controls the light-sensitivity and kinetics of the transduction signal. (8,9) The modulatory role of Ca2+ is particularly apparent in the process of light adaptation: in light-adapted rods or cones, the transduction signal generated by a given flash is lower in sensitivity and faster in time course than in dark-adapted cells. Light adaptation is compromised if Ca2+ concentration changes are attenuated by cytopiasmic Ca2+ buffers (8,10,11) and does not occur if Ca2+ concentration changes are prevented by manipulation of the solution bathing the cells. (2,4) Several Ca2+-dependent biochemical reactions have been identified in photoreceptors, among them: 1. ATP-dependent deactivation. (15,16) 2 Phodopsin phospshorylation, through the action of recoverin (S-modulin). (17-19) 3. Catalytic activity of guanylyl cyclase, (20-22) through the action of GCAP proteins. (23,24,25) 4. cGMP-sensitivity of the CNG channels. (26-29,30) A challenge in contemporary phototransduction research is to understand the details of these reactions and their role in the control of the phototransduction signal. Transduction signals in cone photoreceptors are faster, lower in light sensitivity, and more robust in their adaptation features than those in rods (for review see refs. 31;32). A detailed molecular explanation for these differences is not at hand. However, biochemical and electrophysiological (33) studies indicate that the elements in the light-activated pathway that hydrolyzes cGMP are quantitatively similar in their function in rods and cones and unlikely to account for the functional differences. Also, within the limited exploration completed todate, the Ca2+-dependence of guanylyl cyclase (34) and visual pigment phosphorylation (19) do not differ in rods and cones. On the other hand, data accumulated over the past few years indicate that cytoplasmic Ca2+ homeostasis, while controlled through essentially identical mechanisms it is quantitatively very different in its features in the two photoreceptor types. Both Ca2+ influx through CNG channels and the rate of Ca2+ clearance from the outer segment differ between the two receptor cells. Also, the Ca2+-dependent modulation of cGMP sensitivity is larger in extent in cones than in rods. Most significantly, the concentration range of this Ca2+ dependence overlaps the physiological range of light-dependent changes in cytoplasmic Ca2+ level in cones, but not in rods. We briefly review some of the evidence that supports these assertions and we then provide a quantitative analysis of the possible significance of these known differences. We conclude that while differences in Ca2+ homeostasis contribute importantly to explaining the differences between the two receptor types, they are alone not sufficient to explain the differences in the photoreceptor's response. It is likely that Ca2+-independent inactivation of the transduction cascade enzymes is more rapid in cones than in rods.
Collapse
Affiliation(s)
- Juan I Korenbrot
- Department of Physiology, School of Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
41
|
Abstract
Vertebrate cone and rod photoreceptor cells use similar mechanisms to transduce light signals into electrical signals, but their responses to light differ in sensitivity and kinetics. To assess the role of G-protein GTP hydrolysis kinetics in mammalian cone photoresponses, we have characterized photoresponses and GTPase regulatory components of cones and rods from the cone-dominant retina of the eastern chipmunk. Sensitivity, based on the stimulus strength required for a half-maximum response, of the M-cone population was 38-fold lower than that of the rods. The relatively lower cone sensitivity could be attributed in part to lower amplification in the rising phase and in part to faster recovery kinetics. At a molecular level, cloning of chipmunk cDNA and expression of recombinant proteins provided standards for quantitative immunoblot analysis of proteins involved in GTPase acceleration. The ratio of the cGMP-phosphodiesterase inhibitory subunit gamma to cone pigment, 1:68, was similar to the levels observed for ratios to rhodopsin in bovine retina, 1:76, or mouse retina, 1:65. In contrast, the ratio to pigment of the GTPase-accelerating protein RGS9-1 was 1:62, more than 10 times higher than ratios observed in rod-dominant retinas. Immunoprecipitation experiments revealed that, in contrast to rods, RGS9-1 in chipmunk retina is associated with both the short and long isoforms of its partner subunit G(beta5). The much higher levels of the GTPase-accelerating protein complex in cones, compared with rods, suggest a role for GTPase acceleration in obtaining rapid photoresponse kinetics.
Collapse
|
42
|
Zhang X, Wensel TG, Kraft TW. GTPase regulators and photoresponses in cones of the eastern chipmunk. J Neurosci 2003; 23:1287-97. [PMID: 12598617 PMCID: PMC6742256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/01/2023] Open
Abstract
Vertebrate cone and rod photoreceptor cells use similar mechanisms to transduce light signals into electrical signals, but their responses to light differ in sensitivity and kinetics. To assess the role of G-protein GTP hydrolysis kinetics in mammalian cone photoresponses, we have characterized photoresponses and GTPase regulatory components of cones and rods from the cone-dominant retina of the eastern chipmunk. Sensitivity, based on the stimulus strength required for a half-maximum response, of the M-cone population was 38-fold lower than that of the rods. The relatively lower cone sensitivity could be attributed in part to lower amplification in the rising phase and in part to faster recovery kinetics. At a molecular level, cloning of chipmunk cDNA and expression of recombinant proteins provided standards for quantitative immunoblot analysis of proteins involved in GTPase acceleration. The ratio of the cGMP-phosphodiesterase inhibitory subunit gamma to cone pigment, 1:68, was similar to the levels observed for ratios to rhodopsin in bovine retina, 1:76, or mouse retina, 1:65. In contrast, the ratio to pigment of the GTPase-accelerating protein RGS9-1 was 1:62, more than 10 times higher than ratios observed in rod-dominant retinas. Immunoprecipitation experiments revealed that, in contrast to rods, RGS9-1 in chipmunk retina is associated with both the short and long isoforms of its partner subunit G(beta5). The much higher levels of the GTPase-accelerating protein complex in cones, compared with rods, suggest a role for GTPase acceleration in obtaining rapid photoresponse kinetics.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
43
|
Crouch RK, Kefalov V, Gärtner W, Cornwall MC. Use of retinal analogues for the study of visual pigment function. Methods Enzymol 2002; 343:29-48. [PMID: 11665574 DOI: 10.1016/s0076-6879(02)43126-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/22/2023]
Affiliation(s)
- Rosalie K Crouch
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Vertebrate rod photoreceptors adjust their sensitivity as they adapt during exposure to steady light. Light adaptation prevents the rod from saturating and significantly extends its dynamic range. We examined the time course of the onset of light adaptation in bullfrog rods and compared it with the projected onset of feedback reactions thought to underlie light adaptation on the molecular level. We found that adaptation developed in two distinct temporal phases: (1) a fast phase that operated within seconds after the onset of illumination, which is consistent with most previous reports of a 1-2-s time constant for the onset of adaptation; and (2) a slow phase that engaged over tens of seconds of continuous illumination. The fast phase desensitized the rods as much as 80-fold, and was observed at every light intensity tested. The slow phase was observed only at light intensities that suppressed more than half of the dark current. It provided an additional sensitivity loss of up to 40-fold before the rod saturated. Thus, rods achieved a total degree of adaptation of approximately 3,000-fold. Although the fast adaptation is likely to originate from the well characterized Ca(2+)-dependent feedback mechanisms regulating the activities of several phototransduction cascade components, the molecular mechanism underlying slow adaptation is unclear. We tested the hypothesis that the slow adaptation phase is mediated by cGMP dissociation from noncatalytic binding sites on the cGMP phosphodiesterase, which has been shown to reduce the lifetime of activated phosphodiesterase in vitro. Although cGMP dissociated from the noncatalytic binding sites in intact rods with kinetics approximating that for the slow adaptation phase, this hypothesis was ruled out because the intensity of light required for cGMP dissociation far exceeded that required to evoke the slow phase. Other possible mechanisms are discussed.
Collapse
Affiliation(s)
- Peter D Calvert
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
45
|
Abstract
Visual adaptation to temporal contrast (intensity modulation of a spatially uniform, randomly flickering stimulus) was examined in simultaneously recorded ensembles of retinal ganglion cells (RGCs) in tiger salamander and macaque monkey retina. Slow contrast adaptation similar to that recently discovered in salamander and rabbit retina was observed in monkey retina. A novel method was developed to quantify the effect of temporal contrast on steady-state sensitivity and kinetics of light responses, separately from nonlinearities that would otherwise significantly contaminate estimates of sensitivity. Increases in stimulus contrast progressively and reversibly attenuated and sped light responses in both salamander and monkey RGCs, indicating that a portion of the contrast adaptation observed in visual cortex originates in the retina. The effect of adaptation on sensitivity and kinetics differed in simultaneously recorded populations of ON and OFF cells. In salamander, adaptation affected the sensitivity of OFF cells more than ON cells. In monkey, adaptation affected the sensitivity of ON cells more than OFF cells. In both species, adaptation sped the light responses of OFF cells more than ON cells. Functionally defined subclasses of ON and OFF cells also exhibited asymmetric adaptation. These findings indicate that contrast adaptation differs in parallel retinal circuits that convey distinct visual signals to the brain.
Collapse
|
46
|
Chander D, Chichilnisky EJ. Adaptation to temporal contrast in primate and salamander retina. J Neurosci 2001; 21:9904-16. [PMID: 11739598 PMCID: PMC6763043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/22/2023] Open
Abstract
Visual adaptation to temporal contrast (intensity modulation of a spatially uniform, randomly flickering stimulus) was examined in simultaneously recorded ensembles of retinal ganglion cells (RGCs) in tiger salamander and macaque monkey retina. Slow contrast adaptation similar to that recently discovered in salamander and rabbit retina was observed in monkey retina. A novel method was developed to quantify the effect of temporal contrast on steady-state sensitivity and kinetics of light responses, separately from nonlinearities that would otherwise significantly contaminate estimates of sensitivity. Increases in stimulus contrast progressively and reversibly attenuated and sped light responses in both salamander and monkey RGCs, indicating that a portion of the contrast adaptation observed in visual cortex originates in the retina. The effect of adaptation on sensitivity and kinetics differed in simultaneously recorded populations of ON and OFF cells. In salamander, adaptation affected the sensitivity of OFF cells more than ON cells. In monkey, adaptation affected the sensitivity of ON cells more than OFF cells. In both species, adaptation sped the light responses of OFF cells more than ON cells. Functionally defined subclasses of ON and OFF cells also exhibited asymmetric adaptation. These findings indicate that contrast adaptation differs in parallel retinal circuits that convey distinct visual signals to the brain.
Collapse
Affiliation(s)
- D Chander
- Systems Neurobiology, The Salk Institute, La Jolla, California 92037-1099, USA
| | | |
Collapse
|
47
|
Affiliation(s)
- D A Burkhardt
- Departments of Psychology and Physiology and Graduate Program of Neuroscience, University of Minnesota, 75 E. River Road, Minneapolis, MN 55455, USA.
| |
Collapse
|
48
|
Abstract
When light is absorbed within the outer segment of a vertebrate photoreceptor, the conformation of the photopigment rhodopsin is altered to produce an activated photoproduct called metarhodopsin II or Rh(*). Rh(*) initiates a transduction cascade similar to that for metabotropic synaptic receptors and many hormones; the Rh(*) activates a heterotrimeric G protein, which in turn stimulates an effector enzyme, a cyclic nucleotide phosphodiesterase. The phosphodiesterase then hydrolyzes cGMP, and the decrease in the concentration of free cGMP reduces the probability of opening of channels in the outer segment plasma membrane, producing the electrical response of the cell. Photoreceptor transduction can be modulated by changes in the mean light level. This process, called light adaptation (or background adaptation), maintains the working range of the transduction cascade within a physiologically useful region of light intensities. There is increasing evidence that the second messenger responsible for the modulation of the transduction cascade during background adaptation is primarily, if not exclusively, Ca(2+), whose intracellular free concentration is decreased by illumination. The change in free Ca(2+) is believed to have a variety of effects on the transduction mechanism, including modulation of the rate of the guanylyl cyclase and rhodopsin kinase, alteration of the gain of the transduction cascade, and regulation of the affinity of the outer segment channels for cGMP. The sensitivity of the photoreceptor is also reduced by previous exposure to light bright enough to bleach a substantial fraction of the photopigment in the outer segment. This form of desensitization, called bleaching adaptation (the recovery from which is known as dark adaptation), seems largely to be due to an activation of the transduction cascade by some form of bleached pigment. The bleached pigment appears to activate the G protein transducin directly, although with a gain less than Rh(*). The resulting decrease in intracellular Ca(2+) then modulates the transduction cascade, by a mechanism very similar to the one responsible for altering sensitivity during background adaptation.
Collapse
Affiliation(s)
- G L Fain
- Department of Physiological Science, University of California, Los Angeles, California 90095-1527, USA.
| | | | | | | |
Collapse
|
49
|
Hamer RD. Analysis of Ca++-dependent gain changes in PDE activation in vertebrate rod phototransduction. Mol Vis 2000; 6:265-86. [PMID: 11139649 PMCID: PMC1482459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/18/2023] Open
Abstract
PURPOSE Recent biochemical and physiological data point to the existence of one or more Ca++-mediated feedback mechanisms modulating gain at stages early in the vertebrate phototransduction cascade, i.e., prior to activation of cGMP-phosphodiesterase (PDE). The present study is a computational analysis that combines quantitative optimization to key data with a qualitative evaluation of each candidate model's ability to capture "signature" features of representative rod responses obtained under a broad range of dark- (DA) and light-adapted (LA) conditions. The primary data motivating the analyses were the two-flash data of Murnick & Lamb. These data exhibited strikingly nonlinear behavior: the period of complete photocurrent saturation (Tsat) in response to a Test flash was reduced substantially when preceded by a less-intense saturating Pre-flash. Depending on the delay between Pre- and Test flashes, the change in Tsat (DTsat) could exceed the magnitude of the delay, and could be reduced by as much as approximately 50%, corresponding to a large reduction in gain by a factor of 10-15. The overall goal of the study was to evaluate what model structure(s) were commensurate with both the Murnick & Lamb data and the salient qualitative features of rod responses obtained under a broad range of DA and LA conditions. METHODS Three candidate models were quantitatively optimized to the Murnick & Lamb saturated toad rod flash responses and, simultaneously, to a set of sub-saturated flash responses. Using the parameters from these optimizations, each candidate model was then used to simulate a suite of DA and LA responses. RESULTS The analyses showed that: (1) Within the context of a model with Ca++ feedback onto rhodopsin (R*) lifetime (tR), the salient features of the Murnick & Lamb data can only be accounted for if the rate-limiting step is not the Ca++-sensitive step in the early cascade reactions, i.e., if PDE* lifetime, and not tR, is rate-limiting. (2) With tR rate-limiting, the model cannot account for DTsat exceeding the delay. (3) The Ca++-dependent reduction in tR required to effect the large gain is incommensurate with the empirical dynamics of dim-flash responses. (4) Regardless of which reaction is rate-limiting, a model using solely modulation of R* lifetime puts strong constraints on the domain of biochemical parameters commensurate with the large gain changes Murnick & Lamb observed. (5) The analyses show that, in principle, the Murnick & Lamb data can be accounted for when tR is both rate-limiting and Ca++-sensitive if, in addition to the feedback onto tR, there is an earlier, stronger Ca++ feedback that does not affect R* inactivation kinetics (e.g., gain at R* activation or transducin (T*) activation). (6) Ca++-modulation of R* activation or T* activation as the sole early gain mechanism can also account for the Murnick & Lamb data, but fails to predict the data of Matthews, and can thus be rejected along with any model of comparable form. CONCLUSIONS The results imply that the Murnick & Lamb data per se are insufficient to rule out rate-limitation by (Ca++-sensitive) R* lifetime; evaluation of a broader set of responses is required. The analyses illustrate the importance of evaluating candidate models in relation to sets of data obtained under the broadest possible range of DA and LA conditions. The analyses are aided by the presence of reproducible signature, qualitative features in the data since these tend to constrain the domain of acceptable model structures and/or parameter sets. Some implications for vertebrate photoreceptor light-adaptation are discussed.
Collapse
Affiliation(s)
- R D Hamer
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA.
| |
Collapse
|
50
|
Hamer RD. Computational analysis of vertebrate phototransduction: combined quantitative and qualitative modeling of dark- and light-adapted responses in amphibian rods. Vis Neurosci 2000; 17:679-99. [PMID: 11153649 PMCID: PMC1482460 DOI: 10.1017/s0952523800175030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
We evaluated the generality of two models of vertebrate phototransduction. The approach was to quantitatively optimize each model to the full waveform of high-quality, dark-adapted (DA), salamander rod flash responses. With the optimal parameters, each model was then used to account for signature, qualitative features of rod responses from three experimental paradigms (stimulus/response, "S/R suite"): (1) step responses; (2) the intensity dependence of the period of photocurrent saturation (Tsat vs. ln(I)); and (3) light-adapted (LA) incremental flash sensitivity as a function of background intensity. The first model was the recent successful model of Nikonov et al. (1998). The second model replaced the instantaneous Ca2+ buffering used in the Nikonov et al. model with a dynamic buffer. The results showed that, in the absence of the dynamic Ca2+ buffer, the Nikonov et al. model does not have sufficient flexibility to provide a good fit to the flash responses, and, using the same parameters, reproduce the salient features of the S/R suite--critical features at step onset and offset are absent; the Tsat function has too shallow a slope; and the model cannot generate the empirically observed I-range of Weber-Fechner LA behavior. Some features could be recovered by changing parameters, but only at the expense of the fit to the reference (Ref) data. When the dynamic buffer is added, the model is able to achieve an acceptable fit to the Ref data while reproducing several features of the S/R suite, including an empirically observed Tsat function, and an extended range of LA flash sensitivity adhering to Weber's law. The overall improved behavior of the model with a dynamic Ca2+ buffer indicates that it is an important mechanism to include in a working model of phototransduction, and that, despite the slow kinetics of amphibian rods, Ca2+ buffering should not be simulated as an instantaneous process. However, neither model was able to capture all the features with the same parameters yielding the optimal fit to the Ref data. In addition, neither model could maintain a good fit to the Ref data when five key biochemical parameters were held at their current known values. Moreover, even after optimization, a number of important parameters remained outside their empirical estimates. We conclude that other mechanisms will need to be added, including additional Ca2+-feedback mechanisms. The present research illustrates the importance of a hybrid qualitative/quantitative approach to model development, and the limitations of modeling restricted sets of data.
Collapse
Affiliation(s)
- R D Hamer
- Smith-Kettlewell Eye Research Institute, San Francisco, CA 94115, USA.
| |
Collapse
|