1
|
Teymornejad S, Worthy KH, Rosa MGP, Atapour N. Giant pyramidal neurons of the primary motor cortex express vasoactive intestinal polypeptide (VIP), a known marker of cortical interneurons. Sci Rep 2024; 14:21174. [PMID: 39256434 PMCID: PMC11387615 DOI: 10.1038/s41598-024-71637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Vasoactive intestinal polypeptide (VIP) is known to be present in a subclass of cortical interneurons. Here, using three different antibodies, we demonstrate that VIP is also present in the giant layer 5 pyramidal (Betz) neurons which are characteristic of the limb and axial representations of the marmoset primary motor cortex (cytoarchitectural area 4ab). No VIP staining was observed in smaller layer 5 pyramidal cells present in the primary motor facial representation (cytoarchitectural area 4c), or in the premotor cortex (e.g. the caudal subdivision of the dorsal premotor cortex, A6DC), indicating the selective expression of VIP in Betz cells. VIP in Betz cells was colocalized with neuronal specific marker (NeuN) and a calcium-binding protein parvalbumin (PV). PV also intensely labelled axon terminals surrounding Betz cell somata. VIP-positive interneurons were more abundant in the superficial cortical layers and constituted about 5-7% of total cortical neurons, with the highest density observed in area 4c. Our results demonstrate the expression of VIP in the largest excitatory neurons of the primate cortex, which may offer new functional insights into the role of VIP in the brain, and provide opportunities for genetic manipulation of Betz cells.
Collapse
Affiliation(s)
- Sadaf Teymornejad
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC, 3800, Australia
| | - Nafiseh Atapour
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
2
|
Nolan M, Scott C, Hof PR, Ansorge O. Betz cells of the primary motor cortex. J Comp Neurol 2024; 532:e25567. [PMID: 38289193 PMCID: PMC10952528 DOI: 10.1002/cne.25567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 02/01/2024]
Abstract
Betz cells, named in honor of Volodymyr Betz (1834-1894), who described them as "giant pyramids" in the primary motor cortex of primates and other mammalian species, are layer V extratelencephalic projection (ETP) neurons that directly innervate α-motoneurons of the brainstem and spinal cord. Despite their large volume and circumferential dendritic architecture, to date, no single molecular criterion has been established that unequivocally distinguishes adult Betz cells from other layer V ETP neurons. In primates, transcriptional signatures suggest the presence of at least two ETP neuron clusters that contain mature Betz cells; these are characterized by an abundance of axon guidance and oxidative phosphorylation transcripts. How neurodevelopmental programs drive the distinct positional and morphological features of Betz cells in humans remains unknown. Betz cells display a distinct biphasic firing pattern involving early cessation of firing followed by delayed sustained acceleration in spike frequency and magnitude. Few cell type-specific transcripts and electrophysiological characteristics are conserved between rodent layer V ETP neurons of the motor cortex and primate Betz cells. This has implications for the modeling of disorders that affect the motor cortex in humans, such as amyotrophic lateral sclerosis (ALS). Perhaps vulnerability to ALS is linked to the evolution of neural networks for fine motor control reflected in the distinct morphomolecular architecture of the human motor cortex, including Betz cells. Here, we discuss histological, molecular, and functional data concerning the position of Betz cells in the emerging taxonomy of neurons across diverse species and their role in neurological disorders.
Collapse
Affiliation(s)
- Matthew Nolan
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Connor Scott
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Patrick. R. Hof
- Nash Family Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Olaf Ansorge
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Nano PR, Bhaduri A. Evaluation of advances in cortical development using model systems. Dev Neurobiol 2022; 82:408-427. [PMID: 35644985 PMCID: PMC10924780 DOI: 10.1002/dneu.22879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/11/2022]
Abstract
Compared with that of even the closest primates, the human cortex displays a high degree of specialization and expansion that largely emerges developmentally. Although decades of research in the mouse and other model systems has revealed core tenets of cortical development that are well preserved across mammalian species, small deviations in transcription factor expression, novel cell types in primates and/or humans, and unique cortical architecture distinguish the human cortex. Importantly, many of the genes and signaling pathways thought to drive human-specific cortical expansion also leave the brain vulnerable to disease, as the misregulation of these factors is highly correlated with neurodevelopmental and neuropsychiatric disorders. However, creating a comprehensive understanding of human-specific cognition and disease remains challenging. Here, we review key stages of cortical development and highlight known or possible differences between model systems and the developing human brain. By identifying the developmental trajectories that may facilitate uniquely human traits, we highlight open questions in need of approaches to examine these processes in a human context and reveal translatable insights into human developmental disorders.
Collapse
Affiliation(s)
- Patricia R Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Bakken TE, Jorstad NL, Hu Q, Lake BB, Tian W, Kalmbach BE, Crow M, Hodge RD, Krienen FM, Sorensen SA, Eggermont J, Yao Z, Aevermann BD, Aldridge AI, Bartlett A, Bertagnolli D, Casper T, Castanon RG, Crichton K, Daigle TL, Dalley R, Dee N, Dembrow N, Diep D, Ding SL, Dong W, Fang R, Fischer S, Goldman M, Goldy J, Graybuck LT, Herb BR, Hou X, Kancherla J, Kroll M, Lathia K, van Lew B, Li YE, Liu CS, Liu H, Lucero JD, Mahurkar A, McMillen D, Miller JA, Moussa M, Nery JR, Nicovich PR, Niu SY, Orvis J, Osteen JK, Owen S, Palmer CR, Pham T, Plongthongkum N, Poirion O, Reed NM, Rimorin C, Rivkin A, Romanow WJ, Sedeño-Cortés AE, Siletti K, Somasundaram S, Sulc J, Tieu M, Torkelson A, Tung H, Wang X, Xie F, Yanny AM, Zhang R, Ament SA, Behrens MM, Bravo HC, Chun J, Dobin A, Gillis J, Hertzano R, Hof PR, Höllt T, Horwitz GD, Keene CD, Kharchenko PV, Ko AL, Lelieveldt BP, Luo C, Mukamel EA, Pinto-Duarte A, Preissl S, Regev A, Ren B, Scheuermann RH, Smith K, Spain WJ, White OR, Koch C, Hawrylycz M, Tasic B, Macosko EZ, McCarroll SA, Ting JT, Zeng H, Zhang K, Feng G, Ecker JR, Linnarsson S, Lein ES. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 2021; 598:111-119. [PMID: 34616062 PMCID: PMC8494640 DOI: 10.1038/s41586-021-03465-8] [Citation(s) in RCA: 368] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2020] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.
Collapse
Affiliation(s)
| | | | - Qiwen Hu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Blue B Lake
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Wei Tian
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Brian E Kalmbach
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Megan Crow
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Fenna M Krienen
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Jeroen Eggermont
- LKEB, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Andrew I Aldridge
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nikolai Dembrow
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Epilepsy Center of Excellence, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Dinh Diep
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Weixiu Dong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Rongxin Fang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Stephan Fischer
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Melissa Goldman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Brian R Herb
- Institute for Genomes Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaomeng Hou
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jayaram Kancherla
- Department of Computer Science, University of Maryland College Park, College Park, MD, USA
| | | | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Baldur van Lew
- LKEB, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yang Eric Li
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Christine S Liu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Biomedical Sciences Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Anup Mahurkar
- Institute for Genomes Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Sheng-Yong Niu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Computer Science and Engineering Program, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Orvis
- Institute for Genomes Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Julia K Osteen
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Scott Owen
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Carter R Palmer
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Biomedical Sciences Program, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Thanh Pham
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nongluk Plongthongkum
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Olivier Poirion
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nora M Reed
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Angeline Rivkin
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - William J Romanow
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Kimberly Siletti
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Xinxin Wang
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Fangming Xie
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | | | - Renee Zhang
- J. Craig Venter Institute, La Jolla, CA, USA
| | - Seth A Ament
- Institute for Genomes Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Hector Corrada Bravo
- Department of Computer Science, University of Maryland College Park, College Park, MD, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Jesse Gillis
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ronna Hertzano
- Departments of Otorhinolaryngology, Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Höllt
- Computer Graphics and Visualization Group, Delt University of Technology, Delft, The Netherlands
| | - Gregory D Horwitz
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Andrew L Ko
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
- Regional Epilepsy Center, Harborview Medical Center, Seattle, WA, USA
| | - Boudewijn P Lelieveldt
- LKEB, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Pattern Recognition and Bioinformatics group, Delft University of Technology, Delft, The Netherlands
| | - Chongyuan Luo
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eran A Mukamel
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | | | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bing Ren
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Richard H Scheuermann
- J. Craig Venter Institute, La Jolla, CA, USA
- Department of Pathology, University of California, San Diego, CA, USA
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - William J Spain
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Epilepsy Center of Excellence, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Owen R White
- Institute for Genomes Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan T Ting
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA.
| |
Collapse
|
5
|
Specialized Subpopulations of Deep-Layer Pyramidal Neurons in the Neocortex: Bridging Cellular Properties to Functional Consequences. J Neurosci 2018; 38:5441-5455. [PMID: 29798890 DOI: 10.1523/jneurosci.0150-18.2018] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 12/25/2022] Open
Abstract
Neocortical pyramidal neurons with somata in layers 5 and 6 are among the most visually striking and enigmatic neurons in the brain. These deep-layer pyramidal neurons (DLPNs) integrate a plethora of cortical and extracortical synaptic inputs along their impressive dendritic arbors. The pattern of cortical output to both local and long-distance targets is sculpted by the unique physiological properties of specific DLPN subpopulations. Here we revisit two broad DLPN subpopulations: those that send their axons within the telencephalon (intratelencephalic neurons) and those that project to additional target areas outside the telencephalon (extratelencephalic neurons). While neuroscientists across many subdisciplines have characterized the intrinsic and synaptic physiological properties of DLPN subpopulations, our increasing ability to selectively target and manipulate these output neuron subtypes advances our understanding of their distinct functional contributions. This Viewpoints article summarizes our current knowledge about DLPNs and highlights recent work elucidating the functional differences between DLPN subpopulations.
Collapse
|
6
|
Guan D, Armstrong WE, Foehring RC. Electrophysiological properties of genetically identified subtypes of layer 5 neocortical pyramidal neurons: Ca²⁺ dependence and differential modulation by norepinephrine. J Neurophysiol 2015; 113:2014-32. [PMID: 25568159 DOI: 10.1152/jn.00524.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2014] [Accepted: 01/05/2015] [Indexed: 01/17/2023] Open
Abstract
We studied neocortical pyramidal neurons from two lines of bacterial artificial chromosome mice (etv1 and glt; Gene Expression Nervous System Atlas: GENSAT project), each of which expresses enhanced green fluorescent protein (EGFP) in a different subpopulation of layer 5 pyramidal neurons. In barrel cortex, etv1 and glt pyramidal cells were previously reported to differ in terms of their laminar distribution, morphology, thalamic inputs, cellular targets, and receptive field size. In this study, we measured the laminar distribution of etv1 and glt cells. On average, glt cells were located more deeply; however, the distributions of etv1 and glt cells extensively overlap in layer 5. To test whether these two cell types differed in electrophysiological properties that influence firing behavior, we prepared acute brain slices from 2-4-wk-old mice, where EGFP-positive cells in somatosensory cortex were identified under epifluorescence and then studied using whole cell current- or voltage-clamp recordings. We studied the details of action potential parameters and repetitive firing, characterized by the larger slow afterhyperpolarizations (AHPs) in etv1 neurons and larger medium AHPs (mAHPS) in glt cells, and compared currents underlying the mAHP and slow AHP (sAHP) in etv1 and glt neurons. Etv1 cells exhibited lower dV/dt for spike polarization and repolarization and reduced direct current (DC) gain (lower f-I slope) for repetitive firing than glt cells. Most importantly, we found that 1) differences in the expression of Ca(2+)-dependent K(+) conductances (small-conductance calcium-activated potassium channels and sAHP channels) determine major functional differences between etv1 and glt cells, and 2) there is differential modulation of etv1 and glt neurons by norepinephrine.
Collapse
Affiliation(s)
- Dongxu Guan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - William E Armstrong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Robert C Foehring
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
7
|
Suter BA, Migliore M, Shepherd GMG. Intrinsic electrophysiology of mouse corticospinal neurons: a class-specific triad of spike-related properties. Cereb Cortex 2012; 23:1965-77. [PMID: 22761308 DOI: 10.1093/cercor/bhs184] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
Corticospinal pyramidal neurons mediate diverse aspects of motor behavior. We measured spike-related electrophysiological properties of identified corticospinal neurons in primary motor cortex slices from young adult mice. Several consistent features were observed in the suprathreshold responses to current steps: 1) Corticospinal neurons fired relatively fast action potentials (APs; width at half-maximum 0.65 ± 0.13 ms, mean ± standard deviation [SD]) compared with neighboring callosally projecting corticostriatal neurons. Corticospinal AP width was intermediate between 2 classes of inhibitory interneuron in layer 5B. Spike-to-spike variability in AP width and other spike waveform parameters was low, even during repetitive firing up to 20 Hz, that is, the relative narrowness of corticospinal APs was essentially frequency independent. 2) Frequency-current (f-I) relationships were nearly linear. 3) Trains of APs displayed regular firing, with rates typically staying constant or accelerating over time. Corticospinal neurons recorded from older mice (up to 4 months) or from a separate lateral cortical area (Region B; corresponding to secondary somatosensory cortex) showed generally similar intrinsic properties. Our findings have implications for interpreting spike waveforms of in vivo recorded neurons in the motor cortex. This analysis provides a framework for further biophysical and computational investigations of corticospinal neurons and their roles in motor cortical function.
Collapse
Affiliation(s)
- Benjamin A Suter
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
8
|
Weick M, Demb JB. Delayed-rectifier K channels contribute to contrast adaptation in mammalian retinal ganglion cells. Neuron 2011; 71:166-79. [PMID: 21745646 DOI: 10.1016/j.neuron.2011.04.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 04/27/2011] [Indexed: 11/16/2022]
Abstract
Retinal ganglion cells adapt by reducing their sensitivity during periods of high contrast. Contrast adaptation in the firing response depends on both presynaptic and intrinsic mechanisms. Here, we investigated intrinsic mechanisms for contrast adaptation in OFF Alpha ganglion cells in the in vitro guinea pig retina. Using either visual stimulation or current injection, we show that brief depolarization evoked spiking and suppressed firing during subsequent depolarization. The suppression could be explained by Na channel inactivation, as shown in salamander cells. However, brief hyperpolarization in the physiological range (5-10 mV) also suppressed firing during subsequent depolarization. This suppression was selectively sensitive to blockers of delayed-rectifier K channels (K(DR)). In somatic membrane patches, we observed tetraethylammonium-sensitive K(DR) currents that activated near -25 mV. Recovery from inactivation occurred at potentials hyperpolarized to V(rest). Brief periods of hyperpolarization apparently remove K(DR) inactivation and thereby increase the channel pool available to suppress excitability during subsequent depolarization.
Collapse
Affiliation(s)
- Michael Weick
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
9
|
Meng QT, Xia ZY, Liu J, Bayliss DA, Chen X. Local anesthetic inhibits hyperpolarization-activated cationic currents. Mol Pharmacol 2011; 79:866-73. [PMID: 21303986 PMCID: PMC3082936 DOI: 10.1124/mol.110.070227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2010] [Accepted: 02/08/2011] [Indexed: 02/05/2023] Open
Abstract
Systemic administration of local anesthetics has beneficial perioperative properties and an anesthetic-sparing and antiarrhythmic effect, although the detailed mechanisms of these actions remain unclear. In the present study, we investigated the effects of a local anesthetic, lidocaine, on hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels that contribute to the pacemaker currents in rhythmically oscillating cells of the heart and brain. Voltage-clamp recordings were used to examine the properties of cloned HCN subunit currents expressed in Xenopus laevis oocytes and human embryonic kidney (HEK) 293 cells under control condition and lidocaine administration. Lidocaine inhibited HCN1, HCN2, HCN1-HCN2, and HCN4 channel currents at 100 μM in both oocytes and/or HEK 293 cells; it caused a decrease in both tonic and maximal current (∼30-50% inhibition) and slowed current activation kinetics for all subunits. In addition, lidocaine evoked a hyperpolarizing shift in half-activation voltage (ΔV(1/2) of ∼-10 to -14 mV), but only for HCN1 and HCN1-HCN2 channels. By fitting concentration-response data to logistic functions, we estimated half-maximal (EC(50)) concentrations of lidocaine of ∼30 to 40 μM for the shift in V(1/2) observed with HCN1 and HCN1-HCN2; for inhibition of current amplitude, calculated EC(50) values were ∼50 to 70 μM for HCN1, HCN2, and HCN1-HCN2 channels. A lidocaine metabolite, monoethylglycinexylidide (100 μM), had similar inhibitory actions on HCN channels. These results indicate that lidocaine potently inhibits HCN channel subunits in dose-dependent manner over a concentration range relevant for systemic application. The ability of local anesthetics to modulate I(h) in central neurons may contribute to central nervous system depression, whereas effects on I(f) in cardiac pacemaker cells may contribute to the antiarrhythmic and/or cardiovascular toxic action.
Collapse
Affiliation(s)
- Qing-Tao Meng
- Laboratory of Anesthesia and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
10
|
Stump nerve signals during transcranial magnetic motor cortex stimulation recorded in an amputee via longitudinal intrafascicular electrodes. Exp Brain Res 2011; 210:1-11. [DOI: 10.1007/s00221-011-2571-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
11
|
|
12
|
van Brederode JFM, Yanagawa Y, Berger AJ. GAD67-GFP+ neurons in the Nucleus of Roller: a possible source of inhibitory input to hypoglossal motoneurons. I. Morphology and firing properties. J Neurophysiol 2010; 105:235-48. [PMID: 21047932 DOI: 10.1152/jn.00493.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
In this study we examined the electrophysiological and morphological properties of inhibitory neurons located just ventrolateral to the hypoglossal motor (XII) nucleus in the Nucleus of Roller (NR). In vitro experiments were performed on medullary slices derived from postnatal day 5 (P5) to P15 GAD67-GFP knock-in mouse pups. on cell recordings from GFP+ cells in NR in rhythmic slices revealed that these neurons are spontaneously active, although their spiking activity does not exhibit inspiratory phase modulation. Morphologically, GFP+ cells were bi- or multipolar cells with small- to medium-sized cell bodies and small dendritic trees that were often oriented parallel to the border of the XII nucleus. GFP+ cells were classified as either tonic or phasic based on their firing responses to depolarizing step current stimulation in whole cell current clamp. Tonic GFP+ cells fired a regular train of action potentials (APs) throughout the duration of the pulse and often showed rebound spikes after a hyperpolarizing step. In contrast, phasic GFP+ neurons did not fire throughout the depolarizing current step but instead fired fewer than four APs at the onset of the pulse or fired multiple APs, but only after a marked delay. Phasic cells had a significantly smaller input resistance and shorter membrane time constant than tonic GFP+ cells. In addition, phasic GFP+ cells differed from tonic cells in the shape and time course of their spike afterpotentials, the minimum firing frequency at threshold current amplitude, and the slope of their current-frequency relationship. These results suggest that GABAergic neurons in the NR are morphologically and electrophysiologically heterogeneous cells that could provide tonic inhibitory synaptic input to HMs.
Collapse
Affiliation(s)
- J F M van Brederode
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St., HSB G424, Box 357290, Seattle, WA 98195-7290, USA.
| | | | | |
Collapse
|
13
|
Atkinson SE, Williams SR. Postnatal development of dendritic synaptic integration in rat neocortical pyramidal neurons. J Neurophysiol 2009; 102:735-51. [PMID: 19458150 DOI: 10.1152/jn.00083.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The dendritic tree of layer 5 (L5) pyramidal neurons spans the neocortical layers, allowing the integration of intra- and extracortical synaptic inputs. Here we investigate the postnatal development of the integrative properties of rat L5 pyramidal neurons using simultaneous whole cell recording from the soma and distal apical dendrite. In young (P9-10) neurons, apical dendritic excitatory synaptic input powerfully drove action potential output by efficiently summating at the axonal site of action potential generation. In contrast, in mature (P25-29) neurons, apical dendritic excitatory input provided little direct depolarization at the site of action potential generation but was integrated locally in the apical dendritic tree leading to the generation of dendritic spikes. Consequently, over the first postnatal month the fraction of action potentials driven by apical dendritic spikes increased dramatically. This developmental remodeling of the integrative operations of L5 pyramidal neurons was controlled by a >10-fold increase in the density of apical dendritic Hyperpolarization-activated cyclic nucleotide (HCN)-gated channels found in cell-attached patches or by immunostaining for the HCN channel isoform HCN1. Thus an age-dependent increase in apical dendritic HCN channel density ensures that L5 pyramidal neurons develop from compact temporal integrators to compartmentalized integrators of basal and apical dendritic synaptic input.
Collapse
Affiliation(s)
- Susan E Atkinson
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
14
|
Abstract
Separation of the cortical sheet into functionally distinct regions is a hallmark of neocortical organization. Cortical circuit function emerges from afferent and efferent connectivity, local connectivity within the cortical microcircuit, and the intrinsic membrane properties of neurons that comprise the circuit. While localization of functions to particular cortical areas can be partially accounted for by regional differences in both long range and local connectivity, it is unknown whether the intrinsic membrane properties of cortical cell types differ between cortical regions. Here we report the first example of a region-specific firing type in layer 5 pyramidal neurons, and show that the intrinsic membrane and integrative properties of a discrete subtype of layer 5 pyramidal neurons differ between primary motor and somatosensory cortices due to region- and cell-type-specific Kv1 subunit expression.
Collapse
|
15
|
Karameh FN, Massaquoi SG. Intracortical Augmenting Responses in Networks of Reduced Compartmental Models of Tufted Layer 5 Cells. J Neurophysiol 2009; 101:207-33. [DOI: 10.1152/jn.01280.2007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Abstract
Augmenting responses (ARs) are characteristic recruitment phenomena that can be generated in target neural populations by repetitive intracortical or thalamic stimulation and that may facilitate activity transmission from thalamic nuclei to the cortex or between cortical areas. Experimental evidence suggests a role for cortical layer 5 in initiating at least one form of augmentation. We present a three-compartment model of tufted layer 5 (TL5) cells that faithfully reproduces a wide range of dynamics in these neurons that previously has been achieved only partially and in much more complex models. Using this model, the simplest network exhibiting AR was a single pair of TL5 and inhibitory (IN5) neurons. Intracellularly, AR initiation was controlled by low-threshold Ca2+ current ( IT), which promoted TL5 rebound firing, whereas AR strength was dictated by inward-rectifying current ( Ih), which regulated TL5 multiple-spike firing and also prevented excessive firing under high-amplitude stimuli. Synaptically, AR was significantly more salient under concurrent stimulus delivery to superficial and deep dendritic zones of TL5 cells than under conventional single-zone stimuli. Moreover, slow GABA-B–mediated inhibition in TL5 cells controlled AR strength and frequency range. Finally, a network model of two cortical populations interacting across functional hierarchy showed that intracortical AR occurred prominently upon exciting superficial cortical layers either directly or via intrinsic connections, with AR frequency dictated by connection strength and background activity. Overall, the investigation supports a central role for a TL5–IN5 skeleton network in low-frequency cortical dynamics in vivo, particularly across functional hierarchies, and presents neuronal models that facilitate accurate large-scale simulations.
Collapse
|
16
|
Hattox AM, Nelson SB. Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties. J Neurophysiol 2007; 98:3330-40. [PMID: 17898147 DOI: 10.1152/jn.00397.2007] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Layer V pyramidal neurons are anatomically and physiologically heterogeneous and project to multiple intracortical and subcortical targets. However, because most physiological studies of layer V pyramidal neurons have been carried out on unidentified cells, we know little about how anatomical and physiological properties relate to subcortical projection site. Here we combine neuroanatomical tract tracing with whole cell recordings in mouse somatosensory cortex to test whether neurons with the same projection target form discrete subpopulations and whether they have stereotyped physiological properties. Our findings indicate that corticothalamic and -trigeminal neurons are two largely nonoverlapping subpopulations, whereas callosal and corticostriatal neurons overlap extensively. The morphology as well as the intrinsic membrane and firing properties of corticothalamic and corticotrigeminal neurons differ from those of callosal and corticostriatal neurons. In addition, we find that each class of projection neuron exhibits a unique compliment of hyperpolarizing and depolarizing afterpotentials that further suggests that cortical neurons with different subcortical targets are distinct from one another.
Collapse
Affiliation(s)
- Alexis M Hattox
- Department of Biology, MS 008, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
17
|
|
18
|
Karameh FN, Dahleh MA, Brown EN, Massaquoi SG. Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency EEG phenomena. BIOLOGICAL CYBERNETICS 2006; 95:289-310. [PMID: 16897093 DOI: 10.1007/s00422-006-0090-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/15/2005] [Accepted: 05/24/2006] [Indexed: 05/11/2023]
Abstract
The Electroencephalogram (EEG) is an important clinical and research tool in neurophysiology. With the advent of recording techniques, new evidence is emerging on the neuronal populations and wiring in the neocortex. A main challenge is to relate the EEG generation mechanisms to the underlying circuitry of the neocortex. In this paper, we look at the principal intrinsic properties of neocortical cells in layer 5 and their network behavior in simplified simulation models to explain the emergence of several important EEG phenomena such as the alpha rhythms, slow-wave sleep oscillations, and a form of cortical seizure. The models also predict the ability of layer 5 cells to produce a resonance-like neuronal recruitment known as the augmenting response. While previous models point to deeper brain structures, such as the thalamus, as the origin of many EEG rhythms (spindles), the current model suggests that the cortical circuitry itself has intrinsic oscillatory dynamics which could account for a wide variety of EEG phenomena.
Collapse
Affiliation(s)
- Fadi N Karameh
- Department of Electrical and Computer Engineering, American University of Beirut, Beirut, Lebanon.
| | | | | | | |
Collapse
|
19
|
Abstract
Many biological systems exhibit complex temporal behavior that cannot be adequately characterized by a single time constant. This dynamics, observed from single channels up to the level of human psychophysics, is often better described by power-law rather than exponential dependences on time. We develop and study the properties of neural models with scale-invariant, power-law adaptation and contrast them with the more commonly studied exponential case. Responses of an adapting firing-rate model to constant, pulsed, and oscillating inputs in both the power-law and exponential cases are considered. We construct a spiking model with power-law adaptation based on a nested cascade of processes and show that it can be “programmed” to produce a wide range of time delays. Finally, within a network model, we use power-law adaptation to reproduce long-term features of the tilt aftereffect.
Collapse
Affiliation(s)
- Patrick J Drew
- Neurobiology Section 0357, Division of Biology, University of California at San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
20
|
Drouin C, Page M, Waterhouse B. Methylphenidate enhances noradrenergic transmission and suppresses mid- and long-latency sensory responses in the primary somatosensory cortex of awake rats. J Neurophysiol 2006; 96:622-32. [PMID: 16687613 DOI: 10.1152/jn.01310.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Noradrenergic neurons send widespread projections to sensory networks throughout the brain and regulate sensory processing via norepinephrine (NE) release. As a catecholamine reuptake blocker, methylphenidate (MPH) is likely to interact with noradrenergic transmission and NE modulatory action on sensory systems. To characterize the neurochemical actions of MPH in the primary sensory cortex of freely behaving rats and their consequences on sensory processing, we measured extracellular NE levels in the primary somatosensory (SI) cortex by microdialysis and recorded basal and sensory-evoked discharge of infragranular SI cortical neurons, before and after intraperitoneal administrations of saline or MPH (1 and 5 mg/kg). Both doses of MPH significantly increased NE levels in the SI cortex (+64 and +101%, respectively). In most neurons, stimulation of the whisker-pad induced a triphasic response, consisting of a short-latency excitation [4.7 +/- 0.2 (SE) ms] followed by a postexcitatory inhibition (36 +/- 1.5 ms) and a long-latency excitation (105 +/- 2.6 ms). Under control conditions, the behavioral state of the animal was correlated with the magnitude of the short-latency excitation but not with other aspects of the basal and sensory-evoked discharge of SI cortical neurons. At 5 mg/kg, MPH significantly increased locomotor activity and induced a significant suppression of the short-latency excitation, which probably resulted from the MPH-induced change in behavior. In addition, both doses of MPH suppressed the postexcitatory inhibition and the long-latency excitation evoked by the stimulation of the whisker pad. These effects did not seem to result from the locomotor effect of MPH and probably involved MPH-induced enhancement of noradrenergic transmission.
Collapse
Affiliation(s)
- Candice Drouin
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
| | | | | |
Collapse
|
21
|
Chen D, Fetz EE. Characteristic membrane potential trajectories in primate sensorimotor cortex neurons recorded in vivo. J Neurophysiol 2005; 94:2713-25. [PMID: 15987766 DOI: 10.1152/jn.00024.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
We examined the membrane potentials and firing properties of motor cortical neurons recorded intracellularly in awake, behaving primates. Three classes of neuron were distinguished by 1) the width of their spikes, 2) the shape of the afterhyperpolarization (AHP), and 3) the distribution of interspike intervals. Type I neurons had wide spikes, exhibited scoop-shaped AHPs, and fired irregularly. Type II neurons had narrower spikes, showed brief postspike afterdepolarizations before the AHP, and sometimes fired high-frequency doublets. Type III neurons had the narrowest spikes, showed a distinct post-AHP depolarization, or "rebound AHP" (rAHP), lasting nearly 30 ms, and tended to fire at 25-35 Hz. The evidence suggests that an intrinsic rAHP may confer on these neurons a tendency to fire at a preferred frequency governed by the duration of the rAHP and may contribute to a "pacemaking" role in generating cortical oscillations.
Collapse
Affiliation(s)
- Daofen Chen
- Systems and Cognitive Neuroscience, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-9523, USA.
| | | |
Collapse
|
22
|
Drouin C, Waterhouse BD. Cocaine-induced vs. behaviour-related alterations of spontaneous and evoked discharge of somatosensory cortical neurons. Eur J Neurosci 2004; 19:1016-26. [PMID: 15009149 DOI: 10.1111/j.0953-816x.2004.03186.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
Abstract
While the abuse potential of cocaine stems mainly from its ability to increase dopaminergic transmission in limbic regions, drug actions on other monoamine-innervated circuits may contribute to the development and maintenance of cocaine addiction. Previous extracellular recordings in anaesthetized rats revealed a facilitatory influence of cocaine on primary sensory pathways, which could influence the processing of drug-related stimuli during the development of cocaine addiction. We further analysed these sensory effects of cocaine in freely behaving rats (n = 9). Using an array of eight microelectrodes chronically implanted in infragranular layers of primary somatosensory cortex, we recorded the basal activity of 40 single- and 64 multiunits and their response to electrical stimulation of the whisker pad before and after incremental doses of cocaine (0.25-2 mg/kg i.v.). Both spontaneous and cocaine-induced explorations were associated with elevated basal firing of the cortical neurons and suppression of their short-latency excitation and postexcitatory inhibition in response to the whisker-pad stimulation. In addition to exploration-related alterations, the administration of cocaine enhanced the long-latency rebound excitation induced by the whisker-pad stimulation. This component of the sensory response, which is more labile and does not seem to convey information about the physical characteristics of the stimulus, may participate in the processing of drug-related sensory stimuli.
Collapse
Affiliation(s)
- Candice Drouin
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, 2900 Queen Lane, Philadelphia, PA 19144, USA.
| | | |
Collapse
|
23
|
Timofeev I, Bazhenov M, Sejnowski T, Steriade M. Cortical hyperpolarization-activated depolarizing current takes part in the generation of focal paroxysmal activities. Proc Natl Acad Sci U S A 2002; 99:9533-7. [PMID: 12089324 PMCID: PMC123175 DOI: 10.1073/pnas.132259899] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2001] [Accepted: 05/01/2002] [Indexed: 11/18/2022] Open
Abstract
During paroxysmal neocortical oscillations, sudden depolarization leading to the next cycle occurs when the majority of cortical neurons are hyperpolarized. Both the Ca(2+)-dependent K(+) currents (I(K(Ca))) and disfacilitation play critical roles in the generation of hyperpolarizing potentials. In vivo experiments and computational models are used here to investigate whether the hyperpolarization-activated depolarizing current (I(h)) in cortical neurons also contributes to the generation of paroxysmal onsets. Hyperpolarizing current pulses revealed a depolarizing sag in approximately 20% of cortical neurons. Intracellular recordings from glial cells indirectly indicated an increase in extracellular potassium concentration ([K(+)](o)) during paroxysmal activities, leading to a positive shift in the reversal potential of K(+)-mediated currents, including I(h). In the paroxysmal neocortex, approximately 20% of neurons show repolarizing potentials originating from hyperpolarizations associated with depth-electroencephalogram positive waves of spike-wave complexes. The onset of these repolarizing potentials corresponds to maximal [K(+)](o) as estimated from dual simultaneous impalements from neurons and glial cells. Computational models showed how, after the increased [K(+)](o), the interplay between I(h), I(K(Ca)), and a persistent Na(+) current, I(Na(P)), could organize paroxysmal oscillations at a frequency of 2-3 Hz.
Collapse
Affiliation(s)
- Igor Timofeev
- Laboratory of Neurophysiology, Faculty of Medicine, Laval University, Quebec City, QC, Canada G1K 7P4.
| | | | | | | |
Collapse
|
24
|
Delord B, Baraduc P, Costalat R, Burnod Y, Guigon E. A model study of cellular short-term memory produced by slowly inactivating potassium conductances. J Comput Neurosci 2000; 8:251-73. [PMID: 10809015 DOI: 10.1023/a:1008902110844] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
We analyzed the cellular short-term memory effects induced by a slowly inactivating potassium (Ks) conductance using a biophysical model of a neuron. We first described latency-to-first-spike and temporal changes in firing frequency as a function of parameters of the model, injected current and prior history of the neuron (deinactivation level) under current clamp. This provided a complete set of properties describing the Ks conductance in a neuron. We then showed that the action of the Ks conductance is not generally appropriate for controlling latency-to-first-spike under random synaptic stimulation. However, reliable latencies were found when neuronal population computation was used. Ks inactivation was found to control the rate of convergence to steady-state discharge behavior and to allow frequency to increase at variable rates in sets of synaptically connected neurons. These results suggest that inactivation of the Ks conductance can have a reliable influence on the behavior of neuronal populations under real physiological conditions.
Collapse
Affiliation(s)
- B Delord
- INSERM U483, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
25
|
Abstract
The molecular basis of the hyperpolarization-activated cation channels that underlie the anomalous rectifying current variously termed Ih, Iq, or I(f) is discussed. On the basis of the expression patterns and biophysical properties of the newly cloned HCN ion channels, an initial attempt at defining the identity and subunit composition of channels underlying native Ih is undertaken. By comparing the sequences of HCN channels to other members of the K channel superfamily, we discuss how channel opening may be coupled to membrane hyperpolarization and to direct binding of cyclic nucleotide. Finally, we consider some of the questions in cardiovascular physiology and neurobiology that can be addressed as a result of the demonstration that Ih is encoded by the HCN gene family.
Collapse
Affiliation(s)
- B Santoro
- Center for Neurobiology and Behavior, Columbio University, New York, New York 10032, USA
| | | |
Collapse
|
26
|
Spitzer MW, Semple MN. Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity. J Neurophysiol 1998; 80:3062-76. [PMID: 9862906 DOI: 10.1152/jn.1998.80.6.3062] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity. J. Neurophysiol. 80: 3062-3076, 1998. Previous studies demonstrated that tuning of inferior colliculus (IC) neurons to interaural phase disparity (IPD) is often profoundly influenced by temporal variation of IPD, which simulates the binaural cue produced by a moving sound source. To determine whether sensitivity to simulated motion arises in IC or at an earlier stage of binaural processing we compared responses in IC with those of two major IPD-sensitive neuronal classes in the superior olivary complex (SOC), neurons whose discharges were phase locked (PL) to tonal stimuli and those that were nonphase locked (NPL). Time-varying IPD stimuli consisted of binaural beats, generated by presenting tones of slightly different frequencies to the two ears, and interaural phase modulation (IPM), generated by presenting a pure tone to one ear and a phase modulated tone to the other. IC neurons and NPL-SOC neurons were more sharply tuned to time-varying than to static IPD, whereas PL-SOC neurons were essentially uninfluenced by the mode of stimulus presentation. Preferred IPD was generally similar in responses to static and time-varying IPD for all unit populations. A few IC neurons were highly influenced by the direction and rate of simulated motion, but the major effect for most IC neurons and all SOC neurons was a linear shift of preferred IPD at high rates-attributable to response latency. Most IC and NPL-SOC neurons were strongly influenced by IPM stimuli simulating motion through restricted ranges of azimuth; simulated motion through partially overlapping azimuthal ranges elicited discharge profiles that were highly discontiguous, indicating that the response associated with a particular IPD is dependent on preceding portions of the stimulus. In contrast, PL-SOC responses tracked instantaneous IPD throughout the trajectory of simulated motion, resulting in highly contiguous discharge profiles for overlapping stimuli. This finding indicates that responses of PL-SOC units to time-varying IPD reflect only instantaneous IPD with no additional influence of dynamic stimulus attributes. Thus the neuronal representation of auditory spatial information undergoes a major transformation as interaural delay is initially processed in the SOC and subsequently reprocessed in IC. The finding that motion sensitivity in IC emerges from motion-insensitive input suggests that information about change of position is crucial to spatial processing at higher levels of the auditory system.
Collapse
Affiliation(s)
- M W Spitzer
- Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | |
Collapse
|
27
|
Sawczuk A, Powers RK, Binder MD. Contribution of outward currents to spike-frequency adaptation in hypoglossal motoneurons of the rat. J Neurophysiol 1997; 78:2246-53. [PMID: 9356378 DOI: 10.1152/jn.1997.78.5.2246] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
Contribution of outward currents to spike-frequency adaptation in hypoglossal motoneurons of the rat. J. Neurophysiol. 78: 2246-2253, 1997. Spike-frequency adaptation has been attributed to the actions of several different membrane currents. In this study, we assess the contributions of two of these currents: the net outward current generated by the electrogenic Na+-K+ pump and the outward current that flows through Ca2+-activated K+ channels. In recordings made from hypoglossal motoneurons in slices of rat brain stem, we found that bath application of a 4-20 microM ouabain solution produced a partial block of Na+-K+ pump activity as evidenced by a marked reduction in the postdischarge hyperpolarization that follows a period of sustained discharge. However, we observed no significant change in either the initial, early, or late phases of spike-frequency adaptation in the presence of ouabain. Adaptation also has been related to increases in the duration and magnitude of the medium-duration afterhyperpolarization (mAHP) mediated by Ca2+-activated K+ channels. When we replaced the 2 mM Ca2+ in the bathing solution with Mn2+, there was a significant decrease in the amplitude of the mAHP after a spike. The decrease in mAHP amplitude resulted in a decrease in the magnitude of the initial phase of spike-frequency adaptation as has been reported previously by others. However, quite unexpectedly we also found that reducing the mAHP resulted in a dramatic increase in the magnitude of both the early and late phases of adaptation. These changes could be reversed by restoring the normal Ca2+ concentration in the bath. Our results with ouabain indicate that the Na+-K+ pump plays little, if any, role in the three phases of adaptation in rat hypoglossal motoneurons. Our results with Ca2+ channel blockade support the hypothesis that initial adaptation is, in part, controlled by conductances underlying the mAHP. However, our failure to eliminate initial adaptation completely by blocking Ca2+ channels suggests that other membrane mechanisms also contribute. Finally, the increase in both the early and late phases of adaptation in the presence of Mn2+ block of Ca2+ channels lends further support to the hypothesis that the initial and later (i.e., early and late) phases of spike-frequency adaptation are mediated by different cellular mechanisms.
Collapse
Affiliation(s)
- A Sawczuk
- Department of Physiology and Biophysics, University of Washington, School of Medicine, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
28
|
Abstract
Some thalamocortical pathways display an "augmenting response" when stimuli are delivered at frequencies between 7 and 14 Hz. Cortical responses to the first three stimuli of a series increase progressively in amplitude and are relatively stable thereafter. We have investigated the cellular mechanisms of the augmenting response using extracellular and intracellular recordings in vivo and in slices of the sensorimotor neocortex of the rat. Single stimuli to the ventrolateral (VL) nucleus of the thalamus generate EPSPs followed by feedforward IPSPs that hyperpolarize cells in layer V. A long-latency depolarization interrupts the IPSP with a peak at approximately 200 msec. A second VL stimulus delivered during the hyperpolarization and before the peak of the long-latency depolarization yields an augmenting response. The shortest latency for augmenting responses occurs in cells of layer V, and they appear in dendrites and somata recorded in upper layers approximately 5 msec later. Recordings in vitro show that some layer V cells have hyperpolarization-activated and deinactivated conductances that may serve to increase their excitability after IPSPs. Also in vitro, cells from layer V, but not from layer III, generated augmenting responses at the same stimulation frequencies that were effective in vivo. Control experiments indicated that neither paired-pulse depression of IPSPs nor presynaptically mediated facilitation can account for the augmenting response. Active dendritic conductances contribute to the spread of augmenting responses into upper layers by way of back-propagating fast spikes, which attenuate with repetition, and long-lasting spikes, which enhance in parallel with the augmenting response. In conclusion, we propose that the initiation of augmenting responses depends on an interaction between inhibition, intrinsic membrane properties, and synaptic interconnections of layer V pyramidal neurons.
Collapse
|
29
|
Castro-Alamancos MA, Connors BW. Cellular mechanisms of the augmenting response: short-term plasticity in a thalamocortical pathway. J Neurosci 1996; 16:7742-56. [PMID: 8922430 PMCID: PMC6579081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/1996] [Revised: 08/09/1996] [Accepted: 09/12/1996] [Indexed: 02/03/2023] Open
Abstract
Some thalamocortical pathways display an "augmenting response" when stimuli are delivered at frequencies between 7 and 14 Hz. Cortical responses to the first three stimuli of a series increase progressively in amplitude and are relatively stable thereafter. We have investigated the cellular mechanisms of the augmenting response using extracellular and intracellular recordings in vivo and in slices of the sensorimotor neocortex of the rat. Single stimuli to the ventrolateral (VL) nucleus of the thalamus generate EPSPs followed by feedforward IPSPs that hyperpolarize cells in layer V. A long-latency depolarization interrupts the IPSP with a peak at approximately 200 msec. A second VL stimulus delivered during the hyperpolarization and before the peak of the long-latency depolarization yields an augmenting response. The shortest latency for augmenting responses occurs in cells of layer V, and they appear in dendrites and somata recorded in upper layers approximately 5 msec later. Recordings in vitro show that some layer V cells have hyperpolarization-activated and deinactivated conductances that may serve to increase their excitability after IPSPs. Also in vitro, cells from layer V, but not from layer III, generated augmenting responses at the same stimulation frequencies that were effective in vivo. Control experiments indicated that neither paired-pulse depression of IPSPs nor presynaptically mediated facilitation can account for the augmenting response. Active dendritic conductances contribute to the spread of augmenting responses into upper layers by way of back-propagating fast spikes, which attenuate with repetition, and long-lasting spikes, which enhance in parallel with the augmenting response. In conclusion, we propose that the initiation of augmenting responses depends on an interaction between inhibition, intrinsic membrane properties, and synaptic interconnections of layer V pyramidal neurons.
Collapse
Affiliation(s)
- M A Castro-Alamancos
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
30
|
Abstract
Slow-wave sleep as well as generalized absence seizures are characterized by the occurrence of synchronized oscillations in thalamocortical systems that spontaneously appear and disappear. The spontaneous appearance of synchronized oscillations results from the initiation by one or a small number of cells followed by the progressive recruitment of large numbers of neighboring neurons into the synchronized network activity. Synchronized network oscillations representative of slow-wave sleep, as well as absence seizures, were demonstrated to cease spontaneously at least in part through the persistent activation of a hyperpolarization-activated cation conductance. Block of this conductance resulted in oscillations that, once generalized, occur continuously. These results indicate that the persistent activation of a hyperpolarization-activated cation conductance is a key mechanism through which synchronized oscillations in thalamocortical networks normally terminate.
Collapse
Affiliation(s)
- T Bal
- Section of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06473, USA
| | | |
Collapse
|
31
|
Chen W, Zhang JJ, Hu GY, Wu CP. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex. Neuroscience 1996; 73:57-68. [PMID: 8783229 DOI: 10.1016/0306-4522(96)00010-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
Two different types of action potentials were observed among the pyramidal cells and interneurons in cat motor cortex: the narrow action potentials and the wide action potentials. These two types of action potentials had similar rising phases (528.8 +/- 77.0 vs 553.1 +/- 71.8 mV/ms for the maximal rising rate), but differed in spike duration (0.44 +/- 0.09 vs 1.40 +/- 0.39 ms) and amplitude (57.31 +/- 8.22 vs 72.52 +/- 8.31 mV), implying that the ionic currents contributing to repolarization of these action potentials are different. Here we address this issue by pharmacological manipulation and using voltage-clamp technique in slices of cat motor cortex. Raising extracellular K+ concentration (from 3 mM to 10 mM), applying a low dose of 4-aminopyridine (2-200 microM) or administering a low concentration of tetraethylammonium (0.2-1.0 mM) each not only broadened the narrow action potentials, but also increased their amplitudes. In contrast, high K+ medium or low dose of tetraethylammonium only broadened the wide action potentials, leaving their amplitudes unaffected, and 4-aminopyridine had only a slight broadening effect on the wide spikes. These results implied that K+ currents were involved in the repolarization of both types of action potentials, and that the K+ currents in the narrow action potentials seemed to activate much earlier than those in the wide spikes. This early activated K+ current may counteract the rapid sodium current, yielding the extremely brief duration and small amplitude of the narrow spikes. The sensitivity of the narrow spikes to 4-aminopyridine may not be mainly attributed to blockade of the classical A current (IA), because depolarizing the membrane potential to inactivate IA did not reproduce the effects of 4-aminopyridine. Blockade of Ca2+ influx slowed the last two-thirds repolarization of the wide action potentials. On the contrary, the narrow action potentials were not affected by Ca(2+)-current blockers, but if they were first broadened by 4-aminopyridine or tetraethylammonium, subsequent application of Ca(2+)-free medium caused further broadening, suggesting that the narrow action potentials were too brief to activate the Ca(2+)-activated potassium currents for their repolarization. Therefore, the effects of low concentrations of tetraethylammonium on the narrow spikes appeared to be mainly due to blockade of an outward current that was different from the tetraethylammonium-sensitive Ca(2+)-activated potassium current (IC). In the neurons with the narrow spikes, voltage-clamp experiments revealed two voltage-gated outward currents that were sensitive to tetraethylammonium and 4-aminopyridine, respectively. Both currents were activated rapidly following the onset of depolarizing steps. Interestingly, the tetraethylammonium-sensitive current was a transient outward current that inactivated rapidly (tau < or = 5 ms), while the 4-aminopyridine-sensitive current was relatively persistent during maintained depolarization. The 4-aminopyridine-sensitive current did not show obvious inactivation even at membrane potential of -40 mV, which completely inactivated the transient tetraethylammonium-sensitive, current. The results indicate that different potassium currents are involved in the repolarization of the narrow and wide action potentials in cat motor cortex. A novel tetraethylammonium-sensitive transient outward current and a 4-aminopyridine-sensitive outward current are responsible for the short duration and small amplitude of the narrow action potentials in the interneurons and some of the layer V pyramidal cells. These two currents are voltage-gated and Ca(2+)-independent. For the wide action potentials that characterize most pyramidal neurons, a Ca(2+)-independent tetraethylammonium-sensitive outward current and a Ca(2+)-activated potassium current are the main contributors to their repolarization.
Collapse
Affiliation(s)
- W Chen
- Shanghai Brain Research Institute, Chinese Academy of Sciences, P. R. China
| | | | | | | |
Collapse
|
32
|
Chen W, Zhang JJ, Hu GY, Wu CP. Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro. Neuroscience 1996; 73:39-55. [PMID: 8783228 DOI: 10.1016/0306-4522(96)00009-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
Electrophysiological and morphological properties of the neurons in cat motor cortex were investigated using intracellular recording and staining techniques in a brain slice preparation. In response to intracellular injection of depolarizing current pulses, four distinct types of firing patterns were observed among cat neocortical neurons. Regular-spiking neurons were characterized by their repetitive firing from which conspicuous frequency adaptation was observed. Doublet-or-burst firing cells were marked with their tendency to fire 2-5 clustered spikes at the onset of depolarizing pulse. In doublet-or-burst firing neurons, but not in regular-spiking neurons, a low-threshold calcium current was revealed by single-electrode voltage clamp. Both regular-spiking and doublet-or-burst firing neurons had relatively wide action potentials. Fast-spiking neurons could fire extremely narrow action potentials at a very high frequency. Their frequency-to-intensity slope of steady-state firing was significantly higher than that of the other neurons. In contrast, narrow-spiking neurons had the smallest frequency-to-intensity slope for steady-state firing, although their action potentials were as narrow as those of the fast-spiking neurons. Both regular-spiking and doublet-or-burst firing neurons were identified as pyramidal neurons, and were found in all layers below layer I. Their apical dendrites were densely coated with dendritic spines. Narrow-spiking neurons were only recorded in layer V. They were large pyramidal cells with scare spines on their apical dendrites. Fast-spiking neurons were all nonpyramidal interneurons. Seven out of eight labelled fast-spiking cells had beaded dendrites without spines. Their axons had a large number of varicosities, and arborized extensively to form a dense plexus of terminals in the vicinity of their soma. The remaining neuron was found to be a spiny nonpyramidal neuron in layer V. These results demonstrate that, in addition to the three types of firing patterns previously identified in rodent neocortex, a group of neurons in the cat motor cortex express another type of firing behaviour which is characterized by extremely narrow action potential and very small frequency-to-intensity slope. Correlation with the morphological data shows that these neurons are large layer V pyramidal cells rather than nonpyramidal interneurons.
Collapse
Affiliation(s)
- W Chen
- Shanghai Brain Research Institute, Chinese Academy of Sciences, P.R. China
| | | | | | | |
Collapse
|
33
|
Abstract
1. The repetitive firing properties of neonatal and adult rat hypoglossal motoneurones (HMs) were investigated in a brainstem slice preparation. Neonatal HMs could be classified into two main groups: (1) neurones with a decrementing or adapting firing pattern (type D); exhibiting an early and a late phase; and (2) neurones with an incrementing or accelerating firing pattern (type I). 2. The pattern of repetitive firing changed markedly during development. While most HMs recorded from young rats (< postnatal day (P) 4) were type D, the majority of HMs recorded during the second postnatal week were type I. In adults (> P21), nearly all HMs had a decrementing firing pattern, characterized by a brief period of adaptation and high steady-state firing rates. 3. The calcium-dependent after-hyperpolarization (AHP) was shortest in type I neonatal HMs, and decreased in amplitude during trains of action potentials (APs). In type D neurones, these same trains caused a slight enhancement of AHP amplitude. In adult HMs, with a decrementing firing pattern, trains of APs also caused summation of the AHP. 4. Type D neonatal HMs showed a progressive prolongation of the AP during repetitive firing. In contrast, type I neonatal HMs had almost no change in AP duration. In adult HMs the AP was short and experienced only a modest increase in duration during fast repetitive firing. 5. The function relating steady-state firing frequency to injected current (f-I curve) was linear. The mean steady-state f-I slope was significantly higher in neonates than in adults (approximately 30 vs. approximately 20 Hz nA-1), and was weakly correlated with input resistance. The f-I slope was negatively correlated with AHP duration in neonatal HMs only. In addition, for a given AHP duration the slope was higher in neonatal HMs. 6. Two threshold behaviours were observed among neonatal HMs: (a) a progressive rhythmic firing threshold, and (b) a sudden transition from subthreshold to regular repetitive firing. Current threshold for repetitive firing was strongly correlated with cell input conductance. Type I neonatal HMs had higher minimal steady firing rates (fmin) than type D HMs. In neonates, fmin was strongly correlated with AHP duration. Adult HMs showed a weaker correlation between these two parameters, and fmin was higher than predicted by AHP duration. 7. In summary, HMs responded to depolarizing current pulses with different firing patterns during postnatal development.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- F Viana
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195, USA
| | | | | |
Collapse
|
34
|
|
35
|
|
36
|
Salt TE, Meier CL, Seno N, Krucker T, Herrling PL. Thalamocortical and corticocortical excitatory postsynaptic potentials mediated by excitatory amino acid receptors in the cat motor cortex in vivo. Neuroscience 1995; 64:433-42. [PMID: 7700531 DOI: 10.1016/0306-4522(94)00357-b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
Intracellular recordings were made from neurons in the motor cortex of an anaesthetized cat, together with iontophoretic application of excitatory amino acid receptor agonists and antagonists, in order to evaluate the role of such receptors in excitatory postsynaptic potentials evoked from stimulation of afferent and recurrent pathways in vivo. Excitatory postsynaptic potentials which were evoked by stimulation of the ventrolateral thalamus were found to be largely insensitive to antagonism by N-methyl-D-aspartate receptor antagonists, although they were susceptible to blockade by the non-N-methyl-D-aspartate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione. Increasing the ventrolateral thalamus stimulation frequency from 0.5 or 1 to 5 Hz caused an increase of evoked excitatory postsynaptic potential amplitudes and number of action potentials. These augmented excitatory postsynaptic potentials remained insensitive to application of N-methyl-D-aspartate antagonists. In contrast, recurrent excitatory postsynaptic potentials evoked by stimulation of the pyramidal tract were found to be sensitive to N-methyl-D-aspartate receptor antagonists and/or non-N-methyl-D-aspartate receptor antagonists in some neurons. These results demonstrate the involvement of both N-methyl-D-aspartate- and non-N-methyl-D-aspartate receptors in synaptic responses of cat motor cortex neurons in vivo, and that the synaptic pharmacology of the thalamic input may differ from that of the local recurrent pathways.
Collapse
Affiliation(s)
- T E Salt
- Sandoz Pharma Ltd., Basle, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Connors BW. Intrinsic neuronal physiology and the functions, dysfunctions and development of neocortex. PROGRESS IN BRAIN RESEARCH 1994; 102:195-203. [PMID: 7800812 DOI: 10.1016/s0079-6123(08)60540-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Affiliation(s)
- B W Connors
- Department of Neuroscience, Brown University, Providence, RI 02912
| |
Collapse
|
38
|
Nicoll A, Larkman A, Blakemore C. Modulation of EPSP shape and efficacy by intrinsic membrane conductances in rat neocortical pyramidal neurons in vitro. J Physiol 1993; 468:693-710. [PMID: 7504732 PMCID: PMC1143850 DOI: 10.1113/jphysiol.1993.sp019795] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023] Open
Abstract
1. Intracellular recordings were made from pyramidal neurons in layers II/III and V of rat visual cortical slices. Distal and proximal excitatory postsynaptic potentials (EPSPs) were evoked using extracellular bipolar electrodes placed on the slice horizontal to each cell, near the apical and basal dendrites respectively. Experiments were conducted in the presence of 2-amino-5-phosphonopentanoate, picrotoxin and, in most cases, 2-hydroxy-saclofen. 2. For layer II/III pyramidal neurons, voltage undershoots following distal and proximal EPSPs (n = 7 pairs) and injected somatic pulses were rarely apparent. In layer V pyramidal neurons substantial voltage undershoots were recorded following distal and proximal EPSPs (n = 27 pairs) and injected somatic pulses, with undershoot being greatest for apical inputs (P = 0.001). The greater undershoots following apical EPSPs were also apparent in semilogarithmic plots of voltage decay where the slope of decay for apical EPSPs was quicker than the voltage decay following pulses of current injected at the soma. There was no significant difference in the shapes of distal and proximal EPSPs in layer II/III or layer V pyramidal cells under control conditions. 3. Pharmacological agents were used to reduce voltage undershoots. The most successful of these was alinidine, a putative blocker of the slow inward rectifier (IH) conductance. In the presence of bath-applied 100 microM alinidine, undershoots were significantly reduced and it became possible to distinguish the relative origins of EPSPs on the basis of their shape. Distally generated EPSPs (n = 14) had rise times and half-widths that were 2.8 and 1.5 times longer respectively than those evoked proximally (n = 10; P = 0.001 for both parameters). 4. These results confirm previous theoretical simulations of somatic recordings in passive model neurons where distal EPSPs display slower rise times and longer half-widths than proximal EPSPs. The present results suggest that, at least in pyramidal neurons of layer V, distal synaptic inputs can be specifically modulated by intrinsic membrane conductances.
Collapse
Affiliation(s)
- A Nicoll
- University Laboratory of Physiology, Oxford
| | | | | |
Collapse
|
39
|
|
40
|
Jiang ZG, Pessia M, North RA. Dopamine and baclofen inhibit the hyperpolarization-activated cation current in rat ventral tegmental neurones. J Physiol 1993; 462:753-64. [PMID: 8392580 PMCID: PMC1175326 DOI: 10.1113/jphysiol.1993.sp019580] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023] Open
Abstract
1. Whole-cell patch-clamp recordings were made from dopamine-containing ventral tegmental area neurones in slices of rat midbrain. An inward current (Ih) was activated by hyperpolarization from -60 mV. 2. Dopamine (30 microM) reduced the amplitude of Ih by 10-30% at potentials from -70 to -120 mV. The effect was concentration dependent, mimicked by the D2 agonist quinpirole, and prevented by the D2 antagonist (-)-sulpiride. Baclofen (0.3-3 microM) also inhibited Ih; this action was antagonized by 2-hydroxysaclofen but not by (-)-sulpiride. The decrease in Ih resulted from a reduction in the maximal current with no change in the voltage dependence. 3. The action of dopamine was unaffected by cadmium (200 microM), forskolin (10 microM), the adenylyl cyclase inhibitor 2',3'-dideoxyadenosine (100 microM), or by intracellular solution containing cyclic AMP (2 mM). 4. Ih was progressively reduced during the first 5-10 min of recording with electrodes containing guanosine 5'-O-(3-thiotriphosphate); after this time, dopamine had no further effect. 5. It is concluded that agonists acting at D2 receptors and GABAB receptors reduce Ih in ventral tegmental neurones.
Collapse
Affiliation(s)
- Z G Jiang
- Vollum Institute, Oregon Health Sciences University, Portland 97201
| | | | | |
Collapse
|
41
|
Nistri A, Cherubini E. Inactivation characteristics of a sustained, Ca(2+)-independent K+ current of rat hippocampal neurones in vitro. J Physiol 1992; 457:575-90. [PMID: 1338465 PMCID: PMC1175748 DOI: 10.1113/jphysiol.1992.sp019395] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
1. Current or voltage clamp recordings from CA3 neurones of the adult rat hippocampal slice were performed to study the inactivation properties of a slow outward K+ current identified as the delayed rectifier (IK). 2. In current clamp experiments, burst firing evoked from resting membrane potential by intracellular current injection was reduced or blocked by conditioning hyperpolarizing pre-pulses of 20-40 mV amplitude. This effect was inhibited by tetraethylammonium (TEA; 20 mM) but was unaffected by Cs+ (3 mM), 4-aminopyridine (4-AP; 2 mM), carbachol (30-50 microM), mast cell degranulating peptide (MCDP; 300 nM), thyrotrophin releasing hormone (TRH; 1 microM) or by a Ca(2+)-free solution containing Mn2+ or Co2+ (2 mM). 3. Single-electrode voltage clamp experiments were carried out on neurones superfused with Ca(2+)-free solution, containing tetrodotoxin (TTX; 1 microM), Mn2+ or Co2+ (2 mM), 4-AP (2 mM), Cs+ (3 mM) and carbachol (30 microM). Step depolarizations from a holding potential of -55 mV activated an outward current which reached a plateau after 200 ms, followed by an outward tail current. Such an outward current had the characteristics of IK. 4. The outward currents were significantly potentiated by conditioning hyperpolarizing pre-pulses suggesting the IK was reduced by a voltage-dependent inactivation process. Removal of inactivation was a function of the amplitude of the conditioning hyperpolarizing pre-pulse. At a holding potential of -55 mV removal of inactivation was time dependent with a time constant of 211 ms. High K+ (12.5 or 21.5 mM) solutions did not affect the inactivation characteristics of IK. 5. Tetraethylammonium (20 mM) or low concentrations of Ba2+ (0.1 mM) readily depressed the outward current without significantly affecting the inactivation process. Dendrotoxin (200 nM) also depressed such a slow current but, in addition, increased the inactivation process of IK. 6. It is suggested that removal of inactivation of IK by hyperpolarization can modulate cell excitability by fully restoring the ability of IK to inhibit burst firing of CA3 hippocampal neurones.
Collapse
|
42
|
Abstract
The in vitro slice preparation of rat prefrontal cortical cells was used to analyse the presence and characteristics of a slowly inactivating outward current and its effect on the delayed integration of synaptic inputs. Pyramidal cells were identified as regular firing or bursting cells. In a fraction of these cells a depolarizing current pulse to -40 mV from a holding potential of -95 mV evoked the fast outward IA current followed by a slower outward current (IKs) which inactivated slowly during the 3-s pulse. This slowly inactivating outward current was completely inactivated at holding potentials near -40 mV and was fully deinactivated by large hyperpolarizing pulses of 1 s duration. It was sensitive to micromolar concentrations of 4-aminopyridine and to 10 mM tetraethylammonium. In current clamp experiments, when the cells were maintained at -80 mV, they responded to subliminal depolarizing current pulses by a slow rising depolarization which reached threshold for spike firing after a delay of several seconds. This delay was considerably reduced either by maintaining the cell at less hyperpolarized potentials or by bath application of 40 microM 4-aminopyridine, or by repeated application of depolarizing pulses. The inactivation of IKs by the last procedure also led to plateau depolarization of the cell. These results suggest that the activation of the slowly inactivating outward current IKs can shunt excitatory inputs, preventing the cell from reaching spike threshold as long as it is not largely inactivated.
Collapse
Affiliation(s)
- C. Hammond
- Laboratoire de Neurobiologie et Neuropharmacologie du Développement, CNRS URA 1121, Bât. 440, Université Paris-Sud, 91405 Orsay, France
| | | |
Collapse
|
43
|
van Brederode JF, Snyder GL. A comparison of the electrophysiological properties of morphologically identified cells in layers 5B and 6 of the rat neocortex. Neuroscience 1992; 50:315-37. [PMID: 1436494 DOI: 10.1016/0306-4522(92)90426-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
In vitro studies performed in mammalian brain slices have shown that cortical neurons differ in their intrinsic membrane properties. In the rodent cortex these properties are related to a specific cell morphology and synaptic connectivity in some cells but not in others. Due to their small size, little is known about the intrinsic membrane properties of layer 6 cells, however, and it is not clear whether cell morphology is related to electrophysiological properties in this layer. We used a combination of intracellular recording and dye-filling to study the electrophysiological and morphological characteristics of layer 6 cells of the rat sensorimotor cortex in vitro and compared their properties to those of large layer 5B pyramidal cells. Our sample of 24 filled and anatomically reconstructed cells in layer 6 confirms previous Golgi studies that showed them to be a morphologically diverse group consisting of regularly and irregularly oriented pyramidal cells and spiny nonpyramidal cells. Regular layer 6 pyramidal cells differed with respect to the length of their apical dendrites and extent of their axonal arborizations, while irregularly oriented pyramidal cells consisted of sideways or inverted pyramidal cells of variable size and morphology. Spiny nonpyramidal cells included bi-tufted and multi-polar cell types that differed in size and extent of dendritic trees. Many layer 6 cells showed long horizontal axon collaterals in layer 6, and an oblique or vertical projection to layer 4. Stimulation with intracellular constant current pulses revealed that the morphological diversity was mirrored by a similar electrophysiological diversity. Most layer 6 cells were capable of firing trains of action potentials characterized by an initial doublet or triplet followed by a train of single spikes (phasic-tonic mode). The majority of layer 6 cells could fire in either a tonic (single spikes only) mode with low strength current input and a phasic-tonic pattern with higher current strengths. A minority fired either always phasic-tonic or tonic-only spike trains. The size and sequence of spike afterpotentials during low-rate repetitive firing was highly variable in layer 6 cells suggesting that the relative importance of ionic currents responsible for spike repolarization and afterpotentials varied from cell to cell. Subthreshold responses showed prominent inward rectification, while hyperpolarizing "sag" was present in most cells tested. In comparison, large layer 5B pyramidal cells fired either phasic-tonic only or both phasic-tonic and tonic patterns. A minority of cells were capable of firing repetitive bursts, while the remainder fired repetitive single spikes.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J F van Brederode
- Department of Biological Structure, University of Washington, School of Medicine, Seattle 98195
| | | |
Collapse
|
44
|
Schwindt PC, Spain WJ, Crill WE. Effects of intracellular calcium chelation on voltage-dependent and calcium-dependent currents in cat neocortical neurons. Neuroscience 1992; 47:571-8. [PMID: 1316566 DOI: 10.1016/0306-4522(92)90166-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Large neurons from layer V in a slice preparation of cat sensorimotor cortex were impaled with microelectrodes containing KCl plus different concentrations of the Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid (BAPTA) or two of its derivatives. Impalement with electrodes containing high BAPTA (200 mM) quickly abolished Ca(2+)-dependent afterhyperpolarizations. Spike parameters were normal, but the usual time- and voltage-dependent rectification of subthreshold membrane potential was absent. Normally, this rectification results from activation of two voltage-gated currents, the persistent sodium current (INaP) and the hyperpolarizing inward rectifier current (Ih). Both of these currents were absent during voltage clamp with high BAPTA microelectrodes. Impalement with electrodes containing low BAPTA (2 mM) or derivatives caused a different effect. Injection of a 1-s current pulse evoked phasic firing instead of the tonic firing seen normally. Both the amplitude and the duration of the Ca(2+)-dependent afterhypolarization that followed repetitive firing were much greater than normal. The effectiveness of BAPTA derivatives in altering afterhyperpolarizations and firing properties were similar to their effectiveness in chelating Ca2+. It is assumed that the BAPTA effects result from reduction of intracellular Ca2+ concentration. Results with high BAPTA suggest that (i) both INaP and Ih require a minimal intracellular calcium concentration for normal expression, and that (ii) these voltage-gated currents may be modulated by changes in intracellular calcium concentration. Results with low BAPTA suggest that a small reduction of intracellular calcium concentration preferentially enhances a slow, Ca(2+)-dependent K+ current which then dominates the firing properties of the cell. The transformed firing properties resemble those of hippocampal pyramidal neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P C Schwindt
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle 98195
| | | | | |
Collapse
|
45
|
Spain WJ, Schwindt PC, Crill WE. Two transient potassium currents in layer V pyramidal neurones from cat sensorimotor cortex. J Physiol 1991; 434:591-607. [PMID: 2023132 PMCID: PMC1181436 DOI: 10.1113/jphysiol.1991.sp018488] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022] Open
Abstract
1. Two transient outward currents were identified in large pyramidal neurones from layer V of cat sensorimotor cortex ('Betz cells') using an in vitro brain slice preparation and single-microelectrode voltage clamp. Properties of the currents deduced from voltage-clamp measurements were reflected in neuronal responses during constant current stimulation. 2. Both transient outward currents rose rapidly after a step depolarization, but their subsequent time course differed greatly. The fast-transient current decayed within 20 ms, while the slow-transient current took greater than 10 s to decay. Raised extracellular potassium reduced current amplitude. Both currents were present in cadmium-containing or calcium-free perfusate. 3. Tetraethylammonium had little effect on the slow-transient current at a concentration of 1 mM, but the fast-transient current was reduced by 60%. 4-Aminopyridine had little effect on the fast-transient current over the range 20 microM-2 mM, but these concentrations reduced the slow-transient current and altered its time course. 4. Both transient currents were evoked by depolarizations below action potential threshold. The fast-transient current was evoked by a 7 mV smaller depolarization than the slow-transient current, but its chord conductance increased less steeply with depolarization. 5. Voltage-dependent inactivation of the fast-transient was steeper than that of the slow-transient current (4 vs. 7 mV per e-fold change), and half-inactivation occurred at a less negative potential (-59 vs. -65 mV). The activation and inactivation characteristics of each current overlapped, however, implying the existence of a steady 'window current' extending over a range of approximately 14 mV beginning negative to action potential threshold. 6. The fast-transient current displayed a clear voltage dependence of both its activation and inactivation kinetics, whereas the slow-transient current did not. Recovery of either current from inactivation took about 1 s near -70 mV. The recovery of the slow-transient current became faster with hyperpolarization. 7. The contribution of each transient current to repolarization of the action potential was assessed from pharmacological responses. Blockade of calcium influx had little or no effect on the rate of action potential repolarization, whereas the selective reduction of either transient current caused significant slowing of repolarization. 8. We conclude that Betz cells possess at least two transient potassium currents, each a member of the rapidly expanding family of voltage-gated potassium currents that have been identified in various cell types.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W J Spain
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle 98195
| | | | | |
Collapse
|