1
|
Andersen MS, Theodorakos I. Methodology to identify subject-specific dynamic laxity tests to stretch individual parts of knee ligaments. Med Eng Phys 2024; 133:104246. [PMID: 39557503 DOI: 10.1016/j.medengphy.2024.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
The mechanical properties of ligaments are important for multiple applications and are often estimated from laxity tests. However, the typical laxity tests are not optimized for this application and, a potential exists to develop better laxity tests in this respect. Therefore, the purpose of this study was to develop a methodology to identify optimal, dynamic laxity tests that isolate the stretch of the individual ligaments from each other. To this end, we applied an existing rigid body-based knee model and a dataset of ∼100.000 random samples of applied forces (0-150 N), moments (0-10 Nm) and knee flexion angles (0-90°) through Monte Carlo Simulations. For each modelled ligament bundle, we identified ten load cases; one producing the highest force and nine equally spaced between the maximal and zero force, where the maximal force in all other ligament bundles were minimized. We compared these novel laxity tests to standard internal/external and varus/valgus laxity tests using an isolation metric. We found that no laxity test could stretch the anterior part of the posterior cruciate and medial cruciate ligaments (PCL and MCL), whereas for all other ligaments, except the posterior PCL, the new laxity tests isolated the ligament stretch 28 % to 450 % better than standard tests. From our study, we conclude that it is possible to define better laxity tests than currently exist and these may be highly relevant for determination of mechanical properties of ligaments in vivo. Future studies should generalize our results and translate them to modern laxity measurements technologies.
Collapse
Affiliation(s)
- Michael Skipper Andersen
- Department of Materials and Production, Center for Mathematical Modeling of Knee Osteoarthritis, Aalborg University, Fibigerstræde 16, 9220 Aalborg East, Denmark.
| | - Ilias Theodorakos
- Department of Materials and Production, Center for Mathematical Modeling of Knee Osteoarthritis, Aalborg University, Fibigerstræde 16, 9220 Aalborg East, Denmark.
| |
Collapse
|
2
|
Tzanetis P, de Souza K, Robertson S, Fluit R, Koopman B, Verdonschot N. Numerical study of osteophyte effects on preoperative knee functionality in patients undergoing total knee arthroplasty. J Orthop Res 2024; 42:1943-1954. [PMID: 38602446 DOI: 10.1002/jor.25850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
Osteophytes are routinely removed during total knee arthroplasty, yet the preoperative planning currently relies on preoperative computed tomography (CT) scans of the patient's osteoarthritic knee, typically including osteophytic features. This complicates the surgeon's ability to anticipate the exact biomechanical effects of osteophytes and the consequences of their removal before the operation. The aim of this study was to investigate the effect of osteophytes on ligament strains and kinematics, and ascertain whether the osteophyte volume and location determine the extent of this effect. We segmented preoperative CT scans of 21 patients, featuring different osteophyte severity, using image-based active appearance models trained to identify the osteophytic and preosteophytic bone geometries and estimate the cartilage thickness in the segmented surfaces. The patients' morphologies were used to scale a template musculoskeletal knee model. Osteophytes induced clinically relevant changes to the knee's functional behavior, but these were variable and patient-specific. Generally, severe osteophytic knees significantly strained the oblique popliteal ligament (OPL) and posterior capsule (PC) relative to the preosteophytic state. Furthermore, there was a marked effect on the lateral collateral ligament and anterolateral ligament (ALL) strains compared to mild and moderate osteophytic knees, and concurrent alterations in the tibial lateral-medial translation and external-internal rotation. We found a strong correlation between the OPL, PC, and ALL strains and posterolateral condylar and tibial osteophytes, respectively. Our findings may have implications for the preoperative planning in total knee arthroplasty, toward reproducing the physiological knee biomechanics as close as feasibly possible.
Collapse
Affiliation(s)
- Periklis Tzanetis
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | | | | | - René Fluit
- Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Bart Koopman
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Nico Verdonschot
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Orthopaedic Research Laboratory, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Guitteny S, Aissaoui R, Dumas R. Can a Musculoskeletal Model Adapted to Knee Implant Geometry Improve Prediction of 3D Contact Forces and Moments? Ann Biomed Eng 2023:10.1007/s10439-023-03216-y. [PMID: 37101092 DOI: 10.1007/s10439-023-03216-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Tibiofemoral contact loads are crucial parameters in the onset and progression of osteoarthrosis. While contact loads are frequently estimated from musculoskeletal models, their customization is often limited to scaling musculoskeletal geometry or adapting muscle lines. Moreover, studies have usually focused on superior-inferior contact force without investigating three-dimensional contact loads. Using experimental data from six patients with instrumented total knee arthroplasty (TKA), this study customized a lower limb musculoskeletal model to consider the positioning and the geometry of the implant at knee level. Static optimization was performed to estimate tibiofemoral contact forces and contact moments as well as musculotendinous forces. Predictions from both a generic and a customized model were compared to the instrumented implant measurements. Both models accurately predict superior-inferior (SI) force and abduction-adduction (AA) moment. Notably, the customization improves prediction of medial-lateral (ML) force and flexion-extension (FE) moments. However, there is subject-dependent variability in the prediction of anterior-posterior (AP) force. The customized models presented here predict loads on all joint axes and in most cases improve prediction. Unexpectedly, this improvement was more limited for patients with more rotated implants, suggesting a need for further model adaptations such as muscle wrapping or redefinition of hip and ankle joint centers and axes.
Collapse
Affiliation(s)
- Sacha Guitteny
- Univ Lyon, Univ Claude Bernard Lyon 1, Univ Gustave Eiffel, LBMC UMR_T 9406, 69622, Lyon, France
| | - Rachid Aissaoui
- Laboratoire de Recherche en Imagerie Et Orthopédie (LIO), Département Génie des Systèmes, Ecole de Technologie Supérieure, Montréal, Canada
| | - Raphael Dumas
- Univ Lyon, Univ Claude Bernard Lyon 1, Univ Gustave Eiffel, LBMC UMR_T 9406, 69622, Lyon, France.
| |
Collapse
|
4
|
Kloeckner J, Visscher RMS, Taylor WR, Viehweger E, De Pieri E. Prediction of ground reaction forces and moments during walking in children with cerebral palsy. Front Hum Neurosci 2023; 17:1127613. [PMID: 36968787 PMCID: PMC10031015 DOI: 10.3389/fnhum.2023.1127613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
IntroductionGait analysis is increasingly used to support clinical decision-making regarding diagnosis and treatment planning for movement disorders. As a key part of gait analysis, inverse dynamics can be applied to estimate internal loading conditions during movement, which is essential for understanding pathological gait patterns. The inverse dynamics calculation uses external kinetic information, normally collected using force plates. However, collection of external ground reaction forces (GRFs) and moments (GRMs) can be challenging, especially in subjects with movement disorders. In recent years, a musculoskeletal modeling-based approach has been developed to predict external kinetics from kinematic data, but its performance has not yet been evaluated for altered locomotor patterns such as toe-walking. Therefore, the goal of this study was to investigate how well this prediction method performs for gait in children with cerebral palsy.MethodsThe method was applied to 25 subjects with various forms of hemiplegic spastic locomotor patterns. Predicted GRFs and GRMs, in addition to associated joint kinetics derived using inverse dynamics, were statistically compared against those based on force plate measurements.ResultsThe results showed that the performance of the predictive method was similar for the affected and unaffected limbs, with Pearson correlation coefficients between predicted and measured GRFs of 0.71–0.96, similar to those previously reported for healthy adults, despite the motor pathology and the inclusion of toes-walkers within our cohort. However, errors were amplified when calculating the resulting joint moments to an extent that could influence clinical interpretation.ConclusionTo conclude, the musculoskeletal modeling-based approach for estimating external kinetics is promising for pathological gait, offering the possibility of estimating GRFs and GRMs without the need for force plate data. However, further development is needed before implementation within clinical settings becomes possible.
Collapse
Affiliation(s)
- Julie Kloeckner
- Laboratory for Movement Biomechanics, Department of Health Science and Technology, Institute for Biomechanics, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Biomedical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rosa M. S. Visscher
- Laboratory for Movement Biomechanics, Department of Health Science and Technology, Institute for Biomechanics, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - William R. Taylor
- Laboratory for Movement Biomechanics, Department of Health Science and Technology, Institute for Biomechanics, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- *Correspondence: William R. Taylor,
| | - Elke Viehweger
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Laboratory for Movement Analysis, University Children’s Hospital Basel (UKBB), Basel, Switzerland
| | - Enrico De Pieri
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Laboratory for Movement Analysis, University Children’s Hospital Basel (UKBB), Basel, Switzerland
| |
Collapse
|
5
|
Andersen MS, Pedersen D. Methodology to identify optimal subject-specific laxity tests to stretch individual parts of knee ligaments. Med Eng Phys 2022; 107:103871. [DOI: 10.1016/j.medengphy.2022.103871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022]
|
6
|
Alexander N, Brunner R, Cip J, Viehweger E, De Pieri E. Increased Femoral Anteversion Does Not Lead to Increased Joint Forces During Gait in a Cohort of Adolescent Patients. Front Bioeng Biotechnol 2022; 10:914990. [PMID: 35733525 PMCID: PMC9207384 DOI: 10.3389/fbioe.2022.914990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopedic complications were previously reported for patients with increased femoral anteversion. A more comprehensive analysis of the influence of increased femoral anteversion on joint loading in these patients is required to better understand the pathology and its clinical management. Therefore, the aim was to investigate lower-limb kinematics, joint moments and forces during gait in adolescent patients with increased, isolated femoral anteversion compared to typically developing controls. Secondly, relationships between the joint loads experienced by the patients and different morphological and kinematic features were investigated. Patients with increased femoral anteversion (n = 42, 12.8 ± 1.9 years, femoral anteversion: 39.6 ± 6.9°) were compared to typically developing controls (n = 9, 12.0 ± 3.0 years, femoral anteversion: 18.7 ± 4.1°). Hip and knee joint kinematics and kinetics were calculated using subject-specific musculoskeletal models. Differences between patients and controls in the investigated outcome variables (joint kinematics, moments, and forces) were evaluated through statistical parametric mapping with Hotelling T2 and t-tests (α = 0.05). Canonical correlation analyses (CCAs) and regression analyses were used to evaluate within the patients’ cohort the effect of different morphological and kinematic predictors on the outcome variables. Predicted compressive proximo-distal loads in both hip and knee joints were significantly reduced in patients compared to controls. A gait pattern characterized by increased knee flexion during terminal stance (KneeFlextSt) was significantly correlated with hip and knee forces, as well as with the resultant force exerted by the quadriceps on the patella. On the other hand, hip internal rotation and in-toeing, did not affect the loads in the joints. Based on the finding of the CCAs and linear regression analyses, patients were further divided into two subgroups based KneeFlextSt. Patients with excessive KneeFlextSt presented a significantly higher femoral anteversion than those with normal KneeFlextSt. Patients with excessive KneeFlextSt presented significantly larger quadriceps forces on the patella and a larger posteriorly-oriented shear force at the knee, compared to patients with normal KneeFlextSt, but both patients’ subgroups presented only limited differences in terms of joint loading compared to controls. This study showed that an altered femoral morphology does not necessarily lead to an increased risk of joint overloading, but instead patient-specific kinematics should be considered.
Collapse
Affiliation(s)
- Nathalie Alexander
- Laboratory for Motion Analysis, Department of Paediatric Orthopaedics, Children’s Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Department of Orthopaedics and Traumatology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Reinald Brunner
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Paediatric Orthopaedics, University of Basel Children’s Hospital, Basel, Switzerland
- Dpartment of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Johannes Cip
- Department of Paediatric Orthopaedics, Children’s Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Elke Viehweger
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Department of Paediatric Orthopaedics, University of Basel Children’s Hospital, Basel, Switzerland
- Dpartment of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Enrico De Pieri
- Laboratory for Movement Analysis, University of Basel Children’s Hospital, Basel, Switzerland
- Dpartment of Biomedical Engineering, University of Basel, Basel, Switzerland
- *Correspondence: Enrico De Pieri,
| |
Collapse
|
7
|
De Pieri E, Friesenbichler B, List R, Monn S, Casartelli NC, Leunig M, Ferguson SJ. Subject-Specific Modeling of Femoral Torsion Influences the Prediction of Hip Loading During Gait in Asymptomatic Adults. Front Bioeng Biotechnol 2021; 9:679360. [PMID: 34368092 PMCID: PMC8334869 DOI: 10.3389/fbioe.2021.679360] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/02/2021] [Indexed: 01/26/2023] Open
Abstract
Hip osteoarthritis may be caused by increased or abnormal intra-articular forces, which are known to be related to structural articular cartilage damage. Femoral torsional deformities have previously been correlated with hip pain and labral damage, and they may contribute to the onset of hip osteoarthritis by exacerbating the effects of existing pathoanatomies, such as cam and pincer morphologies. A comprehensive understanding of the influence of femoral morphotypes on hip joint loading requires subject-specific morphometric and biomechanical data on the movement characteristics of individuals exhibiting varying degrees of femoral torsion. The aim of this study was to evaluate hip kinematics and kinetics as well as muscle and joint loads during gait in a group of adult subjects presenting a heterogeneous range of femoral torsion by means of personalized musculoskeletal models. Thirty-seven healthy volunteers underwent a 3D gait analysis at a self-selected walking speed. Femoral torsion was evaluated with low-dosage biplanar radiography. The collected motion capture data were used as input for an inverse dynamics analysis. Personalized musculoskeletal models were created by including femoral geometries that matched each subject’s radiographically measured femoral torsion. Correlations between femoral torsion and hip kinematics and kinetics, hip contact forces (HCFs), and muscle forces were analyzed. Within the investigated cohort, higher femoral antetorsion led to significantly higher anteromedial HCFs during gait (medial during loaded stance phase and anterior during swing phase). Most of the loads during gait are transmitted through the anterior/superolateral quadrant of the acetabulum. Correlations with hip kinematics and muscle forces were also observed. Femoral antetorsion, through altered kinematic strategies and different muscle activations and forces, may therefore lead to altered joint mechanics and pose a risk for articular damage. The method proposed in this study, which accounts for both morphological and kinematic characteristics, might help in identifying in a clinical setting patients who, as a consequence of altered femoral torsional alignment, present more severe functional impairments and altered joint mechanics and are therefore at a higher risk for cartilage damage and early onset of hip osteoarthritis.
Collapse
Affiliation(s)
- Enrico De Pieri
- Laboratory for Movement Analysis, University of Basel Children's Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Institute for Biomechanics, ETH Zurich, Zürich, Switzerland
| | | | - Renate List
- Human Performance Lab, Schulthess Clinic, Zürich, Switzerland
| | - Samara Monn
- Human Performance Lab, Schulthess Clinic, Zürich, Switzerland
| | - Nicola C Casartelli
- Human Performance Lab, Schulthess Clinic, Zürich, Switzerland.,Laboratory of Exercise and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Michael Leunig
- Department of Orthopaedic Surgery, Schulthess Clinic, Zürich, Switzerland
| | | |
Collapse
|
8
|
Charles JP, Grant B, D'Août K, Bates KT. Subject-specific muscle properties from diffusion tensor imaging significantly improve the accuracy of musculoskeletal models. J Anat 2020; 237:941-959. [PMID: 32598483 PMCID: PMC7542200 DOI: 10.1111/joa.13261] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022] Open
Abstract
Musculoskeletal modelling is an important platform on which to study the biomechanics of morphological structures in vertebrates and is widely used in clinical, zoological and palaeontological fields. The popularity of this approach stems from the potential to non-invasively quantify biologically important but difficult-to-measure functional parameters. However, while it is known that model predictions are highly sensitive to input values, it is standard practice to build models by combining musculoskeletal data from different sources resulting in 'generic' models for a given species. At present, there are little quantitative data on how merging disparate anatomical data in models impacts the accuracy of these functional predictions. This issue is addressed herein by quantifying the accuracy of both subject-specific human limb models containing individualised muscle force-generating properties and models built using generic properties from both elderly and young individuals, relative to experimental muscle torques obtained from an isokinetic dynamometer. The results show that subject-specific models predict isokinetic muscle torques to a greater degree of accuracy than generic models at the ankle (root-mean-squared error - 7.9% vs. 49.3% in elderly anatomy-based models), knee (13.2% vs. 57.3%) and hip (21.9% vs. 32.8%). These results have important implications for the choice of musculoskeletal properties in future modelling studies, and the relatively high level of accuracy achieved in the subject-specific models suggests that such models can potentially address questions about inter-subject variations of muscle functions. However, despite relatively high levels of overall accuracy, models built using averaged generic muscle architecture data from young, healthy individuals may lack the resolution and accuracy required to study such differences between individuals, at least in certain circumstances. The results do not wholly discourage the continued use of averaged generic data in musculoskeletal modelling studies but do emphasise the need for to maximise the accuracy of input values if studying intra-species form-function relationships in the musculoskeletal system.
Collapse
Affiliation(s)
- James P Charles
- Department of Musculoskeletal and Ageing Science , Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Barbara Grant
- Department of Musculoskeletal and Ageing Science , Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Kristiaan D'Août
- Department of Musculoskeletal and Ageing Science , Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Karl T Bates
- Department of Musculoskeletal and Ageing Science , Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|