1
|
Favilla CG, Baird GL, Grama K, Konecky S, Carter S, Smith W, Gitlevich R, Lebron-Cruz A, Yodh AG, McTaggart RA. Portable cerebral blood flow monitor to detect large vessel occlusion in patients with suspected stroke. J Neurointerv Surg 2025:jnis-2024-021536. [PMID: 38514189 PMCID: PMC11415534 DOI: 10.1136/jnis-2024-021536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Early detection of large vessel occlusion (LVO) facilitates triage to an appropriate stroke center to reduce treatment times and improve outcomes. Prehospital stroke scales are not sufficiently sensitive, so we investigated the ability of the portable Openwater optical blood flow monitor to detect LVO. METHODS Patients were prospectively enrolled at two comprehensive stroke centers during stroke alert evaluation within 24 hours of onset with National Institutes of Health Stroke Scale (NIHSS) score ≥2. A 70 s bedside optical blood flow scan generated cerebral blood flow waveforms based on relative changes in speckle contrast. Anterior circulation LVO was determined by CT angiography. A deep learning model trained on all patient data using fivefold cross-validation and learned discriminative representations from the raw speckle contrast waveform data. Receiver operating characteristic (ROC) analysis compared the Openwater diagnostic performance (ie, LVO detection) with prehospital stroke scales. RESULTS Among 135 patients, 52 (39%) had an anterior circulation LVO. The median NIHSS score was 8 (IQR 4-14). The Openwater instrument had 79% sensitivity and 84% specificity for the detection of LVO. The rapid arterial occlusion evaluation (RACE) scale had 60% sensitivity and 81% specificity and the Los Angeles motor scale (LAMS) had 50% sensitivity and 81% specificity. The binary Openwater classification (high-likelihood vs low-likelihood) had an area under the ROC (AUROC) of 0.82 (95% CI 0.75 to 0.88), which outperformed RACE (AUC 0.70; 95% CI 0.62 to 0.78; P=0.04) and LAMS (AUC 0.65; 95% CI 0.57 to 0.73; P=0.002). CONCLUSIONS The Openwater optical blood flow monitor outperformed prehospital stroke scales for the detection of LVO in patients undergoing acute stroke evaluation in the emergency department. These encouraging findings need to be validated in an independent test set and the prehospital environment.
Collapse
Affiliation(s)
- Christopher G Favilla
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Grayson L Baird
- Department of Interventional Radiology, Brown University, Providence, Rhode Island, USA
| | | | | | - Sarah Carter
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wendy Smith
- Department of Diagnostic Imaging, Lifespan Health System, Providence, Rhode Island, USA
| | - Rebecca Gitlevich
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexa Lebron-Cruz
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan A McTaggart
- Department of Interventional Radiology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Mahler S, Huang YX, Ismagilov M, Álvarez-Chou D, Abedi A, Tyszka JM, Lo YT, Russin J, Pantera RL, Liu C, Yang C. Portable six-channel laser speckle system for simultaneous measurement of cerebral blood flow and volume with potential applications in characterization of brain injury. NEUROPHOTONICS 2025; 12:015003. [PMID: 39867132 PMCID: PMC11758243 DOI: 10.1117/1.nph.12.1.015003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025]
Abstract
Significance Cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics for regional cerebrovascular monitoring. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting. Aim We aim to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain. Approach The system is based on speckle contrast optical spectroscopy and consists of laser diodes and board cameras, which have been both tested and investigated for safe use on the human head. Apart from the universal serial bus connection for the camera, the entire system, including its battery power source, is integrated into a wearable headband and is powered by 9-V batteries. Results The temporal dynamics of both CBF and CBV in a cohort of five healthy subjects were synchronized and exhibited similar cardiac period waveforms across all six channels. The potential use of our six-channel system for detecting the physiological sequelae of brain injury was explored in two subjects, one with moderate and one with significant structural brain damage, where the six-point CBF and CBV measurements were referenced to structural magnetic resonance imaging (MRI) scans. Conclusions We pave the way for a viable multi-point optical instrument for measuring CBF and CBV. Its cost-effectiveness allows for baseline metrics to be established prior to injury in populations at risk for brain injury.
Collapse
Affiliation(s)
- Simon Mahler
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Yu Xi Huang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Max Ismagilov
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - David Álvarez-Chou
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Aidin Abedi
- University of Southern California, USC Neurorestoration Center and Department of Neurological Surgery, Los Angeles, California, United States
| | - J. Michael Tyszka
- California Institute of Technology, Division of Humanities and Social Sciences, Pasadena, California, United States
| | - Yu Tung Lo
- University of Southern California, USC Neurorestoration Center and Department of Neurological Surgery, Los Angeles, California, United States
| | - Jonathan Russin
- University of Southern California, USC Neurorestoration Center and Department of Neurological Surgery, Los Angeles, California, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, California, United States
| | - Richard L. Pantera
- Kaweah Health Medical Center, Neurology, Visalia, California, United States
| | - Charles Liu
- University of Southern California, USC Neurorestoration Center and Department of Neurological Surgery, Los Angeles, California, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, California, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| |
Collapse
|
3
|
Mahler S, Huang YX, Ismagilov M, Álvarez-Chou D, Abedi A, Tyszka JM, Lo YT, Russin J, Pantera RL, Liu C, Yang C. Portable Six-Channel Laser Speckle System for Simultaneous Cerebral Blood Flow and Volume Measurement with Potential Application for Characterization of Brain Injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.30.24316429. [PMID: 39574861 PMCID: PMC11581064 DOI: 10.1101/2024.10.30.24316429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
In regional cerebrovascular monitoring, cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection, as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting. This study's aim is to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain. The system is based on speckle contrast optical spectroscopy (SCOS) and consists of laser diodes and board cameras which have been both tested and investigated for safe use on the human head. Results on a cohort of five healthy subjects indicated that the dynamics of both CBF and CBV were synchronized and exhibited similar cardiac period waveforms across all six channels. As a preliminary investigation, we also explored the potential use of our six-channel system for detecting the physiological sequela of brain injury, involving a subject with significant structural brain damage compared to another with lesser structural brain damage. The six-point CBF and CBV measurements were compared to MRI scans, revealing that regions with altered blood dynamics closely correlated with the injury sites identified by MRI.
Collapse
|
4
|
Huang YX, Mahler S, Abedi A, Tyszka JM, Lo YT, Lyden PD, Russin J, Liu C, Yang C. Correlating stroke risk with non-invasive cerebrovascular perfusion dynamics using a portable speckle contrast optical spectroscopy laser device. BIOMEDICAL OPTICS EXPRESS 2024; 15:6083-6097. [PMID: 39421763 PMCID: PMC11482158 DOI: 10.1364/boe.534796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Stroke poses a significant global health threat, with millions affected annually, leading to substantial morbidity and mortality. Current stroke risk assessment for the general population relies on markers such as demographics, blood tests, and comorbidities. A minimally invasive, clinically scalable, and cost-effective way to directly measure cerebral blood flow presents an opportunity. This opportunity has the potential to positively impact effective stroke risk assessment prevention and intervention. Physiological changes in the cerebrovascular system, particularly in response to hypercapnia and hypoxia during voluntary breath-holding can offer insights into stroke risk assessment. However, existing methods for measuring cerebral perfusion reserves, such as blood flow and blood volume changes, are limited by either invasiveness or impracticality. Herein we propose a non-invasive transcranial approach using speckle contrast optical spectroscopy (SCOS) to non-invasively monitor regional changes in brain blood flow and volume during breath-holding. Our study, conducted on 50 individuals classified into two groups (low-risk and higher-risk for stroke), shows significant differences in blood dynamic changes during breath-holding between the two groups, providing physiological insights for stroke risk assessment using a non-invasive quantification paradigm. Given its cost-effectiveness, scalability, portability, and simplicity, this laser-centric tool has significant potential for early diagnosis and treatment of stroke in the general population.
Collapse
Affiliation(s)
- Yu Xi Huang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Simon Mahler
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Aidin Abedi
- USC Neurorestoration Center, Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Rancho Research Institute, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
- Department of Urology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Julian Michael Tyszka
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yu Tung Lo
- USC Neurorestoration Center, Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Neurosurgery, National Neuroscience Institute, Singapore 308433, Singapore
| | - Patrick D Lyden
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jonathan Russin
- USC Neurorestoration Center, Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Rancho Research Institute, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Charles Liu
- USC Neurorestoration Center, Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Rancho Research Institute, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
5
|
Röhrs KJ, Audebert H. Pre-Hospital Stroke Care beyond the MSU. Curr Neurol Neurosci Rep 2024; 24:315-322. [PMID: 38907812 PMCID: PMC11258185 DOI: 10.1007/s11910-024-01351-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE OF REVIEW Mobile stroke units (MSU) have established a new, evidence-based treatment in prehospital stroke care, endorsed by current international guidelines and can facilitate pre-hospital research efforts. In addition, other novel pre-hospital modalities beyond the MSU are emerging. In this review, we will summarize existing evidence and outline future trajectories of prehospital stroke care & research on and off MSUs. RECENT FINDINGS The proof of MSUs' positive effect on patient outcomes is leading to their increased adoption in emergency medical services of many countries. Nevertheless, prehospital stroke care worldwide largely consists of regular ambulances. Advancements in portable technology for detecting neurocardiovascular diseases, telemedicine, AI and large-scale ultra-early biobanking have the potential to transform prehospital stroke care also beyond the MSU concept. The increasing implementation of telemedicine in emergency medical services is demonstrating beneficial effects in the pre-hospital setting. In synergy with telemedicine the exponential growth of AI-technology is already changing and will likely further transform pre-hospital stroke care in the future. Other promising areas include the development and validation of miniaturized portable devices for the pre-hospital detection of acute stroke. MSUs are enabling large-scale screening for ultra-early blood-based biomarkers, facilitating the differentiation between ischemia, hemorrhage, and stroke mimics. The development of suitable point-of-care tests for such biomarkers holds the potential to advance pre-hospital stroke care outside the MSU-concept. A multimodal approach of AI-supported telemedicine, portable devices and blood-based biomarkers appears to be an increasingly realistic scenario for improving prehospital stroke care in regular ambulances in the future.
Collapse
Affiliation(s)
- Kian J Röhrs
- Department of Neurology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Heinrich Audebert
- Department of Neurology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Dong Z, Mahler S, Readhead C, Chen X, Dickson M, Bronner M, Yang C. Non-invasive laser speckle contrast imaging (LSCI) of extra-embryonic blood vessels in intact avian eggs at early developmental stages. BIOMEDICAL OPTICS EXPRESS 2024; 15:4605-4624. [PMID: 39346990 PMCID: PMC11427191 DOI: 10.1364/boe.530366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 10/01/2024]
Abstract
Imaging blood vessels in early-stage avian embryos has a wide range of practical applications for developmental biology studies, drug and vaccine testing, and early sex determination. Optical imaging, such as brightfield transmission imaging, offers a compelling solution due to its safe non-ionizing radiation, and operational benefits. However, it comes with challenges, such as eggshell opacity and light scattering. To address these, we have revisited an approach based on laser speckle contrast imaging (LSCI) and demonstrated a high-quality, comprehensive, and non-invasive visualization of blood vessels in few-days-old chicken eggs, with blood vessels as small as 100 µm in diameter (with LSCI profile full-width-at-half-maximum of 275 µm). We present its non-invasive use for monitoring blood flow, measuring the embryo's heartbeat, and determining the embryo's developmental stages using machine learning with 85% accuracy from stage HH15 to HH22. This method can potentially be used for non-invasive longitudinal studies of cardiovascular development and angiogenesis, as well as egg screening for the poultry industry.
Collapse
Affiliation(s)
- Zhenyu Dong
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Simon Mahler
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Carol Readhead
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Xi Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Maya Dickson
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
7
|
Huang YX, Mahler S, Dickson M, Abedi A, Tyszka JM, Lo YT, Russin J, Liu C, Yang C. Compact and cost-effective laser-powered speckle contrast optical spectroscopy fiber-free device for measuring cerebral blood flow. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:067001. [PMID: 38826808 PMCID: PMC11140771 DOI: 10.1117/1.jbo.29.6.067001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024]
Abstract
Significance In the realm of cerebrovascular monitoring, primary metrics typically include blood pressure, which influences cerebral blood flow (CBF) and is contingent upon vessel radius. Measuring CBF noninvasively poses a persistent challenge, primarily attributed to the difficulty of accessing and obtaining signal from the brain. Aim Our study aims to introduce a compact speckle contrast optical spectroscopy device for noninvasive CBF measurements at long source-to-detector distances, offering cost-effectiveness, and scalability while tracking blood flow (BF) with remarkable sensitivity and temporal resolution. Approach The wearable sensor module consists solely of a laser diode and a board camera. It can be easily placed on a subject's head to measure BF at a sampling rate of 80 Hz. Results Compared to the single-fiber-based version, the proposed device achieved a signal gain of about 70 times, showed superior stability, reproducibility, and signal-to-noise ratio for measuring BF at long source-to-detector distances. The device can be distributed in multiple configurations around the head. Conclusions Given its cost-effectiveness, scalability, and simplicity, this laser-centric tool offers significant potential in advancing noninvasive cerebral monitoring technologies.
Collapse
Affiliation(s)
- Yu Xi Huang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Simon Mahler
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Maya Dickson
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| | - Aidin Abedi
- University of Southern California, USC Neurorestoration Center, Department of Neurological Surgery, Los Angeles, California, United States
| | - Julian Michael Tyszka
- California Institute of Technology, Division of Humanities and Social Sciences, Pasadena, California, United States
| | - Yu Tung Lo
- University of Southern California, USC Neurorestoration Center, Department of Neurological Surgery, Los Angeles, California, United States
| | - Jonathan Russin
- University of Southern California, USC Neurorestoration Center, Department of Neurological Surgery, Los Angeles, California, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, California, United States
| | - Charles Liu
- University of Southern California, USC Neurorestoration Center, Department of Neurological Surgery, Los Angeles, California, United States
- Rancho Los Amigos National Rehabilitation Center, Downey, California, United States
| | - Changhuei Yang
- California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States
| |
Collapse
|
8
|
Cheng TY, Kim B, Zimmermann BB, Robinson MB, Renna M, Carp SA, Franceschini MA, Boas DA, Cheng X. Choosing a camera and optimizing system parameters for speckle contrast optical spectroscopy. Sci Rep 2024; 14:11915. [PMID: 38789499 PMCID: PMC11126420 DOI: 10.1038/s41598-024-62106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Speckle contrast optical spectroscopy (SCOS) is an emerging camera-based technique that can measure human cerebral blood flow (CBF) with high signal-to-noise ratio (SNR). At low photon flux levels typically encountered in human CBF measurements, camera noise and nonidealities could significantly impact SCOS measurement SNR and accuracy. Thus, a guide for characterizing, selecting, and optimizing a camera for SCOS measurements is crucial for the development of next-generation optical devices for monitoring human CBF and brain function. Here, we provide such a guide and illustrate it by evaluating three commercially available complementary metal-oxide-semiconductor cameras, considering a variety of factors including linearity, read noise, and quantization distortion. We show that some cameras that are well-suited for general intensity imaging could be challenged in accurately quantifying spatial contrast for SCOS. We then determine the optimal operating parameters for the preferred camera among the three and demonstrate measurement of human CBF with this selected low-cost camera. This work establishes a guideline for characterizing and selecting cameras as well as for determining optimal parameters for SCOS systems.
Collapse
Affiliation(s)
- Tom Y Cheng
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, 02215, USA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02421, USA
| | - Byungchan Kim
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, 02215, USA
| | - Bernhard B Zimmermann
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, 02215, USA
| | - Mitchell B Robinson
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Marco Renna
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stefan A Carp
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Maria Angela Franceschini
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - David A Boas
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, 02215, USA
| | - Xiaojun Cheng
- Department of Biomedical Engineering, Neurophotonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|