1
|
Balogh-Lantos Z, Fiáth R, Horváth ÁC, Fekete Z. High density laminar recordings reveal cell type and layer specific responses to infrared neural stimulation in the rat neocortex. Sci Rep 2024; 14:31523. [PMID: 39732850 DOI: 10.1038/s41598-024-82980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Infrared neural stimulation has consistently shown that temperature is a critical neuronal state variable. However, a comprehensive understanding of the biophysical background is essential. In this study, using high-density laminar electrode recordings, we investigated the impact of pulsed and continuous-wave infrared illumination on cortical neurons in anesthetized rats ([Formula: see text]). By analyzing the infrared (IR) stimulation-related responses of more than 7500 single units, we found that elevating tissue temperature with IR stimulation resulted in a significant increase in the number of cells affected, including a substantial rise in the number of inhibited cells. Pulsed stimulation affected an average of [Formula: see text] of units, resulting primarily in increased activity. In contrast, continuous stimulation significantly increased the percentage of affected cells to [Formula: see text], with single units tending to be suppressed. Furthermore, when analyzing cell types, a higher percentage of principal cells displayed increased firing rates ([Formula: see text]) compared to suppressed activity ([Formula: see text]). Meanwhile, more interneurons were suppressed ([Formula: see text]) than showed increased activity ([Formula: see text]). On average, the firing rate of neurons reached 90% of the maximal activation within approximately 36 seconds after the onset of infrared stimulation. The proportion of neurons with suppressed activity decreased with cortical depth, while the proportion of neurons with elevated activity increased in deeper layers. These results provide valuable data to understand the mechanism of infrared neural stimulation in the living brain.
Collapse
Affiliation(s)
- Zsófia Balogh-Lantos
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary
- Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary
| | - Richárd Fiáth
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary
| | - Ágoston Csaba Horváth
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary
| | - Zoltán Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, Budapest, 1083, Hungary.
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, Budapest, 1117, Hungary.
| |
Collapse
|
2
|
Redolfi Riva E, Özkan M, Stellacci F, Micera S. Combining external physical stimuli and nanostructured materials for upregulating pro-regenerative cellular pathways in peripheral nerve repair. Front Cell Dev Biol 2024; 12:1491260. [PMID: 39568507 PMCID: PMC11576468 DOI: 10.3389/fcell.2024.1491260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Peripheral nerve repair remains a major clinical challenge, particularly in the pursuit of therapeutic approaches that ensure adequate recovery of patient's activity of daily living. Autografts are the gold standard in clinical practice for restoring lost sensorimotor functions nowadays. However, autografts have notable drawbacks, including dimensional mismatches and the need to sacrifice one function to restore another. Engineered nerve guidance conduits have therefore emerged as promising alternatives. While these conduits show surgical potential, their clinical use is currently limited to the repair of minor injuries, as their ability to reinnervate limiting gap lesions is still unsatisfactory. Therefore, improving patient functional recovery requires a deeper understanding of the cellular mechanisms involved in peripheral nerve regeneration and the development of therapeutic strategies that can precisely modulate these processes. Interest has grown in the use of external energy sources, such as light, ultrasound, electrical, and magnetic fields, to activate cellular pathways related to proliferation, differentiation, and migration. Recent research has explored combining these energy sources with tailored nanostructured materials as nanotransducers to enhance selectivity towards the target cells. This review aims to present the recent findings on this innovative strategy, discussing its potential to support nerve regeneration and its viability as an alternative to autologous transplantation.
Collapse
Affiliation(s)
- Eugenio Redolfi Riva
- Department of Excellence in Robotics and AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Melis Özkan
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Bioengineering and Global Health Institute, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Silvestro Micera
- Department of Excellence in Robotics and AI, The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, École Polytechnique Federale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Dumas N, Pecchi E, O'Connor R, Bos R, Moreau D. Infrared neuroglial modulation of spinal locomotor networks. Sci Rep 2024; 14:22282. [PMID: 39333287 PMCID: PMC11437012 DOI: 10.1038/s41598-024-73577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Infrared neural stimulation (INS) emerges as a promising tool for stimulating the nervous system by its high spatial precision and absence of the use of exogenous agents into the tissue, which led to the first successful proof of concept in human brain. While neural networks have been the focal point of INS research, this technique is also non cell type specific as it triggers activity in non electrically excitable cells. Despite increasing interest, there remains to demonstrate well defined simultaneous astrocytic and neuronal signals in response to INS. Using calcium imaging, we show that INS has the capacity to initiate calcium signaling in both astrocytes and neurons simultaneously from the rostral lumbar spinal cord, each exhibiting distinct temporal and amplitude characteristics. Importantly, the mechanism underlying infrared-induced neuronal and astrocytic calcium signaling differ, with neuronal activity relying on sodium channels, whereas induced astrocytic signaling is predominantly influenced by extracellular calcium and TRPV4 channels. Furthermore, our findings demonstrate the frequency shift of neuronal calcium oscillations through infrared stimulation. By deepening our understanding in INS fundamentals, this technique holds great promise for advancing neuroscience, deepening our understanding of pathologies, and potentially paving the way for future clinical applications.
Collapse
Affiliation(s)
- Nathan Dumas
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Emilie Pecchi
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - Rodney O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France
| | - Rémi Bos
- Institut de Neurosciences de la Timone, CNRS UMR 7289 et Aix- Marseille Université, 13005, Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Département BEL, 13541, Gardanne, France.
| |
Collapse
|
4
|
Jenkins MW, Buzza A, Skubal AC, Moffitt MA, Anders JJ. Transient Selective Neural Inhibition via PBM. Photobiomodul Photomed Laser Surg 2024; 42:574-576. [PMID: 39158381 DOI: 10.1089/photob.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Affiliation(s)
- Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew Buzza
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Aaron C Skubal
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael A Moffitt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Juanita J Anders
- Department of Anatomy, Physiology, and Genetics, Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Sander MY, Zhu X. Infrared neuromodulation-a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066701. [PMID: 38701769 DOI: 10.1088/1361-6633/ad4729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Infrared (IR) neuromodulation (INM) is an emerging light-based neuromodulation approach that can reversibly control neuronal and muscular activities through the transient and localized deposition of pulsed IR light without requiring any chemical or genetic pre-treatment of the target cells. Though the efficacy and short-term safety of INM have been widely demonstrated in both peripheral and central nervous systems, the investigations of the detailed cellular and biological processes and the underlying biophysical mechanisms are still ongoing. In this review, we discuss the current research progress in the INM field with a focus on the more recently discovered IR nerve inhibition. Major biophysical mechanisms associated with IR nerve stimulation are summarized. As the INM effects are primarily attributed to the spatiotemporal thermal transients induced by water and tissue absorption of pulsed IR light, temperature monitoring techniques and simulation models adopted in INM studies are discussed. Potential translational applications, current limitations, and challenges of the field are elucidated to provide guidance for future INM research and advancement.
Collapse
Affiliation(s)
- Michelle Y Sander
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, United States of America
- Division of Materials Science and Engineering, Boston University, 15 Saint Mary's Street, Brookline, MA 02446, United States of America
- Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, United States of America
| | - Xuedong Zhu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, United States of America
- Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, United States of America
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, United States of America
| |
Collapse
|
6
|
Sato H, Sugimoto F, Furukawa R, Tateno T. Modulatory Effects on Laminar Neural Activity Induced by Near-Infrared Light Stimulation with a Continuous Waveform to the Mouse Inferior Colliculus In Vivo. eNeuro 2024; 11:ENEURO.0521-23.2024. [PMID: 38627064 DOI: 10.1523/eneuro.0521-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/03/2024] Open
Abstract
Infrared neural stimulation (INS) is a promising area of interest for the clinical application of a neuromodulation method. This is in part because of its low invasiveness, whereby INS modulates the activity of the neural tissue mainly through temperature changes. Additionally, INS may provide localized brain stimulation with less tissue damage. The inferior colliculus (IC) is a crucial auditory relay nucleus and a potential target for clinical application of INS to treat auditory diseases and develop artificial hearing devices. Here, using continuous INS with low to high-power density, we demonstrate the laminar modulation of neural activity in the mouse IC in the presence and absence of sound. We investigated stimulation parameters of INS to effectively modulate the neural activity in a facilitatory or inhibitory manner. A mathematical model of INS-driven brain tissue was first simulated, temperature distributions were numerically estimated, and stimulus parameters were selected from the simulation results. Subsequently, INS was administered to the IC of anesthetized mice, and the modulation effect on the neural activity was measured using an electrophysiological approach. We found that the modulatory effect of INS on the spontaneous neural activity was bidirectional between facilitatory and inhibitory effects. The modulatory effect on sound-evoked responses produced only an inhibitory effect to all examined stimulus intensities. Thus, this study provides important physiological evidence on the response properties of IC neurons to INS. Overall, INS can be used for the development of new therapies for neurological disorders and functional support devices for auditory central processing.
Collapse
Affiliation(s)
- Hiromu Sato
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Futoshi Sugimoto
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Ryo Furukawa
- Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Takashi Tateno
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| |
Collapse
|
7
|
Garrido-Peña A, Sanchez-Martin P, Reyes-Sanchez M, Levi R, Rodriguez FB, Castilla J, Tornero J, Varona P. Modulation of neuronal dynamics by sustained and activity-dependent continuous-wave near-infrared laser stimulation. NEUROPHOTONICS 2024; 11:024308. [PMID: 38764942 PMCID: PMC11100521 DOI: 10.1117/1.nph.11.2.024308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Significance Near-infrared laser illumination is a non-invasive alternative/complement to classical stimulation methods in neuroscience but the mechanisms underlying its action on neuronal dynamics remain unclear. Most studies deal with high-frequency pulsed protocols and stationary characterizations disregarding the dynamic modulatory effect of sustained and activity-dependent stimulation. The understanding of such modulation and its widespread dissemination can help to develop specific interventions for research applications and treatments for neural disorders. Aim We quantified the effect of continuous-wave near-infrared (CW-NIR) laser illumination on single neuron dynamics using sustained stimulation and an open-source activity-dependent protocol to identify the biophysical mechanisms underlying this modulation and its time course. Approach We characterized the effect by simultaneously performing long intracellular recordings of membrane potential while delivering sustained and closed-loop CW-NIR laser stimulation. We used waveform metrics and conductance-based models to assess the role of specific biophysical candidates on the modulation. Results We show that CW-NIR sustained illumination asymmetrically accelerates action potential dynamics and the spiking rate on single neurons, while closed-loop stimulation unveils its action at different phases of the neuron dynamics. Our model study points out the action of CW-NIR on specific ionic-channels and the key role of temperature on channel properties to explain the modulatory effect. Conclusions Both sustained and activity-dependent CW-NIR stimulation effectively modulate neuronal dynamics by a combination of biophysical mechanisms. Our open-source protocols can help to disseminate this non-invasive optical stimulation in novel research and clinical applications.
Collapse
Affiliation(s)
- Alicia Garrido-Peña
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Sanchez-Martin
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Reyes-Sanchez
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Levi
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco B. Rodriguez
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Castilla
- Hospital los Madroños, Center for Clinical Neuroscience, Brunete, Spain
| | - Jesus Tornero
- Hospital los Madroños, Center for Clinical Neuroscience, Brunete, Spain
| | - Pablo Varona
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Fu P, Liu Y, Zhu L, Wang M, Yu Y, Yang F, Zhang W, Zhang H, Shoham S, Roe AW, Xi W. Two-photon imaging of excitatory and inhibitory neural response to infrared neural stimulation. NEUROPHOTONICS 2024; 11:025003. [PMID: 38800606 PMCID: PMC11125280 DOI: 10.1117/1.nph.11.2.025003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Significance Pulsed infrared neural stimulation (INS, 1875 nm) is an emerging neurostimulation technology that delivers focal pulsed heat to activate functionally specific mesoscale networks and holds promise for clinical application. However, little is known about its effect on excitatory and inhibitory cell types in cerebral cortex. Aim Estimates of summed population neuronal response time courses provide a potential basis for neural and hemodynamic signals described in other studies. Approach Using two-photon calcium imaging in mouse somatosensory cortex, we have examined the effect of INS pulse train application on hSyn neurons and mDlx neurons tagged with GCaMP6s. Results We find that, in anesthetized mice, each INS pulse train reliably induces robust response in hSyn neurons exhibiting positive going responses. Surprisingly, mDlx neurons exhibit negative going responses. Quantification using the index of correlation illustrates responses are reproducible, intensity-dependent, and focal. Also, a contralateral activation is observed when INS applied. Conclusions In sum, the population of neurons stimulated by INS includes both hSyn and mDlx neurons; within a range of stimulation intensities, this leads to overall excitation in the stimulated population, leading to the previously observed activations at distant post-synaptic sites.
Collapse
Affiliation(s)
- Peng Fu
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Yin Liu
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
- KU Leuven Medical School, Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, Leuven, Belgium
| | - Liang Zhu
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
- Zhejiang University, College of Biomedical Engineering and Instrument Science, Key Laboratory of Biomedical Engineering of Ministry of Education, Hangzhou, China
| | - Mengqi Wang
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Yuan Yu
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Fen Yang
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Weijie Zhang
- Zhejiang University, College of Biomedical Engineering and Instrument Science, Key Laboratory of Biomedical Engineering of Ministry of Education, Hangzhou, China
| | - Hequn Zhang
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Shy Shoham
- NYU Langone Health, Department of Ophthalmology and Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Anna Wang Roe
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
- Zhejiang University, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Hangzhou, China
- Zhejiang University, NHC and CAMS Key Laboratory of Medical Neurobiology, Hangzhou, China
| | - Wang Xi
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
- Zhejiang University, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Hangzhou, China
- Zhejiang University, NHC and CAMS Key Laboratory of Medical Neurobiology, Hangzhou, China
| |
Collapse
|
9
|
Buzza A, Tapas K, Zhuo J, Anders JJ, Lewis SJ, Jenkins MW, Moffitt M. Selective neural inhibition via photobiomodulation alleviates behavioral hypersensitivity associated with small sensory fiber activation. Lasers Surg Med 2024; 56:305-314. [PMID: 38291819 PMCID: PMC10954407 DOI: 10.1002/lsm.23762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/16/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Photobiomodulation at higher irradiances has great potential as a pain-alleviating method that selectively inhibits small diameter nerve fibers and corresponding sensory experiences, such as nociception and heat sensation. The longevity and magnitude of these effects as a function of laser irradiation parameters at the nerve was explored. METHODS In a rodent chronic pain model (spared nerve injury-SNI), light was applied directly at the sural nerve with four delivery schemes: two irradiance levels (7.64 and 2.55 W/cm2 ) for two durations each, corresponding to either 4.8 or 14.4 J total energy, and the effect on sensory hypersensitivities was evaluated. RESULTS At emitter irradiances of 7.64 W/cm2 (for 240 s), 2.55 W/cm2 (for 720 s), and 7.64 W/cm2 (for 80 s) the heat hypersensitivity was relieved the day following photobiomodulation (PBM) treatment by 37 ± 8.1% (statistically significant, p < 0.001), 26% ± 6% (p = 0.072), and 28 ± 6.1% (statistically significant, p = 0.032), respectively, and all three treatments reduced the hypersensitivity over the course of the experiment (13 days) at a statistically significant level (mixed-design analysis of variance, p < 0.05). The increases in tissue temperature (5.3 ± 1.0 and 1.3 ± 0.4°C from 33.3°C for the higher and lower power densities, respectively) at the neural target were well below those typically associated with permanent action potential disruption. CONCLUSIONS The data from this study support the use of direct PBM on nerves of interest to reduce sensitivities associated with small-diameter fiber activity.
Collapse
Affiliation(s)
- Andrew Buzza
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kalista Tapas
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Juanita J Anders
- Department of Anatomy, Physiology, and Genetics, Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephen J Lewis
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael Moffitt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Coventry BS, Lawlor GL, Bagnati CB, Krogmeier C, Bartlett EL. Characterization and closed-loop control of infrared thalamocortical stimulation produces spatially constrained single-unit responses. PNAS NEXUS 2024; 3:pgae082. [PMID: 38725532 PMCID: PMC11079674 DOI: 10.1093/pnasnexus/pgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 05/12/2024]
Abstract
Deep brain stimulation (DBS) is a powerful tool for the treatment of circuitopathy-related neurological and psychiatric diseases and disorders such as Parkinson's disease and obsessive-compulsive disorder, as well as a critical research tool for perturbing neural circuits and exploring neuroprostheses. Electrically mediated DBS, however, is limited by the spread of stimulus currents into tissue unrelated to disease course and treatment, potentially causing undesirable patient side effects. In this work, we utilize infrared neural stimulation (INS), an optical neuromodulation technique that uses near to midinfrared light to drive graded excitatory and inhibitory responses in nerves and neurons, to facilitate an optical and spatially constrained DBS paradigm. INS has been shown to provide spatially constrained responses in cortical neurons and, unlike other optical techniques, does not require genetic modification of the neural target. We show that INS produces graded, biophysically relevant single-unit responses with robust information transfer in rat thalamocortical circuits. Importantly, we show that cortical spread of activation from thalamic INS produces more spatially constrained response profiles than conventional electrical stimulation. Owing to observed spatial precision of INS, we used deep reinforcement learning (RL) for closed-loop control of thalamocortical circuits, creating real-time representations of stimulus-response dynamics while driving cortical neurons to precise firing patterns. Our data suggest that INS can serve as a targeted and dynamic stimulation paradigm for both open and closed-loop DBS.
Collapse
Affiliation(s)
- Brandon S Coventry
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Georgia L Lawlor
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Christina B Bagnati
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Claudia Krogmeier
- Department of Computer Graphics Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Edward L Bartlett
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Center for Implantable Devices and the Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Zhuo J, Weidrick CE, Liu Y, Moffitt MA, Jansen ED, Chiel HJ, Jenkins MW. Selective Infrared Neural Inhibition Can Be Reproduced by Resistive Heating. Neuromodulation 2023; 26:1757-1771. [PMID: 36707292 PMCID: PMC10366334 DOI: 10.1016/j.neurom.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Small-diameter afferent axons carry various sensory signals that are critical for vital physiological conditions but sometimes contribute to pathologies. Infrared (IR) neural inhibition (INI) can induce selective heat block of small-diameter axons, which holds potential for translational applications such as pain management. Previous research suggested that IR-heating-induced acceleration of voltage-gated potassium channel kinetics is the mechanism for INI. Therefore, we hypothesized that other heating methods, such as resistive heating (RH) in a cuff, could reproduce the selective inhibition observed in INI. MATERIALS AND METHODS We conducted ex vivo nerve-heating experiments on pleural-abdominal connective nerves of Aplysia californica using both IR and RH. We fabricated a transparent silicone nerve cuff for simultaneous IR heating, RH, and temperature measurements. Temperature elevations (ΔT) on the nerve surface were recorded for both heating modalities, which were tested over a range of power levels that cover a similar ΔT range. We recorded electrically evoked compound action potentials (CAPs) and segmented them into fast and slow subcomponents on the basis of conduction velocity differences between the large and small-diameter axonal subpopulations. We calculated the normalized inhibition strength and inhibition selectivity index on the basis of the rectified area under the curve of each subpopulation. RESULTS INI and RH showed a similar selective inhibition effect on CAP subcomponents for slow-conducting axons, confirmed by the inhibition probability vs ΔT dose-response curve based on approximately 2000 CAP measurements. The inhibition selectivity indexes of the two heating modalities were similar across six nerves. RH only required half the total electrical power required by INI to achieve a similar ΔT. SIGNIFICANCE We show that selective INI can be reproduced by other heating modalities such as RH. RH, because of its high energy efficiency and simple design, can be a good candidate for future implantable neural interface designs.
Collapse
Affiliation(s)
- Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Chloe E Weidrick
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael A Moffitt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Biophotonics Center, Vanderbilt University, Nashville, TN, USA; Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | - Hillel J Chiel
- Department of Biology, Case Western Reserve University, Cleveland OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
12
|
Ismaiel E, Fiáth R, Szabó Á, Horváth ÁC, Fekete Z. Thermal neuromodulation using pulsed and continuous infrared illumination in a penicillin-induced acute epilepsy model. Sci Rep 2023; 13:14460. [PMID: 37660232 PMCID: PMC10475096 DOI: 10.1038/s41598-023-41552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
Infrared neuromodulation (INM) is a promising neuromodulation tool that utilizes pulsed or continuous-wave near-infrared (NIR) laser light to produce an elevation of the background temperature of the neural tissue. The INM-based cortical heating has been proven as an effective modality to induce changes in neuronal activities. In this paper, we investigate the effect of INM-based cortical heating on the characteristics of interictal epileptiform discharges (IEDs) induced by penicillin in anesthetized rats. Cortical heating was conducted using a NIR laser light guided through a needle-like silicon-based waveguide probe. We detected penicillin-induced cortical IEDs from preprocessed micro-electrocorticography ([Formula: see text]ECoG) recordings, then we assessed changes in various temporal and spectral features of IEDs due to INM. Our findings show that the fast cortical heating phase obtained with continuous-wave NIR light is highly associated with a reduction of IED amplitudes, small but significant changes in the negative amplitude of IEDs compared with the baseline, and a proportional increase in the power of frequency bands related to delta/theta (2-8 Hz) and gamma (28-80 Hz) oscillations. Furthermore, a low rate of cortical heating with pulsed NIR illumination has a more inhibitory impact on the sharp negative polarity of IEDs. Our findings do not indicate a clear reduction in the frequency of IEDs in anesthetized rodents. In contrast, 2-4 min of continuous laser illumination leads to a notable increase in IED frequency. This effect of INM could potentially restrict its use in therapeutic applications related to epilepsy. However, the thermal effect of INM on cortical neurons induces changes in other characteristics of IEDs, which could prove beneficial for future applications.
Collapse
Affiliation(s)
- Ebrahim Ismaiel
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Richárd Fiáth
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Magyar tudósok körútja 2, Budapest, 1117, Hungary
- Integrative Neuroscience Research Group, Faculty of Information Technology & Bionics, Pazmany Peter Catholic University, Budapest, Hungary
| | - Ágnes Szabó
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Ágoston Csaba Horváth
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Zoltán Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Magyar tudósok körútja 2, Budapest, 1117, Hungary.
| |
Collapse
|
13
|
Almasri RM, Ladouceur F, Mawad D, Esrafilzadeh D, Firth J, Lehmann T, Poole-Warren LA, Lovell NH, Al Abed A. Emerging trends in the development of flexible optrode arrays for electrophysiology. APL Bioeng 2023; 7:031503. [PMID: 37692375 PMCID: PMC10491464 DOI: 10.1063/5.0153753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Optical-electrode (optrode) arrays use light to modulate excitable biological tissues and/or transduce bioelectrical signals into the optical domain. Light offers several advantages over electrical wiring, including the ability to encode multiple data channels within a single beam. This approach is at the forefront of innovation aimed at increasing spatial resolution and channel count in multichannel electrophysiology systems. This review presents an overview of devices and material systems that utilize light for electrophysiology recording and stimulation. The work focuses on the current and emerging methods and their applications, and provides a detailed discussion of the design and fabrication of flexible arrayed devices. Optrode arrays feature components non-existent in conventional multi-electrode arrays, such as waveguides, optical circuitry, light-emitting diodes, and optoelectronic and light-sensitive functional materials, packaged in planar, penetrating, or endoscopic forms. Often these are combined with dielectric and conductive structures and, less frequently, with multi-functional sensors. While creating flexible optrode arrays is feasible and necessary to minimize tissue-device mechanical mismatch, key factors must be considered for regulatory approval and clinical use. These include the biocompatibility of optical and photonic components. Additionally, material selection should match the operating wavelength of the specific electrophysiology application, minimizing light scattering and optical losses under physiologically induced stresses and strains. Flexible and soft variants of traditionally rigid photonic circuitry for passive optical multiplexing should be developed to advance the field. We evaluate fabrication techniques against these requirements. We foresee a future whereby established telecommunications techniques are engineered into flexible optrode arrays to enable unprecedented large-scale high-resolution electrophysiology systems.
Collapse
Affiliation(s)
- Reem M. Almasri
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | | | - Damia Mawad
- School of Materials Science and Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Josiah Firth
- Australian National Fabrication Facility, UNSW, Sydney, NSW 2052, Australia
| | - Torsten Lehmann
- School of Electrical Engineering and Telecommunications, UNSW, Sydney, NSW 2052, Australia
| | | | | | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Lewis THJ, Zhuo J, McClellan JX, Getsy PM, Ryan RM, Jenkins MJ, Lewis SJ. Infrared light elicits endothelium-dependent vasodilation in isolated occipital arteries of the rat via soluble guanylyl cyclase-dependent mechanisms. Front Physiol 2023; 14:1219998. [PMID: 37664436 PMCID: PMC10471192 DOI: 10.3389/fphys.2023.1219998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
The left and right occipital arteries provide blood supply to afferent cell bodies in the ipsilateral nodose and petrosal ganglia. This supply is free of an effective blood-ganglion barrier, so changes in occipital artery blood flow directly affect the access of circulating factors to the afferent cell bodies. The application of infrared (IR) light to modulate neural and other cell processes has yielded information about basic biological processes within tissues and is gaining traction as a potential therapy for a variety of disease processes. To address whether IR can directly modulate vascular function, we performed wire myography studies to determine the actions of IR on occipital arteries isolated from male Sprague-Dawley rats. Based on our previous research that functionally-important differences exist between occipital artery segments close to their origin at the external carotid artery (ECA) and those closer to the nodose ganglion, the occipital arteries were dissected into two segments, one closer to the ECA and the other closer to the nodose ganglion. Segments were constricted with 5-hydroxytryptamine to a level equal to 50% of the maximal response generated by the application of a high (80 mM) concentration of K+ ions. The direct application of pulsed IR (1,460 nm) for 5 s produced a rapid vasodilation in occipital arteries that was significantly more pronounced in segments closest to the ECA, although the ECA itself was minimally responsive. The vasodilation remained for a substantial time (at least 120 s) after cessation of IR application. The vasodilation during and following cessation of the IR application was markedly diminished in occipital arteries denuded of the endothelium. In addition, the vasodilation elicited by IR in endothelium-intact occipital arteries was substantially reduced in the presence of a selective inhibitor of the nitric oxide-sensitive guanylate cyclase, 1H-[1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). It appears that IR causes endothelium-dependent, nitric-oxide-mediated vasodilation in the occipital arteries of the rat. The ability of IR to generate rapid and sustained vasodilation may provide new therapeutic approaches for restoring or improving blood flow to targeted tissues.
Collapse
Affiliation(s)
- Tristan H. J. Lewis
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jacob X. McClellan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Rita M. Ryan
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Michael. J. Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Departments of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
15
|
Chen J, Zhong Y, Wang J, Shen B, Beckel J, de Groat WC, Tai C. Temperature Effect on Nerve Conduction Block Induced by High-Frequency (kHz) Biphasic Stimulation. Neuromodulation 2023; 26:607-613. [PMID: 35088749 PMCID: PMC9206037 DOI: 10.1016/j.neurom.2021.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES This study aims to determine temperature effect on nerve conduction block induced by high-frequency (kHz) biphasic stimulation (HFBS). MATERIALS AND METHODS Frog sciatic nerve-muscle preparation was immersed in Ringer's solution at a temperature of 15 or 20 °C. To induce muscle contractions, a bipolar cuff electrode delivered low-frequency (0.25 Hz) stimulation to the nerve. To induce nerve block, a tripolar cuff electrode was placed distal to the bipolar cuff electrode to deliver HFBS (2 or 10 kHz). A bipolar hook electrode distal to the blocking electrode was used to confirm that the nerve block occurred locally at the site of HFBS. A thread tied onto the foot was attached to a force transducer to measure the muscle contraction force. RESULTS At 15 °C, both 2- and 10-kHz HFBSs elicited an initial transient muscle contraction and then produced nerve block during the stimulation (ie, acute block), with the 10 kHz having a significantly (p < 0.001) higher acute block threshold (5.9 ± 0.8 mA peak amplitude) than the 2 kHz (1.9 ± 0.3 mA). When the temperature was increased to 20 °C, the acute block threshold for the 10-kHz HFBS was significantly (p < 0.0001) decreased from 5.2 ± 0.3 to 4.4 ± 0.2 mA, whereas the 2-kHz HFBS induced a tonic muscle contraction during the stimulation but elicited nerve block after terminating the 2-kHz HFBS (ie, poststimulation block) with an increased block duration at a higher stimulation intensity. CONCLUSION Temperature has an important influence on HFBS-induced nerve block. The blocking mechanisms underlying acute and poststimulation nerve blocks are likely to be very different.
Collapse
Affiliation(s)
- Jialiang Chen
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yihua Zhong
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, USA; School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Jicheng Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bing Shen
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Changfeng Tai
- Department of Urology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Zhao D, Huang R, Gan JM, Shen QD. Photoactive Nanomaterials for Wireless Neural Biomimetics, Stimulation, and Regeneration. ACS NANO 2022; 16:19892-19912. [PMID: 36411035 DOI: 10.1021/acsnano.2c08543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanomaterials at the neural interface can provide the bridge between bioelectronic devices and native neural tissues and achieve bidirectional transmission of signals with our brain. Photoactive nanomaterials, such as inorganic and polymeric nanoparticles, nanotubes, nanowires, nanorods, nanosheets or related, are being explored to mimic, modulate, control, or even substitute the functions of neural cells or tissues. They show great promise in next generation technologies for the neural interface with excellent spatial and temporal accuracy. In this review, we highlight the discovery and understanding of these nanomaterials in precise control of an individual neuron, biomimetic retinal prosthetics for vision restoration, repair or regeneration of central or peripheral neural tissues, and wireless deep brain stimulation for treatment of movement or mental disorders. The most intriguing feature is that the photoactive materials fit within a minimally invasive and wireless strategy to trigger the flux of neurologically active molecules and thus influences the cell membrane potential or key signaling molecule related to gene expression. In particular, we focus on worthy pathways of photosignal transduction at the nanomaterial-neural interface and the behavior of the biological system. Finally, we describe the challenges on how to design photoactive nanomaterials specific to neurological disorders. There are also some open issues such as long-term interface stability and signal transduction efficiency to further explore for clinical practice.
Collapse
Affiliation(s)
- Di Zhao
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266001, China
| | - Rui Huang
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia-Min Gan
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qun-Dong Shen
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Medical School of Nanjing University, Nanjing 210008, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, China
| |
Collapse
|
17
|
Collins MN, Mesce KA. A review of the bioeffects of low-intensity focused ultrasound and the benefits of a cellular approach. Front Physiol 2022; 13:1047324. [PMID: 36439246 PMCID: PMC9685663 DOI: 10.3389/fphys.2022.1047324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/25/2022] [Indexed: 10/28/2023] Open
Abstract
This review article highlights the historical developments and current state of knowledge of an important neuromodulation technology: low-intensity focused ultrasound. Because compelling studies have shown that focused ultrasound can modulate neuronal activity non-invasively, especially in deep brain structures with high spatial specificity, there has been a renewed interest in attempting to understand the specific bioeffects of focused ultrasound at the cellular level. Such information is needed to facilitate the safe and effective use of focused ultrasound to treat a number of brain and nervous system disorders in humans. Unfortunately, to date, there appears to be no singular biological mechanism to account for the actions of focused ultrasound, and it is becoming increasingly clear that different types of nerve cells will respond to focused ultrasound differentially based on the complement of their ion channels, other membrane biophysical properties, and arrangement of synaptic connections. Furthermore, neurons are apparently not equally susceptible to the mechanical, thermal and cavitation-related consequences of focused ultrasound application-to complicate matters further, many studies often use distinctly different focused ultrasound stimulus parameters to achieve a reliable response in neural activity. In this review, we consider the benefits of studying more experimentally tractable invertebrate preparations, with an emphasis on the medicinal leech, where neurons can be studied as unique individual cells and be synaptically isolated from the indirect effects of focused ultrasound stimulation on mechanosensitive afferents. In the leech, we have concluded that heat is the primary effector of focused ultrasound neuromodulation, especially on motoneurons in which we observed a focused ultrasound-mediated blockade of action potentials. We discuss that the mechanical bioeffects of focused ultrasound, which are frequently described in the literature, are less reliably achieved as compared to thermal ones, and that observations ascribed to mechanical responses may be confounded by activation of synaptically-coupled sensory structures or artifacts associated with electrode resonance. Ultimately, both the mechanical and thermal components of focused ultrasound have significant potential to contribute to the sculpting of specific neural outcomes. Because focused ultrasound can generate significant modulation at a temperature <5°C, which is believed to be safe for moderate durations, we support the idea that focused ultrasound should be considered as a thermal neuromodulation technology for clinical use, especially targeting neural pathways in the peripheral nervous system.
Collapse
Affiliation(s)
- Morgan N. Collins
- Graduate Program in Neuroscience, University of Minnesota, Saint Paul, MN, United States
| | - Karen A. Mesce
- Department of Entomology and Graduate Program in Neuroscience, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
18
|
Kim T, Kadji H, Whalen AJ, Ashourvan A, Freeman E, Fried SI, Tadigadapa S, Schiff SJ. Thermal effects on neurons during stimulation of the brain. J Neural Eng 2022; 19:056029. [PMID: 36126646 PMCID: PMC9855718 DOI: 10.1088/1741-2552/ac9339] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023]
Abstract
All electric and magnetic stimulation of the brain deposits thermal energy in the brain. This occurs through either Joule heating of the conductors carrying current through electrodes and magnetic coils, or through dissipation of energy in the conductive brain.Objective.Although electrical interaction with brain tissue is inseparable from thermal effects when electrodes are used, magnetic induction enables us to separate Joule heating from induction effects by contrasting AC and DC driving of magnetic coils using the same energy deposition within the conductors. Since mammalian cortical neurons have no known sensitivity to static magnetic fields, and if there is no evidence of effect on spike timing to oscillating magnetic fields, we can presume that the induced electrical currents within the brain are below the molecular shot noise where any interaction with tissue is purely thermal.Approach.In this study, we examined a range of frequencies produced from micromagnetic coils operating below the molecular shot noise threshold for electrical interaction with single neurons.Main results.We found that small temperature increases and decreases of 1∘C caused consistent transient suppression and excitation of neurons during temperature change. Numerical modeling of the biophysics demonstrated that the Na-K pump, and to a lesser extent the Nernst potential, could account for these transient effects. Such effects are dependent upon compartmental ion fluxes and the rate of temperature change.Significance.A new bifurcation is described in the model dynamics that accounts for the transient suppression and excitation; in addition, we note the remarkable similarity of this bifurcation's rate dependency with other thermal rate-dependent tipping points in planetary warming dynamics. These experimental and theoretical findings demonstrate that stimulation of the brain must take into account small thermal effects that are ubiquitously present in electrical and magnetic stimulation. More sophisticated models of electrical current interaction with neurons combined with thermal effects will lead to more accurate modulation of neuronal activity.
Collapse
Affiliation(s)
- TaeKen Kim
- Department of Physics, The Pennsylvania State University, University Park, PA, United States of America
| | - Herve Kadji
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
- Department of Radiation Oncology, Hackensack Meridian Health Mountainside Medical Center, Montclair, NJ, United States of America
| | - Andrew J Whalen
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States of America
| | - Arian Ashourvan
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
| | - Eugene Freeman
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Honeywell International Aerospace Advanced Technology, Plymouth, MN, United States of America
| | - Shelley I Fried
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States of America
- Boston VA Healthcare System, Boston 02130, United States of America
| | - Srinivas Tadigadapa
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA, United States of America
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States of America
| | - Steven J Schiff
- Department of Physics, The Pennsylvania State University, University Park, PA, United States of America
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States of America
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, United States of America
- Department of Neurosurgery, Yale University, 333 Cedar Street, TMP 410, New Haven, CT 06510, United States of America
| |
Collapse
|
19
|
Zhu X, Lin JW, Sander MY. Bidirectional modulation of evoked synaptic transmission by pulsed infrared light. Sci Rep 2022; 12:14196. [PMID: 35987765 PMCID: PMC9392733 DOI: 10.1038/s41598-022-18139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/05/2022] [Indexed: 12/05/2022] Open
Abstract
Infrared (IR) neuromodulation (INM) has been demonstrated as a novel modulation modality of neuronal excitability. However, the effects of pulsed IR light on synaptic transmission have not been investigated systematically. In this report, the IR light (2 μm) is used to directly modulate evoked synaptic transmission at the crayfish opener neuromuscular junction. The extracellularly recorded terminal action potentials (tAPs) and evoked excitatory postsynaptic currents (EPSCs) modulated by localized IR light illumination (500 ms, 3–13 mW) aimed at the synapses are analyzed. The impact of a single IR light pulse on the presynaptic Ca2+ influx is monitored with Ca2+ indicators. The EPSC amplitude is enhanced, and its rising phase is accelerated under relatively low IR light power levels and localized temperature rises. Increasing the IR light power reversibly suppresses and eventually blocks the EPSCs. Meanwhile, the synaptic delay, tAP amplitude, and presynaptic Ca2+ influx decrease monotonously with higher IR light power. It is demonstrated for the first time that IR light illumination has bidirectional effects on evoked synaptic transmission. These results highlight the efficacy and flexibility of using pulsed IR light to directly control synaptic transmission and advance our understanding of INM of neural networks.
Collapse
|
20
|
Horváth ÁC, Borbély S, Mihók F, Fürjes P, Barthó P, Fekete Z. Histological and electrophysiological evidence on the safe operation of a sharp-tip multimodal optrode during infrared neuromodulation of the rat cortex. Sci Rep 2022; 12:11434. [PMID: 35794160 PMCID: PMC9259743 DOI: 10.1038/s41598-022-15367-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Infrared neuromodulation is an emerging technology in neuroscience that exploits the inherent thermal sensitivity of neurons to excite or inhibit cellular activity. Since there is limited information on the physiological response of intracortical cell population in vivo including evidence on cell damage, we aimed to create and to validate the safe operation of a microscale sharp-tip implantable optrode that can be used to suppress the activity of neuronal population with low optical power continuous wave irradiation. Effective thermal cross-section and electric properties of the multimodal microdevice was characterized in bench-top tests. The evoked multi-unit activity was monitored in the rat somatosensory cortex, and using NeuN immunocytochemistry method, quantitative analysis of neuronal density changes due to the stimulation trials was evaluated. The sharp tip implant was effectively used to suppress the firing rate of neuronal populations. Histological staining showed that neither the probe insertion nor the heating protocols alone lead to significant changes in cell density in the close vicinity of the implant with respect to the intact control region. Our study shows that intracortical stimulation with continuous-wave infrared light at 1550 nm using a sharp tip implantable optical microdevice is a safe approach to modulate the firing rate of neurons.
Collapse
Affiliation(s)
- Á Cs Horváth
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, PPKE, Budapest, Hungary
| | - S Borbély
- Sleep Oscillations Research Group, Institute of Cognitive Neuroscience and Psychology, RCNS, ELKH, Budapest, Hungary
- Neuronal Network and Behavior Research Group, Institute of Experimental Medicine, ELKH, Budapest, Hungary
| | - F Mihók
- Department of Control Engineering and Information Technology, BUTE, Budapest, Hungary
| | - P Fürjes
- Microsystems Laboratory, Centre for Energy Research, ELKH, Budapest, Hungary
| | - P Barthó
- Sleep Oscillations Research Group, Institute of Cognitive Neuroscience and Psychology, RCNS, ELKH, Budapest, Hungary
| | - Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology and Bionics, PPKE, Budapest, Hungary.
| |
Collapse
|
21
|
Zhu X, Lin JW, Turnali A, Sander MY. Single infrared light pulses induce excitatory and inhibitory neuromodulation. BIOMEDICAL OPTICS EXPRESS 2022; 13:374-388. [PMID: 35154878 PMCID: PMC8803021 DOI: 10.1364/boe.444577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The excitatory and inhibitory effects of single and brief infrared (IR) light pulses (2 µm) with millisecond durations and various power levels are investigated with a custom-built fiber amplification system. Intracellular recordings from motor axons of the crayfish opener neuromuscular junction are performed ex vivo. Single IR light pulses induce a membrane depolarization during the light pulses, which is followed by a hyperpolarization that can last up to 100 ms. The depolarization amplitude is dependent on the optical pulse duration, total energy deposition and membrane potential, but is insensitive to tetrodotoxin. The hyperpolarization reverses its polarity near the potassium equilibrium potential and is barium-sensitive. The membrane depolarization activates an action potential (AP) when the axon is near firing threshold, while the hyperpolarization reversibly inhibits rhythmically firing APs. In summary, we demonstrate for the first time that single and brief IR light pulses can evoke initial depolarization followed by hyperpolarization on individual motor axons. The corresponding mechanisms and functional outcomes of the dual effects are investigated.
Collapse
Affiliation(s)
- Xuedong Zhu
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
| | - Jen-Wei Lin
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Ahmet Turnali
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
| | - Michelle Y. Sander
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Neurophotonics Center, Boston University, 24 Cummington Mall, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Photonics Center, Boston University, 8 Saint Mary’s Street, Boston, MA 02215, USA
- Division of Materials Science and Engineering, Boston University, 15 Saint Mary’s Street, Brookline, MA 02446, USA
| |
Collapse
|
22
|
Zhuo J, Gill JP, Jansen ED, Jenkins MW, Chiel HJ. Use of an invertebrate animal model ( Aplysia californica) to develop novel neural interfaces for neuromodulation. Front Neurosci 2022; 16:1080027. [PMID: 36620467 PMCID: PMC9813496 DOI: 10.3389/fnins.2022.1080027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
New tools for monitoring and manipulating neural activity have been developed with steadily improving functionality, specificity, and reliability, which are critical both for mapping neural circuits and treating neurological diseases. This review focuses on the use of an invertebrate animal, the marine mollusk Aplysia californica, in the development of novel neurotechniques. We review the basic physiological properties of Aplysia neurons and discuss the specific aspects that make it advantageous for developing novel neural interfaces: First, Aplysia nerves consist only of unmyelinated axons with various diameters, providing a particularly useful model of the unmyelinated C fibers in vertebrates that are known to carry important sensory information, including those that signal pain. Second, Aplysia's neural tissues can last for a long period in an ex vivo experimental setup. This allows comprehensive tests such as the exploration of parameter space on the same nerve to avoid variability between animals and minimize animal use. Third, nerves in large Aplysia can be many centimeters in length, making it possible to easily discriminate axons with different diameters based on their conduction velocities. Aplysia nerves are a particularly good approximation of the unmyelinated C fibers, which are hard to stimulate, record, and differentiate from other nerve fibers in vertebrate animal models using epineural electrodes. Fourth, neurons in Aplysia are large, uniquely identifiable, and electrically compact. For decades, researchers have used Aplysia for the development of many novel neurotechnologies. Examples include high-frequency alternating current (HFAC), focused ultrasound (FUS), optical neural stimulation, recording, and inhibition, microelectrode arrays, diamond electrodes, carbon fiber microelectrodes, microscopic magnetic stimulation and magnetic resonance electrical impedance tomography (MREIT). We also review a specific example that illustrates the power of Aplysia for accelerating technology development: selective infrared neural inhibition of small-diameter unmyelinated axons, which may lead to a translationally useful treatment in the future. Generally, Aplysia is suitable for testing modalities whose mechanism involves basic biophysics that is likely to be similar across species. As a tractable experimental system, Aplysia californica can help the rapid development of novel neuromodulation technologies.
Collapse
Affiliation(s)
- Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jeffrey P Gill
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.,Biophotonics Center, Vanderbilt University, Nashville, TN, United States.,Department of Neurological Surgery, Vanderbilt University, Nashville, TN, United States
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Hillel J Chiel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
23
|
Nonthermal and reversible control of neuronal signaling and behavior by midinfrared stimulation. Proc Natl Acad Sci U S A 2021; 118:2015685118. [PMID: 33649213 PMCID: PMC7958416 DOI: 10.1073/pnas.2015685118] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Various neuromodulation approaches have been employed to alter neuronal spiking activity and thus regulate brain functions and alleviate neurological disorders. Infrared neural stimulation (INS) could be a potential approach for neuromodulation because it requires no tissue contact and possesses a high spatial resolution. However, the risk of overheating and an unclear mechanism hamper its application. Here we show that midinfrared stimulation (MIRS) with a specific wavelength exerts nonthermal, long-distance, and reversible modulatory effects on ion channel activity, neuronal signaling, and sensorimotor behavior. Patch-clamp recording from mouse neocortical pyramidal cells revealed that MIRS readily provides gain control over spiking activities, inhibiting spiking responses to weak inputs but enhancing those to strong inputs. MIRS also shortens action potential (AP) waveforms by accelerating its repolarization, through an increase in voltage-gated K+ (but not Na+) currents. Molecular dynamics simulations further revealed that MIRS-induced resonance vibration of -C=O bonds at the K+ channel ion selectivity filter contributes to the K+ current increase. Importantly, these effects are readily reversible and independent of temperature increase. At the behavioral level in larval zebrafish, MIRS modulates startle responses by sharply increasing the slope of the sensorimotor input-output curve. Therefore, MIRS represents a promising neuromodulation approach suitable for clinical application.
Collapse
|
24
|
Abstract
Electric currents can produce quick, reversible control of neural activity. Externally applied electric currents have been used in inhibiting certain ganglion cells in clinical practices. Via electromagnetic induction, a miniature-sized magnetic coil could provide focal stimulation to the ganglion neurons. Here we report that high-frequency stimulation with the miniature coil could reversibly block ganglion cell activity in marine mollusk Aplysia californica, regardless the firing frequency of the neurons, or concentration of potassium ions around the ganglion neurons. Presence of the ganglion sheath has minimal impact on the inhibitory effects of the coil. The inhibitory effect was local to the soma, and was sufficient in blocking the neuron's functional output. Biophysical modeling confirmed that the miniature coil induced a sufficient electric field in the vicinity of the targeted soma. Using a multi-compartment model of Aplysia ganglion neuron, we found that the high-frequency magnetic stimuli altered the ion channel dynamics that were essential for the sustained firing of action potentials in the soma. Results from this study produces several critical insights to further developing the miniature coil technology for neural control by targeting ganglion cells. The miniature coil provides an interesting neural modulation strategy in clinical applications and laboratory research.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Lauryn Barrett
- Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| |
Collapse
|
25
|
Kaszas A, Szalay G, Slézia A, Bojdán A, Vanzetta I, Hangya B, Rózsa B, O'Connor R, Moreau D. Two-photon GCaMP6f imaging of infrared neural stimulation evoked calcium signals in mouse cortical neurons in vivo. Sci Rep 2021; 11:9775. [PMID: 33963220 PMCID: PMC8105372 DOI: 10.1038/s41598-021-89163-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Infrared neural stimulation is a promising tool for stimulating the brain because it can be used to excite with high spatial precision without the need of delivering or inserting any exogenous agent into the tissue. Very few studies have explored its use in the brain, as most investigations have focused on sensory or motor nerve stimulation. Using intravital calcium imaging with the genetically encoded calcium indicator GCaMP6f, here we show that the application of infrared neural stimulation induces intracellular calcium signals in Layer 2/3 neurons in mouse cortex in vivo. The number of neurons exhibiting infrared-induced calcium response as well as the amplitude of those signals are shown to be both increasing with the energy density applied. By studying as well the spatial extent of the stimulation, we show that reproducibility of the stimulation is achieved mainly in the central part of the infrared beam path. Stimulating in vivo at such a degree of precision and without any exogenous chromophores enables multiple applications, from mapping the brain's connectome to applications in systems neuroscience and the development of new therapeutic tools for investigating the pathological brain.
Collapse
Affiliation(s)
- Attila Kaszas
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - Gergely Szalay
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Andrea Slézia
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Alexandra Bojdán
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Ivo Vanzetta
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Balázs Rózsa
- Laboratory of 3D Functional Network and Dendritic Imaging, Institute of Experimental Medicine, Budapest, 1083, Hungary
- Two-Photon Laboratory, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, 1083, Hungary
| | - Rodney O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005, Marseille, France
| | - David Moreau
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541, Gardanne, France.
| |
Collapse
|
26
|
Shi S, Xu AG, Rui YY, Zhang X, Romanski LM, Gothard KM, Roe AW. Infrared neural stimulation with 7T fMRI: A rapid in vivo method for mapping cortical connections of primate amygdala. Neuroimage 2021; 231:117818. [PMID: 33548458 PMCID: PMC9947864 DOI: 10.1016/j.neuroimage.2021.117818] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/18/2020] [Accepted: 01/25/2021] [Indexed: 11/23/2022] Open
Abstract
We have previously shown that INS-fMRI is a rapid method for mapping mesoscale brain networks in the macaque monkey brain. Focal stimulation of single cortical sites led to the activation of connected cortical locations, resulting in a global connectivity map. Here, we have extended this method for mapping brainwide networks following stimulation of single subcortical sites. As a testbed, we focused on the basal nucleus of the amygdala in the macaque monkey. We describe methods to target basal nucleus locations with submillimeter precision, pulse train stimulation methods, and statistical tests for assessing non-random nature of activations. Using these methods, we report that stimulation of precisely targeted loci in the basal nucleus produced sparse and specific activations in the brain. Activations were observed in the insular and sensory association cortices as well as activations in the cingulate cortex, consistent with known anatomical connections. What is new here is that the activations were focal and, in some cases, exhibited shifting topography with millimeter shifts in stimulation site. The precision of the method enables networks mapped from different nearby sites in the basal nucleus to be distinguished. While further investigation is needed to improve the sensitivity of this method, our analyses do support the reproducibility and non-random nature of some of the activations. We suggest that INS-fMRI is a promising method for mapping large-scale cortical and subcortical networks at high spatial resolution.
Collapse
Affiliation(s)
- Sunhang Shi
- Dept of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Augix Guohua Xu
- Dept of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Yun-Yun Rui
- Dept of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xiaotong Zhang
- Dept of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Lizabeth M Romanski
- Dept of Neuroscience, University of Rochester School of Medicine, Rochester, NY, United States
| | | | - Anna Wang Roe
- Dept of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
27
|
Ford JB, Ganguly M, Zhuo J, McPheeters MT, Jenkins MW, Chiel HJ, Jansen ED. Optimizing thermal block length during infrared neural inhibition to minimize temperature thresholds. J Neural Eng 2021; 18:10.1088/1741-2552/abf00d. [PMID: 33735846 PMCID: PMC11189657 DOI: 10.1088/1741-2552/abf00d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/18/2021] [Indexed: 11/11/2022]
Abstract
Objective. Infrared neural inhibition (INI) is a method of blocking the generation or propagation of neural action potentials through laser heating with wavelengths strongly absorbed by water. Recent work has identified that the distance heated along axons, the block length (BL), modulates the temperature needed for inhibition; however, this relationship has not been characterized. This study explores how BL during INI can be optimized towards minimizing its temperature threshold.Approach. To understand the relationship between BL and the temperature required for INI, excised nerves fromAplysia californicawere laser-heated over different lengths of axon during electrical stimulation of compound action potentials. INI was provided by irradiation (λ= 1470 nm) from a custom probe (n= 6 nerves), and subsequent validation was performed by providing heat block using perfused hot media over nerves (n= 5 nerves).Main Results. Two BL regimes were identified. Short BLs (thermal full width at half maximum (tFWHM) = 0.81-1.13 mm) demonstrated that increasing the tFWHM resulted in lower temperature thresholds for INI (p< 0.0125), while longer BLs (tFWHM = 1.13-3.03 mm) showed no significant change between the temperature threshold and tFWHM (p> 0.0125). Validation of this longer regime was performed using perfused hot media over different lengths of nerves. This secondary heating method similarly showed no significant change (p> 0.025) in the temperature threshold (tFWHM = 1.25-4.42 mm).Significance. This work characterized how the temperature threshold for neural heat block varies with BL and identified an optimal BL around tFWHM = 1.13 mm which minimizes both the maximum temperature applied to tissue and the volume of tissue heated during INI. Understanding how to optimally target lengths of nerve to minimize temperature during INI can help inform the design of devices for longitudinal animal studies and human implementation.
Collapse
Affiliation(s)
- Jeremy B Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
| | - Mohit Ganguly
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
| | - Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Matthew T McPheeters
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States of America
| | - Hillel J Chiel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Biology, Case Western Reserve University, Cleveland, OH, United States of America
- Department of Neuroscience, Case Western Reserve University, Cleveland, OH, United States of America
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Biophotonics Center, Vanderbilt University, Nashville, TN, United States of America
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
28
|
Collins MN, Legon W, Mesce KA. The Inhibitory Thermal Effects of Focused Ultrasound on an Identified, Single Motoneuron. eNeuro 2021; 8:ENEURO.0514-20.2021. [PMID: 33853851 PMCID: PMC8174046 DOI: 10.1523/eneuro.0514-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 12/30/2022] Open
Abstract
Focused ultrasound (US) is an emerging neuromodulation technology that has gained much attention because of its ability to modulate, noninvasively, neuronal activity in a variety of animals, including humans. However, there has been considerable debate about exactly which types of neurons can be influenced and what underlying mechanisms are in play. Are US-evoked motor changes driven indirectly by activated mechanosensory inputs, or more directly via central interneurons or motoneurons? Although it has been shown that US can mechanically depolarize mechanosensory neurons, there are no studies that have yet tested how identified motoneurons respond directly to US and what the underlying mechanism might be. Here, we examined the effects of US on a single, identified motoneuron within a well-studied and tractable invertebrate preparation, the medicinal leech, Hirudo verbana Our approach aimed to clarify single neuronal responses to US, which may be obscured in other studies whereby US is applied across a diverse population of cells. We found that US has the ability to inhibit tonic spiking activity through a predominately thermal mechanism. US-evoked effects persisted after blocking synaptic inputs, indicating that its actions were direct. Experiments also revealed that US-comparable heating blocked the axonal conduction of spontaneous action potentials. Finally, we found no evidence that US had significant mechanical effects on the neurons tested, a finding counter to prevailing views. We conclude that a non-sensory neuron can be directly inhibited via a thermal mechanism, a finding that holds promise for clinical neuromodulatory applications.
Collapse
Affiliation(s)
- Morgan N Collins
- Graduate Program in Neuroscience, University of Minnesota, St. Paul, MN 55108
| | - Wynn Legon
- Department of Neurological Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22901
| | - Karen A Mesce
- Graduate Program in Neuroscience, University of Minnesota, St. Paul, MN 55108
- Departments of Entomology and Neuroscience, University of Minnesota, St. Paul, MN 55108
| |
Collapse
|
29
|
Zhuo J, Ou Z, Zhang Y, Jackson EM, Shankar SS, McPheeters MT, Ford JB, Jansen ED, Chiel HJ, Jenkins MW. Isotonic ion replacement can lower the threshold for selective infrared neural inhibition. NEUROPHOTONICS 2021; 8:015005. [PMID: 33628860 PMCID: PMC7893321 DOI: 10.1117/1.nph.8.1.015005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Significance: Infrared (IR) inhibition can selectively block peripheral sensory nerve fibers, a potential treatment for autonomic-dysfunction-related diseases (e.g., neuropathic pain and interstitial cystitis). Lowering the IR inhibition threshold can increase its translational potentials. Aim: Infrared induces inhibition by enhancing potassium channel activation. We hypothesized that the IR dose threshold could be reduced by combining it with isotonic ion replacement. Approach: We tested the IR inhibition threshold on the pleural-abdominal connective of Aplysia californica. Using a customized chamber system, the IR inhibition was applied either in normal saline or in isotonic ion-replaced saline, which could be high glucose saline, high choline saline, or high glucose/high choline saline. Each modified saline was at a subthreshold concentration for inhibiting neural conduction. Results: We showed that isotonically replacing ions in saline with glucose and/or choline can reduce the IR threshold and temperature threshold of neural inhibition. Furthermore, the size selectivity of IR inhibition was preserved when combined with high glucose/high choline saline. Conclusions: The present work of IR inhibition combined with isotonic ion replacement will guide further development of a more effective size-selective IR inhibition modality for future research and translational applications.
Collapse
Affiliation(s)
- Junqi Zhuo
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Zihui Ou
- Case Western Reserve University, Department of Biology, Cleveland, Ohio, United States
| | - Yuhan Zhang
- Case Western Reserve University, Department of Biology, Cleveland, Ohio, United States
| | - Elizabeth M. Jackson
- Case Western Reserve University, Department of Biology, Cleveland, Ohio, United States
| | - Sachin S. Shankar
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Matthew T. McPheeters
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
| | - Jeremy B. Ford
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University, Biophotonics Center, Nashville, Tennessee, United States
| | - E. Duco Jansen
- Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee, United States
- Vanderbilt University, Biophotonics Center, Nashville, Tennessee, United States
- Vanderbilt University, Department of Neurological Surgery, Nashville, Tennessee, United States
| | - Hillel J. Chiel
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Biology, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Neurosciences, Cleveland, Ohio, United States
| | - Michael W. Jenkins
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, Ohio, United States
- Case Western Reserve University, Department of Pediatrics, Cleveland, Ohio, United States
| |
Collapse
|
30
|
Skach J, Conway C, Barrett L, Ye H. Axonal blockage with microscopic magnetic stimulation. Sci Rep 2020; 10:18030. [PMID: 33093520 PMCID: PMC7582966 DOI: 10.1038/s41598-020-74891-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022] Open
Abstract
Numerous neurological dysfunctions are characterized by undesirable nerve activity. By providing reversible nerve blockage, electric stimulation with an implanted electrode holds promise in the treatment of these conditions. However, there are several limitations to its application, including poor bio-compatibility and decreased efficacy during chronic implantation. A magnetic coil of miniature size can mitigate some of these problems, by coating it with biocompatible material for chronic implantation. However, it is unknown if miniature coils could be effective in axonal blockage and, if so, what the underlying mechanisms are. Here we demonstrate that a submillimeter magnetic coil can reversibly block action potentials in the unmyelinated axons from the marine mollusk Aplysia californica. Using a multi-compartment model of the Aplysia axon, we demonstrate that the miniature coil causes a significant local depolarization in the axon, alters activation dynamics of the sodium channels, and prevents the traveling of the invading action potentials. With improved biocompatibility and capability of emitting high-frequency stimuli, micro coils provide an interesting alternative for electric blockage of axonal conductance in clinical settings.
Collapse
Affiliation(s)
- Jordan Skach
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Catherine Conway
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Lauryn Barrett
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, IL, USA. .,Department of Biology, Quinlan Life Sciences Education and Research Center, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| |
Collapse
|
31
|
Fekete Z, Horváth ÁC, Zátonyi A. Infrared neuromodulation:a neuroengineering perspective. J Neural Eng 2020; 17:051003. [PMID: 33055373 DOI: 10.1088/1741-2552/abb3b2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infrared neuromodulation (INM) is a branch of photobiomodulation that offers direct or indirect control of cellular activity through elevation of temperature in a spatially confined region of the target tissue. Research on INM started about 15 ago and is gradually attracting the attention of the neuroscience community, as numerous experimental studies have provided firm evidence on the safe and reproducible excitation and inhibition of neuronal firing in both in vitro and in vivo conditions. However, its biophysical mechanism is not fully understood and several engineered interfaces have been created to investigate infrared stimulation in both the peripheral and central nervous system. In this review, recent applications and present knowledge on the effects of INM on cellular activity are summarized, and an overview of the technical approaches to deliver infrared light to cells and to interrogate the optically evoked response is provided. The micro- and nanoengineered interfaces used to investigate the influence of INM are described in detail.
Collapse
Affiliation(s)
- Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest 1083, Hungary. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
32
|
Zhu X, Lin JW, Sander MY. Infrared inhibition impacts on locally initiated and propagating action potentials and the downstream synaptic transmission. NEUROPHOTONICS 2020; 7:045003. [PMID: 33094124 PMCID: PMC7554448 DOI: 10.1117/1.nph.7.4.045003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/28/2020] [Indexed: 05/15/2023]
Abstract
Significance: Systematic studies of the physiological outputs induced by infrared (IR)-mediated inhibition of motor nerves can provide guidance for therapeutic applications and offer critical insights into IR light modulation of complex neural networks. Aim: We explore the IR-mediated inhibition of action potentials (APs) that either propagate along single axons or are initiated locally and their downstream synaptic transmission responses. Approach: APs were evoked locally by two-electrode current clamp or at a distance for propagating APs. The neuromuscular transmission was recorded with intracellular electrodes in muscle cells or macro-patch pipettes on terminal bouton clusters. Results: IR light pulses completely and reversibly terminate the locally initiated APs firing at low frequencies, which leads to blocking of the synaptic transmission. However, IR light pulses only suppress but do not block the amplitude and duration of propagating APs nor locally initiated APs firing at high frequencies. Such suppressed APs do not influence the postsynaptic responses at a distance. While the suppression of AP amplitude and duration is similar for propagating and locally evoked APs, only the former exhibits a 7% to 21% increase in the maximum time derivative of the AP rising phase. Conclusions: The suppressed APs of motor axons can resume their waveforms after passing the localized IR light illumination site, leaving the muscular and synaptic responses unchanged. IR-mediated modulation on propagating and locally evoked APs should be considered as two separate models for axonal and somatic modulations.
Collapse
Affiliation(s)
- Xuedong Zhu
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, Photonics Center, Boston, Massachusetts, United States
| | - Jen-Wei Lin
- Boston University, Department of Biology, Boston, Massachusetts, United States
| | - Michelle Y. Sander
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Neurophotonics Center, Boston, Massachusetts, United States
- Boston University, Photonics Center, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Boston University, Division of Materials Science and Engineering, Brookline, Massachusetts, United States
- Address all correspondence to Michelle Y. Sander,
| |
Collapse
|