1
|
Riddick DS. Canadian Content in the Pages of Drug Metabolism and Disposition: A Comprehensive Historical Analysis. Drug Metab Dispos 2023; 52:Pages 1-18. [PMID: 37833076 DOI: 10.1124/dmd.123.001517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
Scientists from Canadian institutions have a rich history of making interesting and important contributions to the journal Drug Metabolism and Disposition (DMD) over the past 51 years. A goal of this minireview is to highlight these contributions and pay tribute to many of the scientists at Canadian institutions that have aided in the evolution of the discipline through their DMD publications. We conducted a geographical and research sectoral analysis of the temporal trends of DMD publications originating from Canadian sources. The fraction of total DMD papers of Canadian origin achieved a peak during the 1990s and since that time, this metric has displayed a pronounced and steady decline to the present situation, where the country needs to be concerned about its potentially vulnerable global status within the realm of drug metabolism and disposition science. Stronger and timely investment by Canadian academic institutions in drug metabolism and disposition science may help to restore the nation's research excellence in this discipline and ensure a more robust pipeline of appropriately trained scientists to take on careers in academia, industry, and government. Significance Statement The substantial contributions made by scientists at Canadian institutions to the journal Drug Metabolism and Disposition (DMD) are highlighted and celebrated in this minireview. Analysis of temporal trends in the fraction of total DMD papers of Canadian origin paints a concerning picture of Canada's current global status in the realm of drug metabolism and disposition science. Further investment in this discipline at Canadian universities may be needed.
Collapse
Affiliation(s)
- David S Riddick
- Department of Pharmacology & Toxicology, University of Toronto, Canada
| |
Collapse
|
2
|
Shormanov VK, Astashkina AP, Ostanin MA, Grishechko OI, Tsatsua EP. [The specific features of the distribution of 4-metoxyhydroxybenzene in the organism of the warm-blooded animals suffering lethal intoxication]. Sud Med Ekspert 2016; 59:48-53. [PMID: 27500483 DOI: 10.17116/sudmed201659448-53] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/06/2023]
Abstract
This work was designed to study the distribution of 4-metoxyhydroxybenzene in the organism of the omnivorous warm-blooded animals (rats) after the intragastric administration of this poisonous compound at a dose three-fold greater than the LD50 value. The administered 4-metoxyhydroxybenzene was isolated from the organs and blood of the experimental animals by exposing the biological tissues to acetone with subsequent purification on a silica gel L 40/100 mcm using a hexane:dioxane:propanol-2 (20:5:1) as the mobile phase. The identification and quantitation of 4-metoxyhydroxybenzene were carried out with the use of TLC, GC-MS, and UF-spectrophotometry. It was shown that the administered 4-metoxyhydroxybenzene remained unmetabolized in the internal organs and blood of the poisoned experimental animals. The largest amounts of 4-metoxyhydroxybenzene were found in the stomach contents (2584,92±117,47), brain (59.49±6.05), contents of small intestines (28.21±3.77), and kidneys (26.13±1.64).
Collapse
Affiliation(s)
- V K Shormanov
- Kursk State Medical University, Russian Ministry of Health, Kursk, Russia, 305041
| | - A P Astashkina
- Tomsk National State Research University, Tomsk, Russia, 634050
| | - M A Ostanin
- Kursk State Medical University, Russian Ministry of Health, Kursk, Russia, 305041
| | - O I Grishechko
- Kursk State Medical University, Russian Ministry of Health, Kursk, Russia, 305041
| | - E P Tsatsua
- Kursk State Medical University, Russian Ministry of Health, Kursk, Russia, 305041
| |
Collapse
|
3
|
Balyan R, Kudugunti SK, Hamad HA, Yousef MS, Moridani MY. Bioactivation of luteolin by tyrosinase selectively inhibits glutathione S-transferase. Chem Biol Interact 2015; 240:208-18. [PMID: 26279214 DOI: 10.1016/j.cbi.2015.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2015] [Revised: 07/07/2015] [Accepted: 08/11/2015] [Indexed: 12/27/2022]
Abstract
Glutathione S-transferase (GST) plays a significant role in the metabolism and detoxification of drugs used in treatment of melanoma, resulting in a decrease in drug efficacy. Tyrosinase is an abundant enzyme found in melanoma. In this study, we used a tyrosinase targeted approach to selectively inhibit GST. In the presence of tyrosinase, luteolin (10 μM) showed 87% GST inhibition; whereas in the absence of tyrosinase, luteolin led to negligible GST inhibition. With respect to GSH, both luteolin-SG conjugate and luteolin-quinone inhibited ≥90% of GST activity via competitive reversible and irreversible mixed mechanisms with Ki of 0.74 μM and 0.02 μM, respectively. With respect to CDNB, the luteolin-SG conjugate inhibited GST activity via competitive reversible mechanism and competitively with Ki of 0.58 μM, whereas luteolin-quinone showed irreversible mixed inhibition of GST activity with Ki of 0.039 μM. Luteolin (100 μM) inhibited GST in mixed manner with Ki of 53 μM with respect to GSH and non-competitively with respect to CDNB with Ki of 38 μM. Luteolin, at a concentration range of 5-80 μM, exhibited 78-99% GST inhibition in human SK-MEL-28 cell homogenate. Among the 3 species of intact luteolin, luteolin-SG conjugate, and luteoline-quinone, only the latter two have potential as drugs with Ki < 1 μM, which is potentially achievable in-vivo as therapeutic agents. The order of GST inhibition was luteolin-quinone >> luteolin-SG conjugate >>> luteolin. In summary, our results suggest that luteolin was bioactivated by tyrosinase to form a luteolin-quinone and luteolin-glutathione conjugate, which inhibited GST. For the first time, in addition to intracellular GSH depletion, we demonstrate that luteolin acts as a selective inhibitor of GST in the presence of tyrosinase. Such strategy could potentially be used to selectively inhibit GST, a drug detoxifying enzyme, in melanoma cells.
Collapse
Affiliation(s)
- Rajiv Balyan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Shashi K Kudugunti
- Repligen Corporation, 41 Seyon St, Bldg 1, Suite 100, Waltham, MA 02453, USA
| | - Hamzah A Hamad
- Department of Physics, College of Arts & Sciences, Southern Illinois University, Edwardsville, IL 62025, USA
| | - Mohammad S Yousef
- Department of Physics, College of Arts & Sciences, Southern Illinois University, Edwardsville, IL 62025, USA; Biophysics Department, Faculty of Science, Cairo University, Egypt
| | - Majid Y Moridani
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Clinical Chemistry and Toxicology, Department of Pathology, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 5322, USA.
| |
Collapse
|
4
|
Nakamura Y, Ishii T, Abe N, Murata Y. Thiol modification by bioactivated polyphenols and its potential role in skin inflammation. Biosci Biotechnol Biochem 2014; 78:1067-70. [DOI: 10.1080/09168451.2014.905190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
Abstract
In the present study, we evaluated the modifying behavior of simple phenolic compounds on the sulfhydryl groups of glutathione and proteins. The catechol-type polyphenols, including protocatechuic acid, but neither the monophenols nor O-methylated catechol, can modify the sulfhydryl groups in a phenol oxidase-dependent manner. The possible involvement of polyphenol bioactivation in the enhancement of skin inflammation was also suggested.
Collapse
Affiliation(s)
- Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Nagoya University Graduate School of Bioagricultural Sciences, Nagoya, Japan
| | - Takeshi Ishii
- Department of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
- Nagoya University Graduate School of Bioagricultural Sciences, Nagoya, Japan
| | - Naomi Abe
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Efficacy of acetylsalicylic acid (aspirin) in skin B16-F0 melanoma tumor-bearing C57BL/6 mice. Tumour Biol 2014; 35:4967-76. [DOI: 10.1007/s13277-014-1654-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2013] [Accepted: 01/13/2014] [Indexed: 11/27/2022] Open
|
6
|
Scientific Opinion on Flavouring Group Evaluation 22, Revision 1 (FGE.22Rev1): Ring‐substituted phenolic substances from chemical groups 21 and 25. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022] Open
|
7
|
Kudugunti SK, Vad NM, Whiteside AJ, Naik BU, Yusuf MA, Srivenugopal KS, Moridani MY. Biochemical mechanism of caffeic acid phenylethyl ester (CAPE) selective toxicity towards melanoma cell lines. Chem Biol Interact 2010; 188:1-14. [PMID: 20685355 DOI: 10.1016/j.cbi.2010.05.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2009] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 11/30/2022]
Abstract
In the current work, we investigated the in vitro biochemical mechanism of Caffeic Acid Phenylethyl Ester (CAPE) toxicity and eight hydroxycinnamic/caffeic acid derivatives in vitro, using tyrosinase enzyme as a molecular target in human SK-MEL-28 melanoma cells. Enzymatic reaction models using tyrosinase/O(2) and HRP/H(2)O(2) were used to delineate the role of one- and two-electron oxidation. Ascorbic acid (AA), NADH and GSH depletion were used as markers of quinone formation and oxidative stress in CAPE induced toxicity in melanoma cells. Ethylenediamine, an o-quinone trap, prevented the formation of o-quinone and oxidations of AA and NADH mediated by tyrosinase bioactivation of CAPE. The IC(50) of CAPE towards SK-MEL-28 melanoma cells was 15muM. Dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, increased CAPE's toxicity towards SK-MEL-28 cells indicating quinone formation played an important role in CAPE induced cell toxicity. Cyclosporin-A and trifluoperazine, inhibitors of the mitochondrial membrane permeability transition pore (PTP), prevented CAPE toxicity towards melanoma cells. We further investigated the role of tyrosinase in CAPE toxicity in the presence of a shRNA plasmid, targeting tyrosinase mRNA. Results from tyrosinase shRNA experiments showed that CAPE led to negligible anti-proliferative effect, apoptotic cell death and ROS formation in shRNA plasmid treated cells. Furthermore, it was also found that CAPE selectively caused escalation in the ROS formation and intracellular GSH (ICG) depletion in melanocytic human SK-MEL-28 cells which express functional tyrosinase. In contrast, CAPE did not lead to ROS formation and ICG depletion in amelanotic C32 melanoma cells, which do not express functional tyrosinase. These findings suggest that tyrosinase plays a major role in CAPE's selective toxicity towards melanocytic melanoma cell lines. Our findings suggest that the mechanisms of CAPE toxicity in SK-MEL-28 melanoma cells mediated by tyrosinase bioactivation of CAPE included quinone formation, ROS formation, intracellular GSH depletion and induced mitochondrial toxicity.
Collapse
Affiliation(s)
- Shashi K Kudugunti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Vad NM, Kandala PK, Srivastava SK, Moridani MY. Structure-toxicity relationship of phenolic analogs as anti-melanoma agents: an enzyme directed prodrug approach. Chem Biol Interact 2009; 183:462-71. [PMID: 19944085 DOI: 10.1016/j.cbi.2009.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2009] [Revised: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 11/18/2022]
Abstract
The aim of this study was to identify a phenolic prodrug compound that is minimally metabolized by rat liver microsomes, but yet could form quinone reactive intermediates in melanoma cells as a result of its bioactivation by tyrosinase. In current work, we investigated 24 phenolic compounds for their metabolism by tyrosinase, rat liver microsomes and their toxicity towards murine B16-F0 and human SK-MEL-28 melanoma cells. A linear correlation was found between toxicities of phenolic analogs towards SK-MEL-28 and B16-F0 melanoma cells, suggesting similar mechanisms of toxicity in both cell lines. 4-HEB was identified as the lead compound. 4-HEB (IC(50) 48h, 75muM) showed selective toxicity towards five melanocytic melanoma cell lines SK-MEL-28, SK-MEL-5, MeWo, B16-F0 and B16-F10, which express functional tyrosinase, compared to four non-melanoma cells lines SW-620, Saos-2, PC3 and BJ cells and two amelanotic SK-MEL-24, C32 cells, which do not express functional tyrosinase. 4-HEB caused significant intracellular GSH depletion, ROS formation, and showed significantly less toxicity to tyrosinase specific shRNA transfected SK-MEL-28 cells. Our findings suggest that presence of a phenolic group in 4-HEB is critical for its selective toxicity towards melanoma cells.
Collapse
Affiliation(s)
- Nikhil M Vad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1406 Coulter Drive, Amarillo, TX 79106, USA
| | | | | | | |
Collapse
|
9
|
Kudugunti SK, Vad NM, Ekogbo E, Moridani MY. Efficacy of Caffeic Acid Phenethyl Ester (CAPE) in skin B16-F0 melanoma tumor bearing C57BL/6 mice. Invest New Drugs 2009; 29:52-62. [DOI: 10.1007/s10637-009-9334-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2009] [Accepted: 09/24/2009] [Indexed: 11/30/2022]
|
10
|
Abstract
In the current work, we investigated the biochemical toxicity of acetylsalicylic acid (ASA; Aspirin) in human melanoma cell lines using tyrosinase enzyme as a molecular cancer therapeutic target. At 2 h, ASA was oxidized 88% by tyrosinase. Ascorbic acid and NADH, quinone reducing agents, were significantly depleted during the enzymatic oxidation of ASA by tyrosinase to quinone. The 50% inhibitory concentration (48 h) of ASA and salicylic acid toward SK-MEL-28 cells were 100 micromol/l and 5.2 mmol/l, respectively. ASA at 100 micromol/l was selectively toxic toward human melanocytic SK-MEL-28, MeWo, and SK-MEL-5 and murine melanocytic B16-F0 and B16-F10 melanoma cell lines. However, ASA was not significantly toxic to human amelanotic C32 melanoma cell line, which does not express tyrosinase enzyme, and human nonmelanoma BJ, SW-620, Saos, and PC-3 cells. Dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, increased ASA toxicity toward SK-MEL-28 cells indicating quinone formation and intracellular GSH depletion played important mechanistic roles in ASA-induced melanoma toxicity. Ascorbic acid, a quinone reducing agent, and GSH, an antioxidant and quinone trap substrate, prevented ASA cell toxicity. Trifluoperazine, inhibitor of permeability transition pore in mitochondria, prevented ASA toxicity. ASA led to significant intracellular GSH depletion in melanocytic SK-MEL-28 melanoma cells but not in amelanotic C32 melanoma cells. ASA also led to significant reactive oxygen species (ROS) formation in melanocytic SK-MEL-28 melanoma cells but not in amelanotic C32 melanoma cells. ROS formation was exacerbated by dicoumarol and 1-bromoheptane in SK-MEL-28. Our investigation suggests that quinone species, intracellular GSH depletion, ROS formation, and mitochondrial toxicity significantly contributed toward ASA selective toxicity in melanocytic SK-MEL-28 melanoma cells.
Collapse
|
11
|
Vad NM, Yount G, Moore D, Weidanz J, Moridani MY. Biochemical mechanism of acetaminophen (APAP) induced toxicity in melanoma cell lines. J Pharm Sci 2009; 98:1409-25. [PMID: 18759348 DOI: 10.1002/jps.21505] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
In this work, we investigated the biochemical mechanism of acetaminophen (APAP) induced toxicity in SK-MEL-28 melanoma cells using tyrosinase enzyme as a molecular cancer therapeutic target. Our results showed that APAP was metabolized 87% by tyrosinase at 2 h incubation. AA and NADH, quinone reducing agents, were significantly depleted during APAP oxidation by tyrosinase. The IC(50) (48 h) of APAP towards SK-MEL-28, MeWo, SK-MEL-5, B16-F0, and B16-F10 melanoma cells was 100 microM whereas it showed no significant toxicity towards BJ, Saos-2, SW-620, and PC-3 nonmelanoma cells, demonstrating selective toxicity towards melanoma cells. Dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, enhanced APAP toxicity towards SK-MEL-28 cells. AA and GSH were effective in preventing APAP induced melanoma cell toxicity. Trifluoperazine and cyclosporin A, inhibitors of permeability transition pore in mitochondria, significantly prevented APAP melanoma cell toxicity. APAP caused time and dose-dependent decline in intracellular GSH content in SK-MEL-28, which preceded cell toxicity. APAP led to ROS formation in SK-MEL-28 cells which was exacerbated by dicoumarol and 1-bromoheptane whereas cyslosporin A and trifluoperazine prevented it. Our investigation suggests that APAP is a tyrosinase substrate, and that intracellular GSH depletion, ROS formation and induced mitochondrial toxicity contributed towards APAP's selective toxicity in SK-MEL-28 cells.
Collapse
Affiliation(s)
- Nikhil M Vad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter Drive, Amarillo, Texas 79106, USA
| | | | | | | | | |
Collapse
|
12
|
Bioactivation of fluorotelomer alcohols in isolated rat hepatocytes. Chem Biol Interact 2009; 177:196-203. [DOI: 10.1016/j.cbi.2008.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2008] [Revised: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 11/19/2022]
|
13
|
Saghir SA, Rick DL, McClymont EL, Zhang F, Bartels MJ, Bus JS. Mechanism of Ethylbenzene-Induced Mouse-Specific Lung Tumor: Metabolism of Ethylbenzene by Rat, Mouse, and Human Liver and Lung Microsomes. Toxicol Sci 2008; 107:352-66. [DOI: 10.1093/toxsci/kfn244] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
|
14
|
Vad NM, Shaik IH, Mehvar R, Moridani MY. Metabolic Bioactivation and Toxicity of Ethyl 4-Hydroxybenzoate in Human SK-MEL-28 Melanoma Cells. J Pharm Sci 2008; 97:1934-45. [PMID: 17847068 DOI: 10.1002/jps.21107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
The metabolism and toxicity of ethyl 4-hydroxybenzoate (4-HEB) were investigated in vitro using tyrosinase enzyme, a melanoma molecular target, and CYP2E1 induced rat liver microsomes, and in human SK-MEL-28 melanoma cells. The results were compared to 4-hydroxyanisole (4-HA). At 90 min, 4-HEB was metabolized 48% by tyrosinase and 26% by liver microsomes while the extent of 4-HA metabolism was 196% and 88%, respectively. The IC50 (day 2) of 4-HEB and 4-HA towards SK-MEL-28 cells were 75 and 50 microM, respectively. Dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, increased 4-HEB toxicity towards SK-MEL-28 cells indicating o-quinone formation played an important role in 4-HEB induced cell toxicity. Addition of ascorbic acid and GSH to the media was effective in preventing 4-HEB cell toxicity. Cyclosporin A and trifluoperazine, inhibitors of permeability transition pore in mitochondria, were significantly potent in inhibiting 4-HEB cell toxicity. 4-HEB caused time-dependent decline in intracellular GSH concentration which preceded cell death. 4-HEB also led to reactive oxygen species (ROS) formation in melanoma cells which exacerbated by dicoumarol and 1-bromoheptane whereas cyclosporin A and trifluoperazine prevented it. Our findings suggest that the mechanisms of 4-HEB toxicity in SK-MEL-28 were o-quinone formation, intracellular GSH depletion, ROS formation and mitochondrial toxicity.
Collapse
Affiliation(s)
- Nikhil M Vad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| | | | | | | |
Collapse
|
15
|
Gasowska-Bajger B, Wojtasek H. Indirect oxidation of the antitumor agent procarbazine by tyrosinase--possible application in designing anti-melanoma prodrugs. Bioorg Med Chem Lett 2008; 18:3296-300. [PMID: 18457951 DOI: 10.1016/j.bmcl.2008.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 11/26/2022]
Abstract
The interaction of tyrosinase with the anticancer drug procarbazine has been investigated. In the presence of the enzyme alone no oxidation of this dialkylhydrazine above the background level was observed. However, when phenolic substrates (4-tert-butylcatechol or N-acetyl-l-tyrosine) were included in the reaction mixture, procarbazine was rapidly degraded. Oxygen consumption measurements showed that in a mixture both the phenolic substrate and the drug were oxidized. The major product of procarbazine degradation was isolated and identified as azoprocarbazine, the first active metabolite of this drug detected in previous in vivo and in vitro studies. This indirect oxidation of the hydrazine group in this anticancer agent indicates possible application of a hydrazine linker in construction of tyrosinase-activated anti-melanoma prodrugs.
Collapse
|
16
|
Gabriel FLP, Cyris M, Jonkers N, Giger W, Guenther K, Kohler HPE. Elucidation of the ipso-substitution mechanism for side-chain cleavage of alpha-quaternary 4-nonylphenols and 4-t-butoxyphenol in Sphingobium xenophagum Bayram. Appl Environ Microbiol 2007; 73:3320-6. [PMID: 17369338 PMCID: PMC1907130 DOI: 10.1128/aem.02994-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2006] [Accepted: 03/09/2007] [Indexed: 11/20/2022] Open
Abstract
Recently we showed that degradation of several nonylphenol isomers with alpha-quaternary carbon atoms is initiated by ipso-hydroxylation in Sphingobium xenophagum Bayram (F. L. P. Gabriel, A. Heidlberger, D. Rentsch, W. Giger, K. Guenther, and H.-P. E. Kohler, J. Biol. Chem. 280:15526-15533, 2005). Here, we demonstrate with 18O-labeling experiments that the ipso-hydroxy group was derived from molecular oxygen and that, in the major pathway for cleavage of the alkyl moiety, the resulting nonanol metabolite contained an oxygen atom originating from water and not from the ipso-hydroxy group, as was previously assumed. Our results clearly show that the alkyl cation derived from the alpha-quaternary nonylphenol 4-(1-ethyl-1,4-dimethyl-pentyl)-phenol through ipso-hydroxylation and subsequent dissociation of the 4-alkyl-4-hydroxy-cyclohexadienone intermediate preferentially combines with a molecule of water to yield the corresponding alcohol and hydroquinone. However, the metabolism of certain alpha,alpha-dimethyl-substituted nonylphenols appears to also involve a reaction of the cation with the ipso-hydroxy group to form the corresponding 4-alkoxyphenols. Growth, oxygen uptake, and 18O-labeling experiments clearly indicate that strain Bayram metabolized 4-t-butoxyphenol by ipso-hydroxylation to a hemiketal followed by spontaneous dissociation to the corresponding alcohol and p-quinone. Hydroquinone effected high oxygen uptake in assays with induced resting cells as well as in assays with cell extracts. This further corroborates the role of hydroquinone as the ring cleavage intermediate during degradation of 4-nonylphenols and 4-alkoxyphenols.
Collapse
Affiliation(s)
- Frédéric L P Gabriel
- Eawag, Environmental Microbiology, Uberlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to Flavouring Group Evaluation 22 (FGE.22): Ring‐substituted phenolic substances from chemical groups 21 and 25 (Commission Regulation (EC) No 1565/2000 of 18 July 2000). EFSA J 2007. [DOI: 10.2903/j.efsa.2007.393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022] Open
|
18
|
McNeill MS, Paulsen J, Bonde G, Burnight E, Hsu MY, Cornell RA. Cell death of melanophores in zebrafish trpm7 mutant embryos depends on melanin synthesis. J Invest Dermatol 2007; 127:2020-30. [PMID: 17290233 DOI: 10.1038/sj.jid.5700710] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a broadly expressed, non-selective cation channel. Studies in cultured cells implicate TRPM7 in regulation of cell growth, spreading, and survival. However, zebrafish trpm7 homozygous mutants display death of melanophores and temporary paralysis, but no gross morphological defects during embryonic stages. This phenotype implies that melanophores are unusually sensitive to decreases in Trpm7 levels, a hypothesis we investigate here. We find that pharmacological inhibition of caspases does not rescue melanophore viability in trpm7 mutants, implying that melanophores die by a mechanism other than apoptosis. Consistent with this possibility, ultrastructural analysis of dying melanophores in trpm7 mutants reveals abnormal melanosomes and evidence of a ruptured plasma membrane, indicating that cell death occurs by necrosis. Interestingly, inhibition of melanin synthesis largely prevents melanophore cell death in trpm7 mutants. These results suggest that melanophores require Trpm7 in order to detoxify intermediates of melanin synthesis. We find that unlike TRPM1, TRPM7 is expressed in human melanoma cell lines, indicating that these cells may also be sensitized to reduction of TRPM7 levels.
Collapse
Affiliation(s)
- Matthew S McNeill
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yang CT, Johnson SL. Small molecule-induced ablation and subsequent regeneration of larval zebrafish melanocytes. Development 2006; 133:3563-73. [PMID: 16914496 DOI: 10.1242/dev.02533] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
We developed a method to efficiently ablate a single cell type, the zebrafish melanocyte, and study the mechanisms of its regeneration. We found that a small molecule, (2-morpholinobutyl)-4-thiophenol (MoTP), specifically ablates zebrafish larval melanocytes or melanoblasts, and that this melanocytotoxicity is dependent on tyrosinase activity, which presumably converts MoTP to cytotoxic quinone species. Following melanocyte ablation by MoTP treatment, we demonstrate by BrdU incorporation experiments that regenerated melanocytes are derived from the division of otherwise quiescent melanocyte precursors or stem cells. We further show that larval melanocyte regeneration requires the kit receptor tyrosine kinase. Our results suggest that a small number of melanocyte precursors or stem cells unevenly distributed in larvae are drawn upon to reconstitute the larval melanocyte population following melanocyte ablation by MoTP.
Collapse
Affiliation(s)
- Chao-Tsung Yang
- Department of Genetics, Washington University School of Medicine, 4566 Scott Avenue, Saint Louis, MO 63110, USA
| | | |
Collapse
|
20
|
Abramovits W, Barzin S, Arrazola P. A practical comparison of hydroquinone-containing products for the treatment of melasma. Skinmed 2005; 4:371-6. [PMID: 16276155 DOI: 10.1111/j.1540-9740.2005.04285.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/05/2023]
Affiliation(s)
- William Abramovits
- Department of Dermatology and Medicine, Baylor University Medical Center, Dallas, TX 75230, USA.
| | | | | |
Collapse
|
21
|
Nemeikaite-Ceniene A, Imbrasaite A, Sergediene E, Cenas N. Quantitative structure-activity relationships in prooxidant cytotoxicity of polyphenols: role of potential of phenoxyl radical/phenol redox couple. Arch Biochem Biophys 2005; 441:182-90. [PMID: 16111645 DOI: 10.1016/j.abb.2005.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2005] [Revised: 07/13/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
The aim of this work was to characterize the role of the potential of phenoxyl radical/phenol redox couple, E(7)(2), in the cytotoxicity of polyphenols. The cytotoxicity of polyphenols in bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK), and human promyelocytic leukemia cells (line HL-60) was partly inhibited by catalase, by the antioxidant N,N'-diphenyl-p-phenylene diamine and desferrioxamine, and potentiated by 1,3-bis-(2-chloro-ethyl)-1-nitrosourea, thus showing its prooxidant character. Dapsone, an inhibitor of myeloperoxidase, did not affect the cytotoxicity of polyphenols in HL-60 cells, whereas dicumarol, an inhibitor of DT-diaphorase, showed controversial effects on their cytotoxicity in FLK cells. Inhibitors of cytochromes P-450, alpha-naphthoflavone and izoniazide, decreased the cytotoxicity of several polyphenols, whereas 3,5-dinitrocatechol, an inhibitor of catechol-o-methyltransferase (COMT), increased it. The cytotoxicity of 13 polyhydroxybenzenes was described by the equations: logcL50 (microM) = -0.67 + 5.46E(7)(2) (V) - 0.16 logD (FLK), and logcL50 (microM) = -1.39 + 6.90E(7)(2) (V) - 0.20logD (HL-60), where cL50 is compound concentration for 50% cell survival, and D is octanol/water distribution coefficient at pH 7.0. The flavonoids comprise a separate series of compounds with lower cytotoxicity. The correlations obtained quantitatively confirm the parallelism between the polyphenol cytotoxicity and the rates of their single-electron oxidation, and point to the leading role of formation of the reactive oxygen species in their cytotoxicity. Depending on the examined system, this parallelism may be distorted due to the cytochrome P-450 and COMT-catalyzed transformation of polyphenols.
Collapse
|
22
|
Abstract
Human and animal hepatocytes are now being used as an in vitro technique to aid drug discovery by predicting the in vivo metabolic pathways of drugs or new chemical entities (NCEs), identifying drug-metabolizing enzymes and predicting their in vivo induction. Because of the difficulty of establishing whether the cytotoxic susceptibility of human hepatocytes to xenobiotics/drugs in vitro could be used to predict in vivo human hepatotoxicity, a comparison of the susceptibility of the hepatocytes of human and animal models to six chemical classes of drugs/xenobiotics in vitro have been related to their in vivo hepatotoxicity and the corresponding activity of their metabolizing enzymes. This study showed that the cytotoxic effectiveness of 16 halobenzenes towards rat hepatocytes in vitro using higher doses and short incubation times correlated well with rat hepatotoxic effectiveness in vivo with lower doses/longer times. The hepatic/hepatocyte xenobiotic metabolizing enzyme activities of various animal species and human have been reviewed for use by veterinarians and research scientists. Where possible, recommendations have been made regarding which animal hepatocyte model is most applicable for modeling the susceptibility to xenobiotic induced hepatotoxicity of those humans with slow versus rapid metabolizing enzyme polymorphisms. These recommendations are based on the best human fit for animal drug/xenobiotic metabolizing enzymes in terms of activity, kinetics and substrate/inhibitor specificity. The use of human hepatocytes from slow versus rapid metabolizing individuals for drug metabolism/cytotoxicity studies; and the research use of freshly isolated rat hepatocytes and "Accelerated Cytotoxicity Mechanism Screening" (ACMS) techniques for identifying drug/xenobiotic reactive metabolites are also described. Using these techniques the molecular hepatocytotoxic mechanisms found in vitro for seven classes of xenobiotics/drugs were found to be similar to the rat hepatotoxic mechanisms reported in vivo.
Collapse
Affiliation(s)
- Peter J O'Brien
- Graduate Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, 19 Russell St., Toronto, Ont., Canada M5S 2S2.
| | | | | |
Collapse
|
23
|
Moridani MY, Cheon SS, Khan S, O'Brien PJ. Metabolic activation of 3-hydroxyanisole by isolated rat hepatocytes. Chem Biol Interact 2003; 142:317-33. [PMID: 12453669 DOI: 10.1016/s0009-2797(02)00125-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
A tyrosinase-directed therapeutic approach for malignant melanoma therapy uses the depigmenting phenolic agents such as 4-hydroxyanisole (4-HA) to form cytotoxic o-quinones. However, renal and hepatic toxicity was reported as side effects in a recent 4-HA clinical trial. In search of novel therapeutics, the cytotoxicity of the isomers 4-HA, 3-HA and 2-HA were investigated. In the following, the order of the HAs induced hepatotoxicity in mice, as measured by increased in vivo plasma transaminase activity, or in isolated rat hepatocytes, as measured by trypan blue exclusion, was 3-HA > 2-HA > 4-HA. Hepatocyte GSH depletion preceded HA induced cytotoxicity and a 4-MC-SG conjugate was identified by LC/MS/MS mass spectrometry analysis when 3-HA was incubated with NADPH/microsomes/GSH. 3-HA induced hepatocyte GSH depletion or GSH depletion when 3-HA was incubated with NADPH/microsomes was prevented by CYP 2E1 inhibitors. Dicumarol (an NAD(P)H: quinone oxidoreductase inhibitor) potentiated 3-HA- or 4-methoxycatechol (4-MC) induced toxicity whereas sorbitol (an NADH generating nutrient) greatly prevented cytotoxicity indicating a quinone-mediated cytotoxic mechanism. Ethylendiamine (an o-quinone trap) largely prevented 3-HA and 4-MC-induced cytotoxicity indicating that o-quinone was involved in cytotoxicity. Dithiothreitol (DTT) greatly reduced 3-HA and 4-MC induced toxicity. The ferric chelator deferoxamine slightly decreased 3-HA and 4-MC induced cytotoxicity whereas the antioxidants pyrogallol or TEMPOL greatly prevented the toxicity suggesting that oxidative stress contributed to 3-HA induced cytotoxicity. In summary, ring hydroxylation but not O-demethylation/epoxidation seems to be the bioactivation pathway for 3-HA in rat liver. The cytotoxic mechanism for 3-HA and its metabolite 4-MC likely consists cellular protein alkylation and oxidative stress. These results suggest that 3-HA is not suitable for treatment of melanoma.
Collapse
Affiliation(s)
- Majid Y Moridani
- Faculty of Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ont, Canada M5S 2S2
| | | | | | | |
Collapse
|