1
|
Segura-Rivera R, Dcunha NJ, Dimopoulos YP, Mundhada A, Sainz TP, Kettlun C, Sahu V, Sarami I, Miranda RN, Lin P, Medeiros LJ, Vega F. The Spectrum of B-cell and Plasma Cell Proliferations in Nodal T Follicular Helper Cell Lymphomas. Am J Surg Pathol 2025; 49:251-264. [PMID: 39618194 DOI: 10.1097/pas.0000000000002340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
B-cell and plasma cell proliferations are frequently observed in nodal T follicular helper (nTfh) cell lymphomas and can present a diagnostic challenge. These proliferations can be monotypic or monoclonal and morphologically resemble lymphoma or plasmacytoma, but their clinical behavior is poorly defined. In this study, we reviewed 414 cases of nTfh lymphoma seen over the past decade at our institution. We identified 78 (19%) cases that exhibited B-cell or plasma cell proliferation detected by morphology, flow cytometry, immunohistochemistry, and/or molecular techniques. The B-cell/plasma cell proliferations occurred before (22%), concurrently with (50%), or after (28%) the diagnosis of nTfh lymphoma. We divided them into 3 categories: (1) focal or scattered B-immunoblastic proliferations recognized morphologically without a monotypic/monoclonal B-cell population (17%), (2) monotypic/monoclonal B-cell/plasma cells identified solely by flow cytometry or molecular clonality studies without morphologic confirmation (11%), and (3) unequivocal B-cell/plasma cell expansions recognized by morphologic assessment (72%). We further subdivided group 3 into proliferations associated with and possibly dependent on neoplastic Tfh cells versus those proliferations occurring in the absence of neoplastic Tfh cells and likely bona fide lymphomas. Follow-up biopsy specimens showed persistence of B-cell/plasma cell proliferations in various patient subcategories, with transformation to higher-grade B-cell proliferation or persistence without Tfh cells in some cases. In conclusion, our data support the notion that most B-cell and plasma cell proliferations associated with neoplastic Tfh clones have little impact on the clinical course of patients with nTfh lymphoma and likely do not constitute an independent B-cell lymphoma, especially those of small B cells of plasma cells. However, B-cell expansions exhibiting aggressive morphologic features may represent an independent B-cell lymphoma.
Collapse
Affiliation(s)
- Roman Segura-Rivera
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center
| | | | | | - Aniruddha Mundhada
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center
| | - Tania P Sainz
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center
| | - Claudia Kettlun
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center
| | - Vishal Sahu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center
| | - Iman Sarami
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center
| | | | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
2
|
Cheng M, Chu AKY, Li Z, Yang S, Smith MD, Zhang Q, Brown NG, Marzluff WF, Bardeesy N, Milner JJ, Welch JD, Xiong Y, Baldwin AS. TET2 promotes tumor antigen presentation and T cell IFN-γ, which is enhanced by vitamin C. JCI Insight 2024; 9:e175098. [PMID: 39388288 PMCID: PMC11601905 DOI: 10.1172/jci.insight.175098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/08/2024] [Indexed: 10/12/2024] Open
Abstract
Immune evasion by tumors is promoted by low T cell infiltration, ineffective T cell activity directed against the tumor, and reduced tumor antigen presentation. The TET2 DNA dioxygenase gene is frequently mutated in hematopoietic malignancies and loss of TET enzymatic activity is found in a variety of solid tumors. We showed previously that vitamin C (VC), a cofactor of TET2, enhances tumor-associated T cell recruitment and checkpoint inhibitor therapy responses in a TET2-dependent manner. Using single-cell RNA sequencing (scRNA-seq) analysis performed on B16-OVA melanoma tumors, we have shown here that an additional function for TET2 in tumors is to promote expression of certain antigen presentation machinery genes, which is potently enhanced by VC. Consistently, VC promoted antigen presentation in cell-based and tumor assays in a TET2-dependent manner. Quantifying intercellular signaling from the scRNA-seq dataset showed that T cell-derived IFN-γ-induced signaling within the tumor and tumor microenvironment requires tumor-associated TET2 expression, which is enhanced by VC treatment. Analysis of patient tumor samples indicated that TET activity directly correlates with antigen presentation gene expression and with patient outcomes. Our results demonstrate the importance of tumor-associated TET2 activity as a critical mediator of tumor immunity, which is augmented by high-dose VC therapy.
Collapse
Affiliation(s)
- Meng Cheng
- Curriculum in Genetics and Molecular Biology, and
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Angel Ka Yan Chu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhijun Li
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, and
| | - Shiyue Yang
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew D. Smith
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Qi Zhang
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, and
| | - Nicholas G. Brown
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William F. Marzluff
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, and
| | - Nabeel Bardeesy
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - J. Justin Milner
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joshua D. Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computer Science and Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Yue Xiong
- Cullgen, Inc., San Diego, California, USA
| | - Albert S. Baldwin
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Honer MA, Ferman BI, Gray ZH, Bondarenko EA, Whetstine JR. Epigenetic modulators provide a path to understanding disease and therapeutic opportunity. Genes Dev 2024; 38:473-503. [PMID: 38914477 PMCID: PMC11293403 DOI: 10.1101/gad.351444.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.
Collapse
Affiliation(s)
- Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
4
|
Dennis E, Murach M, Blackburn CM, Marshall M, Root K, Pattarabanjird T, Deroissart J, Erickson LD, Binder CJ, Bekiranov S, McNamara CA. Loss of TET2 increases B-1 cell number and IgM production while limiting CDR3 diversity. Front Immunol 2024; 15:1380641. [PMID: 38601144 PMCID: PMC11004297 DOI: 10.3389/fimmu.2024.1380641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM.
Collapse
Affiliation(s)
- Emily Dennis
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Maria Murach
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Cassidy M.R. Blackburn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Melissa Marshall
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Katherine Root
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Tanyaporn Pattarabanjird
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Justine Deroissart
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Loren D. Erickson
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Christoph J. Binder
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Bekiranov
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Coleen A. McNamara
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
5
|
Shi Y, Zhu Z, Chen Q, Chen X. DNA methylation regulates B cell activation via repressing Pax5 expression in teleost. Front Immunol 2024; 15:1363426. [PMID: 38404580 PMCID: PMC10884147 DOI: 10.3389/fimmu.2024.1363426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
In mammals, the transcription factor Pax5 is a key regulator of B cell development and maturation and specifically expressed in naive/mature B cells but repressed upon B cell activation. Despite the long-standing proposal that Pax5 repression is essential for proper B cell activation, the underlying mechanisms remain largely elusive. In this study, we used a teleost model to elucidate the mechanisms governing Pax5 repression during B cell activation. Treatment with lipopolysaccharide (LPS) and chitosan oligosaccharide (COS) significantly enhanced the antibody secreting ability and phagocytic capacity of IgM+ B cells in large yellow croaker (Larimichthys crocea), coinciding with upregulated expression of activation-related genes, such as Bcl6, Blimp1, and sIgM, and downregulated expression of Pax5. Intriguingly, two CpG islands were identified within the promoter region of Pax5. Both CpG islands exhibited hypomethylation in naive/mature B cells, while CpG island1 was specifically transited into hypermethylation upon B cell activation. Furthermore, treatment with DNA methylation inhibitor 5-aza-2'-deoxycytidine (AZA) prevented the hypermethylation of CpG island1, and concomitantly impaired the downregulation of Pax5 and activation of B cells. Finally, through in vitro methylation experiments, we demonstrated that DNA methylation exerts an inhibitory effect on promoter activities of Pax5. Taken together, our findings unveil a novel mechanism underlying Pax5 repression during B cell activation, thus promoting the understanding of B cell activation process.
Collapse
Affiliation(s)
- Yuan Shi
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhuo Zhu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiuxuan Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
6
|
Andreescu M. Epigenetic Alterations That Are the Backbone of Immune Evasion in T-cell Malignancies. Cureus 2024; 16:e51662. [PMID: 38179322 PMCID: PMC10766007 DOI: 10.7759/cureus.51662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/06/2024] Open
Abstract
Epigenetic alterations are heritable and enduring modifications in gene expression that play a pivotal role in immune evasion. These include alterations to noncoding RNA, DNA methylation, and histone modifications. DNA methylation plays a crucial role in normal cell growth and development but alterations in methylation patterns such as hypermethylation or hypomethylation can enable tumor and viral cells to evade host immune responses. Histone modifications can also inhibit immune responses by promoting the expression of genes involved in suppressing normal immune function. In the case of T-cell lymphoma, adult T-cell lymphomas (ATL) also undergo immune evasion through the exceptional function of its accessory and regulatory genes. Epigenetic therapies are emerging as a promising adjunct to traditional immunotherapy and chemotherapy regimens. Clinical trials are currently investigating the use of epigenetic therapies in combination with immunotherapies and chemotherapies for more effective treatment of ATL and other cancers. This review highlights epigenetic alterations that are widely found in T-cell malignancies.
Collapse
|
7
|
Carty SA, Murga-Zamalloa CA, Wilcox RA. SOHO State of the Art Updates and Next Questions | New Pathways and New Targets in PTCL: Staying on Target. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:561-574. [PMID: 37142534 PMCID: PMC10565700 DOI: 10.1016/j.clml.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
While the peripheral T-cell lymphomas (PTCL) remain a therapeutic challenge, and increasingly account for a disproportionate number of lymphoma-related deaths, improved understanding of disease pathogenesis and classification, and the development of novel therapeutic agents over the past decade, all provide reasons for a more optimistic outlook in the next. Despite their genetic and molecular heterogeneity, many PTCL are dependent upon signaling input provided by antigen, costimulatory, and cytokine receptors. While gain-of-function alterations effecting these pathways are recurrently observed in many PTCL, more often than not, signaling remains ligand-and tumor microenvironment (TME)-dependent. Consequently, the TME and its constituents are increasingly recognized as "on target". Utilizing a "3 signal" model, we will review new-and old-therapeutic targets that are relevant for the more common nodal PTCL subtypes.
Collapse
Affiliation(s)
- Shannon A Carty
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | | | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
8
|
Liu Y, Derkach A, Lewis N, Zhu M, Zhang Y, Arcila M, Salles G, Dogan A, Xiao W. Clonal hematopoiesis in diffuse large B-cell lymphoma: clinical impact and genetic relatedness to lymphoma and therapy-related myeloid neoplasm. Haematologica 2023; 108:917-922. [PMID: 36384248 PMCID: PMC9973483 DOI: 10.3324/haematol.2022.281724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathology and Laboratory Medicine, Hematopathology Service; Department of Pathology and Laboratory Medicine, Molecular Diagnostic Service.
| | | | - Natasha Lewis
- Department of Pathology and Laboratory Medicine, Hematopathology Service
| | - Menglei Zhu
- Department of Pathology and Laboratory Medicine, Hematopathology Service; Department of Pathology and Laboratory Medicine, Molecular Diagnostic Service
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Cytogenetics Laboratory
| | - Maria Arcila
- Department of Pathology and Laboratory Medicine, Hematopathology Service; Department of Pathology and Laboratory Medicine, Molecular Diagnostic Service
| | - Gilles Salles
- Department of Medicine, Lymphoma Service Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Hematopathology Service
| | - Wenbin Xiao
- Department of Pathology and Laboratory Medicine, Hematopathology Service.
| |
Collapse
|
9
|
Lu Z, Liu R, Wang Y, Jiao M, Li Z, Wang Z, Huang C, Shi G, Ke A, Wang L, Fu Y, Xia J, Wen H, Zhou J, Wang X, Ye D, Fan J, Chu Y, Cai J. Ten-eleven translocation-2 inactivation restrains IL-10-producing regulatory B cells to enable antitumor immunity in hepatocellular carcinoma. Hepatology 2023; 77:745-759. [PMID: 35243663 DOI: 10.1002/hep.32442] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS IL-10-producing regulatory B cells (IL-10 + B cells), a dominant regulatory B cell (Breg) subset, foster tumor progression. However, the mechanisms underlying their generation in HCC are poorly understood. Ten-eleven translocation-2 (TET2), a predominant epigenetic regulatory enzyme in B cells, regulates gene expression by catalyzing demethylation of 5-methylcytosine into 5-hydroxymethyl cytosine (5hmC). In this study, we investigated the role of TET2 in IL-10 + B cell generation in HCC and its prospects for clinical application. APPROACH AND RESULTS TET2 activation in B cells triggered by oxidative stress from the HCC microenvironment promoted IL-10 expression, whereas adoptive transfer of Tet2 -deficient B cells suppressed HCC progression. The aryl hydrocarbon receptor is required for TET2 to hydroxylate Il10 . In addition, high levels of IL-10, TET2, and 5hmc in B cells indicate poor prognosis in patients with HCC. Moreover, we determined TET2 activity using 5hmc in B cells to evaluate the efficacy of anti-programmed death 1 (anti-PD-1) therapy. Notably, TET2 inhibition in B cells facilitates antitumor immunity to improve anti-PD-1 therapy for HCC. CONCLUSIONS Our findings propose a TET2-dependent epigenetic intervention targeting IL-10 + B cell generation during HCC progression and identify the inhibition of TET2 activity as a promising combination therapy with immune checkpoint inhibitors for HCC.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Liver Surgery and Transplantation , Liver Cancer Institute , Zhongshan Hospital, Fudan University , Shanghai , P.R. China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education) , Zhongshan Hospital, Fudan University , Shanghai , P.R. China.,Department of Immunology, School of Basic Medical Sciences , Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai , P.R. China
| | - Ronghua Liu
- Shanghai Fifth People's Hospital , Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai , P.R. China
| | - Yining Wang
- Department of Liver Surgery and Transplantation , Liver Cancer Institute , Zhongshan Hospital, Fudan University , Shanghai , P.R. China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education) , Zhongshan Hospital, Fudan University , Shanghai , P.R. China
| | - Mengxia Jiao
- Department of Immunology, School of Basic Medical Sciences , Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai , P.R. China
| | - Zhongchen Li
- Department of Liver Surgery and Transplantation , Liver Cancer Institute , Zhongshan Hospital, Fudan University , Shanghai , P.R. China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education) , Zhongshan Hospital, Fudan University , Shanghai , P.R. China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences , Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai , P.R. China
| | - Cheng Huang
- Department of Liver Surgery and Transplantation , Liver Cancer Institute , Zhongshan Hospital, Fudan University , Shanghai , P.R. China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education) , Zhongshan Hospital, Fudan University , Shanghai , P.R. China
| | - Guoming Shi
- Department of Liver Surgery and Transplantation , Liver Cancer Institute , Zhongshan Hospital, Fudan University , Shanghai , P.R. China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education) , Zhongshan Hospital, Fudan University , Shanghai , P.R. China
| | - Aiwu Ke
- Department of Liver Surgery and Transplantation , Liver Cancer Institute , Zhongshan Hospital, Fudan University , Shanghai , P.R. China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education) , Zhongshan Hospital, Fudan University , Shanghai , P.R. China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences , Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai , P.R. China
| | - Ying Fu
- Department of Immunology, School of Basic Medical Sciences , Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai , P.R. China
| | - Jie Xia
- Shanghai Fifth People's Hospital , Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai , P.R. China
| | - Haoyu Wen
- Department of Thoracic Surgery , Zhongshan Hospital, Fudan University , Shanghai , P.R. China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation , Liver Cancer Institute , Zhongshan Hospital, Fudan University , Shanghai , P.R. China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education) , Zhongshan Hospital, Fudan University , Shanghai , P.R. China
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation , Liver Cancer Institute , Zhongshan Hospital, Fudan University , Shanghai , P.R. China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education) , Zhongshan Hospital, Fudan University , Shanghai , P.R. China
| | - Dan Ye
- Huashan Hospital, Shanghai Key Laboratory of Medical Epigenetics , International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences , Fudan University , Shanghai , P.R. China
| | - Jia Fan
- Department of Liver Surgery and Transplantation , Liver Cancer Institute , Zhongshan Hospital, Fudan University , Shanghai , P.R. China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education) , Zhongshan Hospital, Fudan University , Shanghai , P.R. China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences , Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences , Fudan University , Shanghai , P.R. China
| | - Jiabin Cai
- Department of Liver Surgery and Transplantation , Liver Cancer Institute , Zhongshan Hospital, Fudan University , Shanghai , P.R. China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education) , Zhongshan Hospital, Fudan University , Shanghai , P.R. China
| |
Collapse
|
10
|
Epigenetic Modification of Cytosines in Hematopoietic Differentiation and Malignant Transformation. Int J Mol Sci 2023; 24:ijms24021727. [PMID: 36675240 PMCID: PMC9863985 DOI: 10.3390/ijms24021727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The mammalian DNA methylation landscape is established and maintained by the combined activities of the two key epigenetic modifiers, DNA methyltransferases (DNMT) and Ten-eleven-translocation (TET) enzymes. Once DNMTs produce 5-methylcytosine (5mC), TET proteins fine-tune the DNA methylation status by consecutively oxidizing 5mC to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives. The 5mC and oxidized methylcytosines are essential for the maintenance of cellular identity and function during differentiation. Cytosine modifications with DNMT and TET enzymes exert pleiotropic effects on various aspects of hematopoiesis, including self-renewal of hematopoietic stem/progenitor cells (HSPCs), lineage determination, differentiation, and function. Under pathological conditions, these enzymes are frequently dysregulated, leading to loss of function. In particular, the loss of DNMT3A and TET2 function is conspicuous in diverse hematological disorders, including myeloid and lymphoid malignancies, and causally related to clonal hematopoiesis and malignant transformation. Here, we update recent advances in understanding how the maintenance of DNA methylation homeostasis by DNMT and TET proteins influences normal hematopoiesis and malignant transformation, highlighting the potential impact of DNMT3A and TET2 dysregulation on clonal dominance and evolution of pre-leukemic stem cells to full-blown malignancies. Clarification of the normal and pathological functions of DNA-modifying epigenetic regulators will be crucial to future innovations in epigenetic therapies for treating hematological disorders.
Collapse
|
11
|
Li S. Inferring the Cancer Cellular Epigenome Heterogeneity via DNA Methylation Patterns. Cancer Treat Res 2023; 190:375-393. [PMID: 38113008 DOI: 10.1007/978-3-031-45654-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Tumor cells evolve through space and time, generating genetically and phenotypically diverse cancer cell populations that are continually subjected to the selection pressures of their microenvironment and cancer treatment.
Collapse
Affiliation(s)
- Sheng Li
- The Jackson Laboratory for Genomic Medicine and Cancer Center, Farmington, USA.
| |
Collapse
|
12
|
de Leval L, Alizadeh AA, Bergsagel PL, Campo E, Davies A, Dogan A, Fitzgibbon J, Horwitz SM, Melnick AM, Morice WG, Morin RD, Nadel B, Pileri SA, Rosenquist R, Rossi D, Salaverria I, Steidl C, Treon SP, Zelenetz AD, Advani RH, Allen CE, Ansell SM, Chan WC, Cook JR, Cook LB, d’Amore F, Dirnhofer S, Dreyling M, Dunleavy K, Feldman AL, Fend F, Gaulard P, Ghia P, Gribben JG, Hermine O, Hodson DJ, Hsi ED, Inghirami G, Jaffe ES, Karube K, Kataoka K, Klapper W, Kim WS, King RL, Ko YH, LaCasce AS, Lenz G, Martin-Subero JI, Piris MA, Pittaluga S, Pasqualucci L, Quintanilla-Martinez L, Rodig SJ, Rosenwald A, Salles GA, San-Miguel J, Savage KJ, Sehn LH, Semenzato G, Staudt LM, Swerdlow SH, Tam CS, Trotman J, Vose JM, Weigert O, Wilson WH, Winter JN, Wu CJ, Zinzani PL, Zucca E, Bagg A, Scott DW. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood 2022; 140:2193-2227. [PMID: 36001803 PMCID: PMC9837456 DOI: 10.1182/blood.2022015854] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Ash A. Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - P. Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ
| | - Elias Campo
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Andrew Davies
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Steven M. Horwitz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ari M. Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - William G. Morice
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Ryan D. Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Bertrand Nadel
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Stefano A. Pileri
- Haematopathology Division, IRCCS, Istituto Europeo di Oncologia, IEO, Milan, Italy
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Davide Rossi
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | | | - Andrew D. Zelenetz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Ranjana H. Advani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Carl E. Allen
- Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | | | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - James R. Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Lucy B. Cook
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kieron Dunleavy
- Division of Hematology and Oncology, Georgetown Lombardi Comprehensive Cancer Centre, Georgetown University Hospital, Washington, DC
| | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Philippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France
- Faculty of Medicine, IMRB, INSERM U955, University of Paris-Est Créteil, Créteil, France
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - John G. Gribben
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Olivier Hermine
- Service D’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Eric D. Hsi
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elaine S. Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Toyko, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Won Seog Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Rebecca L. King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Young H. Ko
- Department of Pathology, Cheju Halla General Hospital, Jeju, Korea
| | | | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - José I. Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miguel A. Piris
- Department of Pathology, Jiménez Díaz Foundation University Hospital, CIBERONC, Madrid, Spain
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Pathology & Cell Biology, Columbia University, New York, NY
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Gilles A. Salles
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, Navarra, Cancer Center of University of Navarra, Cima Universidad de NavarraI, Instituto de Investigacion Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Céncer, Pamplona, Spain
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Gianpietro Semenzato
- Department of Medicine, University of Padua and Veneto Institute of Molecular Medicine, Padova, Italy
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven H. Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Judith Trotman
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
| | - Julie M. Vose
- Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Oliver Weigert
- Department of Medicine III, LMU Hospital, Munich, Germany
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Pier L. Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istitudo di Ematologia “Seràgnoli” and Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Emanuele Zucca
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
|
14
|
Vlachiotis S, Abolhassani H. Transcriptional regulation of B cell class-switch recombination: the role in development of noninfectious complications. Expert Rev Clin Immunol 2022; 18:1145-1154. [DOI: 10.1080/1744666x.2022.2123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Stelios Vlachiotis
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Lou H, Ling GS, Cao X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target. J Autoimmun 2022; 132:102861. [PMID: 35872103 DOI: 10.1016/j.jaut.2022.102861] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ inflammatory damage and wide spectrum of autoantibodies. The autoantibodies, especially anti-dsDNA and anti-Sm autoantibodies are highly specific to SLE, and participate in the immune complex formation and inflammatory damage on multiple end-organs such as kidney, skin, and central nervous system (CNS). However, the underlying mechanisms of autoantibody-induced tissue damage and systemic inflammation are still not fully understood. Single cell analysis of autoreactive B cells and monoclonal antibody screening from patients with active SLE has improved our understanding on the origin of autoreactive B cells and the antigen targets of the pathogenic autoantibodies. B cell depletion therapies have been widely studied in the clinics, but the development of more specific therapies against the pathogenic B cell subset and autoantibodies with improved efficacy and safety still remain a big challenge. A more comprehensive autoantibody profiling combined with functional characterization of autoantibodies in diseases development will shed new insights on the etiology and pathogenesis of SLE and guide a specific treatment to individual SLE patients.
Collapse
Affiliation(s)
- Hantao Lou
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DR, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Guang Sheng Ling
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuetao Cao
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK; Nankai-Oxford International Advanced Institute, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
16
|
Gerecke C, Egea Rodrigues C, Homann T, Kleuser B. The Role of Ten-Eleven Translocation Proteins in Inflammation. Front Immunol 2022; 13:861351. [PMID: 35386689 PMCID: PMC8977485 DOI: 10.3389/fimmu.2022.861351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Ten-eleven translocation proteins (TET1-3) are dioxygenases that oxidize 5-methyldeoxycytosine, thus taking part in passive and active demethylation. TETs have shown to be involved in immune cell development, affecting from self-renewal of stem cells and lineage commitment to terminal differentiation. In fact, dysfunction of TET proteins have been vastly associated with both myeloid and lymphoid leukemias. Recently, there has been accumulating evidence suggesting that TETs regulate immune cell function during innate and adaptive immune responses, thereby modulating inflammation. In this work, we pursue to review the current and recent evidence on the mechanistic aspects by which TETs regulate immune cell maturation and function. We will also discuss the complex interplay of TET expression and activity by several factors to modulate a multitude of inflammatory processes. Thus, modulating TET enzymes could be a novel pharmacological approach to target inflammation-related diseases and myeloid and lymphoid leukemias, when their activity is dysregulated.
Collapse
Affiliation(s)
- Christian Gerecke
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Caue Egea Rodrigues
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Thomas Homann
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| |
Collapse
|
17
|
Romano R, Cillo F, Moracas C, Pignata L, Nannola C, Toriello E, De Rosa A, Cirillo E, Coppola E, Giardino G, Brunetti-Pierri N, Riccio A, Pignata C. Epigenetic Alterations in Inborn Errors of Immunity. J Clin Med 2022; 11:1261. [PMID: 35268351 PMCID: PMC8910960 DOI: 10.3390/jcm11051261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
The epigenome bridges environmental factors and the genome, fine-tuning the process of gene transcription. Physiological programs, including the development, maturation and maintenance of cellular identity and function, are modulated by intricate epigenetic changes that encompass DNA methylation, chromatin remodeling, histone modifications and RNA processing. The collection of genome-wide DNA methylation data has recently shed new light into the potential contribution of epigenetics in pathophysiology, particularly in the field of immune system and host defense. The study of patients carrying mutations in genes encoding for molecules involved in the epigenetic machinery has allowed the identification and better characterization of environment-genome interactions via epigenetics as well as paving the way for the development of new potential therapeutic options. In this review, we summarize current knowledge of the role of epigenetic modifications in the immune system and outline their potential involvement in the pathogenesis of inborn errors of immunity.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Francesca Cillo
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Cristina Moracas
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Chiara Nannola
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Elisabetta Toriello
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Antonio De Rosa
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Emma Coppola
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Nicola Brunetti-Pierri
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Claudio Pignata
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| |
Collapse
|
18
|
Dissecting TET2 Regulatory Networks in Blood Differentiation and Cancer. Cancers (Basel) 2022; 14:cancers14030830. [PMID: 35159097 PMCID: PMC8834528 DOI: 10.3390/cancers14030830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Bone marrow disorders such as leukemia and myelodysplastic syndromes are characterized by abnormal healthy blood cells production and function. Uncontrolled growth and impaired differentiation of white blood cells hinder the correct development of healthy cells in the bone marrow. One of the most frequent alterations that appear to initiate this deregulation and persist in leukemia patients are mutations in epigenetic regulators such as TET2. This review summarizes the latest molecular findings regarding TET2 functions in hematopoietic cells and their potential implications in blood cancer origin and evolution. Our goal was to encompass and interlink up-to-date discoveries of the convoluted TET2 functional network to provide a more precise overview of the leukemic burden of this protein. Abstract Cytosine methylation (5mC) of CpG is the major epigenetic modification of mammalian DNA, playing essential roles during development and cancer. Although DNA methylation is generally associated with transcriptional repression, its role in gene regulation during cell fate decisions remains poorly understood. DNA demethylation can be either passive or active when initiated by TET dioxygenases. During active demethylation, transcription factors (TFs) recruit TET enzymes (TET1, 2, and 3) to specific gene regulatory regions to first catalyze the oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) and subsequently to higher oxidized cytosine derivatives. Only TET2 is frequently mutated in the hematopoietic system from the three TET family members. These mutations initially lead to the hematopoietic stem cells (HSCs) compartment expansion, eventually evolving to give rise to a wide range of blood malignancies. This review focuses on recent advances in characterizing the main TET2-mediated molecular mechanisms that activate aberrant transcriptional programs in blood cancer onset and development. In addition, we discuss some of the key outstanding questions in the field.
Collapse
|
19
|
TET deficiency perturbs mature B cell homeostasis and promotes oncogenesis associated with accumulation of G-quadruplex and R-loop structures. Nat Immunol 2021; 23:99-108. [PMID: 34937926 PMCID: PMC8772520 DOI: 10.1038/s41590-021-01087-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 11/02/2021] [Indexed: 01/02/2023]
Abstract
Enzymes of the TET family are methylcytosine dioxygenases that undergo frequent mutational or functional inactivation in human cancers. Recurrent loss-of-function mutations in TET proteins are frequent in human diffuse large B cell lymphoma (DLBCL). Here, we investigate the role of TET proteins in B cell homeostasis and development of B cell lymphomas with features of DLBCL. We show that deletion of Tet2 and Tet3 genes in mature B cells in mice perturbs B cell homeostasis and results in spontaneous development of germinal center (GC)-derived B cell lymphomas with increased G-quadruplexes and R-loops. At a genome-wide level, G-quadruplexes and R-loops were associated with increased DNA double-strand breaks (DSBs) at immunoglobulin switch regions. Deletion of the DNA methyltransferase DNMT1 in TET-deficient B cells prevented expansion of GC B cells, diminished the accumulation of G-quadruplexes and R-loops and delayed B lymphoma development, consistent with the opposing functions of DNMT and TET enzymes in DNA methylation and demethylation. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated depletion of nucleases and helicases that regulate G-quadruplexes and R-loops decreased the viability of TET-deficient B cells. Our studies suggest a molecular mechanism by which TET loss of function might predispose to the development of B cell malignancies.
Collapse
|
20
|
Ren A, Yin W, Miller H, Westerberg LS, Candotti F, Park CS, Lee P, Gong Q, Chen Y, Liu C. Novel Discoveries in Immune Dysregulation in Inborn Errors of Immunity. Front Immunol 2021; 12:725587. [PMID: 34512655 PMCID: PMC8429820 DOI: 10.3389/fimmu.2021.725587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
With the expansion of our knowledge on inborn errors of immunity (IEI), it gradually becomes clear that immune dysregulation plays an important part. In some cases, autoimmunity, hyperinflammation and lymphoproliferation are far more serious than infections. Thus, immune dysregulation has become significant in disease monitoring and treatment. In recent years, the wide application of whole-exome sequencing/whole-genome sequencing has tremendously promoted the discovery and further studies of new IEI. The number of discovered IEI is growing rapidly, followed by numerous studies of their pathogenesis and therapy. In this review, we focus on novel discovered primary immune dysregulation diseases, including deficiency of SLC7A7, CD122, DEF6, FERMT1, TGFB1, RIPK1, CD137, TET2 and SOCS1. We discuss their genetic mutation, symptoms and current therapeutic methods, and point out the gaps in this field.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Chan-Sik Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
The unique biology of germinal center B cells. Immunity 2021; 54:1652-1664. [PMID: 34380063 DOI: 10.1016/j.immuni.2021.07.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/08/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
Germinal center (GC) B cells are the source of the high-affinity, class-switched antibodies required for protective immunity. The unique biology of GC B cells involves iterative rounds of antibody gene somatic hypermutation coupled to multiple selection and differentiation pathways. Recent advances in areas such as single cell and gene editing technologies have shed new light upon these complex and dynamic processes. We review these findings here and integrate them into the current understanding of GC B cell replication and death, the retention of high-affinity and class-switched B cells in the GC, and differentiation into plasma and memory cell effectors. We also discuss how the biology of GC responses relates to vaccine effectiveness and outline current and future challenges in the field.
Collapse
|
22
|
Ohki K, Kiyokawa N, Watanabe S, Iwafuchi H, Nakazawa A, Ishiwata K, Ogata-Kawata H, Nakabayashi K, Okamura K, Tanaka F, Fukano R, Hata K, Mori T, Moriya Saito A, Hayashi Y, Taga T, Sekimizu M, Kobayashi R. Characteristics of genetic alterations of peripheral T-cell lymphoma in childhood including identification of novel fusion genes: the Japan Children's Cancer Group (JCCG). Br J Haematol 2021; 194:718-729. [PMID: 34258755 DOI: 10.1111/bjh.17639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022]
Abstract
Peripheral T-cell lymphoma (PTCL) is a group of heterogeneous non-Hodgkin lymphomas showing a mature T-cell or natural killer cell phenotype, but its molecular abnormalities in paediatric patients remain unclear. By employing next-generation sequencing and multiplex ligation-dependent probe amplification of tumour samples from 26 patients, we identified somatic alterations in paediatric PTCL including Epstein-Barr virus (EBV)-negative (EBV- ) and EBV-positive (EBV+ ) patients. As recurrent mutational targets for PTCL, we identified several previously unreported genes, including TNS1, ZFHX3, LRP2, NCOA2 and HOXA1, as well as genes previously reported in adult patients, e.g. TET2, CDKN2A, STAT3 and TP53. However, for other reported mutations, VAV1-related abnormalities were absent and mutations of NRAS, GATA3 and JAK3 showed a low frequency in our cohort. Concerning the association of EBV infection, two novel fusion genes: STAG2-AFF2 and ITPR2-FSTL4, and deletion and alteration of CDKN2A/2B, LMO1 and HOXA1 were identified in EBV- PTCL, but not in EBV+ PTCL. Conversely, alterations of PCDHGA4, ADAR, CUL9 and TP53 were identified only in EBV+ PTCL. Our observations suggest a clear difference in the molecular mechanism of onset between paediatric and adult PTCL and a difference in the characteristics of genetic alterations between EBV- and EBV+ paediatric PTCL.
Collapse
Affiliation(s)
- Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoru Watanabe
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideto Iwafuchi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pathology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Astuko Nakazawa
- Department of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Fumiko Tanaka
- Department of Pediatrics, Saiseikai Yokohamashi Nanbu Hospital, Kanagawa, Japan
| | - Reiji Fukano
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tetsuya Mori
- Department of Pediatrics, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Akiko Moriya Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yasuhide Hayashi
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Masahiro Sekimizu
- Department of Pediatrics, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Ryoji Kobayashi
- Department of Hematology/Oncology for Children and Adolescents, Sapporo Hokuyu Hospital, Hokkaido, Japan
| | | |
Collapse
|
23
|
Cao B, Guo X, Huang L, Wang B, Wang W, Han D, Zhang W, Zhong K. Methylation silencing CDH23 is a poor prognostic marker in diffuse large B-cell lymphoma. Aging (Albany NY) 2021; 13:17768-17788. [PMID: 34252883 PMCID: PMC8312441 DOI: 10.18632/aging.203268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Cadherin-23(CDH23) mediates homotypic and heterotypic cell-cell adhesions in cancer cells. However, the epigenetic regulation, the biological functions, the mechanisms and the prognostic value of CDH23 in diffuse large B-cell lymphoma (DLBCL) are still unclear. The Gene Expression Profiling Interactive Analysis (GEPIA) and the Gene Expression Omnibus (GEO) database were employed to analyze the CDH23 expression level in DLBCL. The correlation of CDH23 expression and methylation was analyzed by LinkedOmics database. The prognostic value was analyzed via GEPIA. Correlated genes, target kinase, target miRNA, target transcription factor and biological functions were identified by LinkedOmics and GeneMANIA database. The relationship between CDH23 and the immune cell infiltration was explored by the Tumor Immune Estimation Resource (TIMER). The expression of CDH23 was reduced by DNA methylation significantly in DLBCL tissue. Reduction of CDH23 represented poor outcome of DLBCL patients. Functional enrichment analysis showed that CDH23 mainly enriched in cancer cell growth, cell metastasis, cell adhesion, cell cycle, drug catabolic process, leukocyte mediated immunity and DNA repair by some cancer related kinases, miRNAs and transcription factors. These results indicated that methylated reduction of CDH23 represented poor outcome of DLBCL. CDH23 is associated with essential biological functions and key molecules in DLBCL. CDH23 may play crucial roles in DLBCL tumorigenesis. Our results lay a foundation for further investigation of the role of CDH23 in DLBCL tumorigenesis.
Collapse
Affiliation(s)
- Baoping Cao
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Xiaochuan Guo
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Lefu Huang
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Bin Wang
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Weixia Wang
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Dong Han
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Weijing Zhang
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| | - Kaili Zhong
- Department of Lymphoma, Beijing Shijitan Hospital, Capital Medical University, Haidian 100038, Beijing, China
| |
Collapse
|
24
|
Li J, Li L, Sun X, Deng T, Huang G, Li X, Xie Z, Zhou Z. Role of Tet2 in Regulating Adaptive and Innate Immunity. Front Cell Dev Biol 2021; 9:665897. [PMID: 34222235 PMCID: PMC8247589 DOI: 10.3389/fcell.2021.665897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
Accumulated evidence indicates that epigenetic modifications play central roles in gene expression regulation and participate in developing many autoimmune and autoinflammatory diseases. Mechanistically, epigenetic modifications act as a bridge between environmental and cellular factors and susceptibility genes. DNA methylation is a critical epigenetic modification that is regulated by ten-eleven translocation (TET) enzymes. Accumulating evidence has revealed that TET family proteins function as gene regulators and antitumor drug targets mainly because of their ability to oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Recently, the effect of Tet2, an essential TET protein, on the development of autoimmune diseases has been explored. In this review, we summarize the current understanding of Tet2 in immune response regulation, clarify the mechanisms of Tet2 in B and T cell differentiation and function, and discuss the opposing effects of Tet2 on inflammatory gene expression in the immune system to provide new potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lifang Li
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Sun
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
25
|
TET2 Inhibits PD-L1 Gene Expression in Breast Cancer Cells through Histone Deacetylation. Cancers (Basel) 2021; 13:cancers13092207. [PMID: 34064441 PMCID: PMC8125390 DOI: 10.3390/cancers13092207] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Programmed cell death ligand 1 (PD-L1) is an essential immune checkpoint molecule that helps tumor cells to escape the immune surveillance. The aim of the current study was to investigate the epigenetic mechanisms underlying the aberrant expression of PD-L1 in breast cancer cells. Here, we identified TET2 as a negative regulator of PD-L1 gene transcription in breast cancer cells. Mechanistically, TET2 recruits HDAC1/2 to the PD-L1 promoter and facilitates the deacetylation of H3K27ac, resulting to the suppression of PD-L1 gene transcription. Our work reveals an unanticipated role of TET2-HDAC1/2 complex in the regulation of PD-L1 gene expression, providing new insights into the epigenetic mechanisms that drive immune evasion during breast cancer pathogenesis. Abstract Activation of PD-1/PD-L1 checkpoint is a critical step for the immune evasion of malignant tumors including breast cancer. However, the epigenetic mechanism underlying the aberrant expression of PD-L1 in breast cancer cells remains poorly understood. To investigate the role of TET2 in the regulation of PD-L1 gene expression, quantitative reverse transcription PCR (RT-qPCR), Western blotting, chromatin immunoprecipitation (ChIP) assay and MeDIP/hMeDIP-qPCR were performed on MCF7 and MDA-MB-231 human breast cancer cells. Here, we reported that TET2 depletion upregulated PD-L1 gene expression in MCF7 cells. Conversely, ectopic expression of TET2 inhibited PD-L1 gene expression in MDA-MB-231 cells. Mechanistically, TET2 protein recruits histone deacetylases (HDACs) to PD-L1 gene promoter and orchestrates a repressive chromatin structure to suppress PD-L1 gene transcription, which is likely independent of DNA demethylation. Consistently, treatment with HDAC inhibitors upregulated PD-L1 gene expression in wild-type (WT) but not TET2 KO MCF7 cells. Furthermore, analysis of the CCLE and TCGA data showed a negative correlation between TET2 and PD-L1 expression in breast cancer. Taken together, our results identify a new epigenetic regulatory mechanism of PD-L1 gene transcription, linking the catalytic activity-independent role of TET2 to the anti-tumor immunity in breast cancer.
Collapse
|
26
|
Isshiki Y, Melnick A. Epigenetic Mechanisms of Therapy Resistance in Diffuse Large B Cell Lymphoma (DLBCL). Curr Cancer Drug Targets 2021; 21:274-282. [PMID: 33413063 PMCID: PMC10591517 DOI: 10.2174/1568009620666210106122750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/02/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common histological subtype of non-Hodgkin B cell lymphoma (NHL), and manifests highly heterogeneous genetic/phenotypic characteristics as well as variable responses to conventional immunochemotherapy. Genetic profiling of DLBCL patients has revealed highly recurrent mutations of epigenetic regulator genes such as CREBBP, KMT2D, EZH2 and TET2. These mutations drive malignant transformation through aberrant epigenetic programming of B-cells and may influence clinical outcomes. These and other chromatin modifier genes also play critical roles in normal B-cells, as they undergo the various phenotypic transitions characteristic of the humoral immune response. Many of these functions have to do with impairing immune surveillance and may critically mediate resistance to immunotherapies. In this review, we describe how epigenetic dysfunction induces lymphomagenesis and discuss ways of implementing precision epigenetic therapies to reverse these immune resistant phenotypes.
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/pharmacology
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic
- Genetic Heterogeneity
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mutation
- Neoplasm Proteins/classification
- Neoplasm Proteins/genetics
Collapse
Affiliation(s)
- Yusuke Isshiki
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
27
|
Oleksiewicz U, Machnik M. Causes, effects, and clinical implications of perturbed patterns within the cancer epigenome. Semin Cancer Biol 2020; 83:15-35. [PMID: 33359485 DOI: 10.1016/j.semcancer.2020.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Somatic mutations accumulating over a patient's lifetime are well-defined causative factors that fuel carcinogenesis. It is now clear, however, that epigenomic signature is also largely perturbed in many malignancies. These alterations support the transcriptional program crucial for the acquisition and maintenance of cancer hallmarks. Epigenetic instability may arise due to the genetic mutations or transcriptional deregulation of the proteins implicated in epigenetic signaling. Moreover, external stimulation and physiological aging may also participate in this phenomenon. The epigenomic signature is frequently associated with a cell of origin, as well as with tumor stage and differentiation, which all reflect its high heterogeneity across and within various tumors. Here, we will overview the current understanding of the causes and effects of the altered and heterogeneous epigenomic landscape in cancer. We will focus mainly on DNA methylation and post-translational histone modifications as the key regulatory epigenetic signaling marks. In addition, we will describe how this knowledge is translated into the clinic. We will particularly concentrate on the applicability of epigenetic alterations as biomarkers for improved diagnosis, prognosis, and prediction. Finally, we will also review current developments regarding epi-drug usage in clinical and experimental settings.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland.
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, Poznan, Poland; Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
28
|
Moroney JB, Chupp DP, Xu Z, Zan H, Casali P. Epigenetics of the antibody and autoantibody response. Curr Opin Immunol 2020; 67:75-86. [PMID: 33176228 PMCID: PMC7744442 DOI: 10.1016/j.coi.2020.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022]
Abstract
B cell differentiation driven by microbial antigens leads to production of anti-microbial antibodies, such as those neutralizing viruses, bacteria or bacterial toxin, that are class-switched (IgG and IgA) and somatically hypermutated (maturation of the antibody response) as well as secreted in large volume by plasma cells. Similar features characterize pathogenic antibodies to self-antigens in autoimmunity, reflecting the critical role of class switch DNA recombination (CSR), somatic hypermutation (SHM) and plasma cell differentiation in the generation of antibodies to not only foreign antigens but also self-antigens (autoantibodies). Central to CSR/SHM and plasma cell differentiation are AID, a potent DNA cytidine deaminase encoded by Aicda, and Blimp-1, a transcription factor encoded by Prdm1. B cell-intrinsic expression of Aicda and Prdm1 is regulated by epigenetic elements and processes, including DNA methylation, histone post-translational modifications and non-coding RNAs, particularly miRNAs. Here, we will discuss: B cell-intrinsic epigenetic processes that regulate antibody and autoantibody responses; how epigenetic dysregulation alters CSR/SHM and plasma cell differentiation, thereby leading to autoantibody responses, as in systemic lupus; and, how these can be modulated by nutrients, metabolites, and hormones through changes in B cell-intrinsic epigenetic mechanisms, which can provide therapeutic targets in autoimmunity.
Collapse
Affiliation(s)
- Justin B Moroney
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Daniel P Chupp
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Zhenming Xu
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Hong Zan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Paolo Casali
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|