1
|
Yu H, Ren L, Wang Y, Wang H, Zhang M, Pan C, Yuan L, Zhang J, Epstein IR, Gao Q. Chiral Locomotion Transitions of an Active Gel and Their Chemomechanical Origin. J Am Chem Soc 2025; 147:5182-5188. [PMID: 39876696 DOI: 10.1021/jacs.4c15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Transitions between chiral rotational locomotion modes occur in a variety of active individuals and populations, such as sidewinders, self-propelled chiral droplets, and dense bacterial suspensions. Despite recent progress in the study of active matter, general principles governing rotational chiral transition remain elusive. Here, we study, experimentally and theoretically, rotational locomotion and its chiral transition in a 2D polyacrylamide (PAAm)-based BZ gel driven by Belousov-Zhabotinsky reaction-diffusion waves. Analysis reveals that the phase difference (Δφ) between orthogonal components of kinematic quantities, such as chemomechanical force, displacement, and velocity, determines rotational chirality, i.e., chiral locomotion transition occurs when Δφ changes sign. This criterion is illustrated with a kinematic equation, which can be applied to biological and physical systems, including super-rotational/superhelical locomotion reported recently during E. gracilis swimming and sperm navigation. This work has potential applications for the design of functional materials and intelligent robots.
Collapse
Affiliation(s)
- Haodi Yu
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Lin Ren
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P.R. China
| | - Yunjie Wang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Hui Wang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Meng Zhang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Changwei Pan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Ling Yuan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Jiujun Zhang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
| | - Irving R Epstein
- Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham 02454-9110, Massachusetts, United States
| | - Qingyu Gao
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| |
Collapse
|
2
|
Paikar A, Li X, Avram L, Smith BS, Sütő I, Horváth D, Rennert E, Qiu Y, Tóth Á, Vaikuntanathan S, Semenov SN. Chemical waves in reaction-diffusion networks of small organic molecules. Chem Sci 2025; 16:659-669. [PMID: 39660295 PMCID: PMC11626756 DOI: 10.1039/d4sc06351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Chemical waves represent one of the fundamental behaviors that emerge in nonlinear, out-of-equilibrium chemical systems. They also play a central role in regulating behaviors and development of biological organisms. Nevertheless, understanding their properties and achieving their rational synthesis remains challenging. In this work, we obtained traveling chemical waves using synthetic organic molecules. To accomplish this, we ran a thiol-based reaction network in an unstirred flow reactor. Our observations revealed single or multiple waves moving in either the same or opposite directions, a behavior controlled by the geometry of our reactor. A numerical model can fully reproduce this behavior using the proposed reaction network. To better understand the formation of waves, we varied the diffusion coefficient of the fast inhibitor component of the reaction network by attaching polyethylene glycol tails with different lengths to maleimide and studied how these changes affect the properties of the waves and conditions for their sustained production. These studies point towards the importance of the molecular titration network motif in controlling the production of chemical waves in this system. Furthermore, we used machine learning (ML) tools to identify phase boundaries for classes of dynamic behaviors of this system, thus demonstrating the applicability of ML tools for the study of experimental nonlinear reaction-diffusion systems.
Collapse
Affiliation(s)
- Arpita Paikar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot Israel
| | - Xiuxiu Li
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot Israel
- Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology Shenzhen China
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot Israel
| | - Barbara S Smith
- School of Biological and Health Systems Engineering, Arizona State University Tempe Arizona USA
| | - István Sütő
- Department of Physical Chemistry and Materials Science, University of Szeged Szeged Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged Szeged Hungary
| | - Elisabeth Rennert
- Graduate Program in Biophysical Sciences, University of Chicago Chicago IL USA
| | - Yuqing Qiu
- Department of Chemistry, University of Chicago Chicago IL USA
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged Szeged Hungary
| | | | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
3
|
Tavani F, Frateloreto F, Del Giudice D, Capocasa G, Di Berto Mancini M, Busato M, Lanzalunga O, Di Stefano S, D'Angelo P. Coupled X-ray Absorption/UV-vis Monitoring of a Prototypical Oscillating Reaction. J Phys Chem Lett 2024; 15:7312-7319. [PMID: 38984831 DOI: 10.1021/acs.jpclett.4c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Oscillating reactions are among the most intriguing phenomena in chemistry, but many questions on their mechanisms still remain unanswered, due to their intrinsic complexity and to the low sensitivity of the most common spectroscopic techniques toward the reaction brominated species. In this work, we investigate the cerium ion-catalyzed Belousov-Zhabotinsky (BZ) oscillating reaction by means of time-resolved X-ray absorption spectroscopy (XAS), in combination with UV-vis spectroscopy and unsupervised machine learning, multivariate curve resolution, and kinetic analyses. Altogether, we provide new insights into the collective oscillatory behavior of the key brominated species involved in the classical BZ reaction and measure previously unreported oscillations in their concentrations through Br K-edge XAS, while simultaneously tracking the oscillatory Ce4+-to-Ce3+ transformation by coupling XAS with UV-vis spectroscopy. Our work evidences the potential of the XAS technique to investigate the mechanisms of oscillatory chemical systems whose species are often not detectable with conventional experimental methods.
Collapse
Affiliation(s)
- Francesco Tavani
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Federico Frateloreto
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Marika Di Berto Mancini
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Matteo Busato
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| | - Paola D'Angelo
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
4
|
Li X, Fomitskaya P, Smaliak VA, Smith BS, Skorb EV, Semenov SN. Selenium catalysis enables negative feedback organic oscillators. Nat Commun 2024; 15:3316. [PMID: 38632338 PMCID: PMC11024130 DOI: 10.1038/s41467-024-47714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The construction of materials regulated by chemical reaction networks requires regulatory motifs that can be stacked together into systems with desired properties. Multiple autocatalytic reactions producing thiols are known. However, negative feedback loop motifs are unavailable for thiol chemistry. Here, we develop a negative feedback loop based on the selenocarbonates. In this system, thiols induce the release of aromatic selenols that catalyze the oxidation of thiols by organic peroxides. This negative feedback loop has two important features. First, catalytic oxidation of thiols follows Michaelis-Menten-like kinetics, thus increasing nonlinearity for the negative feedback. Second, the strength of the negative feedback can be tuned by varying substituents in selenocarbonates. When combined with the autocatalytic production of thiols in a flow reactor, this negative feedback loop induces sustained oscillations. The availability of this negative feedback motif enables the future construction of oscillatory, homeostatic, adaptive, and other regulatory circuits in life-inspired systems and materials.
Collapse
Affiliation(s)
- Xiuxiu Li
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen, China
| | - Polina Fomitskaya
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Viktoryia A Smaliak
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Barbara S Smith
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russia
| | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Sukegawa T, Yamada Y, Maeda S. Simple model for synchronization of two Belousov-Zhabotinsky gels interacting mechanically. J Chem Phys 2024; 160:104901. [PMID: 38465685 DOI: 10.1063/5.0193892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
A Belousov-Zhabotinsky (BZ) gel is a unique biomimetic system that undergoes autonomous volume oscillations induced by the redox oscillation of the BZ reaction. In a previous study, researchers reported that the oscillations of two BZ gels coupled by compression were synchronized by a mechanical interaction. They mathematically explained the synchronization behavior using a phase oscillator model. As a different approach to the previous study, a physicochemical investigation of the phenomenon will lead to a better understanding of the functional biological rhythms essential for life. In this study, we construct a simple phenomenological model to understand the synchronization of BZ gels. The model consists of two parts. One is the dynamics of the chemical reactions in the BZ gels. We use a phenomenological model based on the Oregonator for the BZ reaction. The other is the dynamics of the mechanical deformation of the BZ gel. Using approximations, we extract the parameters essential for the synchronization of a mechanical interaction. Thus, we can derive a novel equation for the deformation dynamics of mechanically coupled BZ gels. By combining these two parts, we perform numerical calculations. This allows us to find that the synchronization of the two BZ gels is less likely to occur under stronger compression. We explain this trend through one physicochemical parameter in our model: the volume fraction of the BZ gel in the reduced state.
Collapse
Affiliation(s)
- Taro Sukegawa
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuhei Yamada
- Living Systems Materialogy Research Group, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Shingo Maeda
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Living Systems Materialogy Research Group, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
6
|
Blanc B, Agyapong JN, Hunter I, Galas JC, Fernandez-Nieves A, Fraden S. Collective chemomechanical oscillations in active hydrogels. Proc Natl Acad Sci U S A 2024; 121:e2313258121. [PMID: 38300869 PMCID: PMC10861864 DOI: 10.1073/pnas.2313258121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024] Open
Abstract
We report on the collective response of an assembly of chemomechanical Belousov-Zhabotinsky (BZ) hydrogel beads. We first demonstrate that a single isolated spherical BZ hydrogel bead with a radius below a critical value does not oscillate, whereas an assembly of the same BZ hydrogel beads presents chemical oscillation. A BZ chemical model with an additional flux of chemicals out of the BZ hydrogel captures the experimentally observed transition from oxidized nonoscillating to oscillating BZ hydrogels and shows this transition is due to a flux of inhibitors out of the BZ hydrogel. The model also captures the role of neighboring BZ hydrogel beads in decreasing the critical size for an assembly of BZ hydrogel beads to oscillate. We finally leverage the quorum sensing behavior of the collective to trigger their chemomechanical oscillation and discuss how this collective effect can be used to enhance the oscillatory strain of these active BZ hydrogels. These findings could help guide the eventual fabrication of a swarm of autonomous, communicating, and motile hydrogels.
Collapse
Affiliation(s)
- Baptiste Blanc
- Laboratoire Jean Perrin, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Paris75005, France
- Department of Condensed Matter Physics, University of Barcelona, Barcelona08028, Spain
- Department of Physics, Brandeis University, Waltham, MA02454
| | - Johnson N. Agyapong
- Department of Physics, Brandeis University, Waltham, MA02454
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY13244
| | - Ian Hunter
- Department of Physics, Brandeis University, Waltham, MA02454
| | - Jean-Christophe Galas
- Laboratoire Jean Perrin, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Paris75005, France
| | - Alberto Fernandez-Nieves
- Department of Condensed Matter Physics, University of Barcelona, Barcelona08028, Spain
- Institute of Complex Systems, University of Barcelona, Barcelona08028, Spain
- Institució Catalanade Recerca i Estudis Avançats, Barcelona08010, Spain
| | - Seth Fraden
- Department of Physics, Brandeis University, Waltham, MA02454
| |
Collapse
|
7
|
Bal S, Ghosh C, Parvin P, Das D. Temporal Self-Regulation of Mechanical Properties via Catalytic Amyloid Polymers of a Short Peptide. NANO LETTERS 2023; 23:9988-9994. [PMID: 37831889 DOI: 10.1021/acs.nanolett.3c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
We report a short peptide that accessed dynamic catalytic polymers to demonstrate four-stage (sol-gel-weak gel-strong gel) temporal self-regulation of its mechanical properties. The peptide exploited its intrinsic catalytic capabilities of manipulating C-C bonds (retro-aldolase-like) that resulted in a nonlinear variation in the catalytic rate. The seven-residue sequence exploited two lysines for binding and cleaving the thermodynamically activated substrate that subsequently led to the self-regulation of the mechanical strengths of the polymerized states as a function of time and reaction progress. Interestingly, the polymerization events were modulated by the different catalytic potentials of the two terminal lysines to cleave the substrate, covalently trap the electrophilic products, and subsequently control the mechanical properties of the system.
Collapse
Affiliation(s)
- Subhajit Bal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Chandranath Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Payel Parvin
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur 741246, India
| |
Collapse
|
8
|
Zhang B. Pressure and Light Multi-Physics Fields Comodulate the Multi-Length Scales of Chemical Wave Propagation in Diffusion-Fed Gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37209107 DOI: 10.1021/acs.langmuir.3c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During plant growth, the combined effects of multi-physics fields such as light, temperature, and material concentration create a complex multi-length scales phenomenon. However, the mechanism of multi-physical field interactions on biological multi-length scales has not been thoroughly investigated. In this paper, an open diffusion-fed system is constructed by coupling gels with a Belousov-Zhabotinsky (BZ) chemical reaction system. The multi-length scales propagation of chemical waves in the gel system under the combined effect of multi-physical fields such as light (I) and pressure (ΔP) is investigated. It is found that when 85 Pa ≤ ΔP ≤ 100 Pa or 200 μW·cm-2 ≤ I ≤ 300 μW·cm-2, the complexity of the multi-length scales periodic structure of chemical waves shows a nonlinear change with increasing light intensity or pressure. Beyond this range, the complexity of the chemical wave multi-length scales periodic structure decreases linearly on enhancing the light intensity or increasing the pressure.
Collapse
Affiliation(s)
- Baoying Zhang
- School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, Shandong, China
| |
Collapse
|
9
|
Lee WS, Enomoto T, Akimoto AM, Yoshida R. Capsule self-oscillating gels showing cell-like nonthermal membrane/shape fluctuations. MATERIALS HORIZONS 2023; 10:1332-1341. [PMID: 36722870 DOI: 10.1039/d2mh01490d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A primary interest in cell membrane and shape fluctuations is establishing experimental models reflecting only nonthermal active contributions. Here we report a millimeter-scaled capsule self-oscillating gel model mirroring the active contribution effect on cell fluctuations. In the capsule self-oscillating gels, the propagating chemical signals during a Belousov-Zhabotinsky (BZ) reaction induce simultaneous local deformations in the various regions, showing cell-like shape fluctuations. The capsule self-oscillating gels do not fluctuate without the BZ reaction, implying that only the active chemical parameter induces the gel fluctuations. The period and amplitude depend on the gel layer thickness and the concentration of the chemical substrate for the BZ reaction. Our results allow for a solid experimental platform showing actively driven cell-like fluctuations, which can potentially contribute to investigating the active parameter effect on cell fluctuations.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
10
|
Lee WS, Enomoto T, Akimoto AM, Yoshida R. Fabrication of submillimeter-sized spherical self-oscillating gels and control of their isotropic volumetric oscillatory behaviors. SOFT MATTER 2023; 19:1772-1781. [PMID: 36779908 DOI: 10.1039/d2sm01604d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, we established a fabrication method and analyzed the volumetric self-oscillatory behaviors of submillimeter-sized spherical self-oscillating gels. We validated that the manufactured submillimeter-sized spherical self-oscillating gels exhibited isotropic volumetric oscillations during the Belousov-Zhabotinsky (BZ) reaction. In addition, we experimentally elucidated that the volumetric self-oscillatory behaviors (i.e., period and amplitude) and the oscillatory profiles depended on the following parameters: (1) the molar composition of N-(3-aminopropyl)methacrylamide hydrochloride (NAPMAm) in the gels and (2) the concentration of Ru(bpy)3-NHS solution containing an active ester group on conjugation. These clarified relationships imply that controlling the amount of Ru(bpy)3 in the gel network could influence the gel volumetric oscillation during the BZ reaction. These results of submillimeter-sized and spherical self-oscillating gels bridge knowledge gaps in the current field because the gels with corresponding sizes and shapes have not been systematically explored yet. Therefore, our study could be a cornerstone for diverse applications of (self-powered) gels in various scales and shapes, including soft actuators exhibiting life-like functions.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
11
|
Lee WS, Enomoto T, Akimoto AM, Yoshida R. Region-dependent volumetric oscillation of self-oscillating gels with gradient transducers. J Mater Chem B 2022; 10:9887-9895. [PMID: 36445820 DOI: 10.1039/d2tb01838a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heartbeats with different ventricular contractions vary with heart regions, which can be described as anisotropy. Herein, we report self-oscillating gels which exhibit region-dependent anisotropic volumetric oscillation behavior similar to that of the heart. We installed a (Ru(bpy)3) gradient transducer on self-oscillating gels by employing slow and unidirectional diffusion in the gels and dipping part of the gel into a Ru(bpy)3-NHS solution. We found that the spatial distribution of Ru(bpy)3 in the gel caused region-dependent swelling/deswelling behavior depending on the redox state. We also confirmed that gel regions with smaller Ru(bpy)3 amounts exhibit lower amplitudes than those with larger amounts of Ru(bpy)3 during the Belousov-Zhabotinsky (BZ) reaction. These results are important in the design of self-oscillating soft actuators or machines, such as a biomimetic pump with desirable anisotropic oscillating behavior.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
12
|
Liu M, Meng C, Yuan L. Modulation of spatiotemporal dynamics in the bromate–sulfite–ferrocyanide reaction system by visible light. RSC Adv 2022; 12:15145-15149. [PMID: 35685187 PMCID: PMC9116188 DOI: 10.1039/d2ra01422j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
We have carried out the first systematic study of the effects of visible light on the homogenous dynamics in the bromate–sulfite–ferrocyanide (BSF) reaction. Under flow conditions, the reaction system displayed photoinduction and photoinhibition behavior, and the oscillatory period decreased with the increase of light intensity, which is due to the fact that light irradiation mainly enhanced the negative process and affected the positive feedback. The light effect on positive and negative feedback is studied by analyzing the period length of pH increasing and decreasing in detail. With the increase of light intensity, the period length of pH increasing decreases monotonically, while the period length of pH decreasing changes nonmonotonically. These results suggest that light could be used as a powerful tool to control homogenous dynamics. Results obtained from numerical simulations are in good agreement with experimental data. The BSF reaction system displayed photoinduction and photoinhibition behavior under flow conditions. The oscillatory period decreased as the light irradiation mainly enhanced the negative process and affected the positive feedback.![]()
Collapse
Affiliation(s)
- Mengfei Liu
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Chunxiao Meng
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Ling Yuan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
13
|
Wang J, Ren L, Teng R, Epstein IR, Wang H, Zhang M, Yuan L, Gao Q. Rotational Locomotion of an Active Gel Driven by Internal Chemical Signals. J Phys Chem Lett 2021; 12:11987-11991. [PMID: 34889612 DOI: 10.1021/acs.jpclett.1c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemical waves arising from coupled reaction and transport can serve as biomimetic "nerve signals" to study the underlying origin and regulation of active locomotion. During wave propagation in more than one spatial dimension, the propagation direction of spiral and pulse waves in a nanogel-based PAAm self-oscillating gel, i.e., the orientation of the driving force, may deviate from the normal direction to the wave fronts. Alternating forward and backward retrograde wave locomotion along the normal and tangential kinematic vectors with a phase difference leads to a curved path, i.e., rotational locomotion. This work indicates that appendages in an organism are not required for this type of locomotion. This locomotion mechanism reveals a general principle underlying the dynamical origin of biological helical locomotion and also suggests design approaches for complex locomotion of soft robots and smart materials.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Lin Ren
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035 Zhejiang, China
| | - Rui Teng
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Irving R Epstein
- Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Hui Wang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Meng Zhang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Ling Yuan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Qingyu Gao
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| |
Collapse
|
14
|
Xiong Y, Kuksenok O. Mechanical Adaptability of Patterns in Constrained Hydrogel Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4900-4912. [PMID: 33844552 DOI: 10.1021/acs.langmuir.1c00138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pattern formation and dynamic restructuring play a vital role in a plethora of natural processes. Understanding and controlling pattern formation in soft synthetic materials is important for imparting a range of biomimetic functionalities. Using a three-dimensional gel Lattice spring model, we focus on the dynamics of pattern formation and restructuring in thin thermoresponsive poly(N-isopropylacrylamide) membranes under mechanical forcing via stretching and compression. A mechanical instability due to the constrained swelling of a polymer network in response to the temperature quench results in out-of-plane buckling of these membranes. The depth of the temperature quench and applied mechanical forcing affect the onset of buckling and postbuckling dynamics. We characterize formation and restructuring of buckling patterns under the stretching and compression by calculating the wavelength and the amplitude of these patterns. We demonstrate dynamic restructuring of the patterns under mechanical forcing and characterize the hysteresis behavior. Our findings show that in the range of the strain rates probed, the wavelength prescribed during the compression remains constant and independent of the sample widths, while the amplitude is regulated dynamically. We demonstrate that significantly smaller wavelengths can be prescribed and sustained dynamically than those achieved in equilibrium in the same systems. We show that an effective membrane thickness may decrease upon compression due to the out-of-plane deformations and pattern restructuring. Our findings point out that mechanical forcing can be harnessed to control the onset of buckling, postbuckling dynamics, and hysteresis phenomena in gel-based systems, introducing novel means of tailoring the functionality of soft structured surfaces and interfaces.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|