1
|
Vardigan JD, Pall PS, McDevitt DS, Huang C, Clements MK, Li Y, Kraus RL, Breslin MJ, Bungard CJ, Nemenov MI, Klukinov M, Burgey CS, Layton ME, Stachel SJ, Lange HS, Savitz AT, Santarelli VP, Henze DA, Uslaner JM. Analgesia and peripheral c-fiber modulation by selective Na v 1.8 inhibition in rhesus. Pain 2025; 166:631-643. [PMID: 39382325 PMCID: PMC11808707 DOI: 10.1097/j.pain.0000000000003404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT Voltage-gated sodium (Na v ) channels present untapped therapeutic value for better and safer pain medications. The Na v 1.8 channel isoform is of particular interest because of its location on peripheral pain fibers and demonstrated role in rodent preclinical pain and neurophysiological assays. To-date, no inhibitors of this channel have been approved as drugs for treating painful conditions in human, possibly because of challenges in developing a sufficiently selective drug-like molecule with necessary potency not only in human but also across preclinical species critical to the preclinical development path of drug discovery. In addition, the relevance of rodent pain assays to the human condition is under increasing scrutiny as a number of mechanisms (or at the very least molecules) that are active in rodents have not translated to humans, and direct impact on pain fibers has not been confirmed in vivo. In this report, we have leveraged numerous physiological end points in nonhuman primates to evaluate the analgesic and pharmacodynamic activity of a novel, potent, and selective Na v 1.8 inhibitor compound, MSD199. These pharmacodynamic biomarkers provide important confirmation of the in vivo impact of Na v 1.8 inhibition on peripheral pain fibers in primates and have high translational potential to the clinical setting. These findings may thus greatly improve success of translational drug discovery efforts toward better and safer pain medications, as well as the understanding of primate biology of Na v 1.8 inhibition broadly.
Collapse
Affiliation(s)
- Joshua D. Vardigan
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Parul S. Pall
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Dillon S. McDevitt
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - ChienJung Huang
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Michelle K. Clements
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Yuxing Li
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Richard L. Kraus
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Michael J. Breslin
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | | | | | | | - Chritopher S. Burgey
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Mark E. Layton
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Shawn J. Stachel
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Henry S. Lange
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Alan T. Savitz
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | | | - Darrell A. Henze
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| | - Jason M. Uslaner
- Merck Sharp & Dohme LLC, a subsidiary of Merck & Co Inc, Rahway, NJ, United States
| |
Collapse
|
2
|
Latremoliere A. From a clinically relevant pain target to a possible analgesic treatment strategy. Neurotherapeutics 2025:e00542. [PMID: 39909810 DOI: 10.1016/j.neurot.2025.e00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025] Open
Affiliation(s)
- Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Alsaloum M, Dib-Hajj SD, Page DA, Ruben PC, Krainer AR, Waxman SG. Voltage-gated sodium channels in excitable cells as drug targets. Nat Rev Drug Discov 2025:10.1038/s41573-024-01108-x. [PMID: 39901031 DOI: 10.1038/s41573-024-01108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 02/05/2025]
Abstract
Excitable cells - including neurons, muscle cells and cardiac myocytes - are unique in expressing high densities of voltage-gated sodium (NaV) channels. This molecular adaptation enables these cells to produce action potentials, and is essential to their function. With the advent of the molecular revolution, the concept of 'the' sodium channel has been supplanted by understanding that excitable cells in mammals can express any of nine different forms of sodium channels (NaV1.1-NaV1.9). Selective expression in particular types of cells, together with a key role in controlling action potential firing, makes some of these NaV subtypes especially attractive molecular targets for drug development. Although these different channel subtypes display a common overall structure, differences in their amino acid sequences have provided a basis for the development of subtype-specific drugs. This approach has resulted in exciting progress in the development of drugs for epilepsy, cardiac disorders and pain. In this Review, we discuss recent progress in the development of drugs that selectively target each of the sodium channel subtypes.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Dana A Page
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Chamessian A, Payne M, Gordon I, Zhou M, Gereau R. Small molecule-mediated targeted protein degradation of voltage-gated sodium channels involved in pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634079. [PMID: 39896637 PMCID: PMC11785090 DOI: 10.1101/2025.01.21.634079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The voltage-gated sodium channels (VGSC) NaV1.8 and NaV1.7 (NaVs) have emerged as promising and high-value targets for the development of novel, non-addictive analgesics to combat the chronic pain epidemic. In recent years, many small molecule inhibitors against these channels have been developed. The recent successful clinical trial of VX-548, a NaV1.8-selective inhibitor, has spurred much interest in expanding the arsenal of subtype-selective voltage-gated sodium channel therapeutics. Toward that end, we sought to determine whether NaVs are amenable to targeted protein degradation with small molecule degraders, namely proteolysis-targeting chimeras (PROTACs) and molecular glues. Here, we report that degron-tagged NaVs are potently and rapidly degraded by small molecule degraders harnessing the E3 ubiquitin ligases cereblon (CRBN) and Von Hippel Lindau (VHL). Using LC/MS analysis, we demonstrate that PROTAC-mediated proximity between NaV1.8 and CRBN results in ubiquitination on the 2nd intracellular loop, pointing toward a potential mechanism of action and demonstrating the ability of CRBN to recognize a VGSC as a neosubstrate. Our foundational findings are an important first step toward realizing the immense potential of NaV-targeting degrader analgesics to combat chronic pain.
Collapse
|
5
|
Mulcahy JV, Beckley JT, Klas SD, Odink DA, Delwig A, Pajouhesh H, Monteleone D, Zhou X, Du Bois J, Yeomans DC, Luu G, Hunter JC. ST-2560, a selective inhibitor of the Na V1.7 sodium channel, affects nocifensive and cardiovascular reflexes in non-human primates. Br J Pharmacol 2024; 181:3160-3171. [PMID: 38715413 DOI: 10.1111/bph.16398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND AND PURPOSE The voltage-gated sodium channel isoform NaV1.7 is a high-interest target for the development of non-opioid analgesics due to its preferential expression in pain-sensing neurons. NaV1.7 is also expressed in autonomic neurons, yet its contribution to involuntary visceral reflexes has received limited attention. The small molecule inhibitor ST-2560 was advanced into pain behaviour and cardiovascular models to understand the pharmacodynamic effects of selective inhibition of NaV1.7. EXPERIMENTAL APPROACH Potency of ST-2560 at NaV1.7 and off-target ion channels was evaluated by whole-cell patch-clamp electrophysiology. Effects on nocifensive reflexes were assessed in non-human primate (NHP) behavioural models, employing the chemical capsaicin and mechanical stimuli. Cardiovascular parameters were monitored continuously in freely-moving, telemetered NHPs following administration of vehicle and ST-2560. KEY RESULTS ST-2560 is a potent inhibitor (IC50 = 39 nM) of NaV1.7 in primates with ≥1000-fold selectivity over other isoforms of the human NaV1.x family. Following systemic administration, ST-2560 (0.1-0.3 mg·kg-1, s.c.) suppressed noxious mechanical- and chemical-evoked reflexes at free plasma concentrations threefold to fivefold above NaV1.7 IC50. ST-2560 (0.1-1.0 mg·kg-1, s.c.) also produced changes in haemodynamic parameters, most notably a 10- to 20-mmHg reduction in systolic and diastolic arterial blood pressure, at similar exposures. CONCLUSIONS AND IMPLICATIONS Acute pharmacological inhibition of NaV1.7 is antinociceptive, but also has the potential to impact the cardiovascular system. Further work is merited to understand the role of NaV1.7 in autonomic ganglia involved in the control of heart rate and blood pressure, and the effect of selective NaV1.7 inhibition on cardiovascular function.
Collapse
Affiliation(s)
- John V Mulcahy
- SiteOne Therapeutics, Inc., South San Francisco, California, USA
| | - Jacob T Beckley
- SiteOne Therapeutics, Inc., South San Francisco, California, USA
| | - Sheri D Klas
- SiteOne Therapeutics, Inc., South San Francisco, California, USA
| | - Debra A Odink
- SiteOne Therapeutics, Inc., South San Francisco, California, USA
| | - Anton Delwig
- SiteOne Therapeutics, Inc., South San Francisco, California, USA
| | - Hassan Pajouhesh
- SiteOne Therapeutics, Inc., South San Francisco, California, USA
| | | | - Xiang Zhou
- SiteOne Therapeutics, Inc., South San Francisco, California, USA
| | - Justin Du Bois
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - David C Yeomans
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - George Luu
- SiteOne Therapeutics, Inc., South San Francisco, California, USA
| | - John C Hunter
- SiteOne Therapeutics, Inc., South San Francisco, California, USA
| |
Collapse
|
6
|
Gilchrist JM, Yang ND, Jiang V, Moyer BD. Pharmacologic Characterization of LTGO-33, a Selective Small Molecule Inhibitor of the Voltage-Gated Sodium Channel Na V1.8 with a Unique Mechanism of Action. Mol Pharmacol 2024; 105:233-249. [PMID: 38195157 DOI: 10.1124/molpharm.123.000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Discovery and development of new molecules directed against validated pain targets is required to advance the treatment of pain disorders. Voltage-gated sodium channels (NaVs) are responsible for action potential initiation and transmission of pain signals. NaV1.8 is specifically expressed in peripheral nociceptors and has been genetically and pharmacologically validated as a human pain target. Selective inhibition of NaV1.8 can ameliorate pain while minimizing effects on other NaV isoforms essential for cardiac, respiratory, and central nervous system physiology. Here we present the pharmacology, interaction site, and mechanism of action of LTGO-33, a novel NaV1.8 small molecule inhibitor. LTGO-33 inhibited NaV1.8 in the nM potency range and exhibited over 600-fold selectivity against human NaV1.1-NaV1.7 and NaV1.9. Unlike prior reported NaV1.8 inhibitors that preferentially interacted with an inactivated state via the pore region, LTGO-33 was state-independent with similar potencies against closed and inactivated channels. LTGO-33 displayed species specificity for primate NaV1.8 over dog and rodent NaV1.8 and inhibited action potential firing in human dorsal root ganglia neurons. Using chimeras combined with mutagenesis, the extracellular cleft of the second voltage-sensing domain was identified as the key site required for channel inhibition. Biophysical mechanism of action studies demonstrated that LTGO-33 inhibition was relieved by membrane depolarization, suggesting the molecule stabilized the deactivated state to prevent channel opening. LTGO-33 equally inhibited wild-type and multiple NaV1.8 variants associated with human pain disorders. These collective results illustrate LTGO-33 inhibition via both a novel interaction site and mechanism of action previously undescribed in NaV1.8 small molecule pharmacologic space. SIGNIFICANCE STATEMENT: NaV1.8 sodium channels primarily expressed in peripheral pain-sensing neurons represent a validated target for the development of novel analgesics. Here we present the selective small molecule NaV1.8 inhibitor LTGO-33 that interdicts a distinct site in a voltage-sensor domain to inhibit channel opening. These results inform the development of new analgesics for pain disorders.
Collapse
Affiliation(s)
| | - Nien-Du Yang
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| | | | - Bryan D Moyer
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| |
Collapse
|
7
|
Becker J, Effraim PR, Dib-Hajj S, Rittner HL. Lessons learned in translating pain knowledge into practice. Pain Rep 2023; 8:e1100. [PMID: 37928204 PMCID: PMC10624476 DOI: 10.1097/pr9.0000000000001100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/05/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction During the past 2 decades, basic research deciphering the underlying mechanisms of nociception and chronic pain was thought to finally step beyond opioids and nonsteroidals and provide patients with new analgesics. But apart from calcitonin gene-related peptide antagonists, nothing arrived in hands of clinicians. Objectives To present existing evidence of 3 representative target molecules in the development of novel pain treatment that, so far, did not result in approved drugs. Methods This Clinical Update aligns with the 2022 IASP Global Year Translating Pain Knowledge into Practice and selectively reviews best available evidence and practice. Results We highlight 3 targets: a ion channel, a neuronal growth factor, and a neuropeptide to explore why these drug targets have been dropped in clinical phase II-III trials. Antibodies to nerve growth factor had very good effects in musculoskeletal pain but resulted into more patients requiring joint replacements. Blockers of NaV1.7 were often not effective enough-at least if patients were not stratified. Blockers of neurokinin receptor were similarly not successful enough. In general, failure was most often to the result of a lack of effect and to a lesser extend because of unexpected severe side effects. However, all studies and trials lead to an enormous move in the scientific community to better preclinical models and testing as well as revised methods to molecularly phenotype and stratify patients. Conclusion All stakeholders in the process can help in the future: better preclinical studies, phenotyping and stratifying patients, and participation in clinical trials to move the discovery of analgesics forward.
Collapse
Affiliation(s)
- Juliane Becker
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Philip R. Effraim
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT, USA
| | - Sulayman Dib-Hajj
- Department of Neurology, Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Heike L. Rittner
- Department of Anesthesiology, Intensive Care, Emergency and Pain Medicine, Center for Interdisciplinary Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Deng L, Dourado M, Reese RM, Huang K, Shields SD, Stark KL, Maksymetz J, Lin H, Kaminker JS, Jung M, Foreman O, Tao J, Ngu H, Joseph V, Roose-Girma M, Tam L, Lardell S, Orrhult LS, Karila P, Allard J, Hackos DH. Nav1.7 is essential for nociceptor action potentials in the mouse in a manner independent of endogenous opioids. Neuron 2023; 111:2642-2659.e13. [PMID: 37352856 DOI: 10.1016/j.neuron.2023.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/07/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Loss-of-function mutations in Nav1.7, a voltage-gated sodium channel, cause congenital insensitivity to pain (CIP) in humans, demonstrating that Nav1.7 is essential for the perception of pain. However, the mechanism by which loss of Nav1.7 results in insensitivity to pain is not entirely clear. It has been suggested that loss of Nav1.7 induces overexpression of enkephalin, an endogenous opioid receptor agonist, leading to opioid-dependent analgesia. Using behavioral pharmacology and single-cell RNA-seq analysis, we find that overexpression of enkephalin occurs only in cLTMR neurons, a subclass of sensory neurons involved in low-threshold touch detection, and that this overexpression does not play a role in the analgesia observed following genetic removal of Nav1.7. Furthermore, we demonstrate using laser speckle contrast imaging (LSCI) and in vivo electrophysiology that Nav1.7 function is required for the initiation of C-fiber action potentials (APs), which explains the observed insensitivity to pain following genetic removal or inhibition of Nav1.7.
Collapse
Affiliation(s)
- Lunbin Deng
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Michelle Dourado
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Rebecca M Reese
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Kevin Huang
- Department of OMNI Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Shannon D Shields
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Kimberly L Stark
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - James Maksymetz
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Han Lin
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Joshua S Kaminker
- Department of OMNI Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Min Jung
- Department of OMNI Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Oded Foreman
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Janet Tao
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Victory Joseph
- Department of Biomedical Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Meron Roose-Girma
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | - Paul Karila
- Cellectricon AB, Neongatan 4B, 431 53 Mölndal, Sweden
| | - Julien Allard
- E-Phys, CRBC, 28 place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - David H Hackos
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA.
| |
Collapse
|
9
|
Alsaloum M, Labau JIR, Liu S, Effraim PR, Waxman SG. Stem cell-derived sensory neurons modelling inherited erythromelalgia: normalization of excitability. Brain 2023; 146:359-371. [PMID: 35088838 DOI: 10.1093/brain/awac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 01/11/2023] Open
Abstract
Effective treatment of pain remains an unmet healthcare need that requires new and effective therapeutic approaches. NaV1.7 has been genetically and functionally validated as a mediator of pain. Preclinical studies of NaV1.7-selective blockers have shown limited success and translation to clinical studies has been limited. The degree of NaV1.7 channel blockade necessary to attenuate neuronal excitability and ameliorate pain is an unanswered question important for drug discovery. Here, we utilize dynamic clamp electrophysiology and induced pluripotent stem cell-derived sensory neurons (iPSC-SNs) to answer this question for inherited erythromelalgia, a pain disorder caused by gain-of-function mutations in Nav1.7. We show that dynamic clamp can produce hyperexcitability in iPSC-SNs associated with two different inherited erythromelalgia mutations, NaV1.7-S241T and NaV1.7-I848T. We further show that blockade of approximately 50% of NaV1.7 currents can reverse neuronal hyperexcitability to baseline levels.
Collapse
Affiliation(s)
- Matthew Alsaloum
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA.,Yale Medical Scientist Training Program, Yale School of Medicine, New Haven, CT 06510, USA.,Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Julie I R Labau
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA.,Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Shujun Liu
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Philip R Effraim
- Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA.,Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, West Haven, CT 06516, USA.,Center for Rehabilitation Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
10
|
Maximizing treatment efficacy through patient stratification in neuropathic pain trials. Nat Rev Neurol 2023; 19:53-64. [PMID: 36400867 DOI: 10.1038/s41582-022-00741-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
Treatment of neuropathic pain remains inadequate despite the elucidation of multiple pathophysiological mechanisms and the development of promising therapeutic compounds. The lack of success in translating knowledge into clinical practice has discouraged pharmaceutical companies from investing in pain medicine; however, new patient stratification approaches could help bridge the translation gap and develop individualized therapeutic approaches. As we highlight in this article, subgrouping of patients according to sensory profiles and other baseline characteristics could aid the prediction of treatment success. Furthermore, novel outcome measures have been developed for patients with neuropathic pain. The extent to which sensory profiles and outcome measures can be employed in routine clinical practice and clinical trials and across distinct neuropathic pain aetiologies is yet to be determined. Improvements in animal models, drawing on our knowledge of human pain, and robust public-private partnerships will be needed to pave the way to innovative and effective pain medicine in the future.
Collapse
|
11
|
Kitano Y, Shinozuka T. Inhibition of Na V1.7: the possibility of ideal analgesics. RSC Med Chem 2022; 13:895-920. [PMID: 36092147 PMCID: PMC9384491 DOI: 10.1039/d2md00081d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/25/2022] [Indexed: 08/03/2023] Open
Abstract
The selective inhibition of NaV1.7 is a promising strategy for developing novel analgesic agents with fewer adverse effects. Although the potent selective inhibition of NaV1.7 has been recently achieved, multiple NaV1.7 inhibitors failed in clinical development. In this review, the relationship between preclinical in vivo efficacy and NaV1.7 coverage among three types of voltage-gated sodium channel (VGSC) inhibitors, namely conventional VGSC inhibitors, sulphonamides and acyl sulphonamides, is discussed. By demonstrating the PK/PD discrepancy of preclinical studies versus in vivo models and clinical results, the potential reasons behind the disconnect between preclinical results and clinical outcomes are discussed together with strategies for developing ideal analgesic agents.
Collapse
Affiliation(s)
- Yutaka Kitano
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| | - Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| |
Collapse
|
12
|
Goodwin G, McMurray S, Stevens EB, Denk F, McMahon SB. Examination of the contribution of Nav1.7 to axonal propagation in nociceptors. Pain 2022; 163:e869-e881. [PMID: 34561392 DOI: 10.1097/j.pain.0000000000002490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/09/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Nav1.7 is a promising drug target for the treatment of pain. However, there is a mismatch between the analgesia produced by Nav1.7 loss-of-function and the peripherally restricted Nav1.7 inhibitors, which may reflect a lack of understanding of the function of Nav1.7 in the transmission of nociceptive information. In the periphery, the role of Nav1.7 in transduction at nociceptive peripheral terminals has been comprehensively examined, but its role in axonal propagation in these neurons is less clearly defined. In this study, we examined the contribution of Nav1.7 to axonal propagation in nociceptors using sodium channel blockers in in vivo electrophysiological and calcium imaging recordings in mice. Using the sodium channel blocker tetrodotoxin (TTX) (1-10 µM) to inhibit Nav1.7 and other tetrodotoxin-sensitive sodium channels along the sciatic nerve, we first showed that around two-thirds of nociceptive L4 dorsal root ganglion neurons innervating the skin, but a lower proportion innervating the muscle (45%), are blocked by TTX. By contrast, nearly all large-sized cutaneous afferents (95%-100%) were blocked by axonal TTX. Many cutaneous nociceptors resistant to TTX were polymodal (57%) and capsaicin sensitive (57%). Next, we applied PF-05198007 (300 nM-1 µM) to the sciatic nerve between stimulating and recording sites to selectively block axonal Nav1.7 channels. One hundred to three hundred nanomolar PF-05198007 blocked propagation in 63% of C-fiber sensory neurons, whereas similar concentrations produced minimal block (5%) in rapidly conducting A-fiber neurons. We conclude that Nav1.7 is essential for axonal propagation in around two-thirds of nociceptive cutaneous C-fiber neurons and a lower proportion (≤45%) of nociceptive neurons innervating muscle.
Collapse
Affiliation(s)
- George Goodwin
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | | | | | - Franziska Denk
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| | - Stephen B McMahon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, United Kingdom
| |
Collapse
|
13
|
Ballard JE, Pall PS, Vardigan J, Zhao F, Holahan MA, Zhou X, Jochnowitz N, Kraus RL, Klein RM, Henze DA, Houghton AK, Burgey CS, Gibson C, Struyk A. Translational Pharmacokinetic–Pharmacodynamic Modeling of NaV1.7 Inhibitor MK-2075 to Inform Human Efficacious Dose. Front Pharmacol 2021; 12:786078. [PMID: 35002718 PMCID: PMC8740778 DOI: 10.3389/fphar.2021.786078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
MK-2075 is a small-molecule selective inhibitor of the NaV1.7 channel investigated for the treatment of postoperative pain. A translational strategy was developed for MK-2075 to quantitatively interrelate drug exposure, target modulation, and the desired pharmacological response in preclinical animal models for the purpose of human translation. Analgesics used as a standard of care in postoperative pain were evaluated in preclinical animal models of nociceptive behavior (mouse tail flick latency and rhesus thermode heat withdrawal) to determine the magnitude of pharmacodynamic (PD) response at plasma concentrations associated with efficacy in the clinic. MK-2075 was evaluated in those same animal models to determine the concentration of MK-2075 required to achieve the desired level of response. Translation of MK-2075 efficacious concentrations in preclinical animal models to a clinical PKPD target in humans was achieved by accounting for species differences in plasma protein binding and in vitro potency against the NaV1.7 channel. Estimates of human pharmacokinetic (PK) parameters were obtained from allometric scaling of a PK model from preclinical species and used to predict the dose required to achieve the clinical exposure. MK-2075 exposure–response in a preclinical target modulation assay (rhesus olfaction) was characterized using a computational PKPD model which included a biophase compartment to account for the observed hysteresis. Translation of this model to humans was accomplished by correcting for species differences in PK NaV1.7 potency, and plasma protein binding while assuming that the kinetics of distribution to the target site is the same between humans and rhesus monkeys. This enabled prediction of the level of target modulation anticipated to be achieved over the dosing interval at the projected clinical efficacious human dose. Integration of these efforts into the early development plan informed clinical study design and decision criteria.
Collapse
Affiliation(s)
- Jeanine E. Ballard
- Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, NJ, United States
- *Correspondence: Jeanine E. Ballard,
| | - Parul S. Pall
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Joshua Vardigan
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Fuqiang Zhao
- Translational Imaging Biomarkers, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Marie A. Holahan
- Translational Imaging Biomarkers, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Xiaoping Zhou
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Nina Jochnowitz
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Richard L. Kraus
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Rebecca M. Klein
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Darrell A. Henze
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Andrea K. Houghton
- Neuroscience Pharmacology, Merck & Co. Inc., Kenilworth, NJ, United States
| | | | - Christopher Gibson
- Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, NJ, United States
| | - Arie Struyk
- Translational Medicine, Merck & Co. Inc., Kenilworth, NJ, United States
| |
Collapse
|
14
|
Cai S, Moutal A, Yu J, Chew LA, Isensee J, Chawla R, Gomez K, Luo S, Zhou Y, Chefdeville A, Madura C, Perez-Miller S, Bellampalli SS, Dorame A, Scott DD, François-Moutal L, Shan Z, Woodward T, Gokhale V, Hohmann AG, Vanderah TW, Patek M, Khanna M, Hucho T, Khanna R. Selective targeting of NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces pain in rodents. Sci Transl Med 2021; 13:eabh1314. [PMID: 34757807 PMCID: PMC11729770 DOI: 10.1126/scitranslmed.abh1314] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The voltage-gated sodium NaV1.7 channel, critical for sensing pain, has been actively targeted by drug developers; however, there are currently no effective and safe therapies targeting NaV1.7. Here, we tested whether a different approach, indirect NaV1.7 regulation, could have antinociceptive effects in preclinical models. We found that preventing addition of small ubiquitin-like modifier (SUMO) on the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 functions and had antinociceptive effects in rodents. In silico targeting of the SUMOylation site in CRMP2 (Lys374) identified >200 hits, of which compound 194 exhibited selective in vitro and ex vivo NaV1.7 engagement. Orally administered 194 was not only antinociceptive in preclinical models of acute and chronic pain but also demonstrated synergy alongside other analgesics—without eliciting addiction, rewarding properties, or neurotoxicity. Analgesia conferred by 194 was opioid receptor dependent. Our results demonstrate that 194 is a first-in-class protein-protein inhibitor that capitalizes on CRMP2-NaV1.7 regulation to deliver safe analgesia in rodents.
Collapse
Affiliation(s)
- Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Lindsey A. Chew
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, University Cologne, Joseph-Stelzmann-Str 9, Cologne D-50931, Germany
| | - Reena Chawla
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
| | - Kimberly Gomez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Yuan Zhou
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Cynthia Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Shreya Sai Bellampalli
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - David D. Scott
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Taylor Woodward
- Department of Psychological and Brain Sciences, Program in Neuroscience and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405-2204, USA
| | - Vijay Gokhale
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Andrea G. Hohmann
- Department of Psychological and Brain Sciences, Program in Neuroscience and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405-2204, USA
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ 85724, USA
| | - Marcel Patek
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
- Bright Rock Path LLC, Tucson, AZ 85724, USA
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, USA
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, University Cologne, Joseph-Stelzmann-Str 9, Cologne D-50931, Germany
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, USA
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ 85724, USA
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
| |
Collapse
|
15
|
Jayakar S, Shim J, Jo S, Bean BP, Singeç I, Woolf CJ. Developing nociceptor-selective treatments for acute and chronic pain. Sci Transl Med 2021; 13:eabj9837. [PMID: 34757806 PMCID: PMC9964063 DOI: 10.1126/scitranslmed.abj9837] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite substantial efforts dedicated to the development of new, nonaddictive analgesics, success in treating pain has been limited. Clinically available analgesic agents generally lack efficacy and may have undesirable side effects. Traditional target-based drug discovery efforts that generate compounds with selectivity for single targets have a high rate of attrition because of their poor clinical efficacy. Here, we examine the challenges associated with the current analgesic drug discovery model and review evidence in favor of stem cell–derived neuronal-based screening approaches for the identification of analgesic targets and compounds for treating diverse forms of acute and chronic pain.
Collapse
Affiliation(s)
- Selwyn Jayakar
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Jaehoon Shim
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH); Bethesda, MD 20892, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| |
Collapse
|