1
|
Wong O, Mezcord V, Lopez C, Traglia GM, Pasteran F, Tuttobene MR, Corso A, Tolmasky ME, Bonomo RA, Ramirez MS. Hetero-antagonism of avibactam and sulbactam with cefiderocol in carbapenem-resistant Acinetobacter spp. Microbiol Spectr 2024; 12:e0093024. [PMID: 39162493 PMCID: PMC11448186 DOI: 10.1128/spectrum.00930-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024] Open
Abstract
Cefiderocol, a siderophore-cephalosporine conjugate antibiotic, shows promise as a therapeutic option for carbapenem-resistant (CR) Acinetobacter infections. While resistance has already been reported in A. baumannii, combination therapies with avibactam or sulbactam reduce MICs of cefiderocol, extending its efficacy. However, careful consideration is necessary when using these combinations. In our experiments, exposure of A. baumannii and A. lwoffii to cefiderocol and sulbactam or avibactam led to the selection of cefiderocol-resistant strains. Three of those were subjected to whole genome sequencing and transcriptomic analysis. The strains all possessed synonymous and non-synonymous substitutions and short deletions. The most significant mutations affected efflux pumps, transcriptional regulators, and iron homeostasis genes. Transcriptomics showed significant alterations in expression levels of outer membrane proteins, iron homeostasis, and β-lactamases, suggesting adaptive responses to selective pressure. This study underscores the importance of carefully assessing drug synergies, as they may inadvertently foster the selection of resistant variants and complicate the management of CR Acinetobacter infections.IMPORTANCEThe emergence of carbapenem-resistant Acinetobacter strains as a serious global health threat underscores the urgent need for effective treatment options. Although few drugs show promise against CR Acinetobacter infections, resistance to both drugs has been reported. In this study, the molecular characterization of spontaneous cefiderocol-resistant variants, a CR A. baumannii strain with antagonism to sulbactam, and an A. lwoffii strain with antagonism to avibactam, provides valuable insights into the mechanisms of resistance to cefiderocol. Some mechanisms observed are associated with mutations affecting efflux pumps, regulators, and iron homeostasis genes. These findings highlight the importance of understanding resistance mechanisms to optimize treatment options. They also emphasize the importance of early evaluation of drug synergies to address the challenges of antimicrobial resistance in Acinetobacter infections.
Collapse
Affiliation(s)
- Olivia Wong
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Vyanka Mezcord
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Christina Lopez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - German Matias Traglia
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Fernando Pasteran
- Laboratorio Nacional/Regional de Referencia en Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Marisel R Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Alejandra Corso
- Laboratorio Nacional/Regional de Referencia en Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Robert A Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - María Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| |
Collapse
|
2
|
Escalante J, Hamza M, Nishimura B, Melecio M, Davies-Sala C, Tuttobene MR, Subils T, Traglia GM, Pham C, Sieira R, Actis LA, Bonomo RA, Tolmasky ME, Ramirez MS. Carbapenem-resistant Acinetobacter baumannii (CRAB): metabolic adaptation and transcriptional response to human urine (HU). Sci Rep 2024; 14:19145. [PMID: 39160175 PMCID: PMC11333713 DOI: 10.1038/s41598-024-70216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a major human pathogen and a research priority for developing new antimicrobial agents. CRAB is a causative agent of a variety of infections in different body sites. One of the manifestations is catheter-associated urinary tract infection, which exposes the bacteria to the host's urine, creating a particular environment. Exposure of two CRAB clinical isolates, AB5075 and AMA40, to human urine (HU) resulted in the differential expression levels of 264 and 455 genes, respectively, of which 112 were common to both strains. Genes within this group play roles in metabolic pathways such as phenylacetic acid (PAA) catabolism, the Hut system, the tricarboxylic acid (TCA) cycle, and other processes like quorum sensing and biofilm formation. These results indicate that the presence of HU induces numerous adaptive changes in gene expression of the infecting bacteria. These changes presumably help bacteria establish and thrive in the hostile conditions in the urinary tract. These analyses advance our understanding of CRAB's metabolic adaptations to human fluids, as well as expand knowledge on bacterial responses to distinct human fluids containing different concentrations of human serum albumin (HSA).
Collapse
Affiliation(s)
- Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - Mase Hamza
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - Meghan Melecio
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - Carol Davies-Sala
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - Marisel R Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario, Argentina
| | - German M Traglia
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Montevideo, Uruguay
| | - Chloe Pham
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - Rodrigo Sieira
- Fundación Instituto Leloir-IIBBA CONICET, Buenos Aires, Argentina
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Robert A Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - María Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA.
| |
Collapse
|
3
|
Rocha IV, Martins LR, Pimentel MIS, Mendes RPG, Lopes ACDS. Genetic profile and characterization of antimicrobial resistance in Acinetobacter baumannii post-COVID-19 pandemic: a study in a tertiary hospital in Recife, Brazil. J Appl Microbiol 2024; 135:lxae148. [PMID: 38886125 DOI: 10.1093/jambio/lxae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
AIMS To investigate the genetic profile and characterize antimicrobial resistance, including the main β-lactam antibiotic resistance genes, in Acinetobacterbaumannii isolates from a tertiary hospital in Recife-PE, Brazil, in the post-COVID-19 pandemic period. METHODS AND RESULTS Acinetobacter baumannii isolates were collected between 2023 and 2024 from diverse clinical samples. Antimicrobial resistance testing followed standardized protocols, with β-lactamase-encoding genes detected via PCR and sequencing. Investigation into ISAba1 upstream of blaOXA-carbapenemase and blaADC genes was also conducted. Genetic diversity was assessed through ERIC-PCR. Among the 78 A. baumannii, widespread resistance to multiple antimicrobials was evident. Various acquired β-lactamase-encoding genes (blaOXA-23,-24,-58,-143, blaVIM, and blaNDM) were detected. Furthermore, this is the first report of blaVIM-2 in A. baumannii isolates harboring either the blaOXA-23-like or the blaOXA-143 gene in Brazil. Molecular typing revealed a high genetic heterogeneity among the isolates, and multi-clonal dissemination. CONCLUSION The accumulation of genetic resistance determinants underscores the necessity for stringent infection control measures and robust antimicrobial stewardship programs to curb multidrug-resistant strains.
Collapse
Affiliation(s)
- Igor Vasconcelos Rocha
- Federal University of Pernambuco-UFPE, Microbiology Laboratory. Department of Tropical Medicine. Center for Medical Sciences, Recife - PE, 50670-901, Brazil
| | - Lamartine Rodrigues Martins
- Federal University of Pernambuco-UFPE, Microbiology Laboratory. Department of Tropical Medicine. Center for Medical Sciences, Recife - PE, 50670-901, Brazil
| | - Maria Izabely Silva Pimentel
- Federal University of Pernambuco-UFPE, Microbiology Laboratory. Department of Tropical Medicine. Center for Medical Sciences, Recife - PE, 50670-901, Brazil
| | - Renata Pessôa Germano Mendes
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation-FIOCRUZ-PE, Department of Virology and Experimental Therapy, Recife - PE, 50740-465, Brazil
| | - Ana Catarina de Souza Lopes
- Federal University of Pernambuco-UFPE, Microbiology Laboratory. Department of Tropical Medicine. Center for Medical Sciences, Recife - PE, 50670-901, Brazil
| |
Collapse
|
4
|
Escalante J, Hamza M, Nishimura B, Melecio M, Davies-Sala C, Tuttobene MR, Subils T, Traglia GM, Pham C, Sieira R, Actis L, Bonomo RA, Tolmasky ME, Ramirez MS. Carbapenem-resistant Acinetobacter baumannii (CRAB): metabolic adaptation and transcriptional response to human urine (HU). RESEARCH SQUARE 2024:rs.3.rs-4415275. [PMID: 38853891 PMCID: PMC11160873 DOI: 10.21203/rs.3.rs-4415275/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2024]
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a major human pathogen and a research priority for developing new antimicrobial agents. CRAB is a causative agent of a variety of infections in different body sites. One of the manifestations is catheter-associated urinary tract infection, which exposes the bacteria to the host's urine, creating a particular environment. Exposure of two CRAB clinical isolates, AB5075 and AMA40, to human urine (HU) resulted in the differential expression levels of 264 and 455 genes, respectively, of which 112 were common to both strains. Genes within this group play roles in metabolic pathways such as phenylacetic acid (PAA) catabolism, the Hut system, the tricarboxylic acid (TCA) cycle, and other processes like quorum sensing and biofilm formation. These results indicate that the presence of HU induces numerous adaptive changes in gene expression of the infecting bacteria. These modifications presumably help bacteria establish and thrive in the hostile conditions in the urinary tract. These analyses advance our understanding of CRAB's metabolic adaptations to human fluids, as well as expanding knowledge on bacterial responses to distinct human fluids containing different concentrations of human serum albumin (HSA).
Collapse
|
5
|
Wong O, Mezcord V, Lopez C, Traglia GM, Pasteran F, Tuttobene MR, Corso A, Tolmasky ME, Bonomo RA, Ramirez MS. Hetero-antagonism of avibactam and sulbactam with cefiderocol in carbapenem-resistant Acinetobacter spp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583376. [PMID: 38496545 PMCID: PMC10942374 DOI: 10.1101/2024.03.04.583376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 03/19/2024]
Abstract
The emergence of Gram-negative bacteria resistant to multiple antibiotics, particularly carbapenem-resistant (CR) Acinetobacter strains, poses a significant threat globally. Despite efforts to develop new antimicrobial therapies, limited progress has been made, with only two drugs-cefiderocol and sulbactam-durlobactam-showing promise for CR-Acinetobacter infections. Cefiderocol, a siderophore cephalosporin, demonstrates promising efficacy in the treatment of Gram-negative infections. However, resistance to cefiderocol has been reported in A. baumannii. Combination therapies, such as cefiderocol with avibactam or sulbactam, show reduced MICs against cefiderocol-non-susceptible strains with in vivo efficacy, although the outcomes can be complex and species-specific. In the present work, the molecular characterization of spontaneous cefiderocol-resistant variants, a CRAB strain displaying antagonism with sulbactam and an A. lwoffii strain showing antagonism with avibactam, were studied. The results reveal intriguing insights into the underlying mechanisms, including mutations affecting efflux pumps, transcriptional regulators, and iron homeostasis genes. Moreover, gene expression analysis reveals significant alterations in outer membrane proteins, iron homeostasis, and β-lactamases, suggesting adaptive responses to selective pressure. Understanding these mechanisms is crucial for optimizing treatment strategies and preventing adverse clinical outcomes. This study highlights the importance of preemptively assessing drug synergies to navigate the challenges posed by antimicrobial resistance in CR-Acinetobacter infections.
Collapse
Affiliation(s)
- Olivia Wong
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Vyanka Mezcord
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Christina Lopez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - German Matias Traglia
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Uruguay
| | - Fernando Pasteran
- Laboratorio Nacional/Regional de Referencia en Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Marisel R Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Alejandra Corso
- Laboratorio Nacional/Regional de Referencia en Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Robert A Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - María Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| |
Collapse
|
6
|
Lupo A, Valot B, Saras E, Drapeau A, Robert M, Bour M, Haenni M, Plésiat P, Madec JY, Potron A. Multiple host colonization and differential expansion of multidrug-resistant ST25-Acinetobacter baumannii clades. Sci Rep 2023; 13:21854. [PMID: 38071225 PMCID: PMC10710421 DOI: 10.1038/s41598-023-49268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The Acinetobacter baumannii clonal lineage ST25 has been identified in humans and animals and found associated with outbreaks globally. To highlight possible similarities among ST25 A. baumannii of animal and human origins and to gather clues on the dissemination and evolution of the ST25 lineage, we conducted a phylogenetic analysis on n = 106 human and n = 35 animal A. baumannii ST25 genomes, including 44 sequenced for this study. Resistance genes and their genetic background were analyzed, as well. ST25 genomes are clustered into four clades: two are widespread in South America, while the other two are largely distributed in Europe, Asia and America. One particular clade was found to include the most recent strains and the highest number of acquired antibiotic resistance genes. OXA-23-type carbapenemase was the most common. Other resistance genes such as blaNDM-1, blaPER-7, and armA were found embedded in complex chromosomal regions present in human isolates. Genomic similarity among multidrug resistant ST25 isolates of either animal or human origin was revealed, suggesting cross-contaminations between the two sectors. Tracking the clonal complex ST25 between humans and animals should provide new insights into the mode of dissemination of these bacteria, and should help defining strategies for preserving global health.
Collapse
Affiliation(s)
- Agnese Lupo
- Unité Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, 31 Avenue Tony Garnier, 69007, Lyon, France.
| | - Benoît Valot
- UMR 6249 Chrono-Environnement, CNRS-Université de Bourgogne/Franche-Comté, Besançon, France
| | - Estelle Saras
- Unité Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, 31 Avenue Tony Garnier, 69007, Lyon, France
| | - Antoine Drapeau
- Unité Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, 31 Avenue Tony Garnier, 69007, Lyon, France
| | - Marine Robert
- Unité Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, 31 Avenue Tony Garnier, 69007, Lyon, France
| | - Maxime Bour
- CNR de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, 31 Avenue Tony Garnier, 69007, Lyon, France
| | - Patrick Plésiat
- UMR 6249 Chrono-Environnement, CNRS-Université de Bourgogne/Franche-Comté, Besançon, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES - Université de Lyon 1, 31 Avenue Tony Garnier, 69007, Lyon, France
| | - Anaïs Potron
- UMR 6249 Chrono-Environnement, CNRS-Université de Bourgogne/Franche-Comté, Besançon, France
- CNR de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| |
Collapse
|
7
|
Rodriguez C, Ramlaoui D, Georgeos N, Gasca B, Leal C, Subils T, Tuttobene MR, Sieira R, Salzameda NT, Bonomo RA, Raya R, Ramirez MS. Antimicrobial activity of the Lacticaseibacillus rhamnosus CRL 2244 and its impact on the phenotypic and transcriptional responses in carbapenem resistant Acinetobacter baumannii. Sci Rep 2023; 13:14323. [PMID: 37653052 PMCID: PMC10471627 DOI: 10.1038/s41598-023-41334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a recognized nosocomial pathogen with limited antibiotic treatment options. Lactic acid bacteria (LAB) constitute a promising therapeutic alternative. Here we studied the antibacterial properties of a collection of LAB strains using phenotypic and transcriptomic analysis against A. baumannii clinical strains. One strain, Lacticaseibacillus rhamnosus CRL 2244, demonstrated a potent inhibitory capacity on A. baumannii with a significant killing activity. Scanning electron microscopy images showed changes in the morphology of A. baumannii with an increased formation of outer membrane vesicles. Significant changes in the expression levels of a wide variety of genes were also observed. Interestingly, most of the modified genes were involved in a metabolic pathway known to be associated with the survival of A. baumannii. The paa operon, Hut system, and fatty acid degradation were some of the pathways that were induced. The analysis reveals the impact of Lcb. rhamnosus CRL 2244 on A. baumannii response, resulting in bacterial stress and subsequent cell death. These findings highlight the antibacterial properties of Lcb. rhamnosus CRL 2244 and its potential as an alternative or complementary strategy for treating infections. Further exploration and development of LAB as a treatment option could provide valuable alternatives for combating CRAB infections.
Collapse
Affiliation(s)
- Cecilia Rodriguez
- Centro de Referencia Para Lactobacilos (CERELA), CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Dema Ramlaoui
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton (CSUF), 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Nardin Georgeos
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton (CSUF), 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Briea Gasca
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton (CSUF), 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Camila Leal
- Centro de Referencia Para Lactobacilos (CERELA), CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario, Argentina
| | - Marisel R Tuttobene
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Rodrigo Sieira
- Fundación Instituto Leloir-IIBBA CONICET, Buenos Aires, Argentina
| | - Nicholas T Salzameda
- Department of Chemistry and Biochemistry, College of Natural Science and Mathematics, CSUF, Fullerton, USA
| | - Robert A Bonomo
- Research Service and GRECC, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, OH, 44106, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, 44106, USA
| | - Raúl Raya
- Centro de Referencia Para Lactobacilos (CERELA), CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - María Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton (CSUF), 800 N State College Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
8
|
Gaillot S, Oueslati S, Vuillemenot JB, Bour M, Iorga BI, Triponney P, Plésiat P, Bonnin RA, Naas T, Jeannot K, Potron A. Genomic characterization of an NDM-9-producing Acinetobacter baumannii clinical isolate and role of Glu152Lys substitution in the enhanced cefiderocol hydrolysis of NDM-9. Front Microbiol 2023; 14:1253160. [PMID: 37700870 PMCID: PMC10493327 DOI: 10.3389/fmicb.2023.1253160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Here, we characterized the first French NDM-9-producing Acinetobacter baumannii isolate. A. baumannii 13A297, which belonged to the STPas25 (international clone IC7), was highly resistant to β-lactams including cefiderocol (MIC >32 mg/L). Whole genome sequencing (WGS) using both Illumina and Oxford Nanopore technologies revealed a 166-kb non-conjugative plasmid harboring a blaNDM-9 gene embedded in a Tn125 composite transposon. Complementation of E. coli DH5α and A. baumannii CIP70.10 strains with the pABEC plasmid carrying the blaNDM-1 or blaNDM-9 gene, respectively, resulted in a significant increase in cefiderocol MIC values (16 to >256-fold), particularly in the NDM-9 transformants. Interestingly, steady-state kinetic parameters, measured using purified NDM-1 and NDM-9 (Glu152Lys) enzymes, revealed that the affinity for cefiderocol was 3-fold higher for NDM-9 (Km = 53 μM) than for NDM-1 (Km = 161 μM), leading to a 2-fold increase in catalytic efficiency for NDM-9 (0.13 and 0.069 μM-1.s-1, for NDM-9 and NDM-1, respectively). Finally, we showed by molecular docking experiments that the residue 152 of NDM-like enzymes plays a key role in cefiderocol binding and resistance, by allowing a strong ionic interaction between the Lys152 residue of NDM-9 with both the Asp223 residue of NDM-9 and the carboxylate group of the R1 substituent of cefiderocol.
Collapse
Affiliation(s)
- Susie Gaillot
- Université de Franche-Comté, UMR CNRS 6249 Chrono-Environnement, Besançon, France
| | - Saoussen Oueslati
- Université Paris-Saclay, Equipe INSERM ReSIST, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Jean-Baptiste Vuillemenot
- Université de Franche-Comté, UMR CNRS 6249 Chrono-Environnement, Besançon, France
- Laboratoire Associé du Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Maxime Bour
- Laboratoire Associé du Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Bogdan I. Iorga
- Université Paris-Saclay, CNRS Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Pauline Triponney
- Laboratoire Associé du Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Patrick Plésiat
- Université de Franche-Comté, UMR CNRS 6249 Chrono-Environnement, Besançon, France
- Laboratoire Associé du Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Rémy A. Bonnin
- Université Paris-Saclay, Equipe INSERM ReSIST, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Laboratoire Associé du Centre National de Référence de la Résistance aux Antibiotiques: Entérobactéries Résistantes aux Carbapénèmes, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Université Paris-Saclay, Equipe INSERM ReSIST, Faculté de Médecine, Le Kremlin-Bicêtre, France
- Laboratoire Associé du Centre National de Référence de la Résistance aux Antibiotiques: Entérobactéries Résistantes aux Carbapénèmes, Le Kremlin-Bicêtre, France
| | - Katy Jeannot
- Université de Franche-Comté, UMR CNRS 6249 Chrono-Environnement, Besançon, France
- Laboratoire Associé du Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Anaïs Potron
- Université de Franche-Comté, UMR CNRS 6249 Chrono-Environnement, Besançon, France
- Laboratoire Associé du Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| |
Collapse
|
9
|
Mezcord V, Escalante J, Nishimura B, Traglia GM, Sharma R, Vallé Q, Tuttobene MR, Subils T, Marin I, Pasteran F, Actis LA, Tolmasky ME, Bonomo RA, Rao G, Ramirez MS. Induced Heteroresistance in Carbapenem-Resistant Acinetobacter baumannii (CRAB) via Exposure to Human Pleural Fluid (HPF) and Its Impact on Cefiderocol Susceptibility. Int J Mol Sci 2023; 24:11752. [PMID: 37511511 PMCID: PMC10380697 DOI: 10.3390/ijms241411752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Infections caused by Carbapenem-resistant Acinetobacter baumannii (CRAB) isolates, such as hospital-acquired pneumonia (HAP), bacteremia, and skin and soft tissue infections, among others, are particularly challenging to treat. Cefiderocol, a chlorocatechol-substituted siderophore antibiotic, was approved by the U.S. Food and Drug Administration (FDA) in 2019 and prescribed for the treatment of CRAB infections. Despite the initial positive treatment outcomes with this antimicrobial, recent studies reported a higher-than-average all-cause mortality rate in patients treated with cefiderocol compared to the best available therapy. The cause(s) behind these outcomes remains unconfirmed. A plausible hypothesis is heteroresistance, a phenotype characterized by the survival of a small proportion of cells in a population that is seemingly isogenic. Recent results have demonstrated that the addition of human fluids to CRAB cultures leads to cefiderocol heteroresistance. Here, we describe the molecular and phenotypic analyses of CRAB heteroresistant bacterial subpopulations to better understand the nature of the less-than-expected successful outcomes after cefiderocol treatment. Isolation of heteroresistant variants of the CRAB strain AMA40 was carried out in cultures supplemented with cefiderocol and human pleural fluid (HPF). Two AMA40 variants, AMA40 IHC1 and IHC2, were resistant to cefiderocol. To identify mutations and gene expression changes associated with cefiderocol heteroresistance, we subjected these variants to whole genome sequencing and global transcriptional analysis. We then assessed the impact of these mutations on the pharmacodynamic activity of cefiderocol via susceptibility testing, EDTA and boronic acid inhibition analysis, biofilm formation, and static time-kill assays. Heteroresistant variants AMA40 IHC1 and AMA40 IHC2 have 53 chromosomal mutations, of which 40 are common to both strains. None of the mutations occurred in genes associated with high affinity iron-uptake systems or β-lactam resistance. However, transcriptional analyses demonstrated significant modifications in levels of expression of genes associated with iron-uptake systems or β-lactam resistance. The blaNDM-1 and blaADC-2, as well as various iron-uptake system genes, were expressed at higher levels than the parental strain. On the other hand, the carO and ompA genes' expression was reduced. One of the mutations common to both heteroresistant strains was mapped within ppiA, a gene associated with iron homeostasis in other species. Static time-kill assays demonstrated that supplementing cation-adjusted Mueller-Hinton broth with human serum albumin (HAS), the main protein component of HPF, considerably reduced cefiderocol killing activity for all three strains tested. Notably, collateral resistance to amikacin was observed in both variants. We conclude that exposing CRAB to fluids with high HSA concentrations facilitates the rise of heteroresistance associated with point mutations and transcriptional upregulation of genes coding for β-lactamases and biofilm formation. The findings from this study hold significant implications for understanding the emergence of CRAB resistance mechanisms against cefiderocol treatment. This understanding is vital for the development of treatment guidelines that can effectively address the challenges posed by CRAB infections.
Collapse
Affiliation(s)
- Vyanka Mezcord
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (V.M.)
| | - Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (V.M.)
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (V.M.)
| | - German M. Traglia
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay
| | - Rajnikant Sharma
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA (Q.V.)
| | - Quentin Vallé
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA (Q.V.)
| | - Marisel R. Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario 2000, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario 2000, Argentina
| | - Ingrid Marin
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (V.M.)
| | - Fernando Pasteran
- National Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires 1282, Argentina
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (V.M.)
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Gauri Rao
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA (Q.V.)
| | - María S. Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (V.M.)
| |
Collapse
|
10
|
Ruggiero M, Brunetti F, Dabos L, Girlich D, Muñoz JIB, Conza JD, Power P, Gutkind G, Naas T. Diversity of genetic platforms harboring the bla PER-2 gene in Enterobacterales and insights into the role of ISPa12 in its mobilization and dissemination. Int J Antimicrob Agents 2023:106850. [PMID: 37178777 DOI: 10.1016/j.ijantimicag.2023.106850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The production of PER-like extended-spectrum β-lactamases has recently been associated with reduced susceptibility to the last resort drugs aztreonam/avibactam and cefiderocol. PER-2 have been mainly confined to Argentina and neighboring countries. Until now, only three plasmids harboring blaPER-2 genes have been characterized but very little is known about the involvement of different plasmid groups in its dissemination. This study analyzed the diversity of genetic platforms associated with blaPER-2 genes from a collection of PER-producing Enterobacterales by describing both the close environment as well as the plasmid backbones. Full sequences of eleven plasmids were obtained by short (Illumina) and long read (Oxford Nanopore or PacBio) sequencing technologies. De novo assemblies, annotation and sequence analysis were performed by Unicycler, Prokka and BLAST. Plasmids analysis revealed that blaPER-2 gene is encoded on plasmids of different incompatibility groups (A, C, FIB, HI1B, N2) suggesting that this gene may have been disseminated through a variety of plasmids. Analysis and comparison with the few public available nucleotide sequences describing blaPER-2 genetic environment, including those from the environmental species Pararheinheimera spp. (considered as the progenitor of blaPER genes), suggests a role of ISPa12 in blaPER-2 gene mobilization from the chromosome of Pararheinheimera spp. Also, the blaPER-2 gene was carried by a novel ISPa12-composite transposon Tn7390. In addition, its association with ISKox2-like elements in the close genetic environment in all analyzed plasmids suggests a role of this IS in further dissemination of blaPER-2 genes.
Collapse
Affiliation(s)
- Melina Ruggiero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florencia Brunetti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Dabos
- Team RESIST, UMR1184, INSERM, Université Paris-Saclay, LabEx Lermit, Bacteriology-Hygiene unit, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France; Polytechnic University of Madrid, Centre for Plant Biotechnology and Genomics (CBGP, UPM-INIA), Evolutionary systems genetics of microbes Laboratory, Spain
| | - Delphine Girlich
- Team RESIST, UMR1184, INSERM, Université Paris-Saclay, LabEx Lermit, Bacteriology-Hygiene unit, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France
| | - Jackson Ivan Briceño Muñoz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
| | - José Di Conza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo Power
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel Gutkind
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Thierry Naas
- Team RESIST, UMR1184, INSERM, Université Paris-Saclay, LabEx Lermit, Bacteriology-Hygiene unit, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance "Carbapenemase-producing Enterobacterales"
| |
Collapse
|
11
|
Acinetobacter baumannii from Samples of Commercially Reared Turkeys: Genomic Relationships, Antimicrobial and Biocide Susceptibility. Microorganisms 2023; 11:microorganisms11030759. [PMID: 36985332 PMCID: PMC10052703 DOI: 10.3390/microorganisms11030759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Acinetobacter baumannii is especially known as a cause of nosocomial infections worldwide. It shows intrinsic and acquired resistances to numerous antimicrobial agents, which can render the treatment difficult. In contrast to the situation in human medicine, there are only few studies focusing on A. baumannii among livestock. In this study, we have examined 643 samples from turkeys reared for meat production, including 250 environmental and 393 diagnostic samples, for the presence of A. baumannii. In total, 99 isolates were identified, confirmed to species level via MALDI-TOF-MS and characterised with pulsed-field gel electrophoresis. Antimicrobial and biocide susceptibility was tested by broth microdilution methods. Based on the results, 26 representative isolates were selected and subjected to whole-genome sequencing (WGS). In general, A. baumannii was detected at a very low prevalence, except for a high prevalence of 79.7% in chick-box-papers (n = 118) of one-day-old turkey chicks. The distributions of the minimal inhibitory concentration values were unimodal for the four biocides and for most of the antimicrobial agents tested. WGS revealed 16 Pasteur and 18 Oxford sequence types, including new ones. Core genome MLST highlighted the diversity of most isolates. In conclusion, the isolates detected were highly diverse and still susceptible to many antimicrobial agents.
Collapse
|
12
|
Escalante J, Nishimura B, Tuttobene MR, Subils T, Mezcord V, Actis LA, Tolmasky ME, Bonomo RA, Ramirez MS. The Iron Content of Human Serum Albumin Modulates the Susceptibility of Acinetobacter baumannii to Cefiderocol. Biomedicines 2023; 11:639. [PMID: 36831178 PMCID: PMC9953112 DOI: 10.3390/biomedicines11020639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2022] [Revised: 01/15/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
The mortality rates of patients infected with Acinetobacter baumannii who were treated with cefiderocol (CFDC) were not as favorable as those receiving the best available treatment for pulmonary and bloodstream infections. Previous studies showed that the presence of human serum albumin (HSA) or HSA-containing fluids, such as human serum (HS) or human pleural fluid (HPF), in the growth medium is correlated with a decrease in the expression of genes associated with high-affinity siderophore-mediated iron uptake systems. These observations may explain the complexities of the observed clinical performance of CFDC in pulmonary and bloodstream infections, because ferric siderophore transporters enhance the penetration of CFDC into the bacterial cell. The removal of HSA from HS or HPF resulted in a reduction in the minimal inhibitory concentration (MIC) of CFDC. Concomitant with these results, an enhancement in the expression of TonB-dependent transporters known to play a crucial role in transporting iron was observed. In addition to inducing modifications in iron-uptake gene expression, the removal of HSA also decreased the expression of β-lactamases genes. Taken together, these observations suggest that environmental HSA has a role in the expression levels of select A. baumannii genes. Furthermore, the removal of iron from HSA had the same effect as the removal of HSA upon the expression of genes associated with iron uptake systems, also suggesting that at least one of the mechanisms by which HSA regulates the expression of certain genes is through acting as an iron source.
Collapse
Affiliation(s)
- Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| | - Marisel R. Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario S2000, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario S2000, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario S2000, Argentina
| | - Vyanka Mezcord
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| | - Robert A. Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Research Service and GRECC, Cleveland, OH 44106, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - María Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA
| |
Collapse
|
13
|
Rodríguez-Noriega E, Garza-González E, Bocanegra-Ibarias P, Paz-Velarde BA, Esparza-Ahumada S, González-Díaz E, Pérez-Gómez HR, Escobedo-Sánchez R, León-Garnica G, Morfín-Otero R. A case–control study of infections caused by Klebsiella pneumoniae producing New Delhi metallo-beta-lactamase-1: Predictors and outcomes. Front Cell Infect Microbiol 2022; 12:867347. [PMID: 35967868 PMCID: PMC9366880 DOI: 10.3389/fcimb.2022.867347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2022] [Accepted: 06/24/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction Infections caused by antimicrobial-resistant bacteria are a significant cause of death worldwide, and carbapenemase-producing bacteria are the principal agents. New Delhi metallo-beta-lactamase-1 producing Klebsiella pneumoniae (KP-NDM-1) is an extensively drug-resistant bacterium that has been previously reported in Mexico. Our aim was to conduct a case–control study to describe the risk factors associated with nosocomial infections caused by K. pneumoniae producing NDM-1 in a tertiary-care hospital in Mexico. Methods A retrospective case–control study with patients hospitalized from January 2012 to February 2018 at the Hospital Civil de Guadalajara “Fray Antonio Alcalde” was designed. During this period, 139 patients with a culture that was positive for K. pneumoniae NDM-1 (cases) and 486 patients hospitalized in the same department and on the same date as the cases (controls) were included. Data were analyzed using SPSS v. 24, and logistic regression analysis was conducted to calculate the risk factors for KP-NDM-1 infection. Results One hundred and thirty-nine case patients with a KP-NDM-1 isolate and 486 control patients were analyzed. In the case group, acute renal failure was a significant comorbidity, hospitalization days were extended, and significantly more deaths occurred. In a multivariate analysis of risk factors, the independent variables included the previous use of antibiotics (odds ratio, OR = 12.252), the use of a urinary catheter (OR = 5.985), the use of a central venous catheter (OR = 5.518), the use of mechanical ventilation (OR = 3.459), and the length of intensive care unit (ICU) stay (OR = 2.334) as predictors of infection with NDM-1 K. pneumoniae. Conclusion In this study, the previous use of antibiotics, the use of a urinary catheter, the use of a central venous catheter, the use of mechanical ventilation, and ICU stay were shown to be predictors of infection with NDM-1 K. pneumoniae and were independent risk factors for infection with NDM-1 K. pneumoniae.
Collapse
Affiliation(s)
- Eduardo Rodríguez-Noriega
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
| | | | | | | | - Sergio Esparza-Ahumada
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Hospital Civil de Guadalajara. Epidemiology, Microbiology and Infectious Disease Department, Guadalajara, Mexico
| | - Esteban González-Díaz
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Hospital Civil de Guadalajara. Epidemiology, Microbiology and Infectious Disease Department, Guadalajara, Mexico
| | - Héctor R. Pérez-Gómez
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
| | - Rodrigo Escobedo-Sánchez
- Hospital Civil de Guadalajara. Epidemiology, Microbiology and Infectious Disease Department, Guadalajara, Mexico
| | - Gerardo León-Garnica
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- Hospital Civil de Guadalajara. Epidemiology, Microbiology and Infectious Disease Department, Guadalajara, Mexico
| | - Rayo Morfín-Otero
- Instituto de Patología Infecciosa y Experimental “Dr. Francisco Ruiz Sánchez”, Centro Universitario de Ciencias de la Salud, Guadalajara, Mexico
- *Correspondence: Rayo Morfín-Otero,
| |
Collapse
|
14
|
Hamed SM, Hussein AFA, Al-Agamy MH, Radwan HH, Zafer MM. Genetic Configuration of Genomic Resistance Islands in Acinetobacter baumannii Clinical Isolates From Egypt. Front Microbiol 2022; 13:878912. [PMID: 35935207 PMCID: PMC9353178 DOI: 10.3389/fmicb.2022.878912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In Acinetobacter baumannii (A. baumannii), a wide repertoire of resistance genes is often carried within genomic resistance islands (RIs), particularly in high-risk global clones (GCs). As the first in Egypt, the current study aimed at exploring the diversity and genetic configuration of RIs in the clinical isolates of A. baumannii. For this purpose, draft genomes of 18 isolates were generated by Illumina sequencing. Disk diffusion susceptibility profiling revealed multidrug resistance (MDR) and extensive drug resistance (XDR) phenotypes in 27.7 and 72.2%, respectively. The highest susceptibility was noted for tigecycline (100.0%) followed by colistin (94.4%), for which an MIC50 of 0.25 μg/ml was recorded by the broth microdilution assay. Sequence typing (ST) showed that the majority of the isolates belonged to high-risk global clones (GC1, GC2, and GC9). A novel Oxford sequence type (ST2329) that also formed a novel clonal complex was submitted to the PubMLST database. A novel blaADC variant (blaADC−258) was also identified in strain M18 (ST85Pas/1089Oxf). In addition to a wide array of resistance determinants, whole-genome sequencing (WGS) disclosed at least nine configurations of genomic RIs distributed over 16/18 isolates. GC2 isolates accumulated the largest number of RIs (three RIs/isolate) followed by those that belong to GC1 (two RIs/isolate). In addition to Tn6022 (44.4%), the comM gene was interrupted by AbaR4 (5.5%) and three variants of A. baumanniigenomic resistance island 1(AbGRI)-type RIs (44.4%), including AbaR4b (16.6%) and two novel configurations of AbGRI1-like RIs (22.2%). Three of which (AbaR4, AbaR4b, and AbGRI1-like-2) carried blaOXA−23 within Tn2006. With less abundance (38.8%), IS26-bound RIs were detected exclusively in GC2 isolates. These included a short version of AbGRI2 (AbGRI2-15) carrying the genes blaTEM−1 and aphA1 and two variants of AbGRI3 RIs carrying up to seven resistance genes [mphE-msrE-armA-sul1-aadA1-catB8-aacA4]. Confined to GC1 (22.2%), sulfonamide resistance was acquired by an ISAba1 bracketed GIsul2 RI. An additional RI (RI-PER-7) was also identified on a plasmid carried by strain M03. Among others, RI-PER-7 carried the resistance genes armA and blaPER−7. Here, we provided a closer view of the diversity and genetic organization of RIs carried by a previously unexplored population of A. baumannii.
Collapse
Affiliation(s)
- Samira M. Hamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Amira F. A. Hussein
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed H. Al-Agamy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hesham H. Radwan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mai M. Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
- *Correspondence: Mai M. Zafer
| |
Collapse
|
15
|
Nishimura B, Escalante J, Tuttobene MR, Subils T, Mezcord V, Pimentel C, Georgeos N, Pasteran F, Rodriguez C, Sieira R, Actis LA, Tolmasky ME, Bonomo RA, Ramirez MS. Acinetobacter baumannii response to cefiderocol challenge in human urine. Sci Rep 2022; 12:8763. [PMID: 35610334 PMCID: PMC9128776 DOI: 10.1038/s41598-022-12829-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Cefiderocol (CFDC) is a novel chlorocatechol-substituted siderophore antibiotic approved to treat complicated urinary tract infections (cUTI) and hospital-acquired and ventilator-acquired pneumonia (HAP/VAP). Previous work determined that albumin-rich human fluids increase the minimum inhibitory concentration (MICs) of Acinetobacter baumannii against CFDC and reduce the expression of genes related to iron uptake systems. This latter effect may contribute to the need for higher concentrations of CFDC to inhibit growth. The presence of human urine (HU), which contains low albumin concentrations, did not modify MIC values of two carbapenem-resistant A. baumannii. Levels of resistance to CFDC were not modified by HU in strain AMA40 but were reduced in strain AB5075. Expanding the studies to other carbapenem-resistant A. baumannii isolates showed that the presence of HU resulted in unmodified or reduced MIC of CDFC values. The expression of piuA, pirA, bauA, and bfnH determined by qRT-PCR was enhanced in A. baumannii AMA40 and AB5075 by the presence of HU in the culture medium. All four tested genes code for functions related to recognition and transport of ferric-siderophore complexes. The effect of HU on expression of pbp1, pbp3, blaOXA-51-like, blaADC, and blaNDM-1, genes associated with resistance to β-lactams, as well as genes coding for efflux pumps and porins was variable, showing dependence with the strain analyzed. We conclude that the lack of significant concentrations of albumin and free iron in HU makes this fluid behave differently from others we tested. Unlike other albumin rich fluids, the presence of HU does not impact the antibacterial activity of CFDC when tested against A. baumannii.
Collapse
Affiliation(s)
- Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Marisel R Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario, Argentina
| | - Vyanka Mezcord
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Nardin Georgeos
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Fernando Pasteran
- National Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Cecilia Rodriguez
- Centro de Referencia Para Lactobacilos (CERELA), CONICET, Tucumán, Argentina
| | | | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Robert A Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - María Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
16
|
Le C, Pimentel C, Pasteran F, Tuttobene MR, Subils T, Escalante J, Nishimura B, Arriaga S, Carranza A, Mezcord V, Vila AJ, Corso A, Actis LA, Tolmasky ME, Bonomo RA, Ramírez MS. Human Serum Proteins and Susceptibility of Acinetobacter baumannii to Cefiderocol: Role of Iron Transport. Biomedicines 2022; 10:600. [PMID: 35327400 PMCID: PMC8945497 DOI: 10.3390/biomedicines10030600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/10/2023] Open
Abstract
Cefiderocol, a recently introduced antibiotic, has a chemical structure that includes a cephalosporin that targets cell wall synthesis and a chlorocatechol siderophore moiety that facilitates cell penetration by active iron transporters. Analysis of the effect that human serum, human serum albumin, and human pleural fluid had on growing Acinetobacter baumannii showed that genes related to iron uptake were down-regulated. At the same time, β-lactamase genes were expressed at higher levels. The minimum inhibitory concentrations of this antimicrobial in A. baumannii cells growing in the presence of human serum, human serum albumin, or human pleural fluid were higher than those measured when these fluids were absent from the culture medium. These results correlate with increased expression levels of β-lactamase genes and the down-regulation of iron uptake-related genes in cultures containing human serum, human serum albumin, or human pleural fluid. These modifications in gene expression could explain the less-than-ideal clinical response observed in patients with pulmonary or bloodstream A. baumannii infections. The exposure of the infecting cells to the host's fluids could cause reduced cefiderocol transport capabilities and increased resistance to β-lactams. The regulation of genes that could impact the A. baumannii susceptibility to cefiderocol, or other antibacterials, is an understudied phenomenon that merits further investigation.
Collapse
Affiliation(s)
- Casin Le
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Fernando Pasteran
- National/Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires C1282, Argentina; (F.P.); (A.C.)
| | - Marisel R. Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario S2000, Argentina;
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario S2000, Argentina;
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario S2002, Argentina;
| | - Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Susana Arriaga
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Aimee Carranza
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Vyanka Mezcord
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario S2000, Argentina;
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario S2000, Argentina
| | - Alejandra Corso
- National/Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires C1282, Argentina; (F.P.); (A.C.)
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, OH 45056, USA;
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Robert A. Bonomo
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Maria Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| |
Collapse
|
17
|
Le C, Pimentel C, Tuttobene MR, Subils T, Nishimura B, Traglia GM, Perez F, Papp-Wallace KM, Bonomo RA, Tolmasky ME, Ramirez MS. Interplay between Meropenem and Human Serum Albumin on Expression of Carbapenem Resistance Genes and Natural Competence in Acinetobacter baumannii. Antimicrob Agents Chemother 2021; 65:e0101921. [PMID: 34280015 PMCID: PMC8448116 DOI: 10.1128/aac.01019-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii A118, a carbapenem-susceptible strain, and AB5075, carbapenem resistant, were cultured in lysogeny broth (LB) or LB with different supplements, such as 3.5% human serum albumin (HSA), human serum (HS), meropenem, or meropenem plus 3.5% HSA. Natural transformation levels were enhanced in A. baumannii A118 and AB5075 cultured in medium supplemented with 3.5% HSA. Addition of meropenem plus 3.5% HSA caused synergistic enhancement of natural transformation in A. baumannii A118. Medium containing 3.5% HSA or meropenem enhanced the expression levels of the competence and type IV pilus-associated genes. The combination meropenem plus 3.5% HSA produced a synergistic enhancement in the expression levels of many of these genes. The addition of HS, which has a high content of HSA, was also an inducer of these genes. Cultures in medium supplemented with HS or 3.5% HSA also affected resistance genes, which were expressed at higher or lower levels depending on the modification required to enhance resistance. The inducing or repressing activity of these modulators also occurred in three more carbapenem-resistant strains tested. An exception was the A. baumannii AMA16 blaNDM-1 gene, which was repressed in the presence of 3.5% HSA. In conclusion, HSA produces an enhancement of natural transformation and a modification in expression levels of competence genes and antibiotic resistance. Furthermore, when HSA is combined with carbapenems, which may increase the stress response, the expression of genes involved in natural competence is increased in A. baumannii. This process may favor the acquisition of foreign DNA and accelerate evolution.
Collapse
Affiliation(s)
- Casin Le
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Marisel R. Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Tomas Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario, Argentina
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - German M. Traglia
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de La Republica, Montevideo, Uruguay
| | - Federico Perez
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Krisztina M. Papp-Wallace
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| |
Collapse
|
18
|
Pimentel C, Le C, Tuttobene MR, Subils T, Papp-Wallace KM, Bonomo RA, Tolmasky ME, Ramirez MS. Interaction of Acinetobacter baumannii with Human Serum Albumin: Does the Host Determine the Outcome? Antibiotics (Basel) 2021; 10:antibiotics10070833. [PMID: 34356754 PMCID: PMC8300715 DOI: 10.3390/antibiotics10070833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023] Open
Abstract
Acinetobacter baumannii has become a serious threat to human health due to its extreme antibiotic resistance, environmental persistence, and capacity to survive within the host. Two A. baumannii strains, A118 and AB5075, commonly used as model systems, and three carbapenem-resistant strains, which are becoming ever more dangerous due to the multiple drugs they can resist, were exposed to 3.5% human serum albumin (HSA) and human serum (HS) to evaluate their response with respect to antimicrobial resistance, biofilm formation, and quorum sensing, all features responsible for increasing survival and persistence in the environment and human body. Expression levels of antibiotic resistance genes were modified differently when examined in different strains. The cmlA gene was upregulated or downregulated in conditions of exposure to 3.5% HSA or HS depending on the strain. Expression levels of pbp1 and pbp3 tended to be increased by the presence of HSA and HS, but the effect was not seen in all strains. A. baumannii A118 growing in the presence of HS did not experience increased expression of these genes. Aminoglycoside-modifying enzymes were also expressed at higher or lower levels in the presence of HSA or HS. Still, the response was not uniform; in some cases, expression was enhanced, and in other cases, it was tapered. While A. baumannii AB5075 became more susceptible to rifampicin in the presence of 3.5% HSA or HS, strain A118 did not show any changes. Expression of arr2, a gene involved in resistance to rifampicin present in A. baumannii AMA16, was expressed at higher levels when HS was present in the culture medium. HSA and HS reduced biofilm formation and production of N-Acyl Homoserine Lactone, a compound intimately associated with quorum sensing. In conclusion, HSA, the main component of HS, stimulates a variety of adaptative responses in infecting A. baumannii strains.
Collapse
Affiliation(s)
- Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.E.T.)
| | - Casin Le
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.E.T.)
| | - Marisel R. Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina;
| | - Tomas Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario S2002LRK, Argentina;
| | - Krisztina M. Papp-Wallace
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; (K.M.P.-W.); (R.A.B.)
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; (K.M.P.-W.); (R.A.B.)
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.E.T.)
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.E.T.)
- Correspondence: ; Tel.: +1-657-278-4562
| |
Collapse
|
19
|
A New Twist: The Combination of Sulbactam/Avibactam Enhances Sulbactam Activity against Carbapenem-Resistant Acinetobacter baumannii (CRAB) Isolates. Antibiotics (Basel) 2021; 10:antibiotics10050577. [PMID: 34068158 PMCID: PMC8152955 DOI: 10.3390/antibiotics10050577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/22/2023] Open
Abstract
An increasing number of untreatable infections are recorded every year. Many studies have focused their efforts on developing new β-lactamase inhibitors to treat multi-drug resistant (MDR) isolates. In the present study, sulbactam/avibactam and sulbactam/relebactam combination were tested against 187 multi-drug resistant (MDR) Acinetobacter clinical isolates; both sulbactam/avibactam and sulbactam/relebactam restored sulbactam activity. A decrease ≥2 dilutions in sulbactam MICs was observed in 89% of the isolates when tested in combination with avibactam. Sulbactam/relebactam was able to restore sulbactam susceptibility in 40% of the isolates. In addition, the susceptibility testing using twenty-three A. baumannii AB5075 knockout strains revealed potential sulbactam and/or sulbactam/avibactam target genes. We observed that diazabicyclooctanes (DBOs) β-lactamase inhibitors combined with sulbactam restore sulbactam susceptibility against carbapenem-resistant Acinetobacter clinical isolates. However, relebactam was not as effective as avibactam when combined with sulbactam. Exploring novel combinations may offer new options to treat Acinetobacter spp. infections, especially for widespread oxacillinases and metallo-β-lactamases (MBLs) producers.
Collapse
|
20
|
Carbapenemases as factors of Resistance to Antibacterial Drugs. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
|
21
|
Xanthopoulou K, Urrutikoetxea-Gutiérrez M, Vidal-Garcia M, Diaz de Tuesta Del Arco JL, Sánchez-Urtaza S, Wille J, Seifert H, Higgins PG, Gallego L. First Report of New Delhi Metallo- β-Lactamase-6 (NDM-6) in a Clinical Acinetobacter baumannii Isolate From Northern Spain. Front Microbiol 2020; 11:589253. [PMID: 33240245 PMCID: PMC7683408 DOI: 10.3389/fmicb.2020.589253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
The objective of this study was the phenotypic and genotypic characterization of a carbapenem resistant Acinetobacter baumannii (CRAB) isolate. The isolate, recovered in Northern Spain in 2019, was identified by MALDI-TOF to the species level. Antimicrobial susceptibility testing was performed using the Phoenix BD NMIC-502 Panel, E-test, and broth microdilution methods. The presence of a metallo-β-lactamase (MBL) was verified by PCR and immunochromatographic assays. The genetic location of the MBL was confirmed using S1-pulsed-field gel electrophoresis (S1-PFGE) followed by Southern blot hybridization. Whole genome sequencing (WGS) was completed using the Miseq and MinION platforms, followed by core-genome MLST (cgMLST) and seven-locus MLST analysis. The CRAB was assigned ST85 (Pasteur scheme) and ST957 (Oxford scheme) representing international clone (IC) 9 and harbored the intrinsic β-lactamase OXA-94 with ISAba1 upstream of it, and the MBL bla NDM-6. Hybridization experiments revealed that the bla NDM-6 was encoded on the chromosome. Using WGS the bla NDM-6 environment could be identified arranged in the following order: ISAba14, aphA6, ISAba125, bla NDM-6, ble MBL, trpF, dsbC, cutA, and ISAba14. Downstream, a 10,462 bp duplication was identified, including a second copy of bla NDM-6 in the following genetic composition: ISAba125, bla NDM-6, ble MBL, trpF, dsbC, cutA, and ISAba14. To our knowledge, this is the first description of bla NDM-6 in A. baumannii. The MBL was present in two copies in the chromosome in a new genetic environment associated with IS elements highlighting the contribution of mobile genetic elements in the dissemination of this gene.
Collapse
Affiliation(s)
- Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Mikel Urrutikoetxea-Gutiérrez
- Servicio de Microbiología y Control de Infección, Hospital Universitario Basurto, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Matxalen Vidal-Garcia
- Servicio de Microbiología y Control de Infección, Hospital Universitario Basurto, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - José-Luis Diaz de Tuesta Del Arco
- Servicio de Microbiología y Control de Infección, Hospital Universitario Basurto, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Sandra Sánchez-Urtaza
- Department of Immunology, Microbiology, and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Paul G Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Lucía Gallego
- Department of Immunology, Microbiology, and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Bilbao, Spain
| |
Collapse
|
22
|
Montaña S, Vilacoba E, Fernandez JS, Traglia GM, Sucari A, Pennini M, Iriarte A, Centron D, Melano RG, Ramírez MS. Genomic analysis of two Acinetobacter baumannii strains belonging to two different sequence types (ST172 and ST25). J Glob Antimicrob Resist 2020; 23:154-161. [PMID: 32966912 DOI: 10.1016/j.jgar.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVES Acinetobacter baumannii is an opportunistic nosocomial pathogen that is the main focus of attention in clinical settings owing to its intrinsic ability to persist in the hospital environment and its capacity to acquire determinants of resistance and virulence. Here we present the genomic sequencing, molecular characterisation and genomic comparison of two A. baumannii strains belonging to two different sequence types (STs), one sporadic and one widely distributed in our region. METHODS Whole-genome sequencing (WGS) of Ab42 and Ab376 was performed using Illumina MiSeq-I and the genomes were assembled with SPAdes. ARG-ANNOT, CARD-RGI, ISfinder, PHAST, PlasmidFinder, plasmidSPAdes and IslandViewer were used to analyse both genomes. RESULTS Genome analysis revealed that Ab42 belongs to ST172, an uncommon ST, whilst Ab376 belongs to ST25, a widely distributed ST. Molecular characterisation showed the presence of two antibiotic resistance genes in Ab42 and nine in Ab376. No insertion sequences were detected in Ab42, however 22 were detected in Ab376. Moreover, two prophages were found in Ab42 and three in Ab376. In addition, a CRISPR-cas type I-Fb and two plasmids, one of which harboured an AbGRI1-like island, were found in Ab376. CONCLUSIONS We present WGS analysis of twoA. baumannii strains belonging to two different STs. These findings allowed us to characterise a previously undescribed ST (ST172) and provide new insights to the widely studied ST25.
Collapse
Affiliation(s)
- Sabrina Montaña
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina; Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Elisabet Vilacoba
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Jennifer S Fernandez
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd, Fullerton, CA 92834-6850, USA
| | - German M Traglia
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República. Montevideo, Uruguay
| | - Adriana Sucari
- Unidad Microbiología, Laboratorio Stamboulian, Buenos Aires, Argentina
| | - Magdalena Pennini
- Unidad Microbiología, Laboratorio Stamboulian, Buenos Aires, Argentina
| | - Andres Iriarte
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República. Montevideo, Uruguay
| | - Daniela Centron
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | | | - María Soledad Ramírez
- Department of Biological Science, California State University Fullerton, 800 N. State College Blvd, Fullerton, CA 92834-6850, USA.
| |
Collapse
|
23
|
Rodgers D, Pasteran F, Calderon M, Jaber S, Traglia GM, Albornoz E, Corso A, Vila AJ, Bonomo RA, Adams MD, Ramírez MS. Characterisation of ST25 NDM-1-producing Acinetobacter spp. strains leading the increase in NDM-1 emergence in Argentina. J Glob Antimicrob Resist 2020; 23:108-110. [PMID: 32890839 DOI: 10.1016/j.jgar.2020.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2020] [Revised: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 11/19/2022] Open
Affiliation(s)
- Deja Rodgers
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Fernando Pasteran
- National/Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
| | - Manuel Calderon
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Sara Jaber
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - German M Traglia
- Departamento de Desarrollo Biotecnología, Instituto de Higiene, Facultad de Medicina, Universidad de La República, Montevideo, Uruguay
| | - Ezequiel Albornoz
- National/Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
| | - Alejandra Corso
- National/Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS 'Dr Carlos G. Malbrán', Buenos Aires, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Robert A Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Mark D Adams
- The Jackson Laboratory, Farmington, Connecticut, USA
| | - María Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA.
| |
Collapse
|
24
|
Ramirez MS, Bonomo RA, Tolmasky ME. Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace. Biomolecules 2020; 10:biom10050720. [PMID: 32384624 PMCID: PMC7277208 DOI: 10.3390/biom10050720] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of serious nosocomial infections. Although community-acquired infections are observed, the vast majority occur in people with preexisting comorbidities. A. baumannii emerged as a problematic pathogen in the 1980s when an increase in virulence, difficulty in treatment due to drug resistance, and opportunities for infection turned it into one of the most important threats to human health. Some of the clinical manifestations of A. baumannii nosocomial infection are pneumonia; bloodstream infections; lower respiratory tract, urinary tract, and wound infections; burn infections; skin and soft tissue infections (including necrotizing fasciitis); meningitis; osteomyelitis; and endocarditis. A. baumannii has an extraordinary genetic plasticity that results in a high capacity to acquire antimicrobial resistance traits. In particular, acquisition of resistance to carbapenems, which are among the antimicrobials of last resort for treatment of multidrug infections, is increasing among A. baumannii strains compounding the problem of nosocomial infections caused by this pathogen. It is not uncommon to find multidrug-resistant (MDR, resistance to at least three classes of antimicrobials), extensively drug-resistant (XDR, MDR plus resistance to carbapenems), and pan-drug-resistant (PDR, XDR plus resistance to polymyxins) nosocomial isolates that are hard to treat with the currently available drugs. In this article we review the acquired resistance to carbapenems by A. baumannii. We describe the enzymes within the OXA, NDM, VIM, IMP, and KPC groups of carbapenemases and the coding genes found in A. baumannii clinical isolates.
Collapse
Affiliation(s)
- Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Robert A. Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA;
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics; Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- WRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA 92831, USA;
- Correspondence: ; Tel.: +657-278-5263
| |
Collapse
|