1
|
Lu S, Montoya M, Hu L, Neetu N, Sankaran B, Prasad BVV, Palzkill T. Mutagenesis and structural analysis reveal the CTX-M β-lactamase active site is optimized for cephalosporin catalysis and drug resistance. J Biol Chem 2023; 299:104630. [PMID: 36963495 PMCID: PMC10139949 DOI: 10.1016/j.jbc.2023.104630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023] Open
Abstract
CTX-M β-lactamases are a widespread source of resistance to β-lactam antibiotics in Gram-negative bacteria. These enzymes readily hydrolyze penicillins and cephalosporins, including oxyimino-cephalosporins such as cefotaxime. To investigate the preference of CTX-M enzymes for cephalosporins, we examined eleven active-site residues in the CTX-M-14 β-lactamase model system by alanine mutagenesis to assess the contribution of the residues to catalysis and specificity for the hydrolysis of the penicillin, ampicillin, and the cephalosporins cephalothin and cefotaxime. Key active site residues for class A β-lactamases, including Lys73, Ser130, Asn132, Lys234, Thr216, and Thr235, contribute significantly to substrate binding and catalysis of penicillin and cephalosporin substrates in that alanine substitutions decrease both kcat and kcat/KM. A second group of residues, including Asn104, Tyr105, Asn106, Thr215, and Thr216, contribute only to substrate binding, with the substitutions decreasing only kcat/KM. Importantly, calculating the average effect of a substitution across the 11 active-site residues shows that the most significant impact is on cefotaxime hydrolysis while ampicillin hydrolysis is least affected, suggesting the active site is highly optimized for cefotaxime catalysis. Furthermore, we determined X-ray crystal structures for the apo-enzymes of the mutants N106A, S130A, N132A, N170A, T215A, and T235A. Surprisingly, in the structures of some mutants, particularly N106A and T235A, the changes in structure propagate from the site of substitution to other regions of the active site, suggesting that the impact of substitutions is due to more widespread changes in structure and illustrating the interconnected nature of the active site.
Collapse
Affiliation(s)
- Shuo Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Miranda Montoya
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Liya Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Neetu Neetu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - B V Venkataram Prasad
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
2
|
Three new inhibitors of class A β-lactamases evaluated by molecular docking and dynamics simulations methods: relebactam, enmetazobactam, and QPX7728. J Mol Model 2022; 28:76. [PMID: 35243556 DOI: 10.1007/s00894-022-05073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Antibiotic-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, Mycobacterium tuberculosis, Staphylococcus aureus, and Enterobacterales infections are serious global health problems, and class A β-lactamases are one mechanism that leads to antibiotic resistance. QPX7728, relebactam, and enmetazobactam are new β-lactamase inhibitors to combat β-lactam resistance. in silico approach was used in the current study to find which of the three inhibitors would be more effective for all class A β-lactamases and to reveal molecular insights into the differences between their binding energies. The mutations in conserved residues of the active sites of β-lactamases were defined using BLDB and Clustal Omega. FastME and MMseq2 were used for cluster and phylogeny analysis. 3D protein structure models for β-lactamases were built using SWISS-MODEL. ERRAT and Galaxy Web Server were used to verify 42 β-lactamase protein structures. QPX7728, relebactam, and enmetazobactam were docked to β-lactamases by using AutoDock 4.2. The TEM76-relebactam, CTX-M-81-relebactam, TEM-76-enmetazobactam, and CTX-M-200-enmetazobactam complexes were simulated by molecular dynamics method for 500 ns. Based on molecular docking results, relebactam and QPX7728 were more favorable inhibitors for serine A β-lactamases. A 2D representation of the interactions between ligands and β-lactamases showed that S235, hydrogen bonded with TEM-76, might play a role in inhibitor design. A 500-ns MD analysis of complexes indicated that distance from S70, stability in the enzyme active cavity, and high atomic displacement would account for a significant difference in inhibitor binding affinity.
Collapse
|
3
|
Song Z, Zhou H, Tian H, Wang X, Tao P. Unraveling the energetic significance of chemical events in enzyme catalysis via machine-learning based regression approach. Commun Chem 2020; 3:134. [PMID: 36703376 PMCID: PMC9814854 DOI: 10.1038/s42004-020-00379-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/11/2020] [Indexed: 01/29/2023] Open
Abstract
The bacterial enzyme class of β-lactamases are involved in benzylpenicillin acylation reactions, which are currently being revisited using hybrid quantum mechanical molecular mechanical (QM/MM) chain-of-states pathway optimizations. Minimum energy pathways are sampled by reoptimizing pathway geometry under different representative protein environments obtained through constrained molecular dynamics simulations. Predictive potential energy surface models in the reaction space are trained with machine-learning regression techniques. Herein, using TEM-1/benzylpenicillin acylation reaction as the model system, we introduce two model-independent criteria for delineating the energetic contributions and correlations in the predicted reaction space. Both methods are demonstrated to effectively quantify the energetic contribution of each chemical process and identify the rate limiting step of enzymatic reaction with high degrees of freedom. The consistency of the current workflow is tested under seven levels of quantum chemistry theory and three non-linear machine-learning regression models. The proposed approaches are validated to provide qualitative compliance with experimental mutagenesis studies.
Collapse
Affiliation(s)
- Zilin Song
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, 75275, USA
| | - Hongyu Zhou
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, 75275, USA
| | - Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, 75275, USA
| | - Xinlei Wang
- Department of Statistical Science, Southern Methodist University, Dallas, TX, 75275, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, 75275, USA.
| |
Collapse
|
4
|
Srivastava SK, King KS, AbuSara NF, Malayny CJ, Piercey BM, Wilson JA, Tahlan K. In vivo functional analysis of a class A β-lactamase-related protein essential for clavulanic acid biosynthesis in Streptomyces clavuligerus. PLoS One 2019; 14:e0215960. [PMID: 31013337 PMCID: PMC6478378 DOI: 10.1371/journal.pone.0215960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/12/2019] [Indexed: 11/23/2022] Open
Abstract
In Streptomyces clavuligerus, the gene cluster involved in the biosynthesis of the clinically used β-lactamase inhibitor clavulanic acid contains a gene (orf12 or cpe) encoding a protein with a C-terminal class A β-lactamase-like domain. The cpe gene is essential for clavulanic acid production, and the recent crystal structure of its product (Cpe) was shown to also contain an N-terminal isomerase/cyclase-like domain, but the function of the protein remains unknown. In the current study, we show that Cpe is a cytoplasmic protein and that both its N- and C-terminal domains are required for in vivo clavulanic acid production in S. clavuligerus. Our results along with those from previous studies allude towards a biosynthetic role for Cpe during the later stages of clavulanic acid production in S. clavuligerus. Amino acids from Cpe essential for biosynthesis were also identified, including one (Lys89) from the recently described N-terminal isomerase-like domain of unknown function. Homologues of Cpe from other clavulanic acid-producing Streptomyces spp. were shown to be functionally equivalent to the S. clavuligerus protein, whereas those from non-producers containing clavulanic acid-like gene clusters were not. The suggested in vivo involvement of an isomerase-like domain recruited by an ancestral β-lactamase related protein, supports a previous hypothesis that Cpe could be involved in a step requiring the opening and modification of the clavulanic acid core during its biosynthesis from 5S precursors.
Collapse
Affiliation(s)
| | - Kelcey S. King
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Nader F. AbuSara
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Chelsea J. Malayny
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Brandon M. Piercey
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Jaime A. Wilson
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
- * E-mail:
| |
Collapse
|
5
|
Knox R, Lento C, Wilson DJ. Mapping Conformational Dynamics to Individual Steps in the TEM-1 β-Lactamase Catalytic Mechanism. J Mol Biol 2018; 430:3311-3322. [PMID: 29964048 DOI: 10.1016/j.jmb.2018.06.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
Conformational dynamics are increasingly recognized as being essential for enzyme function. However, there is virtually no direct experimental evidence to support the notion that individual dynamic modes are required for specific catalytic processes, apart from the initial step of substrate binding. In this work, we use a unique approach based on millisecond hydrogen-deuterium exchange mass spectrometry to identify dynamic modes linked to individual catalytic processes in the antibiotic resistance enzyme TEM-1 β-lactamase. Using a "good" substrate (ampicillin), a poorly hydrolyzed substrate (cephalexin) and a covalent inhibitor (clavulanate), we are able to isolate dynamic modes that are specifically linked to substrate binding, productive lactam ring hydrolysis and deacylation. These discoveries are ultimately translated into specific targets for allosteric TEM-1 inhibitor development.
Collapse
Affiliation(s)
- Ruth Knox
- Department of Chemistry, York University, Toronto, Canada M3J 1P3
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, Canada M3J 1P3
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Canada M3J 1P3; Center for Research in Mass Spectrometry, York University, Toronto, Canada M3J 1P3.
| |
Collapse
|
6
|
Targeting a hidden site on class A beta-lactamases. J Mol Graph Model 2018; 84:125-133. [PMID: 29960255 DOI: 10.1016/j.jmgm.2018.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 11/22/2022]
Abstract
Increasing resistance against available orthosteric beta-lactamase inhibitors necessitates the search for novel and powerful inhibitor molecules. In this respect, allosteric inhibitors serve as attractive alternatives. Here, we examine the structural basis of inhibition in a hidden, druggable pocket in TEM-1 beta-lactamase. Based on crystallographic evidence that 6-cyclohexyl-1-hexyl-β-D-maltoside (CYMAL-6) binds to this site, first we determined the kinetic mechanism of inhibition by CYMAL-6. Activity measurements with CYMAL-6 showed that it competitively inhibits the wild type enzyme. Interestingly, it exhibits a steep dose-response curve with an IC50 of 100 μM. The IC50 value changes neither with different enzyme concentration nor with incubation of the enzyme with the inhibitor, showing that inhibition is not aggregation-based. The presence of the same concentrations of CYMAL-6 does not influence the activity of lactate dehydrogenase, further confirming the specificity of CYMAL-6 for TEM-1 beta-lactamase. Then, we identified compounds with high affinity to this allosteric site by virtual screening using Glide and Schrödinger Suite. Virtual screening performed with 500,000 drug like compounds from the ZINC database showed that top scoring compounds interact with the hydrophobic pocket that forms between H10 and H11 helices and with the catalytically important Arg244 residue through pi-cation interactions. Discovery of novel chemical scaffolds that target this allosteric site will pave the way for a new avenue in the design of new antimicrobials.
Collapse
|
7
|
Patel MP, Hu L, Stojanoski V, Sankaran B, Venkataram Prasad BV, Palzkill T. The Drug-Resistant Variant P167S Expands the Substrate Profile of CTX-M β-Lactamases for Oxyimino-Cephalosporin Antibiotics by Enlarging the Active Site upon Acylation. Biochemistry 2017; 56:3443-3453. [PMID: 28613873 PMCID: PMC5645026 DOI: 10.1021/acs.biochem.7b00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CTX-M β-lactamases provide resistance against the β-lactam antibiotic, cefotaxime, but not a related antibiotic, ceftazidime. β-Lactamases that carry the P167S substitution, however, provide ceftazidime resistance. In this study, CTX-M-14 was used as a model to study the structural changes caused by the P167S mutation that accelerate ceftazidime turnover. X-ray crystallography was used to determine the structures of the P167S apoenzyme along with the structures of the S70G/P167S, E166A/P167S, and E166A mutant enzymes complexed with ceftazidime as well as the E166A/P167S apoenzyme. The S70G and E166A mutations allow capture of the enzyme-substrate complex and the acylated form of ceftazidime, respectively. The results showed a large conformational change in the Ω-loop of the ceftazidime acyl-enzyme complex of the P167S mutant but not in the enzyme-substrate complex, suggesting the change occurs upon acylation. The change results in a larger active site that prevents steric clash between the aminothiazole ring of ceftazidime and the Asn170 residue in the Ω-loop, allowing accommodation of ceftazidime for hydrolysis. In addition, the conformational change was not observed in the E166A/P167S apoenzyme, suggesting the presence of acylated ceftazidime influences the conformational change. Finally, the E166A acyl-enzyme structure with ceftazidime did not exhibit the altered conformation, indicating the P167S substitution is required for the change. Taken together, the results reveal that the P167S substitution and the presence of acylated ceftazidime both drive the structure toward a conformational change in the Ω-loop and that in CTX-M P167S enzymes found in drug-resistant bacteria this will lead to an increased level of ceftazidime hydrolysis.
Collapse
Affiliation(s)
- Meha P. Patel
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Liya Hu
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Vlatko Stojanoski
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - B. V. Venkataram Prasad
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Timothy Palzkill
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030
- Verna Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
8
|
Evolvability as a function of purifying selection in TEM-1 β-lactamase. Cell 2015; 160:882-892. [PMID: 25723163 DOI: 10.1016/j.cell.2015.01.035] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/30/2014] [Accepted: 01/17/2015] [Indexed: 12/16/2022]
Abstract
Evolvability—the capacity to generate beneficial heritable variation—is a central property of biological systems. However, its origins and modulation by environmental factors have not been examined systematically. Here, we analyze the fitness effects of all single mutations in TEM-1 β-lactamase (4,997 variants) under selection for the wild-type function (ampicillin resistance) and for a new function (cefotaxime resistance). Tolerance to mutation in this enzyme is bimodal and dependent on the strength of purifying selection in vivo, a result that derives from a steep non-linear ampicillin-dependent relationship between biochemical activity and fitness. Interestingly, cefotaxime resistance emerges from mutations that are neutral at low levels of ampicillin but deleterious at high levels; thus the capacity to evolve new function also depends on the strength of selection. The key property controlling evolvability is an excess of enzymatic activity relative to the strength of selection, suggesting that fluctuating environments might select for high-activity enzymes.
Collapse
|
9
|
Power P, Mercuri P, Herman R, Kerff F, Gutkind G, Dive G, Galleni M, Charlier P, Sauvage E. Novel fragments of clavulanate observed in the structure of the class A -lactamase from Bacillus licheniformis BS3. J Antimicrob Chemother 2012; 67:2379-87. [DOI: 10.1093/jac/dks231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Mabanglo MF, Serohijos AWR, Poulter CD. The Streptomyces-produced antibiotic fosfomycin is a promiscuous substrate for archaeal isopentenyl phosphate kinase. Biochemistry 2012; 51:917-25. [PMID: 22148590 PMCID: PMC3273622 DOI: 10.1021/bi201662k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isopentenyl phosphate kinase (IPK) catalyzes the phosphorylation of isopentenyl phosphate to form the isoprenoid precursor isopentenyl diphosphate in the archaeal mevalonate pathway. This enzyme is highly homologous to fosfomycin kinase (FomA), an antibiotic resistance enzyme found in a few strains of Streptomyces and Pseudomonas whose mode of action is inactivation by phosphorylation. Superposition of Thermoplasma acidophilum (THA) IPK and FomA structures aligns their respective substrates and catalytic residues, including H50 and K14 in THA IPK and H58 and K18 in Streptomyces wedmorensis FomA. These residues are conserved only in the IPK and FomA members of the phosphate subdivision of the amino acid kinase family. We measured the fosfomycin kinase activity of THA IPK [K(m) = 15.1 ± 1.0 mM, and k(cat) = (4.0 ± 0.1) × 10⁻² s⁻¹], resulting in a catalytic efficiency (k(cat)/K(m) = 2.6 M⁻¹ s⁻¹) that is 5 orders of magnitude lower than that of the native reaction. Fosfomycin is a competitive inhibitor of IPK (K(i) = 3.6 ± 0.2 mM). Molecular dynamics simulation of the IPK·fosfomycin·MgATP complex identified two binding poses for fosfomycin in the IP binding site, one of which results in a complex analogous to the native IPK·IP·ATP complex that engages H50 and the lysine triangle formed by K5, K14, and K205. The other binding pose leads to a dead-end complex that engages K204 near the IP binding site to bind fosfomycin. Our findings suggest a mechanism for acquisition of FomA-based antibiotic resistance in fosfomycin-producing organisms.
Collapse
Affiliation(s)
- Mark F Mabanglo
- Department of Chemistry, University of Utah, Salt Lake City, Utah, United States
| | | | | |
Collapse
|
11
|
Characterization of the inhibitor-resistant SHV β-lactamase SHV-107 in a clinical Klebsiella pneumoniae strain coproducing GES-7 enzyme. Antimicrob Agents Chemother 2011; 56:1042-6. [PMID: 22083476 DOI: 10.1128/aac.01444-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The clinical Klebsiella pneumoniae INSRA6884 strain exhibited nonsusceptibility to all penicillins tested (MICs of 64 to >2,048 μg/ml). The MICs of penicillins were weakly reduced by clavulanate (from 2,048 to 512 μg/ml), and tazobactam restored piperacillin susceptibility. Molecular characterization identified the genes bla(GES-7) and a new β-lactamase gene, bla(SHV-107), which encoded an enzyme that differed from SHV-1 by the amino acid substitutions Leu35Gln and Thr235Ala. The SHV-107-producing Escherichia coli strain exhibited only a β-lactam resistance phenotype with respect to amoxicillin, ticarcillin, and amoxicillin-clavulanate combination. The kinetic parameters of the purified SHV-107 enzyme revealed a high affinity for penicillins. However, catalytic efficiency for these antibiotics was lower for SHV-107 than for SHV-1. No hydrolysis was detected against oxyimino-β-lactams. The 50% inhibitory concentration (IC(50)) for clavulanic acid was 9-fold higher for SHV-107 than for SHV-1, but the inhibitory effects of tazobactam were unchanged. Molecular dynamics simulation suggested that the Thr235Ala substitution affects the accommodation of clavulanate in the binding site and therefore its inhibitory activity.
Collapse
|
12
|
Fox N, Jagodzinski F, Li Y, Streinu I. KINARI-Web: a server for protein rigidity analysis. Nucleic Acids Res 2011; 39:W177-83. [PMID: 21693559 PMCID: PMC3125808 DOI: 10.1093/nar/gkr482] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
KINARI-Web is an interactive web server for performing rigidity analysis and visually exploring rigidity properties of proteins. It also provides tools for pre-processing the input data, such as selecting relevant chains from PDB files, adding hydrogen atoms and identifying stabilizing interactions. KINARI-Web offers a quick-start option for beginners, and highly customizable features for the experienced user. Chains, residues or atoms, as well as stabilizing constraints can be selected, removed or added, and the user can designate how different chemical interactions should be modeled during rigidity analysis. The enhanced Jmol-based visualizer allows for zooming in, highlighting or investigating different calculated rigidity properties of a molecular structure. KINARI-Web is freely available at http://kinari.cs.umass.edu.
Collapse
Affiliation(s)
- Naomi Fox
- Department of Computer Science, 140 Governors Drive, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Since the introduction of penicillin, beta-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial beta-lactamases. beta-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome beta-lactamase-mediated resistance, beta-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner beta-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to beta-lactam-beta-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant beta-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of beta-lactams. Here, we review the catalytic mechanisms of each beta-lactamase class. We then discuss approaches for circumventing beta-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of beta-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a "second generation" of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of beta-lactamases.
Collapse
Affiliation(s)
- Sarah M. Drawz
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Robert A. Bonomo
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
14
|
Wang F, Cassidy C, Sacchettini JC. Crystal structure and activity studies of the Mycobacterium tuberculosis beta-lactamase reveal its critical role in resistance to beta-lactam antibiotics. Antimicrob Agents Chemother 2006; 50:2762-71. [PMID: 16870770 PMCID: PMC1538687 DOI: 10.1128/aac.00320-06] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
beta-Lactam antibiotics are extremely effective in disrupting the synthesis of the bacterial cell wall in both gram-positive and gram-negative bacteria. However, they are ineffective against Mycobacterium tuberculosis, due to the production of a beta-lactamase enzyme encoded on the chromosome of M. tuberculosis that degrades these antibiotics. Indeed, recent studies have demonstrated that deletion of the blaC gene, the only gene encoding a beta-lactamase in M. tuberculosis, or inhibition of the encoded enzyme resulted in significantly increased sensitivity to beta-lactam antibiotics. In this paper we present a biochemical and structural characterization of M. tuberculosis BlaC. Recombinant BlaC shows a broad range of specificity with almost equal penicillinase and cepholothinase activity. While clavulanate is a mechanism-based inhibitor to class A beta-lactamase with high potency (typically K(i) < 0.1 microM), it is a relatively poor inhibitor of the M. tuberculosis BlaC (K(i) = 2.4 microM). The crystal structure of the enzyme, determined at a resolution of 1.7 A, shows that the overall fold of the M. tuberculosis enzyme is similar to other class A beta-lactamases. There are, however, several distinct features of the active site, such as the amino acid substitutions N132G, R164A, R244A, and R276E, that explain the broad specificity of the enzyme, relatively low penicillinase activity, and resistance to clavulanate.
Collapse
Affiliation(s)
- Feng Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
15
|
Carenbauer AL, Garrity JD, Periyannan G, Yates RB, Crowder MW. Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis. BMC BIOCHEMISTRY 2002; 3:4. [PMID: 11876827 PMCID: PMC77373 DOI: 10.1186/1471-2091-3-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2001] [Accepted: 02/13/2002] [Indexed: 11/23/2022]
Abstract
BACKGROUND The metallo-beta-lactamases are Zn(II)-containing enzymes that hydrolyze the beta-lactam bond in penicillins, cephalosporins, and carbapenems and are involved in bacterial antibiotic resistance. There are at least 20 distinct organisms that produce a metallo-beta-lactamase, and these enzymes have been extensively studied using X-ray crystallographic, computational, kinetic, and inhibition studies; however, much is still unknown about how substrates bind and the catalytic mechanism. In an effort to probe substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia, nine site-directed mutants of L1 were prepared and characterized using metal analyses, CD spectroscopy, and pre-steady state and steady state kinetics. RESULTS Site-directed mutations were generated of amino acids previously predicted to be important in substrate binding. Steady-state kinetic studies using the mutant enzymes and 9 different substrates demonstrated varying Km and kcat values for the different enzymes and substrates and that no direct correlation between Km and the effect of the mutation on substrate binding could be drawn. Stopped-flow fluorescence studies using nitrocefin as the substrate showed that only the S224D and Y228A mutants exhibited weaker nitrocefin binding. CONCLUSIONS The data presented herein indicate that Ser224, Ile164, Phe158, Tyr228, and Asn233 are not essential for tight binding of substrate to metallo-beta-lactamase L1. The results in this work also show that Km values are not reliable for showing substrate binding, and there is no correlation between substrate binding and the amount of reaction intermediate formed during the reaction. This work represents the first experimental testing of one of the computational models of the metallo-beta-lactamases.
Collapse
Affiliation(s)
- Anne L Carenbauer
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - James D Garrity
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Gopal Periyannan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Robert B Yates
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| |
Collapse
|
16
|
Hujer AM, Hujer KM, Bonomo RA. Mutagenesis of amino acid residues in the SHV-1 beta-lactamase: the premier role of Gly238Ser in penicillin and cephalosporin resistance. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1547:37-50. [PMID: 11343789 DOI: 10.1016/s0167-4838(01)00164-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent availability of the SHV-1 beta-lactamase crystal structure provides a framework for the understanding of the functional role of amino acid residues in this enzyme. To that end, we have constructed by site-directed mutagenesis 18 variants of the SHV beta-lactamase: an extended spectrum group: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, Asp104Lys-Thr235Ser-Gly238Ser, Asp179Asn, Arg164His, and Arg164Ser; an inhibitor resistant group: Arg244Ser, Met69Ile, Met69Leu, and Ser130Gly; mutants that are synergistic with those that confer resistance to oxyimino-cephalosporins: Asp104Glu, Asp104Lys, Glu240Lys, and Glu240Gln; and structurally conserved mutants: Thr235Ser, Thr235Ala and Glu166Ala. Among the extended spectrum group the combination of high-level ampicillin and cephalosporin resistance was demonstrated in the Escherichia coli DH10B strains possessing the Gly238Ser mutation: Gly238Ser, Gly238Ser-Glu240Lys, Asp104Lys-Gly238Ser, and Asp104Lys-Thr235Ser-Gly238Ser. Of the inhibitor resistant group, the Ser130Gly mutant was the most resistant to ampicillin/clavulanate. Using a polyclonal anti-SHV antibody, we assayed steady state protein expression levels of the SHV beta-lactamase variants. Mutants with the Gly238Ser substitution were among the most highly expressed. The Gly238Ser substitution resulted in an improved relative k(cat)/K(m) value for cephaloridine and oxyimino-cephalosporins compared to SHV-1 and Met69Ile. In our comparative survey, the Gly238Ser and extended spectrum beta-lactamase variants containing this substitution exhibited the greatest substrate versatility against penicillins and cephalosporins and greatest protein expression. This defines a unique role of Gly238Ser in broad-spectrum beta-lactam resistance in this family of class A beta-lactamases.
Collapse
Affiliation(s)
- A M Hujer
- Research Service, Louis Stokes Veterans Affairs Medical Center, OH 44106, USA
| | | | | |
Collapse
|
17
|
Giakkoupi P, Tzelepi E, Legakis NJ, Tzouvelekis LS. Substitution of Arg-244 by Cys or Ser in SHV-1 and SHV-5 beta-lactamases confers resistance to mechanism-based inhibitors and reduces catalytic efficiency of the enzymes. FEMS Microbiol Lett 1998; 160:49-54. [PMID: 9495011 DOI: 10.1111/j.1574-6968.1998.tb12889.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The conserved residue Arg-244 was substituted by the smaller uncharged amino acids Cys and Ser in SHV-1 and SHV-5 beta-lactamases by a PCR-based site-specific mutagenesis procedure. The mutant beta-lactamases displayed decreased susceptibility to clavulanate and, to a lesser extent, to tazobactam and sulbactam. As shown in comparative MIC determinations, R244C and R244S enzymes retained a residual penicillinase activity while their activity towards cephalosporins was drastically diminished. The respective SHV-5 mutants were unable to hydrolyze oxyimino-beta-lactams except aztreonam. The impaired catalytic activity of the mutant beta-lactamases was mainly due to the lowering of affinity for beta-lactam substrates. The above alterations were more pronounced in the R244C mutants. These results provide information on the mode of involvement of Arg-244 in (a) inactivation by beta-lactamase inhibitors and (b) the proper positioning of beta-lactams in the active site of SHV enzymes.
Collapse
Affiliation(s)
- P Giakkoupi
- Department of Bacteriology, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | |
Collapse
|
18
|
Matagne A, Lamotte-Brasseur J, Frère JM. Catalytic properties of class A beta-lactamases: efficiency and diversity. Biochem J 1998; 330 ( Pt 2):581-98. [PMID: 9480862 PMCID: PMC1219177 DOI: 10.1042/bj3300581] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
beta-Lactamases are the main cause of bacterial resistance to penicillins, cephalosporins and related beta-lactam compounds. These enzymes inactivate the antibiotics by hydrolysing the amide bond of the beta-lactam ring. Class A beta-lactamases are the most widespread enzymes and are responsible for numerous failures in the treatment of infectious diseases. The introduction of new beta-lactam compounds, which are meant to be 'beta-lactamase-stable' or beta-lactamase inhibitors, is thus continuously challenged either by point mutations in the ubiquitous TEM and SHV plasmid-borne beta-lactamase genes or by the acquisition of new genes coding for beta-lactamases with different catalytic properties. On the basis of the X-ray crystallography structures of several class A beta-lactamases, including that of the clinically relevant TEM-1 enzyme, it has become possible to analyse how particular structural changes in the enzyme structures might modify their catalytic properties. However, despite the many available kinetic, structural and mutagenesis data, the factors explaining the diversity of the specificity profiles of class A beta-lactamases and their amazing catalytic efficiency have not been thoroughly elucidated. The detailed understanding of these phenomena constitutes the cornerstone for the design of future generations of antibiotics.
Collapse
Affiliation(s)
- A Matagne
- Centre for Protein Engineering and Laboratoire d'Enzymologie, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | | | | |
Collapse
|
19
|
Cantu C, Huang W, Palzkill T. Cephalosporin substrate specificity determinants of TEM-1 beta-lactamase. J Biol Chem 1997; 272:29144-50. [PMID: 9360991 DOI: 10.1074/jbc.272.46.29144] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
beta-lactamase is a bacterial enzyme that catalyzes the hydrolysis of beta-lactam antibiotics such as penicillins and cephalosporins. TEM-1 beta-lactamase is a prevalent beta-lactamase found in Gram-negative bacteria and is capable of hydrolyzing both penicillins and cephalosporins, except for the extended-spectrum cephalosporins. To identify the sequence determinants in the active site for a given antibiotic substrate, random libraries were constructed that each contain all possible amino acid combinations for the designated region of TEM-1 beta-lactamase. To establish the determinants of substrate specificity for cephalosporins versus those for penicillins, these active site libraries have been screened for mutants with high levels of activity for the second generation cephalosporin cephaloridine. Based on the sequence results, substitutions of W165S, A237T, and E240C were identified as cephalosporin-specific. Kinetic analysis of these mutants was done to determine whether each is capable of distinguishing between the two classes of antibiotics. Both the A237T and E240C substitutions, alone or in combination, exhibited increased cephalosporinase activity and decreased penicillinase activity relative to the wild-type enzyme. A sequence comparison between functional mutants selected for cephaloridine hydrolytic activity and functional mutants previously selected for ampicillin hydrolytic activity suggests that TEM-1 beta-lactamase has greater restrictions in maintaining cephalosporinase activity versus maintaining penicillinase activity.
Collapse
Affiliation(s)
- C Cantu
- Structural and Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
20
|
Massova I, Mobashery S. Molecular Bases for Interactions between β-Lactam Antibiotics and β-Lactamases. Acc Chem Res 1997. [DOI: 10.1021/ar960007e] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Irina Massova
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489
| | - Shahriar Mobashery
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489
| |
Collapse
|
21
|
|
22
|
Abstract
The efficiency of beta-lactam antibiotics, which are among our most useful chemotherapeutic weapons, is continuously challenged by the emergence of resistant bacterial strains. This is most often due to the production of beta-lactamases by the resistant cells. These enzymes inactivate the antibiotics by hydrolysing the beta-lactam amide bond. The elucidation of the structures of some beta-lactamases by X-ray crystallography has provided precious insights into their catalytic mechanisms and revealed unsuspected similarities with the DD-transpeptidases, the bacterial enzymes which constitute the lethal targets of beta-lactams. Despite numerous kinetic, structural and site-directed mutagenesis studies, we have not completely succeeded in explaining the diversity of the specificity profiles of beta-lactamases and their surprising catalytic power. The solutions to these problems represent the cornerstones on which better antibiotics can be designed, hopefully on a rational basis.
Collapse
Affiliation(s)
- J M Frère
- Laboratoire d'Enzymologie and Centre d'Ingénierie des Protéines, Institut de Chimie, Université de Liège, Sart Tilman, Belgium
| |
Collapse
|
23
|
Matagne A, Frère JM. Contribution of mutant analysis to the understanding of enzyme catalysis: the case of class A beta-lactamases. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1246:109-27. [PMID: 7819278 DOI: 10.1016/0167-4838(94)00177-i] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Class A beta-lactamases represent a family of well studied enzymes. They are responsible for many antibiotic resistance phenomena and thus for numerous failures in clinical chemotherapy. Despite the facts that five structures are known at high resolution and that detailed analyses of enzymes modified by site-directed mutagenesis have been performed, their exact catalytic mechanism remains controversial. This review attempts to summarize and to discuss the many available data.
Collapse
Affiliation(s)
- A Matagne
- Laboratoire d'Enzymologie et Centre d'Ingénierie des Protéines, Université de Liège, Belgium
| | | |
Collapse
|
24
|
Effect of redox environment on the in vitro and in vivo folding of RTEM-1 beta-lactamase and Escherichia coli alkaline phosphatase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46953-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
25
|
Dubus A, Wilkin JM, Raquet X, Normark S, Frère JM. Catalytic mechanism of active-site serine beta-lactamases: role of the conserved hydroxy group of the Lys-Thr(Ser)-Gly triad. Biochem J 1994; 301 ( Pt 2):485-94. [PMID: 8042993 PMCID: PMC1137107 DOI: 10.1042/bj3010485] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The role of the conserved hydroxy group of the Lys-Thr(Ser)-Gly [KT(S)G] triad has been studied for a class A and a class C beta-lactamase by site-directed mutagenesis. Surprisingly, the disappearance of this functional group had little impact on the penicillinase activity of both enzymes. The cephalosporinase activity was much more affected for the class A S235A (Ser235-->Ala) and the class C T316V (Thr315-->Val) mutants, but the class C T316A mutant was less impaired. Studies were extended to beta-lactams, where the carboxy group on C-3 of penicillins or C-4 of cephalosporins had been modified. The effects of the mutations were the same on these compounds as on the unmodified regular penicillins and cephalosporins. The results are compared with those obtained with a similar mutant (T299V) of the Streptomyces R61 DD-peptidase. With this enzyme the mutation also affected the interactions with penicillins and severely decreased the peptidase activity. The strict conservation of the hydroxy group on the second residue of the KT(S)G triad is thus much more easy to understand for the DD-peptidase and the penicillin-binding proteins than for beta-lactamases, especially those of class C.
Collapse
Affiliation(s)
- A Dubus
- Centre d'Ingénierie des Protéines, Université de Liège, Belgium
| | | | | | | | | |
Collapse
|
26
|
Imtiaz U, Billings EM, Knox JR, Mobashery S. A structure-based analysis of the inhibition of class A beta-lactamases by sulbactam. Biochemistry 1994; 33:5728-38. [PMID: 8180199 DOI: 10.1021/bi00185a009] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
From the crystal structure of the Bacillus licheniformis 749/C beta-lactamase, energy-minimized structures for the precatalytic, the acyl-enzyme intermediate, and the acylated linear inactivating species for sulbactam--a clinically useful mechanism-based inactivator for class A beta-lactamases--were generated. The effect of individual Ser-235-Ala and Arg244-Ser point mutations on the inactivation and turnover processes was consistent with the existence of hydrogen bonds between the side chains of these residues and the sulbactam species. The departure of the sulfinate leaving group from the acyl-enzyme intermediate of sulbactam is believed to be a prerequisite for the inactivation process. In order to explore the influence of the leaving group, penicillanic acid (2), penicillanic acid alpha-S-oxide (3), and penicillanic acid beta-S-oxide (4) were synthesized and studied in kinetic experiments with the TEM-1 beta-lactamase. Penicillanic acid is only a substrate, but penicillanic acid S-oxides were both substrates and inactivators for the enzyme. An argument is presented to rationalize these observations on the basis of the leaving ability of thiolate, sulfenate, and sulfinate from the acyl-enzyme intermediates of penicillanic acid (2), the penicillanic acid S-oxides (3 and 4), and sulbactam, respectively. The departure of the leaving group does not appear to be rate limiting in the inactivator process, but is an indispensable component of the irreversible inactivation of the enzyme. Molecular dynamics calculations of the putative inactivating species suggest that Lys-73, Lys-234, and Ser-130 are three likely residues that may be modified in the course of the inactivation chemistry. A discussion is presented of the mechanism of formation of the transiently inhibited enzyme species, which comes about as a consequence of the tautomerization of the double bond of the inactivating iminium moiety. In addition, the mechanistic details presented for sulbactam are compared and contrasted with those of clavulanic acid, another clinically used inactivator for class A beta-lactamases.
Collapse
Affiliation(s)
- U Imtiaz
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202
| | | | | | | |
Collapse
|
27
|
Imtiaz U, Manavathu EK, Mobashery S, Lerner SA. Reversal of clavulanate resistance conferred by a Ser-244 mutant of TEM-1 beta-lactamase as a result of a second mutation (Arg to Ser at position 164) that enhances activity against ceftazidime. Antimicrob Agents Chemother 1994; 38:1134-9. [PMID: 8067751 PMCID: PMC188163 DOI: 10.1128/aac.38.5.1134] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mutation of Arg-244 to Ser (Arg-244-->Ser mutation) in the TEM-1 beta-lactamase has been shown to produce resistance to inactivation by clavulanate in the mutant enzyme and resistance to ampicillin plus clavulanate in a strain of Escherichia coli producing this enzyme. The Arg-164-->Ser mutation in the TEM-1 beta-lactamase (TEM-12 enzyme) is known to enhance the activity of the enzyme against ceftazidime, resulting in resistance to the drug in a strain producing the mutant enzyme (D. A. Weber, C. C. Sanders, J. S. Bakken, and J. P. Quinn, J. Infect. Dis. 162:460-465, 1990). The doubly mutated derivative of the TEM-1 enzyme (Ser-164/Ser-244) retains the characteristics of the Ser-164 mutant enzyme, i.e., enhanced activity against ceftazidime and sensitivity to inactivation by clavulanate. It also confers the same phenotype as the Ser-164 mutant enzyme, i.e., resistance to ceftazidime and ampicillin, with reversal of this resistance in the presence of clavulanate. Thus, the Arg-164-->Ser mutation in the TEM-1 beta-lactamase suppresses the effect of the Arg-244-->Ser mutation which, by itself, reduces the sensitivity of the enzyme to inactivation by clavulanate.
Collapse
Affiliation(s)
- U Imtiaz
- Department of Chemistry, Wayne State University, Detroit, Michigan 48201
| | | | | | | |
Collapse
|