1
|
Ciardullo G, Prejanò M, Parise A, Russo N, Marino T. The Effect of Chalcogen-Chalcogen Bond Formation in the New Delhi Metallo-β-Lactamase 1 Enzyme to Counteract Antibiotic Resistance. J Chem Theory Comput 2025; 21:1422-1431. [PMID: 39582151 DOI: 10.1021/acs.jctc.4c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
New Delhi metallo-β-lactamase 1 (NDM-1) is an enzyme involved in the drug resistance of many bacteria against most of the widely adopted antibiotics, such as penicillins, cephalosporins, and carbapenems. Consequently, inhibiting NDM-1 swiftly has gained significant interest as a strategy to counteract this bacterial defense mechanism, thereby restoring the effectiveness of antibiotics. Among the inhibitors tested against the enzyme, ebselen (EbSe) showed particularly promising results. This molecule, renowned for its numerous benefits to the human body, targets the enzyme's active site at Cys208 with its selenium atom, facilitating the expulsion of the catalytic zinc ion from the active pocket. Since the inhibitory mechanism of EbSe remains poorly understood, gaining detailed information about it is highly desirable. In the present work, density functional theory calculations and μs-long molecular dynamics simulations are carried out to investigate the reaction mechanism of EbSe with NDM-1, unveiling the structural implications of the inhibition. A large model of the NDM-1 active site is built to investigate the different mechanistic proposals for the SeEbSe-SCys208 bond formation. Deeper insights into Lys211 are also provided to consolidate its role during the inhibition process. Furthermore, the chemical reaction with the ebsulfur (EbS) molecule is also investigated to compare its behavior with that of the periodic relative selenium. Molecular dynamics simulations, besides evidencing the role of the L3 and L10 loops in the occurrence of the inhibition, corroborate the Zn ion release from the active site as a result of the complete disruption of its coordination sphere caused by the creation of the SeEbSe-SCys208 covalent bond.
Collapse
Affiliation(s)
- Giada Ciardullo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
| | - Angela Parise
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
- Consiglio Nazionale delle ricerche (CNR)-IOM c/o International School for Advanced Studies (SISSA/ISAS), Trieste 34136, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Rende 87036, Italy
| |
Collapse
|
2
|
Alvisi G, Curtoni A, Fonnesu R, Piazza A, Signoretto C, Piccinini G, Sassera D, Gaibani P. Epidemiology and Genetic Traits of Carbapenemase-Producing Enterobacterales: A Global Threat to Human Health. Antibiotics (Basel) 2025; 14:141. [PMID: 40001385 DOI: 10.3390/antibiotics14020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) represent an important threat to global health, resulting in an urgent issue in clinical settings. CPE often exhibit a multidrug-resistant (MDR) phenotype, thus reducing the antimicrobial armamentarium, with few antibiotics retaining residual antimicrobial activity against these pathogens. Carbapenemases are divided into three classes (A, B, and D) according to the Ambler classification system. Among these, KPC (class A), NDM, VIM, IMP (class B), and OXA-48-like (class D) represent the most important carbapenemases in terms of diffusion and clinical impact. CPE diffusion has been observed worldwide, with current endemicity in multiple territories around the world. In this context, the clonal spread and plasmid-mediated transmission of carbapenemases have contributed to the global spread of CPE worldwide and to the diffusion of carbapenemases among different Enterobacterales species. In recent years, novel molecules showing excellent in vitro and in vivo activity have been developed against CPE. However, the recent emergence of novel traits of resistance to these molecules has already been reported in several cases, mitigating the initial promising results. This review aims to provide an updated description of the major classes of carbapenemases, their global distribution, and future perspectives to limit the diffusion of CPEs.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, 35135 Padova, Italy
| | - Antonio Curtoni
- Department of Public Health and Paediatrics, University of Turin, 10100 Turin, Italy
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10100 Turin, Italy
| | - Rossella Fonnesu
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, 37134 Verona, Italy
| | - Aurora Piazza
- Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Caterina Signoretto
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, 37134 Verona, Italy
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
| | - Giorgia Piccinini
- Department of Public Health and Paediatrics, University of Turin, 10100 Turin, Italy
- PhD National Programme in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Gaibani
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
| |
Collapse
|
3
|
Heimann D, Kohnhäuser D, Kohnhäuser AJ, Brönstrup M. Antibacterials with Novel Chemical Scaffolds in Clinical Development. Drugs 2025:10.1007/s40265-024-02137-x. [PMID: 39847315 DOI: 10.1007/s40265-024-02137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high. A detailed analysis of the scientific foundations behind each of these compounds is provided, including their pharmacodynamic profiles, current development state, and potential for overcoming existing limitations in antibiotic therapy. By presenting this subset of chemically novel antibacterials, the review highlights the ability to innovate in antibiotic drug development to counteract bacterial resistance and improve treatment outcomes.
Collapse
Affiliation(s)
- Dominik Heimann
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Daniel Kohnhäuser
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | | | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
- Institute of Organic Chemistry and Biomolecular Drug Research Centre (BMWZ), Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany.
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Inhoffenstraße 7, 38124, Braunschweig, Germany.
| |
Collapse
|
4
|
Liu L, Yan D, Ma Y, Hou P, Qi P, Zhang X, Liu Y, Chen S. Advanced Large-Stokes-Shift Fluorescent Probe for the Detection of Biothiols: Facilitating Accurate Indirect Measurement of β-Lactamases. Int J Mol Sci 2025; 26:525. [PMID: 39859239 PMCID: PMC11764503 DOI: 10.3390/ijms26020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
A novel fluorescent probe, Bibc-DNBS, based on the combination of the PET (photoinduced electron transfer) and ESIPT (excited-state intramolecular proton transfer) mechanisms, was designed and synthesized. Bibc-DNBS exhibited a Stokes shift of 172 nm in the fluorescence detection field. In addition, the probe exhibited good performance in key parameters in bioassays such as sensitivity, specificity, and response time. Based on these properties, Bibc-DNBS successfully monitored the biothiol levels in live cells and zebrafish models, providing an effective analytical tool for real-time monitoring of biothiols. More importantly, Bibc-DNBS could be useful for indirectly detecting β-lactamases. Bibc-DNBS(3-(1H-benzo[d]imidazol-2-yl)-4'-cyano-[1,1'-biphenyl]-4-yl2,4-dinitrobenzenesulfonate) facilitated the screening of β-lactamase inhibitors, using tazobactam and clavulanic acid as model compounds, with respective semi-inhibitory concentration values of 31.32 μM and 2.26 μM, respectively. It might also be applied to distinguish sensitive strain Staphylococcus aureus ATCC 29213 and drug-resistant strain Enterobacter cloacae ATCC 13047, which could provide strong support for the clinical application of antibiotics and the development of new drugs.
Collapse
Affiliation(s)
- Likun Liu
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Dongling Yan
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Yukun Ma
- Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Pengfei Qi
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Xue Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Yitong Liu
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
5
|
Simner PJ, Pitout JDD, Dingle TC. Laboratory detection of carbapenemases among Gram-negative organisms. Clin Microbiol Rev 2024; 37:e0005422. [PMID: 39545731 PMCID: PMC11629623 DOI: 10.1128/cmr.00054-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYThe carbapenems remain some of the most effective options available for treating patients with serious infections due to Gram-negative bacteria. Carbapenemases are enzymes that hydrolyze carbapenems and are the primary method driving carbapenem resistance globally. Detection of carbapenemases is required for patient management, the rapid implementation of infection prevention and control (IP&C) protocols, and for epidemiologic purposes. Therefore, clinical and public health microbiology laboratories must be able to detect and report carbapenemases among predominant Gram-negative organisms from both cultured isolates and direct from clinical specimens for treatment and surveillance purposes. There is not a "one size fits all" laboratory approach for the detection of bacteria with carbapenemases, and institutions need to determine what fits best with the goals of their antimicrobial stewardship and IP&C programs. Luckily, there are several options and approaches available for clinical laboratories to choose methods that best suits their individual needs. A laboratory approach to detect carbapenemases among bacterial isolates consists of two steps, namely a screening process (e.g., not susceptible to ertapenem, meropenem, and/or imipenem), followed by a confirmation test (i.e., phenotypic, genotypic or proteomic methods) for the presence of a carbapenemase. Direct from specimen testing for the most common carbapenemases generally involves detection via rapid, molecular approaches. The aim of this article is to provide brief overviews on Gram-negative bacteria carbapenem-resistant definitions, types of carbapenemases, global epidemiology, and then describe in detail the laboratory methods for the detection of carbapenemases among Gram-negative bacteria. We will specifically focus on the Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex.
Collapse
Affiliation(s)
- Patricia J. Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Johann D. D. Pitout
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Diagnostic Laboratory, Calgary, Alberta, Canada
- University of Pretoria, Pretoria, Gauteng, South Africa
| | - Tanis C. Dingle
- Cummings School of Medicine, University of Calgary, Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Public Health Laboratory, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Lee CE, Park Y, Park H, Kwak K, Lee H, Yun J, Lee D, Lee JH, Lee SH, Kang LW. Structural insights into alterations in the substrate spectrum of serine-β-lactamase OXA-10 from Pseudomonas aeruginosa by single amino acid substitutions. Emerg Microbes Infect 2024; 13:2412631. [PMID: 39361442 PMCID: PMC11497580 DOI: 10.1080/22221751.2024.2412631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The extensive use of β-lactam antibiotics has led to significant resistance, primarily due to hydrolysis by β-lactamases. OXA class D β-lactamases can hydrolyze a wide range of β-lactam antibiotics, rendering many treatments ineffective. We investigated the effects of single amino acid substitutions in OXA-10 on its substrate spectrum. Broad-spectrum variants with point mutations were searched and biochemically verified. Three key residues, G157D, A124T, and N73S, were confirmed in the variants, and their crystal structures were determined. Based on an enzyme kinetics study, the hydrolytic activity against broad-spectrum cephalosporins, particularly ceftazidime, was significantly enhanced by the G157D mutation in loop 2. The A124T or N73S mutation close to loop 2 also resulted in higher ceftazidime activity. All structures of variants with point mutations in loop 2 or nearby exhibited increased loop 2 flexibility, which facilitated the binding of ceftazidime. These results highlight the effect of a single amino acid substitution in OXA-10 on broad-spectrum drug resistance. Structure-activity relationship studies will help us understand the drug resistance spectrum of β-lactamases, enhance the effectiveness of existing β-lactam antibiotics, and develop new drugs.
Collapse
Affiliation(s)
- Chae-eun Lee
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Yoonsik Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Hyeonmin Lee
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jiwon Yun
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Donghyun Lee
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin, South Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
7
|
Edward EA, El Shehawy MR, Abouelfetouh A, Aboulmagd E. Phenotypic and molecular characterization of extended spectrum- and metallo- beta lactamase producing Pseudomonas aeruginosa clinical isolates from Egypt. Infection 2024; 52:2399-2414. [PMID: 38824475 PMCID: PMC11621155 DOI: 10.1007/s15010-024-02297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Antimicrobial resistance among Pseudomonas aeruginosa (P. aeruginosa), a leading cause of nosocomial infections worldwide, is escalating. This study investigated the prevalence of extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) among 104 P. aeruginosa clinical isolates from Alexandria Main University Hospital, Alexandria, Egypt. METHODS Antimicrobial susceptibility testing was performed using agar dilution technique, or broth microdilution method in case of colistin. ESBL and MBL prevalence was assessed phenotypically and genotypically using polymerase chain reaction (PCR). The role of plasmids in mediating resistance to extended-spectrum β-lactams was studied via transformation technique using plasmids isolated from ceftazidime-resistant isolates. RESULTS Antimicrobial susceptibility testing revealed alarming resistance rates to carbapenems, cephalosporins, and fluoroquinolones. Using PCR as the gold standard, phenotypic methods underestimated ESBL production while overestimating MBL production. Eighty-five isolates (81.7%) possessed only ESBL encoding genes, among which 69 isolates harbored a single ESBL gene [blaOXA-10 (n = 67) and blaPER (n = 2)]. Four ESBL-genotype combinations were detected: blaPER + blaOXA-10 (n = 8), blaVEB-1 + blaOXA-10 (n = 6), blaPSE + blaOXA-10 (n = 1), and blaPER + blaVEB-1 + blaOXA-10 (n = 1). Three isolates (2.9%) possessed only the MBL encoding gene blaVIM. Three ESBL + MBL- genotype combinations: blaOXA-10 + blaAIM, blaOXA-10 + blaVIM, and blaPER + blaOXA-10 + blaAIM were detected in 2, 1 and 1 isolate(s), respectively. Five plasmid preparations harboring blaVEB-1 and blaOXA-10 were successfully transformed into chemically competent Escherichia coli DH5α with transformation efficiencies ranging between 6.8 × 10 3 and 3.7 × 10 4 CFU/μg DNA plasmid. Selected tested transformants were ceftazidime-resistant and harbored plasmids carrying blaOXA-10. CONCLUSIONS The study highlights the importance of the expeditious characterization of ESBLs and MBLs using genotypic methods among P. aeruginosa clinical isolates to hinder the development and dissemination of multidrug resistant strains.
Collapse
Affiliation(s)
- Eva A Edward
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt.
| | - Marwa R El Shehawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alamein International University, Alamein, Egypt
| | - Elsayed Aboulmagd
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, El-Khartoom Square, Azarita, Alexandria, Egypt
- College of Pharmacy, Arab Academy for Science, Technology and Maritime, Alamein Branch, Alamein, Egypt
| |
Collapse
|
8
|
Hidalgo-Tenorio C, Bou G, Oliver A, Rodríguez-Aguirregabiria M, Salavert M, Martínez-Martínez L. The Challenge of Treating Infections Caused by Metallo-β-Lactamase-Producing Gram-Negative Bacteria: A Narrative Review. Drugs 2024; 84:1519-1539. [PMID: 39467989 PMCID: PMC11652570 DOI: 10.1007/s40265-024-02102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/30/2024]
Abstract
Gram-negative multidrug-resistant (MDR) bacteria, including Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa, pose a significant challenge in clinical practice. Infections caused by metallo-β-lactamase (MBL)-producing Gram-negative organisms, in particular, require careful consideration due to their complexity and varied prevalence, given that the microbiological diagnosis of these pathogens is intricate and compounded by challenges in assessing the efficacy of anti-MBL antimicrobials. We discuss both established and new approaches in the treatment of MBL-producing Gram-negative infections, focusing on 3 strategies: colistin; the recently approved combination of aztreonam with avibactam (or with ceftazidime/avibactam); and cefiderocol. Despite its significant activity against various Gram-negative pathogens, the efficacy of colistin is limited by resistance mechanisms, while nephrotoxicity and acute renal injury call for careful dosing and monitoring in clinical practice. Aztreonam combined with avibactam (or with avibactam/ceftazidime if aztreonam plus avibactam is not available) exhibits potent activity against MBL-producing Gram-negative pathogens. Cefiderocol in monotherapy is effective against a wide range of multidrug-resistant organisms, including MBL producers, and favorable clinical outcomes have been observed in various clinical trials and case series. After examining scientific evidence in the management of infections caused by MBL-producing Gram-negative bacteria, we have developed a comprehensive clinical algorithm to guide therapeutic decision making. We recommend reserving colistin as a last-resort option for MDR Gram-negative infections. Cefiderocol and aztreonam/avibactam represent favorable options against MBL-producing pathogens. In the case of P. aeruginosa with MBL-producing enzymes and with difficult-to-treat resistance, cefiderocol is the preferred option. Further research is needed to optimize treatment strategies and minimize resistance.
Collapse
Affiliation(s)
- Carmen Hidalgo-Tenorio
- Hospital Universitario Virgen de las Nieves de Granada, Instituto de Investigación Biosanitario de Granada (IBS-Granada), Granada, Spain.
- Departamento de Medicina, Universidad de Granada, Granada, Spain.
| | - German Bou
- Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, IdISBa, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miguel Salavert
- Infectious Diseases Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Luis Martínez-Martínez
- Microbiology Unit, Hospital Universitario Reina Sofía, Córdoba, Spain
- Department of Agricultural Chemistry, Soil Sciences and Microbiology, Universidad de Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Fournier C, Nordmann P, de la Rosa JMO, Kusaksizoglu A, Poirel L. KSA-1, a naturally occurring Ambler class A extended spectrum β-lactamase from the enterobacterial species Kosakonia sacchari. J Glob Antimicrob Resist 2024; 39:6-11. [PMID: 39147026 DOI: 10.1016/j.jgar.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Several bacterial species belonging to the Gammaproteobacteria possess intrinsic class A β-lactamase genes that may represent a source of further dissemination and acquisition to other Gram-negative species. Here we characterised KSA-1 class A β-lactamase, the gene of which was identified within the chromosome of an environmental Enterobacterales species, namely Kosakonia sacchari, which was also recently identified as the progenitor of an MCR-like colistin-resistance determinant. METHODS In silico analysis using the GenBank database identified a class A β-lactamase gene within the chromosome of K. sacchari SP1 (GenBank accession no. WP_017456759). The corresponding protein KSA-1 shared 63% amino acid identity with the intrinsic CKO-1 from Citrobacter koseri and 53% with TEM-1. Using the K. sacchari DSM 100203 reference strain as a template, blaKSA-1 was amplified, cloned into the plasmid pUCp24 and expressed in Escherchia coli TOP10. Minimal inhibitory concentrations and kinetic parameters were obtained from the purified enzyme. RESULTS K. sacchari strain SP1 conferred resistance to amino-, carboxy- and ureido-penicillins only. Once produced within E. coli, KSA-1 showed a typical clavulanic acid-inhibited extended spectrum β-lactamase associated with a peculiar temocillin resistance profile. Kinetic assays were performed using a purified extract of KSA-1 and demonstrated a high hydrolysis rate for benzylpenicillin and piperacillin, as well as weakly extended spectrum cephalosporins. Determination of inhibitory constants showed 50% inhibitory concentration values of 2.2, 3 and 1.8 nM for clavulanic acid, tazobactam and avibactam, respectively. Analysis of sequences surrounding the blaKSA-1 gene did not reveal any mobile element that could have been involved in the acquisition of this β-lactamase gene in that species. CONCLUSION KSA-1 is a class A extended spectrum β-lactamase distantly related to known extended spectrum or broad-spectrum Ambler class A β-lactamases, which is highly resistant to temocillin. The blaKSA-1 gene could be considered as intrinsic within the species.
Collapse
Affiliation(s)
- Claudine Fournier
- Medical and Molecular Microbiology Unit, University of Fribourg, Fribourg, Switzerland; Laboratory of Clinical Microbiology, Hôpital Cantonal Fribourgeois, Fribourg, Switzerland; Swiss National Center for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, University of Fribourg, Fribourg, Switzerland; Swiss National Center for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland; University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| | | | - Ayda Kusaksizoglu
- Medical and Molecular Microbiology Unit, University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, University of Fribourg, Fribourg, Switzerland; Swiss National Center for Emerging Antibiotic Resistance, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
10
|
Zhao Y, Xu H, Wang H, Wang P, Chen S. Multidrug resistance in Pseudomonas aeruginosa: genetic control mechanisms and therapeutic advances. MOLECULAR BIOMEDICINE 2024; 5:62. [PMID: 39592545 PMCID: PMC11599538 DOI: 10.1186/s43556-024-00221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Pseudomonas aeruginosa is a significant opportunistic pathogen, and its complex mechanisms of antibiotic resistance pose a challenge to modern medicine. This literature review explores the advancements made from 1979 to 2024 in understanding the regulatory networks of antibiotic resistance genes in Pseudomonas aeruginosa, with a particular focus on the molecular underpinnings of these resistance mechanisms. The review highlights four main pathways involved in drug resistance: reducing outer membrane permeability, enhancing active efflux systems, producing antibiotic-inactivating enzymes, and forming biofilms. These pathways are intricately regulated by a combination of genetic regulation, transcriptional regulators, two-component signal transduction, DNA methylation, and small RNA molecules. Through an in-depth analysis and synthesis of existing literature, we identify key regulatory elements mexT, ampR, and argR as potential targets for novel antimicrobial strategies. A profound understanding of the core control nodes of drug resistance offers a new perspective for therapeutic intervention, suggesting that modulating these elements could potentially reverse resistance and restore bacterial susceptibility to antibiotics. The review looks forward to future research directions, proposing the use of gene editing and systems biology to further understand resistance mechanisms and to develop effective antimicrobial strategies against Pseudomonas aeruginosa. This review is expected to provide innovative solutions to the problem of drug resistance in infectious diseases.
Collapse
Affiliation(s)
- Yuanjing Zhao
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Haoran Xu
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hui Wang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ping Wang
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Simin Chen
- State Key Laboratory of South Western Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| |
Collapse
|
11
|
Yang J, Xu JF, Liang S. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and emerging treatment. Crit Rev Microbiol 2024:1-19. [PMID: 39556143 DOI: 10.1080/1040841x.2024.2429599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/22/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Pseudomonas aeruginosa, able to survive on the surfaces of medical devices, is a life-threatening pathogen that mainly leads to nosocomial infection especially in immunodeficient and cystic fibrosis (CF) patients. The antibiotic resistance in P. aeruginosa has become a world-concerning problem, which results in reduced and ineffective therapy efficacy. Besides intrinsic properties to decrease the intracellular content and activity of antibiotics, P. aeruginosa develops acquired resistance by gene mutation and acquisition, as well as adaptive resistance under specific situations. With in-depth research on drug resistance mechanisms and the development of biotechnology, innovative strategies have emerged and yielded benefits such as screening for new antibiotics based on artificial intelligence technology, utilizing drugs synergistically, optimizing administration, and developing biological therapy. This review summarizes the recent advances in the mechanisms of antibiotic resistance and emerging treatments for combating resistance, aiming to provide a reference for the development of therapy against drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Jian Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuo Liang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
El Aila NA, Al Laham NA, Doijad SP, Imirzalioglu C, Mraheil MA. First report of carbapenems encoding multidrug-resistant gram-negative bacteria from a pediatric hospital in Gaza Strip, Palestine. BMC Microbiol 2024; 24:393. [PMID: 39379824 PMCID: PMC11462914 DOI: 10.1186/s12866-024-03550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The worldwide prevalence of multi-drug resistance (MDR) in Gram-negative bacteria (GNB), particularly related to extended-spectrum beta-lactamases (ESBLs) and carbapenemases, poses significant global public health and clinical challenges. OBJECTIVES To characterize ESBL-producing Gram-negative bacilli, within a pediatric hospital in Gaza using whole genome sequencing (WGS). METHODS A total of 158 clinical isolates of Gram-negative bacilli were collected from Al-Nasser Pediatric Hospital. These isolates were tested for ESBL production using the double disk synergy test. The antibiotic susceptibility profile was determined using the Kirby Bauer method following the Clinical and Laboratory Standard Institute guidelines. Selected 15 phenotypically MDR isolates were whole-genome sequenced and characterized for their genome-based species identity and antibiotic resistance gene profile. RESULTS Of the 158 isolates, 93 (58.9%) were positive for ESBL production. The frequency of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Proteus mirabilis, and Serratia marcescens was 50%, 22.7%, 22.7%, 1.8%, 1.2%, and 1.2% respectively. The prevalence of ESBL among urine, pus, blood, and sputum was 64%, 44%, 23%, and 63.6%, respectively. Chloramphenicol, Imipenem, and Meropenem were the most effective antibiotics against ESBL producers. In sequenced isolates, an average of six anti-microbial resistance (AMR) genes were noted per isolate, where one of them carried up to 13 antibiotic resistance genes. Carbapenem resistance genes such as blaKPC-2(6.6%), blaPDC-36/12 (6.6%), and blaPOM-1 (6.6%) were detected. All the sequenced E. coli isolates (n = 8) showed multiple resistance genes, mainly against β-lactamase (25.0%), aminoglycosides (37.5%), sulfonamides (37.5%), and genes conferring resistance to tetracyclines (25.0). CONCLUSION Our results showed a high prevalence of ESBL-producing GNB isolated from a pediatric hospital in the Gaza Strip. Various antibiotic resistance genes were identified, including those encoding ESBL and carbapenems. The results highlight the significant challenge posed by MDR in GNB and emphasize the need for effective antibiotic strategies. Given the high endemicity observed in various studies from Palestine, it is important to conduct clinical and molecular epidemiology research to identify risk factors, transmission patterns, and clinical outcomes associated with GNB strains that carry ESBL and carbapenem resistance genes.
Collapse
Affiliation(s)
- Nabil Abdullah El Aila
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Al-Aqsa University, Gaza, Palestine.
| | - Nahed Ali Al Laham
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al Azhar University, Gaza, Palestine
| | - Swapnil Prakash Doijad
- Institute of Medical Microbiology, Justus Liebig University, German Centre for Infection Giessen-Marburg-Langen, Giessen, Germany
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University, German Centre for Infection Giessen-Marburg-Langen, Giessen, Germany
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, Justus Liebig University, German Centre for Infection Giessen-Marburg-Langen, Giessen, Germany.
| |
Collapse
|
13
|
Gong P, Liu H, Yu T, Jiang C, Gou E, Guan J, Chen H, Kang H. Evaluation of resistance risk in soil due to antibiotics during application of penicillin V fermentation residue. ENVIRONMENTAL TECHNOLOGY 2024; 45:5173-5181. [PMID: 37955258 DOI: 10.1080/09593330.2023.2283807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/30/2023] [Indexed: 11/14/2023]
Abstract
The soil application of hydrothermally treated penicillin V fermentation residue (PFR) is attractive but challenged, due to the concern of the resistance risk in soil related to residual antibiotics. In this study, a lab-scale incubation experiment was conducted to investigate the influence of penicillin V on antibiotic resistance genes (ARGs) in PFR-amended soil via qPCR. The introduced penicillin V in soil could not be persistent, and its degradation occurred mainly within 2 days. The higher number of soil ARGs was detected under 108 mg/kg of penicillin V than lower contents (≤54 mg/kg). Additionally, the relative abundance of ARGs was higher in soil spiked with penicillin V than that in blank soil, and the great increase in the relative abundance of soil ARGs occurred earlier under 108 mg/kg of penicillin V than lower contents. The horizontal gene transfer might contribute to the shift of ARGs in PFR-amended soil. The results indicated that the residual penicillin V could cause the proliferation of soil ARGs and should be completely removed by hydrothermal treatment before soil application. The results of this study provide a comprehensive understanding of the resistance risk posed by penicillin V during the application of hydrothermally pretreated PFR.
Collapse
Affiliation(s)
- Picheng Gong
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| | - Huiling Liu
- College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Tingting Yu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| | - Cuishuang Jiang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| | - Enfang Gou
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Jingze Guan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Huayuan Chen
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| | - Haoze Kang
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, People's Republic of China
| |
Collapse
|
14
|
Tebano G, Zaghi I, Cricca M, Cristini F. Antibiotic Treatment of Infections Caused by AmpC-Producing Enterobacterales. PHARMACY 2024; 12:142. [PMID: 39311133 PMCID: PMC11417830 DOI: 10.3390/pharmacy12050142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
AmpC enzymes are a class of beta-lactamases produced by Gram-negative bacteria, including several Enterobacterales. When produced in sufficient amounts, AmpCs can hydrolyze third-generation cephalosporins (3GCs) and piperacillin/tazobactam, causing resistance. In Enterobacterales, the AmpC gene can be chromosomal- or plasmid-encoded. Some species, particularly Enterobacter cloacae complex, Klebsiella aerogenes, and Citrobacter freundii, harbor an inducible chromosomal AmpC gene. The expression of this gene can be derepressed during treatment with a beta-lactam, leading to AmpC overproduction and the consequent emergence of resistance to 3GCs and piperacillin/tazobactam during treatment. Because of this phenomenon, the use of carbapenems or cefepime is considered a safer option when treating these pathogens. However, many areas of uncertainty persist, including the risk of derepression related to each beta-lactam; the role of piperacillin/tazobactam compared to cefepime; the best option for severe or difficult-to-treat cases, such as high-inoculum infections (e.g., ventilator-associated pneumonia and undrainable abscesses); the role of de-escalation once clinical stability is obtained; and the best treatment for species with a lower risk of derepression during treatment (e.g., Serratia marcescens and Morganella morganii). The aim of this review is to collate the most relevant information about the microbiological properties of and therapeutic approach to AmpC-producing Enterobacterales in order to inform daily clinical practice.
Collapse
Affiliation(s)
- Gianpiero Tebano
- Infectious Diseases Unit, Ravenna Hospital, AUSL Romagna, 48100 Ravenna, Italy
| | - Irene Zaghi
- Department of Infectious Diseases, University Hospital of Galway, H91 Galway, Ireland;
| | - Monica Cricca
- Unit of Microbiology, The Greater Romagna Area Hub Laboratory, 47522 Cesena, Italy;
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Francesco Cristini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
- Infectious Diseases Unit, Forlì and Cesena Hospitals, AUSL Romagna, 47121 Forlì and Cesena, Italy
| |
Collapse
|
15
|
Silva ASDN, da Silva NCZ, do Valle FM, da Rocha JA, Ehrlich S, Martins IS. Mortality and Risk Factors of Death in Patients with AmpC β-Lactamase Producing Enterobacterales Bloodstream Infection: A Cohort Study. Infect Drug Resist 2024; 17:4023-4035. [PMID: 39309068 PMCID: PMC11416777 DOI: 10.2147/idr.s473789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Aim ESCPM bacteria include Enterobacter spp, Serratia, Citrobacter spp, Providencia spp, and Morganella spp. These Gram-negative bacilli harbor chromosomally encoded AmpC-type β-lactamases that cause resistance to β-lactam antibiotics, such as penicillins, β-lactam/β-lactamase inhibitors, and first-, second-, and third-generation cephalosporins. Bloodstream infections caused by ESCPM group bacteria (BSI-ESCPM) are difficult to treat. Purpose To describe 30-day mortality and analyze potential risk factors for death in patients with BSI-ESCPM. Patients and Methods A cohort study of patients aged ≥ 18 years with BSI-ESCPM was conducted at a University Hospital in Brazil, from January 2013 and December 2018. Potential risk factors for death within 30 days of bloodstream infection BSI diagnosis were analyzed using multivariable logistic regression. Results Among 138 patients with BSI-ESCPM, 63.0% were males, with a median age of 61 years. Of 155 BSI-ESCPM episodes, 61.3% were hospital-acquired. Primary BSI-ESCPM associated with short-term central venous catheter (37.4%) and BSI-ESCPM secondary to respiratory infection (19.4%) occurred mainly. Mostly, Enterobacter spp. (49.7%) and Serratia spp. (29.0%) were isolated. Multidrug-resistance occurred in 27.7% of BSI-ESCPM episodes, involving Enterobacter spp. (16.1%) and Serratia spp. (7.7%) mainly. The mortality was 24.5%. Developing septic shock within 72 h of BSI-ESCPM diagnosis (OR: 70.26; 95% CI: 16.69-295.77; P<0.01) was risk factor for death. Conversely, combined antibiotic therapy (OR: 0.23; 95% CI: 0.05-0.94; P:0.04), BSI-ESCPM secondary to urinary infection (OR: 0.11; 95% CI: 0.01-0.99; P:0.05), and Enterobacter spp. BSI (OR: 0.16; 95% CI: 0.05-0.56; P0<0.01) was protective factor against death. Tendency of association between inadequate antibiotic therapy and death (OR: 2.19; 95% CI: 0.51-9.42; P:0.29) was observed. Conclusion BSI-ESCPM is severe and has serious outcomes such as sepsis-associated deaths. Combined antibiotic therapy was a protective factor against death in patients with BSI-ESCPM. There is a suggestive association between inadequate antibiotic therapy and mortality. The ESCPM group bacteria that are considered to be at moderate to high risk of clinically significant AmpC production were not associated with death.
Collapse
Affiliation(s)
- Ana Sheila Duarte Nunes Silva
- Infection Disease Division, Department of Clinical Medicine, Faculty of Medicine, Fluminense Federal University, Niterói, RJ, Brazil
| | - Natalia Chilinque Zambão da Silva
- Infection Disease Division, Department of Clinical Medicine, Faculty of Medicine, Fluminense Federal University, Niterói, RJ, Brazil
| | - Fernanda Moreth do Valle
- Hospital Universitário Antonio Pedro, Faculty of Medicine, Fluminense Federal University, Niterói, RJ, Brazil
| | - Jaqueline Abel da Rocha
- Hospital Universitário Antonio Pedro, Faculty of Medicine, Fluminense Federal University, Niterói, RJ, Brazil
| | - Shelley Ehrlich
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ianick Souto Martins
- Infection Disease Division, Department of Clinical Medicine, Faculty of Medicine, Fluminense Federal University, Niterói, RJ, Brazil
- Infection Control Division, Hospital Do Câncer I, Instituto Nacional Do Câncer, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Gurung A, Napit R, Shrestha B, Lekhak B. Carbapenem Resistance in Acinetobacter calcoaceticus-baumannii Complex Isolates From Kathmandu Model Hospital, Nepal, Is Attributed to the Presence of bla OXA-23-like and bla NDM-1 Genes. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8842625. [PMID: 39161641 PMCID: PMC11333142 DOI: 10.1155/2024/8842625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2024] [Accepted: 06/11/2024] [Indexed: 08/21/2024]
Abstract
The Acinetobacter calcoaceticus-baumannii (ACB) complex, also known as ACB complex, consists of four bacterial species that can cause opportunistic infections in humans, especially in hospital settings. Conventional therapies for susceptible strains of the ACB complex include broad-spectrum cephalosporins, β-lactam/β-lactamase inhibitors, and carbapenems. Unfortunately, the effectiveness of these antibiotics has declined due to increasing rates of resistance. The predominant resistance mechanisms identified in the ACB complex involve carbapenem-resistant (CR) oxacillinases and metallo-β-lactamases (MBLs). This research, conducted at Kathmandu Model Hospital in Nepal, sought to identify genes associated with CR, specifically blaNDM-1, blaOXA-23-like, and blaOXA-24-like genes in carbapenem-resistant Acinetobacter calcoaceticus-baumannii (CR-ACB) complex. Additionally, the study is aimed at identifying the ACB complex through the sequencing of the 16s rRNA gene. Among the 992 samples collected from hospitalized patients, 43 (approximately 4.334%) tested positive for the ACB complex. These positive samples were mainly obtained from different hospital units, including intensive care units (ICUs); cabins; and neonatal, general, and maternity wards. The prevalence of infection was higher among males (58.14%) than females (41.86%), with the 40-50 age group showing the highest infection rate. In susceptibility testing, colistin and polymyxin B exhibited a susceptibility rate of 100%, whereas all samples showed resistance to third-generation cephalosporins. After polymyxins, gentamicin (30.23%) and amikacin (34.88%) demonstrated the highest susceptibility. A substantial majority (81.45%) of ACB complex isolates displayed resistance to carbapenems, with respiratory and pus specimens being the primary sources. Polymerase chain reaction (PCR) revealed that the primary CR gene within the ACB complex at this hospital was bla OXA-23-like, followed by bla NDM-1. To ensure the accuracy of the phenotypic assessment, 12 samples were chosen for 16s rRNA sequencing using Illumina MiSeq™ to confirm that they are Acinetobacter species. QIIME 2.0 analysis confirmed all 12 isolates to be Acinetobacter species. In the hospital setting, a substantial portion of the ACB complex carries CR genes, rendering carbapenem ineffective for treatment.
Collapse
Affiliation(s)
- Anupama Gurung
- Central Department of MicrobiologyTribhuvan University, Kirtipur, Nepal
| | - Rajindra Napit
- Central Department of BiotechnologyTribhuvan University, Kirtipur, Nepal
| | - Basudha Shrestha
- Department of MicrobiologyKathmandu Model Hospital, Putalisadak, Kathmandu, Nepal
| | - Binod Lekhak
- Central Department of MicrobiologyTribhuvan University, Kirtipur, Nepal
| |
Collapse
|
17
|
Tabassum T, Hossain MS, Ercumen A, Benjamin-Chung J, Abedin MF, Rahman M, Jahan F, Haque M, Mahmud ZH. Isolation and characterization of cefotaxime resistant Escherichia coli from household floors in rural Bangladesh. Heliyon 2024; 10:e34367. [PMID: 39114038 PMCID: PMC11305256 DOI: 10.1016/j.heliyon.2024.e34367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Antimicrobial resistance (AMR) is a rising health concern worldwide. As an indicator organism, E. coli, specifically extended-spectrum β-lactamase (ESBL) producing E. coli, can be used to detect AMR in the environment and estimate the risk of transmitting resistance among humans, animals and the environment. This study focused on detecting cefotaxime resistant E. coli in floor swab samples from 49 households in rural villages in Bangladesh. Following isolation of cefotaxime resistant E. coli, DNA extracted from isolates was subjected to molecular characterization for virulence and resistance genes, determination of resistance to multiple classes of antibiotics to define multidrug resistant (MDR) and extensively drug resistant (XDR) strains, and the biofilm forming capacity of the isolates. Among 49 households, floor swabs from 35 (71 %) households tested positive for cefotaxime resistant E. coli. Notably, all of the 91 representative isolates were ESBL producers, with the majority (84.6 %) containing the bla CTX-M gene, followed by the bla TEM and bla SHV genes detected in 22.0 % and 6.6 % of the isolates, respectively. All isolates were MDR, and one isolate was XDR. In terms of pathogenic strains, 8.8 % of the isolates were diarrheagenic and 5.5 % were extraintestinal pathogenic E. coli (ExPEC). At 25 °C, 45 % of the isolates formed strong biofilm, whereas 43 % and 12 % formed moderate and weak biofilm, respectively. On the other hand, at 37 °C, 1.1 %, 4.4 % and 93.4 % of the isolates were strong, moderate and weak biofilm formers, respectively, and 1.1 % showed no biofilm formation. The study emphasizes the importance of screening and characterizing cefotaxime resistant E. coli from household floors in a developing country setting to understand AMR exposure associated with floors.
Collapse
Affiliation(s)
- Tahani Tabassum
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Merul Badda, Dhaka, Bangladesh
| | - Md. Sakib Hossain
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, Global Water, Sanitation and Hygiene Cluster, NC State University, Raleigh, NC, 27607, USA
| | - Jade Benjamin-Chung
- Department of Epidemiology & Population Health, Stanford University School of Medicine, CA, 94305-5101, USA
| | - Md. Foysal Abedin
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
| | - Mahbubur Rahman
- Environmental Health and WASH, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
- Global Health and Migration Unit, Department of Women's and Children's Health, Uppsala University, Sweden
| | - Farjana Jahan
- Environmental Health and WASH, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
| | - Munima Haque
- Biotechnology Program, Department of Mathematics and Natural Sciences, BRAC University, Merul Badda, Dhaka, Bangladesh
| | - Zahid Hayat Mahmud
- Laboratory of Environmental Health, Health Systems and Population Studies Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, 1212, Bangladesh
| |
Collapse
|
18
|
Mohite SV, Sharma KK. Gut microbial metalloproteins and its role in xenobiotics degradation and ROS scavenging. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:495-538. [PMID: 38960484 DOI: 10.1016/bs.apcsb.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The gut microbial metalloenzymes play an important role in maintaining the balance between gut microbial ecosystem, human physiologically processes and immune system. The metals coordinated into active site contribute in various detoxification and defense strategies to avoid unfavourable environment and ensure bacterial survival in human gut. Metallo-β-lactamase is a potent degrader of antibiotics present in periplasmic space of both commensals and pathogenic bacteria. The resistance to anti-microbial agents developed in this enzyme is one of the global threats for human health. The organophosphorus eliminator, organophosphorus hydrolases have evolved over a course of time to hydrolyze toxic organophosphorus compounds and decrease its effect on human health. Further, the redox stress responders namely superoxide dismutase and catalase are key metalloenzymes in reducing both endogenous and exogenous oxidative stress. They hold a great importance for pathogens as they contribute in pathogenesis in human gut along with reduction of oxidative stress. The in-silico study on these enzymes reveals the importance of point mutation for the evolution of these enzymes in order to enhance their enzyme activity and stability. Various mutation studies were conducted to investigate the catalytic activity of these enzymes. By using the "directed evolution" method, the enzymes involved in detoxification and defense system can be engineered to produce new variants with enhance catalytic features, which may be used to predict the severity due to multi-drug resistance and degradation pattern of organophosphorus compounds in human gut.
Collapse
Affiliation(s)
- Shreya Vishwas Mohite
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
19
|
Mó I, da Silva GJ. Tackling Carbapenem Resistance and the Imperative for One Health Strategies-Insights from the Portuguese Perspective. Antibiotics (Basel) 2024; 13:557. [PMID: 38927223 PMCID: PMC11201282 DOI: 10.3390/antibiotics13060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Carbapenemases, a class of enzymes specialized in the hydrolysis of carbapenems, represent a significant threat to global public health. These enzymes are classified into different Ambler's classes based on their active sites, categorized into classes A, D, and B. Among the most prevalent types are IMI/NMC-A, KPC, VIM, IMP, and OXA-48, commonly associated with pathogenic species such as Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The emergence and dissemination of carbapenemase-producing bacteria have raised substantial concerns due to their ability to infect humans and animals (both companion and food-producing) and their presence in environmental reservoirs. Adopting a holistic One Health approach, concerted efforts have been directed toward devising comprehensive strategies to mitigate the impact of antimicrobial resistance dissemination. This entails collaborative interventions, highlighting proactive measures by global organizations like the World Health Organization, the Center for Disease Control and Prevention, and the Food and Agriculture Organization. By synthesizing the evolving landscape of carbapenemase epidemiology in Portugal and tracing the trajectory from initial isolated cases to contemporary reports, this review highlights key factors driving antibiotic resistance, such as antimicrobial use and healthcare practices, and underscores the imperative for sustained vigilance, interdisciplinary collaboration, and innovative interventions to curb the escalating threat posed by antibiotic-resistant pathogens. Finally, it discusses potential alternatives and innovations aimed at tackling carbapenemase-mediated antibiotic resistance, including new therapies, enhanced surveillance, and public awareness campaigns.
Collapse
Affiliation(s)
- Inês Mó
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC, Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| |
Collapse
|
20
|
Celebi D, Celebi O, Taghizadehghalehjoughi A, Baser S, Aydın E, Calina D, Charvalos E, Docea AO, Tsatsakis A, Mezhuev Y, Yildirim S. Activity of zinc oxide and zinc borate nanoparticles against resistant bacteria in an experimental lung cancer model. Daru 2024; 32:197-206. [PMID: 38366078 PMCID: PMC11087447 DOI: 10.1007/s40199-024-00505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Recent research indicates a prevalence of typical lung infections, such as pneumonia, in lung cancer patients. Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii stand out as antibiotic-resistant pathogens. Given this, there is a growing interest in alternative therapeutic avenues. Boron and zinc derivatives exhibit antimicrobial, antiviral, and antifungal properties. OBJECTIVES This research aimed to establish the effectiveness of ZnO and ZB NPs in combating bacterial infections in lung cancer cell lines. METHODS Initially, this study determined the minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of zinc oxide nanoparticles (ZnO NPs) and zinc borate (ZB) on chosen benchmark strains. Subsequent steps involved gauging treatment success through a lung cancer-bacteria combined culture and immunohistochemical analysis. RESULTS The inhibitory impact of ZnO NPs on bacteria was charted as follows: 0.97 µg/mL for K. pneumoniae 700603, 1.95 µg/mL for P. aeruginosa 27853, and 7.81 µg/mL for Acinetobacter baumannii 19,606. In comparison, the antibacterial influence of zinc borate was measured as 7.81 µg/mL for Klebsiella pneumoniae 700603 and 500 µg/mL for both P. aeruginosa 27853 and A.baumannii 19606. After 24 h, the cytotoxicity of ZnO NPs and ZB was analyzed using the MTT technique. The lowest cell viability was marked in the 500 µg/mL ZB NPs group, with a viability rate of 48.83% (P < 0.001). However, marked deviations appeared at ZB concentrations of 61.5 µg/mL (P < 0.05) and ZnO NPs at 125 µg/mL. CONCLUSION A synergistic microbial inhibitory effect was observed when ZnO NP and ZB were combined against the bacteria under investigation.
Collapse
Affiliation(s)
- Demet Celebi
- Faculty of Veterinary Medicine, Department of Microbiology, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
- Vaccine Application and Development Center, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
| | - Ozgur Celebi
- Faculty of Medicine, Department of Medical Microbiology, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
| | - Ali Taghizadehghalehjoughi
- Faculty of Medicine, Department of Medical Pharmacology, Seyh Edebali University, 27 Fatih Sultan Mehmet Avenue, Bilecik, 11000, Turkey
| | - Sumeyye Baser
- Faculty of Medicine, Department of Medical Microbiology, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
| | - Elif Aydın
- Tavsanli Vocational School of Health Services, Kutahya Health Sciences University, Sehit Ali Gaffar Okan Avenue, Kutahya, 430200, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion, 71003, Greece.
| | - Yaroslav Mezhuev
- Department of Biomaterials, Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow, 125047, Russia
- Laboratory of Heterochain Polymers, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st, Moscow, 119991, Russia
| | - Serkan Yildirim
- Faculty of Veterinary Medicine, Department of Pathology, Ataturk University, Ataturk University Avenue, Erzurum, 25240, Turkey
| |
Collapse
|
21
|
Kang SJ, Kim DH, Lee BJ. Metallo-β-lactamase inhibitors: A continuing challenge for combating antibiotic resistance. Biophys Chem 2024; 309:107228. [PMID: 38552402 DOI: 10.1016/j.bpc.2024.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
β-lactam antibiotics are the most successful and commonly used antibacterial agents, but the emergence of resistance to these drugs has become a global health threat. The expression of β-lactamase enzymes produced by pathogens, which hydrolyze the amide bond of the β-lactam ring, is the major mechanism for bacterial resistance to β-lactams. In particular, among class A, B, C and D β-lactamases, metallo-β-lactamases (MBLs, class B β-lactamases) are considered crucial contributors to resistance in gram-negative bacteria. To combat β-lactamase-mediated resistance, great efforts have been made to develop β-lactamase inhibitors that restore the activity of β-lactams. Some β-lactamase inhibitors, such as diazabicyclooctanes (DBOs) and boronic acid derivatives, have also been approved by the FDA. Inhibitors used in the clinic can inactivate mostly serine-β-lactamases (SBLs, class A, C, and D β-lactamases) but have not been effective against MBLs until now. In order to develop new inhibitors particularly for MBLs, various attempts have been suggested. Based on structural and mechanical studies of MBL enzymes, several MBL inhibitor candidates, including taniborbactam in phase 3 and xeruborbactam in phase 1, have been introduced in recent years. However, designing potent inhibitors that are effective against all subclasses of MBLs is still extremely challenging. This review summarizes not only the types of β-lactamase and mechanisms by which β-lactam antibiotics are inactivated, but also the research finding on β-lactamase inhibitors targeting these enzymes. These detailed information on β-lactamases and their inhibitors could give valuable information for novel β-lactamase inhibitors design.
Collapse
Affiliation(s)
- Su-Jin Kang
- College of Pharmacy, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Do-Hee Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Bong-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Mastermeditech Ltd., Seoul 07793, Republic of Korea.
| |
Collapse
|
22
|
de Souza J, Vieira AZ, Dos Santos HG, Faoro H. Potential involvement of beta-lactamase homologous proteins in resistance to beta-lactam antibiotics in gram-negative bacteria of the ESKAPEE group. BMC Genomics 2024; 25:508. [PMID: 38778284 PMCID: PMC11112869 DOI: 10.1186/s12864-024-10410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Enzymatic degradation mediated by beta-lactamases constitutes one of the primary mechanisms of resistance to beta-lactam antibiotics in gram-negative bacteria. This enzyme family comprises four molecular classes, categorized into serine beta-lactamases (Classes A, C, and D) and zinc-dependent metallo-beta-lactamases (Class B). Gram-negative bacteria producing beta-lactamase are of significant concern, particularly due to their prevalence in nosocomial infections. A comprehensive understanding of the evolution and dissemination of this enzyme family is essential for effective control of these pathogens. In this study, we conducted the prospecting, phylogenetic analysis, and in silico analysis of beta-lactamases and homologous proteins identified in 1827 bacterial genomes with phenotypic data on beta-lactam resistance. These genomes were distributed among Klebsiella pneumoniae (45%), Acinetobacter baumannii (31%), Pseudomonas aeruginosa (14%), Escherichia coli (6%), and Enterobacter spp. (4%). Using an HMM profile and searching for conserved domains, we mined 2514, 8733, 5424, and 2957 proteins for molecular classes A, B, C, and D, respectively. This set of proteins encompasses canonical subfamilies of beta-lactamases as well as hypothetical proteins and other functional groups. Canonical beta-lactamases were found to be phylogenetically distant from hypothetical proteins, which, in turn, are closer to other representatives of the penicillin-binding-protein (PBP-like) and metallo-beta-lactamase (MBL) families. The catalytic amino acid residues characteristic of beta-lactamases were identified from the sequence alignment and revealed that motifs are less conserved in homologous groups than in beta-lactamases. After comparing the frequency of protein groups in genomes of resistant strains with those of sensitive ones applying Fisher's exact test and relative risk, it was observed that some groups of homologous proteins to classes B and C are more common in the genomes of resistant strains, particularly to carbapenems. We identified the beta-lactamase-like domain widely distributed in gram-negative species of the ESKAPEE group, which highlights its importance in the context of beta-lactam resistance. Some hypothetical homologous proteins have been shown to potentially possess promiscuous activity against beta-lactam antibiotics, however, they do not appear to expressly determine the resistance phenotype. The selective pressure due to the widespread use of antibiotics may favor the optimization of these functions for specialized resistance enzymes.
Collapse
Affiliation(s)
- Joyce de Souza
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Paraná, 81350-010, Brazil
| | - Alexandre Zanatta Vieira
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Paraná, 81350-010, Brazil
| | | | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Paraná, 81350-010, Brazil.
- Department of Microbiology, Infectious Disease and Immunology, CHU de Quebec Research Center, University Laval, Quebec, QC, G1V 0A6, Canada.
| |
Collapse
|
23
|
Zhu Y, Gu J, Zhao Z, Chan AWE, Mojica MF, Hujer AM, Bonomo RA, Haider S. Deciphering the Coevolutionary Dynamics of L2 β-Lactamases via Deep Learning. J Chem Inf Model 2024; 64:3706-3717. [PMID: 38687957 PMCID: PMC11094718 DOI: 10.1021/acs.jcim.4c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
L2 β-lactamases, serine-based class A β-lactamases expressed by Stenotrophomonas maltophilia, play a pivotal role in antimicrobial resistance (AMR). However, limited studies have been conducted on these important enzymes. To understand the coevolutionary dynamics of L2 β-lactamase, innovative computational methodologies, including adaptive sampling molecular dynamics simulations, and deep learning methods (convolutional variational autoencoders and BindSiteS-CNN) explored conformational changes and correlations within the L2 β-lactamase family together with other representative class A enzymes including SME-1 and KPC-2. This work also investigated the potential role of hydrophobic nodes and binding site residues in facilitating the functional mechanisms. The convergence of analytical approaches utilized in this effort yielded comprehensive insights into the dynamic behavior of the β-lactamases, specifically from an evolutionary standpoint. In addition, this analysis presents a promising approach for understanding how the class A β-lactamases evolve in response to environmental pressure and establishes a theoretical foundation for forthcoming endeavors in drug development aimed at combating AMR.
Collapse
Affiliation(s)
- Yu Zhu
- Pharmaceutical
and Biological Chemistry, UCL School of
Pharmacy, London WC1N 1AX, U.K.
| | - Jing Gu
- Pharmaceutical
and Biological Chemistry, UCL School of
Pharmacy, London WC1N 1AX, U.K.
| | - Zhuoran Zhao
- Pharmaceutical
and Biological Chemistry, UCL School of
Pharmacy, London WC1N 1AX, U.K.
| | - A. W. Edith Chan
- Division
of Medicine, UCL School of Pharmacy, London WC1E 6BT, U.K.
| | - Maria F. Mojica
- Department
of Molecular Biology and Microbiology, Case
Western Reserve University School of Medicine, Cleveland, Ohio 44106-5029, United
States
- Research
Service, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio 44106-1702, United States
- CWRU-Cleveland
VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA
CARES), Cleveland, Ohio 44106-5029, United States
| | - Andrea M. Hujer
- Research
Service, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio 44106-1702, United States
- Department
of Medicine, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106-5029, United States
| | - Robert A. Bonomo
- Research
Service, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio 44106-1702, United States
- CWRU-Cleveland
VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA
CARES), Cleveland, Ohio 44106-5029, United States
- Clinician
Scientist Investigator, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, Ohio 44106-1702, United States
- Departments
of Pharmacology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-5029, United
States
- Departments
of Molecular Biology and Microbiology, Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-5029, United
States
| | - Shozeb Haider
- Pharmaceutical
and Biological Chemistry, UCL School of
Pharmacy, London WC1N 1AX, U.K.
- UCL
Centre for Advanced Research in Computing, University College London, London WC1H 9RL, U.K.
| |
Collapse
|
24
|
Wang C, Wei N, Zhang M, Zhang X. Pulmonary infection with Aeromonas dhakensis in a patient with acute T lymphoblastic leukemia: a case report and review of the literature. Front Med (Lausanne) 2024; 11:1357714. [PMID: 38698785 PMCID: PMC11064645 DOI: 10.3389/fmed.2024.1357714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Background Aeromonas dhakensis is a gram-negative bacterium. In recent years, Aeromonas dhakensis has gradually attracted increasing attention due to its strong virulence and poor prognosis. Clinical reports of pulmonary infection caused by Aeromonas dhakensis are rare. Case presentation A patient with acute T lymphoblastic leukemia experienced myelosuppression after chemotherapy, developed a secondary pulmonary infection with Aeromonas dhakensis and was hospitalized due to fever. The patient underwent testing for inflammatory markers, chest imaging, blood culture, bronchoalveolar lavage, pleural drainage, and metagenomic next-generation sequencing of alveolar lavage fluid and pleural fluid to obtain evidence of Aeromonas dhakensis infection, and was treated with four generations of cephalosporin combined with fluoroquinolone antibiotics. The patient's condition significantly improved. Discussion Among pulmonary infectious pathogens, Aeromonas dhakensis is relatively rare. Once an Aeromonas strain is cultured in the clinical work, pathogenic sequencing should be performed on the detected samples for early accurate diagnosis and effective anti-infection treatment.
Collapse
Affiliation(s)
- Chaoyang Wang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Nan Wei
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Moyuan Zhang
- Xinxiang Medical University, Xinxiang, China
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
25
|
Kasanga M, Shempela DM, Daka V, Mwikisa MJ, Sikalima J, Chanda D, Mudenda S. Antimicrobial resistance profiles of Escherichia coli isolated from clinical and environmental samples: findings and implications. JAC Antimicrob Resist 2024; 6:dlae061. [PMID: 38680604 PMCID: PMC11055401 DOI: 10.1093/jacamr/dlae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/17/2024] [Indexed: 05/01/2024] Open
Abstract
Background The overuse and misuse of antimicrobials has worsened the problem of antimicrobial resistance (AMR) globally. This study investigated the AMR profiles of Escherichia coli isolated from clinical and environmental samples in Lusaka, Zambia. Methods This was a cross-sectional study conducted from February 2023 to June 2023 using 450 samples. VITEK® 2 Compact was used to identify E. coli and perform antimicrobial susceptibility testing. Data analysis was done using WHONET 2022 and SPSS version 25.0. Results Of the 450 samples, 66.7% (n = 300) were clinical samples, whereas 33.3% (n = 150) were environmental samples. Overall, 47.8% (n = 215) (37.8% clinical and 10% environmental) tested positive for E. coli. Of the 215 E. coli isolates, 66.5% were MDR and 42.8% were ESBL-producers. Most isolates were resistant to ampicillin (81.4%), sulfamethoxazole/trimethoprim (70.7%), ciprofloxacin (67.9%), levofloxacin (64.6%), ceftriaxone (62.3%) and cefuroxime (62%). Intriguingly, E. coli isolates were highly susceptible to amikacin (100%), imipenem (99.5%), nitrofurantoin (89.3%), ceftolozane/tazobactam (82%) and gentamicin (72.1%). Conclusions This study found a high resistance of E. coli to some antibiotics that are commonly used in humans. The isolation of MDR and ESBL-producing E. coli is a public health concern and requires urgent action. Therefore, there is a need to instigate and strengthen interventional strategies including antimicrobial stewardship programmes to combat AMR in Zambia.
Collapse
Affiliation(s)
- Maisa Kasanga
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Doreen Mainza Shempela
- Laboratory Department, Churches Health Association of Zambia, CHAZ COMPLEX Meanwood Drive (off Great East Road), Plot No. 2882/B/5/10, P.O. Box 34511, JC9H+VFF, Lusaka, Zambia
| | - Victor Daka
- Public Health Department, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola, Zambia
| | - Mark J Mwikisa
- Department of Pathology and Microbiology, Lusaka Trust Hospital, Plot 2191, H8CC+52F, Nsumbu Rd, Woodlands, Lusaka, Zambia
| | - Jay Sikalima
- Laboratory Department, Churches Health Association of Zambia, CHAZ COMPLEX Meanwood Drive (off Great East Road), Plot No. 2882/B/5/10, P.O. Box 34511, JC9H+VFF, Lusaka, Zambia
| | - Duncan Chanda
- Adult Centre of Excellence, University Teaching Hospital, Lusaka, Zambia
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| |
Collapse
|
26
|
Mei L, Song Y, Liu X, Li K, Guo X, Liu L, Liu Y, Kozlakidis Z, Cheong IH, Wang D, Wei Q. Characterization and Implications of IncP-2A Plasmid pMAS152 Harboring Multidrug Resistance Genes in Extensively Drug-Resistant Pseudomonas aeruginosa. Microorganisms 2024; 12:562. [PMID: 38543613 PMCID: PMC10973999 DOI: 10.3390/microorganisms12030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 04/21/2024] Open
Abstract
Bacterial antimicrobial resistance (AMR) poses a significant global public health challenge. The escalation of AMR is primarily attributed to the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs), often facilitated by plasmids. This underscores the critical need for a comprehensive understanding of the resistance mechanisms and transmission dynamics of these plasmids. In this study, we utilized in vitro drug sensitivity testing, conjugation transfer assays, and whole-genome sequencing to investigate the resistance mechanism of an extensively drug-resistant (XDR) Pseudomonas aeruginosa clinical isolate, MAS152. We specifically focused on analyzing the drug-resistant plasmid pMAS152 it harbors and its potential for widespread dissemination. Bioinformatics analysis revealed that MAS152 carries a distinct IncpP-2A plasmid, pMAS152, characterized by a 44.8 kb multidrug resistance (MDR) region. This region houses a 16S rRNA methyltransferase (16S-RMTase) gene, rmtB, conferring high-level resistance to aminoglycoside antibiotics. Notably, this region also contains an extended-spectrum β-Lactamase (ESBL) gene, blaPER-1, and an efflux pump operon, tmexCD-oprJ, which mediate resistance to β-Lactams and quinolone antibiotics, respectively. Such a combination of ARGs, unprecedented in reported plasmids, could significantly undermine the effectiveness of first-line antibiotics in treating P. aeruginosa infections. Investigation into the genetic environment of the MDR region suggests that Tn2 and IS91 elements may be instrumental in the horizontal transfer of rmtB. Additionally, a complex Class I integron with an ISCR1 structure, along with TnAs1, seems to facilitate the horizontal transfer of blaPER-1. The conjugation transfer assay, coupled with the annotation of conjugation-related genes and phylogenetic analysis, indicates that the plasmid pMAS152 functions as a conjugative plasmid, with other genus Pseudomonas species as potential hosts. Our findings provide vital insights into the resistance mechanisms and transmission potential of the XDR P. aeruginosa isolate MAS152, underlining the urgent need for novel strategies to combat the spread of AMR. This study highlights the complex interplay of genetic elements contributing to antibiotic resistance and underscores the importance of continuous surveillance of emerging ARGs in clinical isolates.
Collapse
Affiliation(s)
- Li Mei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.M.); (L.L.); (Y.L.)
| | - Yang Song
- Division of Infectious Disease, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China;
| | - Xiao Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (K.L.)
| | - Kun Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (K.L.)
| | - Xu Guo
- National Immunization Program, Chinese Center for Disease Control and Prevention, Beijing 100050, China;
| | - Li Liu
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.M.); (L.L.); (Y.L.)
| | - Yang Liu
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.M.); (L.L.); (Y.L.)
| | - Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization, 69007 Lyon, France;
| | - Io Hong Cheong
- State Key Laboratory of Systems Medicine for Cancer, Centre for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China;
| | - Duochun Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (X.L.); (K.L.)
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (L.M.); (L.L.); (Y.L.)
| |
Collapse
|
27
|
Ramatla T, Ramaili T, Lekota K, Mileng K, Ndou R, Mphuthi M, Khasapane N, Syakalima M, Thekisoe O. Antibiotic resistance and virulence profiles of Proteus mirabilis isolated from broiler chickens at abattoir in South Africa. Vet Med Sci 2024; 10:e1371. [PMID: 38357843 PMCID: PMC10867704 DOI: 10.1002/vms3.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Proteus mirabilis has been identified as an important zoonotic pathogen, causing several illnesses such as diarrhoea, keratitis and urinary tract infections. OBJECTIVE This study assessed the prevalence of P. mirabilis in broiler chickens, its antibiotic resistance (AR) patterns, ESBL-producing P. mirabilis and the presence of virulence genes. METHODS A total of 26 isolates were confirmed as P. mirabilis from 480 pooled broiler chicken faecal samples by polymerase chain reaction (PCR). The disk diffusion method was used to evaluate the antibacterial susceptibility test, while nine virulence genes and 26 AR genes were also screened by PCR. RESULTS All 26 P. mirabilis isolates harboured the ireA (siderophore receptors), ptA, and zapA (proteases), ucaA, pmfA, atfA, and mrpA (fimbriae), hlyA and hpmA (haemolysins) virulence genes. The P. mirabilis isolates were resistant to ciprofloxacin (62%) and levofloxacin (54%), while 8 (30.7%) of the isolates were classified as multidrug resistant (MDR). PCR analysis identified the blaCTX-M gene (62%), blaTEM (58%) and blaCTX-M-2 (38%). Further screening for AMR genes identified mcr-1, cat1, cat2, qnrA, qnrD and mecA, 12%, 19%, 12%, 54%, 27% and 8%, respectively for P. mirabilis isolates. The prevalence of the integron integrase intI1 and intI2 genes was 43% and 4%, respectively. CONCLUSIONS The rise of ciprofloxacin and levofloxacin resistance, as well as MDR strains, is a public health threat that points to a challenge in the treatment of infections caused by these zoonotic bacteria. Furthermore, because ESBL-producing P. mirabilis has the potential to spread to humans, the presence of blaCTX -M -producing P. mirabilis in broilers should be kept under control. This is the first study undertaken to isolate P. mirabilis from chicken faecal samples and investigate its antibiotic resistance status as well as virulence profiles in South Africa.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
- Gastrointestinal Research UnitDepartment of SurgerySchool of Clinical MedicineUniversity of the Free StateBloemfonteinSouth Africa
| | - Taole Ramaili
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Kgaugelo Lekota
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Kealeboga Mileng
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| | - Rendani Ndou
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Malekoba Mphuthi
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
| | - Ntelekwane Khasapane
- Department of Life SciencesCentre for Applied Food Safety and BiotechnologyCentral University of TechnologyBloemfonteinSouth Africa
| | - Michelo Syakalima
- Department of Animal Health, School of AgricultureNorth‐West UniversityMmabathoSouth Africa
- Department of Disease ControlSchool of Veterinary MedicineUniversity of ZambiaLusakaZambia
| | - Oriel Thekisoe
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
28
|
Salem M, Younis G, Sadat A, Nouh NAT, Binjawhar DN, Abdel-Daim MM, Elbadawy M, Awad A. Dissemination of mcr-1 and β-lactamase genes among Pseudomonas aeruginosa: molecular characterization of MDR strains in broiler chicks and dead-in-shell chicks infections. Ann Clin Microbiol Antimicrob 2024; 23:9. [PMID: 38281970 PMCID: PMC10823725 DOI: 10.1186/s12941-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa (P. aeruginosa) is one of the most serious pathogens implicated in antimicrobial resistance, and it has been identified as an ESKAPE along with other extremely significant multidrug resistance pathogens. The present study was carried out to explore prevalence, antibiotic susceptibility phenotypes, virulence-associated genes, integron (int1), colistin (mcr-1), and β-lactamase resistance' genes (ESBls), as well as biofilm profiling of P. aeruginosa isolated from broiler chicks and dead in-shell chicks. DESIGN A total of 300 samples from broiler chicks (n = 200) and dead in-shell chicks (n = 100) collected from different farms and hatcheries located at Mansoura, Dakahlia Governorate, Egypt were included in this study. Bacteriological examination was performed by cultivation of the samples on the surface of both Cetrimide and MacConkey's agar. Presumptive colonies were then subjected to biochemical tests and Polymerase Chain Reaction (PCR) targeting 16S rRNA. The recovered isolates were tested for the presence of three selected virulence-associated genes (lasB, toxA, and exoS). Furthermore, the retrieved isolates were subjected to phenotypic antimicrobial susceptibility testing by Kirby-Bauer disc diffusion method as well as phenotypic detection of ESBLs by both Double Disc Synergy Test (DDST) and the Phenotypic Confirmatory Disc Diffusion Test (PCDDT). P. aeruginosa isolates were then tested for the presence of antibiotic resistance genes (ARGs): int1, mcr-1, and ESBL genes (OXA-10, OXA-2, VEB-1, SHV, TEM, and CTX-M). Additionally, biofilm production was examined by the Tube Adherent method (TA) and Microtiter Plate assay (MTP). RESULTS Fifty -five isolates were confirmed to be P. aeruginosa, including 35 isolates from broiler chicks and 20 isolates from dead in-shell chicks. The three tested virulence genes (lasB, toxA, and exoS) were detected in all isolates. Antibiogram results showed complete resistance against penicillin, amoxicillin, ceftriaxone, ceftazidime, streptomycin, erythromycin, spectinomycin, and doxycycline, while a higher sensitivity was observed against meropenem, imipenem, colistin sulfate, ciprofloxacin, and gentamicin. ESBL production was confirmed in 12 (21.8%) and 15 (27.3%) isolates by DDST and PCDDT, respectively. Antibiotic resistance genes (ARGs): int1, mcr-1, and ESBL genes (OXA-10, SHV, TEM, and CTX-M), were detected in 87.3%, 18.2%, 16.4%, 69.1%, 72.7%, and 54.5% of the examined isolates respectively, whereas no isolate harbored the OXA-2 or VEB-1 genes. Based on the results of both methods used for detection of biofilm formation, Kappa statistics [kappa 0.324] revealed a poor agreement between both methods. CONCLUSIONS the emergence of mcr-1 and its coexistence with other resistance genes such as β-lactamase genes, particularly blaOXA-10, for the first time in P. aeruginosa from young broiler chicks and dead in-shell chicks in Egypt pose a risk not only to the poultry industry but also to public health.
Collapse
Affiliation(s)
- Mona Salem
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Gamal Younis
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa Sadat
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nehal Ahmed Talaat Nouh
- Program Medicine, Department of Microbiology, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
- Inpatient Pharmacy, Mansoura University Hospitals, Mansoura, 35516, Egypt
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Elqaliobiya, Egypt
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Amal Awad
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
29
|
Yano H, Suzuki M, Nonaka L. Mobile class A β-lactamase gene bla GMA-1. Microbiol Spectr 2024; 12:e0258923. [PMID: 38078722 PMCID: PMC10782965 DOI: 10.1128/spectrum.02589-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/12/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Despite increasing reports, class A β-lactamases of environmental bacteria remain very poorly characterized, with limited understanding of their transmission patterns. To address this knowledge gap, we focused on a recently designated GMA family β-lactamase gene, bla GMA-1, found in marine bacterial genera such as Vibrio. This study shows that gammaproteobacterial mobile class A β-lactamase is specialized for penicillin degradation, and bla GMA-1 is frequently linked to strand-biased circularizing integrative elements (SEs) in sequences in the RefSeq/GenBank database. Evidence for the implication of SEs in β-lactamase environmental transmission provides insights for future surveillance studies of antimicrobial resistance genes in human clinical settings.
Collapse
Affiliation(s)
- Hirokazu Yano
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Lisa Nonaka
- Faculty of Human Life Sciences, Shokei University, Kumamoto, Japan
| |
Collapse
|
30
|
Sodagari HR, Agrawal I, Yudhanto S, Varga C. Longitudinal analysis of differences and similarities in antimicrobial resistance among commensal Escherichia coli isolated from market swine and sows at slaughter in the United States of America, 2013-2019. Int J Food Microbiol 2023; 407:110388. [PMID: 37699314 DOI: 10.1016/j.ijfoodmicro.2023.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/14/2023]
Abstract
The emergence of antimicrobial resistance in swine enteric bacteria poses a significant public health challenge. Our study evaluated publicly available data collected by the National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS) between 2013 and 2019 at slaughter plants across the United States of America, focusing on commensal E. coli isolated from swine cecal contents originating from two distinct swine production systems: market hogs (n = 2090) and sows (n = 1147). In both production types, the highest pairwise correlations were detected among β-lactam antimicrobials, including resistance to amoxicillin-clavulanic acid, ceftriaxone, and cefoxitin, suggesting a co-selection for resistance. Compared to 2013, an increase in the rate of E. coli isolates that were resistant to β-lactam antimicrobials was higher in 2017, 2018, and 2019, and this increase was more pronounced in isolates obtained from market hogs. Differences in antimicrobial resistance between these two distinct swine production systems warrant production-type focused mitigation efforts.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Isha Agrawal
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Setyo Yudhanto
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA.
| |
Collapse
|
31
|
Arrigoni R, Ballini A, Santacroce L, Palese LL. The Dynamics of OXA-23 β-Lactamase from Acinetobacter baumannii. Int J Mol Sci 2023; 24:17527. [PMID: 38139363 PMCID: PMC10743560 DOI: 10.3390/ijms242417527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotic resistance is a pressing topic, which also affects β-lactam antibiotic molecules. Until a few years ago, it was considered no more than an interesting species from an academic point of view, Acinetobacter baumanii is today one of the most serious threats to public health, so much so that it has been declared one of the species for which the search for new antibiotics, or new ways to avoid its resistance, is an absolute priority according to WHO. Although there are several molecular mechanisms that are responsible for the extreme resistance of A. baumanii to antibiotics, a class D β-lactamase is the main cause for the clinical concern of this bacterial species. In this work, we analyzed the A. baumanii OXA-23 protein via molecular dynamics. The results obtained show that this protein is able to assume different conformations, especially in some regions around the active site. Part of the OXA-23 protein has considerable conformational motility, while the rest is less mobile. The importance of these observations for understanding the functioning mechanism of the enzyme as well as for designing new effective molecules for the treatment of A. baumanii is discussed.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy;
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine (DIM), University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Luigi Leonardo Palese
- Department of Translational Biomedicine and Neurosciences—(DiBraiN), University of Bari ‘Aldo Moro’, 70124 Bari, Italy
| |
Collapse
|
32
|
Nafaee ZH, Egyed V, Jancsó A, Tóth A, Gerami AM, Dang TT, Heiniger‐Schell J, Hemmingsen L, Hunyadi‐Gulyás É, Peintler G, Gyurcsik B. Revisiting the hydrolysis of ampicillin catalyzed by Temoneira-1 β-lactamase, and the effect of Ni(II), Cd(II) and Hg(II). Protein Sci 2023; 32:e4809. [PMID: 37853808 PMCID: PMC10661098 DOI: 10.1002/pro.4809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
β-Lactamases grant resistance to bacteria against β-lactam antibiotics. The active center of TEM-1 β-lactamase accommodates a Ser-Xaa-Xaa-Lys motif. TEM-1 β-lactamase is not a metalloenzyme but it possesses several putative metal ion binding sites. The sites composed of His residue pairs chelate borderline transition metal ions such as Ni(II). In addition, there are many sulfur-containing donor groups that can coordinate soft metal ions such as Hg(II). Cd(II) may bind to both types of the above listed donor groups. No significant change was observed in the circular dichroism spectra of TEM-1 β-lactamase on increasing the metal ion content of the samples, with the exception of Hg(II) inducing a small change in the secondary structure of the protein. A weak nonspecific binding of Hg(II) was proven by mass spectrometry and 119m Hg perturbed angular correlation spectroscopy. The hydrolytic process of ampicillin catalyzed by TEM-1 β-lactamase was described by the kinetic analysis of the set of full catalytic progress curves, where the slow, yet observable conversion of the primary reaction product into a second one, identified as ampilloic acid by mass spectrometry, needed also to be considered in the applied model. Ni(II) and Cd(II) slightly promoted the catalytic activity of the enzyme while Hg(II) exerted a noticeable inhibitory effect. Hg(II) and Ni(II), applied at 10 μM concentration, inhibited the growth of E. coli BL21(DE3) in M9 minimal medium in the absence of ampicillin, but addition of the antibiotic could neutralize this toxic effect by complexing the metal ions.
Collapse
Affiliation(s)
- Zeyad H. Nafaee
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
- College of PharmacyUniversity of BabylonBabelIraq
| | - Viktória Egyed
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Attila Jancsó
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Annamária Tóth
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Adeleh Mokhles Gerami
- School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran
- European Organization for Nuclear Research (CERN)GenevaSwitzerland
| | - Thanh Thien Dang
- Institute for Materials Science and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Juliana Heiniger‐Schell
- European Organization for Nuclear Research (CERN)GenevaSwitzerland
- Institute for Materials Science and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Lars Hemmingsen
- Department of ChemistryUniversity of CopenhagenCopenhagenDenmark
| | - Éva Hunyadi‐Gulyás
- Laboratory of Proteomics Research, Biological Research CentreHungarian Research Network (HUN‐REN)SzegedHungary
| | - Gábor Peintler
- Department of Physical Chemistry and Material SciencesUniversity of SzegedSzegedHungary
| | - Béla Gyurcsik
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| |
Collapse
|
33
|
Khadka C, Shyaula M, Syangtan G, Bista S, Tuladhar R, Singh A, Joshi DR, Pokhrel LR, Dawadi P. Extended-spectrum β-lactamases producing Enterobacteriaceae (ESBL-PE) prevalence in Nepal: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166164. [PMID: 37572913 DOI: 10.1016/j.scitotenv.2023.166164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
An alarming increase in the occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) has threatened the treatment and management of bacterial infections. This systematic review and meta-analysis aimed to provide a quantitative estimate of the prevalence of ESBL among the members of the Enterobacteriaceae family by analyzing the community-based and clinical studies published between 2011 and 2021 from Nepal and determine if ESBL-PE correlates with multidrug resistance (MDR). The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed for systematic review and meta-analysis and the articles' quality was assessed using the Newcastle-Ottawa scale. Of the 2529 articles screened, 65 articles were systematically reviewed, data extracted, and included in in-depth meta-analysis. The overall pooled prevalence of ESBL-producers in Enterobacteriaceae was 29 % (95 % CI: 26-32 %) with high heterogeneity (I2 = 96 %, p < 0.001). Escherichia coli was the predominant ESBL-producing member of the Enterobacteriaceae family, followed by Citrobacter spp. and Klebsiella spp. The prevalence of ESBL-PE increased from 18.7 % in 2011 to 29.5 % in 2021. A strong positive correlation (r = 0.98) was observed between ESBL production and MDR in Enterobacteriaceae. ESBL-PE isolates showed high resistance to ampicillin, cephalosporins, and amoxicillin-clavulanic acid, and blaCTX-M type was the most reported gene variant among ESBL-PE. In conclusion, this study demonstrated an increased prevalence of ESBL-PE in Nepal over the last decade, and such isolates showed a high level of MDR against the β-lactams and non-β-lactam antibiotics. Tackling the rising antibiotic resistance (AR) and MDR in ESBL-PE would require concerted efforts from all stakeholders to institute effective infection control programs in the community and clinical settings.
Collapse
Affiliation(s)
- Christina Khadka
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Manita Shyaula
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Gopiram Syangtan
- Shi-Gan International College of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Shrijana Bista
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anjana Singh
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Lok R Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Prabin Dawadi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
34
|
Mojica MF, Zeiser ET, Becka SA, LiPuma JJ, Six DA, Moeck G, Papp-Wallace KM. Examining the activity of cefepime-taniborbactam against Burkholderia cepacia complex and Burkholderia gladioli isolated from cystic fibrosis patients in the United States. Antimicrob Agents Chemother 2023; 67:e0049823. [PMID: 37768313 PMCID: PMC10648927 DOI: 10.1128/aac.00498-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
The novel clinical-stage β-lactam-β-lactamase inhibitor combination, cefepime-taniborbactam, demonstrates promising activity toward many Gram-negative bacteria producing class A, B, C, and/or D β-lactamases. We tested this combination against a panel of 150 Burkholderia cepacia complex (Bcc) and Burkholderia gladioli strains. The addition of taniborbactam to cefepime shifted cefepime minimum inhibitory concentrations toward the provisionally susceptible range in 59% of the isolates tested. Therefore, cefepime-taniborbactam possessed similar activity as first-line agents, ceftazidime and trimethoprim-sulfamethoxazole, supporting further development.
Collapse
Affiliation(s)
- Maria F. Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- CASE-VA Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
| | - Elise T. Zeiser
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Scott A. Becka
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | | | - David A. Six
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | - Greg Moeck
- Venatorx Pharmaceuticals, Inc., Malvern, Pennsylvania, USA
| | - Krisztina M. Papp-Wallace
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Husna A, Rahman MM, Badruzzaman ATM, Sikder MH, Islam MR, Rahman MT, Alam J, Ashour HM. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines 2023; 11:2937. [PMID: 38001938 PMCID: PMC10669213 DOI: 10.3390/biomedicines11112937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 11/26/2023] Open
Abstract
The rise of antimicrobial resistance, particularly from extended-spectrum β-lactamase producing Enterobacteriaceae (ESBL-E), poses a significant global health challenge as it frequently causes the failure of empirical antibiotic therapy, leading to morbidity and mortality. The E. coli- and K. pneumoniae-derived CTX-M genotype is one of the major types of ESBL. Mobile genetic elements (MGEs) are involved in spreading ESBL genes among the bacterial population. Due to the rapidly evolving nature of ESBL-E, there is a lack of specific standard examination methods. Carbapenem has been considered the drug of first choice against ESBL-E. However, carbapenem-sparing strategies and alternative treatment options are needed due to the emergence of carbapenem resistance. In South Asian countries, the irrational use of antibiotics might have played a significant role in aggravating the problem of ESBL-induced AMR. Superbugs showing resistance to last-resort antibiotics carbapenem and colistin have been reported in South Asian regions, indicating a future bleak picture if no urgent action is taken. To counteract the crisis, we need rapid diagnostic tools along with efficient treatment options. Detailed studies on ESBL and the implementation of the One Health approach including systematic surveillance across the public and animal health sectors are strongly recommended. This review provides an overview of the background, associated risk factors, transmission, and therapy of ESBL with a focus on the current situation and future threat in the developing countries of the South Asian region and beyond.
Collapse
Affiliation(s)
- Asmaul Husna
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town 350, Miaoli County, Taiwan
| | - Md. Masudur Rahman
- Department of Pathology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - A. T. M. Badruzzaman
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town 350, Miaoli County, Taiwan
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Rafiqul Islam
- Livestock Division, Bangladesh Agricultural Research Council, Farmgate, Dhaka 1215, Bangladesh
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jahangir Alam
- Animal Biotechnology Division, National Institute of Biotechnology, Dhaka 1349, Bangladesh
| | - Hossam M. Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL 33701, USA
| |
Collapse
|
36
|
Del Rio A, Puci M, Muresu N, Sechi I, Saderi L, Cugia L, Sotgiu G, Piana A. Comparison of genotypic and phenotypic antimicrobial profile in carbapenemases producing Klebsiella pneumoniae. ACTA BIO-MEDICA : ATENEI PARMENSIS 2023; 94:e2023201. [PMID: 37850773 PMCID: PMC10644917 DOI: 10.23750/abm.v94i5.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND AND AIM Prompt administration of appropriate antibiotic therapy is crucial in improving outcomes, particularly in cases sustained by multi-drug resistant strains. Although phenotypic antimicrobial susceptibility testing (AST) represents the gold standard to address antibiotics treatment, the long time required to obtained affordable results could negatively affect the prognosis. In contrast, rapid genotypic AST provide essential information for treatment and surveillance program. In order to evaluate the potential adoption of rapid AST in clinical routine, we compared the genotypic and phenotypic antimicrobial profiles of different K.pneumoniae strains, characterized by different expression of carbapenemases-encoding genes. METHODS A set of 109 strains of Cr-Kp were tested for the antimicrobial drugs by the automatized Vitek II system and, in parallel, to the new combination of β-lactams/β-lactamases inhibitors (BL/BLI) by Etest. An antimicrobial resistance index (ARI) was calculated for each strain, assigning each 1 or 0 points based on observed resistance/susceptibility, and dividing the total by the number of antibiotics tested. Kruskal-Wallis test, followed by Dunn's post hoc test (Bonferroni correction), were used to compare quantitative variables among resistance gene subgroups. RESULTS We observed a higher ARI score in KPC/OXA-48 strains, similar profile in KPC alone and KPC/CTX-M groups and a significant lower resistance in no-carbapenemases-producing group. Same trend was observed in AST for BL/BLI. CONCLUSIONS These preliminary results showed a close link between genotypic and phenotypic AST, supporting the adoption of rapid AST in cases of severe infections, ensuring to saving time and providing, the surveillance of MDR strains and improving stewardship programs.
Collapse
|
37
|
Hipólito A, García-Pastor L, Vergara E, Jové T, Escudero JA. Profile and resistance levels of 136 integron resistance genes. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:13. [PMID: 39843947 PMCID: PMC11721406 DOI: 10.1038/s44259-023-00014-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 01/24/2025]
Abstract
Integrons have played a major role in the rise and spread of multidrug resistance in Gram-negative pathogens and are nowadays commonplace among clinical isolates. These platforms capture, stockpile, and modulate the expression of more than 170 antimicrobial resistance cassettes (ARCs) against most clinically-relevant antibiotics. Despite their importance, our knowledge on their profile and resistance levels is patchy, because data is scattered in the literature, often reported in different genetic backgrounds and sometimes extrapolated from sequence similarity alone. Here we have generated a collection of 136 ARCs against 8 antibiotic families and disinfectants. Cassettes are cloned in a vector designed to mimic the genetic environment of a class 1 integron, and transformed in Escherichia coli. We have measured the minimal inhibitory concentration (MIC) to the most relevant molecules from each antibiotic family. With more than 500 MIC values, we provide an exhaustive and comparable quantitation of resistance conferred by ARCs. Our data confirm known resistance trends and profiles while revealing important differences among closely related genes. We have also detected genes that do not confer the expected resistance, to the point of challenging the role of the whole family of qac genes in resistance against disinfectants. Our work provides a detailed characterization of integron resistance genes at-a-glance.
Collapse
Affiliation(s)
- Alberto Hipólito
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía García-Pastor
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Ester Vergara
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Thomas Jové
- INSERM, CHU Limoges, RESINFIT, University of Limoges, Limoges, France
| | - José Antonio Escudero
- Molecular Basis of Adaptation. Departamento de Sanidad Animal. Facultad de Veterinaria de la Universidad Complutense de Madrid, Madrid, Spain.
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
38
|
Ramkisson T, Rip D. Carbapenem resistance in Enterobacterales from agricultural, environmental and clinical origins: South Africa in a global context. AIMS Microbiol 2023; 9:668-691. [PMID: 38173973 PMCID: PMC10758576 DOI: 10.3934/microbiol.2023034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 01/05/2024] Open
Abstract
Carbapenem agents are regarded as last-resort antibiotics, however, bacterial resistance towards carbapenems has been reported in both clinical and agricultural settings worldwide. Carbapenem resistance, defined as the resistance of a bacteria towards one or more carbapenem drugs, can be mediated in either of, or a combination of, three mechanisms-although, the mechanism mediated through the production of carbapenemases (β-lactamases that are able to enzymatically degrade carbapenems) is of most significance. Of particular concern is the occurrence of carbapenemase producing Enterobacterales (CPE), with literature describing a dramatic increase in resistance globally. In South Africa, increases of carbapenemase activity occurring in Enterobacter species, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa have recently been reported. CPE can also be found in agricultural environments, as global studies have documented numerous instances of CPE presence in various animals such as pigs, cattle, seafood, horses and dogs. However, most reports of CPE occurrence in agricultural settings come from Northern America, Europe and some parts of Asia, where more extensive research has been conducted to understand the CPE phenomenon. In comparison to clinical data, there are limited studies investigating the spread of CPE in agricultural settings in Africa, highlighting the importance of monitoring CPE in livestock environments and the food chain. Further research is necessary to uncover the true extent of CPE dissemination in South Africa. This review will discuss the phenomenon of bacterial antibiotic resistance (ABR), the applications of the carbapenem drug and the occurrence of carbapenem resistance globally.
Collapse
Affiliation(s)
- Taish Ramkisson
- Department of Food Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Diane Rip
- Department of Food Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
39
|
Yang J, Zhang K, Ding C, Wang S, Wu W, Liu X. Exploring multidrug-resistant Klebsiella pneumoniae antimicrobial resistance mechanisms through whole genome sequencing analysis. BMC Microbiol 2023; 23:245. [PMID: 37660028 PMCID: PMC10474722 DOI: 10.1186/s12866-023-02974-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Antibiotic-resistant Klebsiella pneumoniae has emerged as a critical public health threat worldwide. Understanding the antimicrobial resistance mechanisms of multidrug-resistant K. pneumoniae (MDR-Kp) and its prevalence in time and space would provide clinical significance for managing pathogen infection. METHODS Eighteen clinical MDR-Kp strains were analyzed by whole genome sequencing (WGS), and the antimicrobial resistance genes and associated resistance mechanisms were compared with results obtained from the conventional microbiological test (CMT). The sequence homology across strains in our study and those previously collected over time from a wide geographical region was assessed by phylogenetic analysis. RESULTS MDR-Kp strains were collected from eighteen patients who had received empirical treatment before strain collection, with sputum (83.3%, 15/18) being the primary source of clinical samples. The commonly received treatments include β-lactamase inhibitors (55.6%, 10/18) and carbapenems (50%, 9/18). Using CMT, we found that all 18 strains were resistant to aztreonam and ciprofloxacin, while 14 (77.8%) showed resistance to carbapenem. Polymyxin B and tigecycline were the only antibiotics to which MDR-Kp strains were sensitive. A total of 42 antimicrobial resistance mechanisms were identified by WGS, surpassing the 40 detected by the conventional method, with 25 mechanisms shared between the two techniques. Despite a 100% accuracy rate of WGS in detecting penicillin-resistant strains, the accuracy in detecting cephalosporin-resistant strains was only at 60%. Among all resistance genes identified by WGS, Klebsiella pneumoniae carbapenemase-2 (KPC-2) was present in all 14 carbapenem-resistant strains. Phenotypic analysis indicated that sequence type (ST) 11 isolates were the primary cause of these MDR-Kp infections. Additionally, phylogenic clustering analysis, encompassing both the clinical and MDR-Kp strains previously reported in China, revealed four distinct subgroups. No significant difference was observed in the sequence homology between K. pneumoniae strains in our study and those previously collected in East China over time. CONCLUSION The application of WGS in identifying potential antimicrobial-resistant genes of MDR-Kp has demonstrated promising clinical significance. Comprehensive genomic information revealed by WGS holds the promise of guiding treatment decisions, enabling surveillance, and serving as a crucial asset in understanding antibiotic resistance.
Collapse
Affiliation(s)
- Jing Yang
- Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kai Zhang
- Clinical Laboratory, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, Daxue Road, Tongshan District, Xuzhou, 221002, Jiangsu, China
| | - Chen Ding
- Xuzhou Central Hospital, Xuzhou, 221009, Jiangsu, China
| | - Song Wang
- Dinfectome Inc, Nanjing, 210000, Jiangsu, China
| | - Weiwei Wu
- Dinfectome Inc, Nanjing, 210000, Jiangsu, China
| | - Xiangqun Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, No. 269, Daxue Road, Tongshan District, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
40
|
Tariq FN, Shafiq M, Khawar N, Habib G, Gul H, Hayat A, Rehman MU, Moussa IM, Mahmoud EA, Elansary HO. The functional repertoire of AmpR in the AmpC β-lactamase high expression and decreasing β-lactam and aminoglycosides resistance in ESBL Citrobacter freundii. Heliyon 2023; 9:e19486. [PMID: 37662790 PMCID: PMC10472055 DOI: 10.1016/j.heliyon.2023.e19486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023] Open
Abstract
Citrobacter freundii is characterized by AmpC β-lactamases that develop resistance to β-lactam antibiotics. The production of extended-spectrum β-lactamase (ESBL) is substantially high in Escherichia coli, C. freundii, Enterobacter cloacae, and Serratia marcescens, but infrequently explored in C. freundii. The present investigation characterized the ESBL C. freundii and delineated the genes involved in decrease in antibiotics resistance. We used the VITEK-2 system and Analytical Profile Index (API) kit to characterize and identify the Citrobacter isolates. The mRNA level of AmpC and AmpR was determined by RT-qPCR, and gel-shift assay was performed to evaluate protein-DNA binding. Here, a total of 26 Citrobacter strains were isolated from COVID-19 patients that showed varying degrees of antibiotic resistance. We examined and characterized the multidrug resistant C. freundii that showed ESBL production. The RT-qPCR analysis revealed that the AmpC mRNA expression is significantly high followed by a high level of AmpR. We sequenced the AmpC and AmpR genes that revealed the AmpR has four novel mutations in comparison to the reference genome namely; Thr64Ile, Arg86Ser, Asp135Val, and Ile183Leu while AmpC remained intact. The ΔAmpR mutant analysis revealed that the AmpR positively regulates oxidative stress response and decreases β-lactam and aminoglycosides resistance. The AmpC and AmpR high expression was associated with resistance to tazobactam, ampicillin, gentamicin, nitrofurantoin, and cephalosporins whereas AmpR deletion reduced β-lactam and aminoglycosides resistance. We conclude that AmpR is a positive regulator of AmpC that stimulates β-lactamases which inactivate multiple antibiotics.
Collapse
Affiliation(s)
- Falak Naz Tariq
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Mehreen Shafiq
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Nadeem Khawar
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, 25000, Pakistan
| | - Gul Habib
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Haji Gul
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Azam Hayat
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Mujaddad Ur Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, 22500, Pakistan
| | - Ihab Mohamed Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Hosam O. Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
41
|
Muthupandian S, Meles HN, Gebregergis MW, Arockiaraj J. Multidrug-resistant extended-spectrum β-lactamase–producing bacteria complicate surgical site infection management as an emerging global threat. INTERNATIONAL JOURNAL OF SURGERY: GLOBAL HEALTH 2023; 6. [DOI: 10.1097/gh9.0000000000000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Affiliation(s)
- Saravanan Muthupandian
- Department of Pharmacology, AMR and Nanotherapeutics Laboratory, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai TN, India
| | - Hadush Negash Meles
- Department of Medical Laboratory Sciences, Unit of Medical Microbiology, College of Medicine and Health Science, Adigrat University, Adigrat, Ethiopia
| | - Miglas Welay Gebregergis
- Department of Midwifery, Unit of Maternity and Reproductive Health Nursing, College of Medicine and Health Science, Adigrat University, Adigrat, Ethiopia
| | - Jesu Arockiaraj
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, TN, India
| |
Collapse
|
42
|
Vázquez-López R, Hernández-Martínez T, Larios-Fernández SI, Piña-Leyva C, Lara-Lozano M, Guerrero-González T, Martínez-Bautista J, Gómez-Conde E, González-Barrios JA. Characterization of Beta-Lactam Resistome of Escherichia coli Causing Nosocomial Infections. Antibiotics (Basel) 2023; 12:1355. [PMID: 37760652 PMCID: PMC10525731 DOI: 10.3390/antibiotics12091355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/29/2023] Open
Abstract
Nosocomial infections caused by Escherichia coli pose significant therapeutic challenges due to the high expression of genes encoding antimicrobial drug resistance. In this study, we investigated the conformation of the beta-lactam resistome responsible for the specific pattern of resistance against beta-lactam antibiotics. A total of 218 Escherichia coli strains were isolated from in-hospital patients diagnosed with nosocomial infections, obtained from various sources such as urine (n = 49, 22.48%), vaginal discharge (n = 46, 21.10%), catheter tips (n = 14, 6.42%), blood (n = 13, 5.96%), feces (n = 12, 5.50%), sputum (n = 11, 5.05%), biopsies (n = 8, 3.67%), cerebrospinal fluid (n = 2, 0.92%) and other unspecified discharges (n = 63, 28.90%). To characterize the beta-lactam resistome, all strains were subjected to antibiotic dilution tests and grown in beta-lactam antibiotics supplemented with Luria culture medium. Subsequently, multiplex PCR and next-generation sequencing were conducted. The results show a multi-drug-resistance phenotype, particularly against beta-lactam drugs. The primary determinant of this resistance was the expression of the blaTEM gene family, with 209 positive strains (95.87%) expressing it as a single gene (n = 47, 21.6%) or in combination with other genes. Common combinations included blaTEM + blaCTX (n = 42, 19.3%), blaTEM + blaCTX + blaSHV (n = 13, 6%) and blaTEM + blaCTX + blaBIL (n = 12, 5.5%), among others. The beta-lactam resistome of nosocomial Escherichia coli strains isolated from inpatients at the "October first" Regional Hospital of ISSSTE was predominantly composed of members of the blaTEM gene family, expressed in various configurations along with different members of other beta-lactamase gene families.
Collapse
Affiliation(s)
- Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud Universidad Anáhuac México Norte, Huixquilucan 52786, Mexico;
| | - Tanya Hernández-Martínez
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico; (T.H.-M.); (S.I.L.-F.); (C.P.-L.); (M.L.-L.); (T.G.-G.)
| | - Selene Ivonne Larios-Fernández
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico; (T.H.-M.); (S.I.L.-F.); (C.P.-L.); (M.L.-L.); (T.G.-G.)
| | - Celia Piña-Leyva
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico; (T.H.-M.); (S.I.L.-F.); (C.P.-L.); (M.L.-L.); (T.G.-G.)
| | - Manuel Lara-Lozano
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico; (T.H.-M.); (S.I.L.-F.); (C.P.-L.); (M.L.-L.); (T.G.-G.)
| | - Tayde Guerrero-González
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico; (T.H.-M.); (S.I.L.-F.); (C.P.-L.); (M.L.-L.); (T.G.-G.)
| | - Javier Martínez-Bautista
- Laboratorio de Microbiología, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico;
| | - Eduardo Gómez-Conde
- Departamento de Inmunobiología, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72420, Mexico;
| | - Juan Antonio González-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre”, ISSSTE, Av. Instituto Politécnico Nacional 1669, Lindavista, Gustavo A. Madero, Ciudad de México 07300, Mexico; (T.H.-M.); (S.I.L.-F.); (C.P.-L.); (M.L.-L.); (T.G.-G.)
| |
Collapse
|
43
|
Silva A, Silva V, López M, Rojo-Bezares B, Carvalho JA, Castro AP, Sáenz Y, Igrejas G, Poeta P. Antimicrobial Resistance, Genetic Lineages, and Biofilm Formation in Pseudomonas aeruginosa Isolated from Human Infections: An Emerging One Health Concern. Antibiotics (Basel) 2023; 12:1248. [PMID: 37627668 PMCID: PMC10451160 DOI: 10.3390/antibiotics12081248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is a leading nosocomial pathogen and has great versatility due to a complex interplay between antimicrobial resistance and virulence factors. PA has also turned into one the most relevant model organisms for the study of biofilm-associated infections. The objective of the study focused on analyzing the antimicrobial susceptibility, resistance genes, virulence factors, and biofilm formation ability of thirty-two isolates of PA. PA isolates were characterized by the following analyses: susceptibility to 12 antimicrobial agents, the presence of resistance genes and virulence factors in PCR assays, and the quantification of biofilm production as evaluated by two distinct assays. Selected PA isolates were analyzed through multilocus sequence typing (MLST). Thirty PA isolates have a multi-resistant phenotype, and most of the isolates showed high levels of resistance to the tested antibiotics. Carbapenems showed the highest prevalence of resistance. Various virulence factors were detected and, for the quantification of biofilm production, the effectiveness of different methods was assessed. The microtiter plate method showed the highest accuracy and reproducibility for detecting biofilm-producing bacteria. MLST revealed four distinct sequence types (STs) in clinical PA, with three of them considered high-risk clones of PA, namely ST175, ST235, and ST244. These clones are associated with multidrug resistance and are prevalent in hospitals worldwide. Overall, the study highlights the high prevalence of antibiotic resistance, the presence of carbapenemase genes, the diversity of virulence factors, and the importance of biofilm formation in PA clinical isolates. Understanding these factors is crucial for effective infection control measures and the development of targeted treatment strategies.
Collapse
Affiliation(s)
- Adriana Silva
- MicroART-Microbiology and Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Portugal
| | - Vanessa Silva
- MicroART-Microbiology and Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Portugal
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Beatriz Rojo-Bezares
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | | | - Ana Paula Castro
- Medical Center of Trás-os-Montes e Alto Douro E.P.E., 5000-508 Vila Real, Portugal
| | - Yolanda Sáenz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), 26006 Logroño, Spain
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Portugal
| | - Patrícia Poeta
- MicroART-Microbiology and Antibiotic Resistance Team, Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
44
|
Zhao J, Zhang Y, Sha Y, Lin N, Zhang G, Lu J, Zhu T, Zhang X, Li Q, Zhang H, Lin X, Li K, Bao Q, Lin L. BlaPSZ-1, a novel AmpC gene identified from a Pantoea isolate. Front Microbiol 2023; 14:1222703. [PMID: 37529328 PMCID: PMC10389763 DOI: 10.3389/fmicb.2023.1222703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 08/03/2023] Open
Abstract
Background Pantoea species of the family Erwiniaceae are well-known plant pathogens and animal and human conditional pathogens. Due to the widespread and continuous use of antimicrobials, multidrug-resistant strains continue to emerge, making clinical treatment difficult; therefore, there is an increasing need to clarify the mechanisms of drug resistance. Methods A rabbit anal fecal sample was collected by a swab and the streak plate method was used to isolate single colonies. The standard agar dilution method was used to determine the minimum inhibitory concentrations (MICs) against antimicrobials. The complete genome sequence of the bacterium was obtained using Next-Generation Sequencing platforms. The potential resistance gene was annotated based on the Comprehensive Antibiotic Resistance Database (CARD) and verified by molecular cloning. The β-lactamase PSZ-1 was expressed via the pCold I expression vector and its enzyme kinetic parameters were analyzed. The genetic environment and evolutionary process of the novel resistance gene-related sequences were analyzed by bioinformatic methods. Results The isolate Pantoea endophytica X85 showed some degree of resistance to penicillins as well as cephalosporins. A novel AmpC resistance gene, designated blaPSZ-1 in this research, was identified to be encoded in the plasmid (pPEX85) of P. endophytica X85. BlaPSZ-1 showed resistance to penicillins and several first-, second-and third-generation cephalosporins as well as aztreonam, but it did not show resistance to the fourth-generation cephalosporins or carbapenems tested. Enzyme kinetic assays revealed that it could hydrolyze amoxicillin, penicillin G, cephalothin, and cefazolin, and its hydrolytic activity could be strongly inhibited by the inhibitor avibactam, which was generally consistent with antimicrobial susceptibility testing results. No hydrolytic activity was observed for third-generation cephalosporins or aztreonam. Conclusion In this study, a novel AmpC β-lactamase gene, designated blaPSZ-1, was characterized and it was encoded in the plasmid of the bacterium P. endophytica X85. It shows resistance to penicillins and several cephalosporins. The discovery of novel drug resistance mechanisms can help guide the scientific use of drugs in animal husbandry and clinical practice, effectively avoiding the abuse of antimicrobials and thus preventing the further development and spread of bacterial resistance.
Collapse
Affiliation(s)
- Jingxuan Zhao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuan Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuning Sha
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Naru Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guozhi Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Tingting Zhu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Li Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Wu Y, Huang S, Zhang D, Ji H, Ni Y, Zhang X, Dong J, Li B. Characteristics of Extended-Spectrum β-Lactamase-Producing Escherichia coli Derived from Food and Humans in Northern Xinjiang, China. Foodborne Pathog Dis 2023; 20:270-278. [PMID: 37379472 DOI: 10.1089/fpd.2022.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
This study aimed to investigate the drug resistance, molecular characteristics, and genetic relationship of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from food and human stool samples in northern Xinjiang. From 2015 to 2016, a total of 431 samples (meats and vegetables) were collected from retail markets and supermarkets located in the regions of Urumqi, Shihezi, and Kuitun in Xinjiang, China, and 20 human stool samples from the Shihezi Hospital. The PCR method was used to detect E. coli, and the presence of ESBL-producing E. coli was confirmed using the K-B disk diffusion confirmatory method. The susceptibility to ESBL-producing E. coli was tested by the microdilution broth method, and the minimum inhibitory concentration was determined. PCR was used to detect the resistance and virulence genes of ESBL-producing E. coli, and phylogenetics, plasmid replicon typing, screening of three integrons, and multilocus sequence typing (MLST) were performed. The results showed that 127 E. coli strains (15 human stool and 112 food samples) were isolated. Out of the 127 E. coli strains, 38 strains (6 human stool and 32 food 34 samples) of ESBL-producing E. coli were identified through screening. These 38 strains showed resistance to cefotaxime (94.74%) and cefepime (94.74%), and were sensitive to meropenem (0.00%). The most detected resistance genes were blaTEM (47.37%), and the most detected virulence genes were fimH (97.73%), ompA (97.73%), hlyE (97.73%), and crl (97.37%). The isolates belonged to phylogroups B1 (42.11%), C (23.68%), and A (21.05%). Among the plasmid replicon subtypes, IncFIB was the main type (42.11%). The integrons detected were of the first type (47.37%) and the third type (26.32%). The 38 E. coli strains had 19 different sequence-type (ST) strains. These 38 strains of ESBL-producing E. coli were analyzed using MLST and STs are varied.
Collapse
Affiliation(s)
- Yushuang Wu
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Shudi Huang
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Donglai Zhang
- Department of Chemistry Engineering, Hebei Petroleum Vocational and Technical University, Hebei, China
| | - Hua Ji
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Xueling Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| | - Baokun Li
- School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps School of Food Science and Technology, Shihezi University, Shihezi, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
46
|
Lee HJ, Storesund JE, Lunestad BT, Hoel S, Lerfall J, Jakobsen AN. Whole genome sequence analysis of Aeromonas spp. isolated from ready-to-eat seafood: antimicrobial resistance and virulence factors. Front Microbiol 2023; 14:1175304. [PMID: 37455746 PMCID: PMC10348363 DOI: 10.3389/fmicb.2023.1175304] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Aeromonas are widespread in aquatic environments and are considered emerging pathogens in humans and animals. Multidrug resistant (MDR) Aeromonas circulating in the aquatic environment and food production chain can potentially disseminate antimicrobial resistance (AMR) to humans via the foodborne route. In this study, we aimed to investigate AMR and virulence factors of 22 Aeromonas strains isolated from ready-to-eat (RTE) seafood. A multilocus phylogenetic analysis (MLPA) using the concatenated sequences of six housekeeping genes (gyrB, rpoD, gyrA, recA, dnaJ, and dnaX) in the 22 Aeromonas genomes and average nucleotide identity (ANI) analysis revealed eight different species; A. caviae, A. dhakensis, A. hydrophila, A. media, A. rivipollensis, A. salmonicida, A. bestiarum, and A. piscicola. The presence of virulence genes, AMR genes and mobile genetic elements (MGEs) in the Aeromonas genomes was predicted using different databases. Our data showed that the genes responsible for adherence and motility (Msh type IV pili, tap type IV pili, polar flagella), type II secretion system (T2SS) and hemolysins were present in all strains, while the genes encoding enterotoxins and type VI secretion system (T6SS) including major effectors were highly prevalent. Multiple AMR genes encoding β-lactamases such as cphA and blaOXA were detected, and the distribution of those genes was species-specific. In addition, the quinolone resistance gene, qnrS2 was found in a IncQ type plasmid of the A. rivopollensis strain A539. Furthermore, we observed the co-localization of a class I integron (intl1) with two AMR genes (sul1 and aadA1), and a Tn521 transposon carrying a mercury operon in A. caviae strain SU4-2. Various MGEs including other transposons and insertion sequence (IS) elements were identified without strongly associating with detected AMR genes or virulence genes. In conclusion, Aeromonas strains in RTE seafood were potentially pathogenic, carrying several virulence-related genes. Aeromonas carrying multiple AMR genes and MGEs could potentially be involved in the dissemination and spread of AMR genes to other bacterial species residing in the same environment and possibly to humans. Considering a One-Health approach, we highlight the significance of monitoring AMR caused by Aeromonas circulating in the food chain.
Collapse
Affiliation(s)
- Hye-Jeong Lee
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Julia E. Storesund
- Section for Contaminants and Biohazards, Institute of Marine Research, Bergen, Norway
| | - Bjørn-Tore Lunestad
- Section for Contaminants and Biohazards, Institute of Marine Research, Bergen, Norway
| | - Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
47
|
Shao J, Dai H, Xu L, Zhu S, Zhu J, Fu H, Ge M, He X. Genomic Characteristics of Extended Spectrum β-Lactamase Producing Escherichia coli Isolates Recovered from a District Hospital in China. Infect Drug Resist 2023; 16:3589-3600. [PMID: 37309377 PMCID: PMC10257927 DOI: 10.2147/idr.s415373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Purpose The isolation rate of extended spectrum β-lactamase (ESBL)-producing Escherichia coli is increasing, posing a challenge to clinical anti-infective therapy. This study aims to provide new insight into the genomic characteristics and antimicrobial resistance mechanisms of extended spectrum β-lactamase producing E. coli isolates recovered from a district hospital in China. Methods A total of 36 ESBL-producing E. coli isolates were collected from body fluid samples from a Chinese district hospital. All isolates were subjected to whole genome sequencing to identify their antimicrobial resistance genes, virulence genes, serotypes, sequence types, and phylogenetic relationships by BacWGSTdb 2.0 webserver. Results Among these isolates, all were resistant to cefazolin, cefotaxime, ceftriaxone, ampicillin, 24 (66.7%) were resistant to aztreonam, 16 (44.4%) were resistant to cefepime, and 15 were resistant (41.7%) to ceftazidime. The blaCTX-M gene was detected in all ESBL-producing E. coli isolates. Two isolates carrying two different types of blaCTX-M genes simultaneously. The carbapenem resistance gene blaKPC-2 was detected in one (2.8%) isolate. A total of 17 sequence types (STs) were found, with ST131 accounting for the majority (n =13; 36.1%). The most common serotype was O16:H5 associated with seven ST131 strains, followed by O25:H4/ST131 (n = 5) and O75:H5/ST1193 (n = 5). Evaluation of clonal relatedness revealed that all blaCTX-M gene-carrying E. coli had a difference of SNPs range from 7 to 79,198, which could be divided into four clusters. Only 7 SNPs could be found between EC266 and EC622, indicating that they are variants of the same clonal lineage. Conclusion This study investigated the genomic characteristics of ESBL-producing E. coli isolates recovered from a district hospital in China. Continuous surveillance of ESBL-producing E. coli infections is imperative to create efficient strategies for controlling the transmission of these multi-drug resistant bacteria in clinical and community settings.
Collapse
Affiliation(s)
- Jiayu Shao
- Department of Clinical Laboratory, the Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Hangdong Dai
- Department of Clinical Laboratory, the Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Liwei Xu
- Department of Clinical Laboratory, the Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Shuilong Zhu
- Department of Clinical Laboratory, the Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Jufang Zhu
- Department of Clinical Laboratory, the Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Hangyu Fu
- Department of Clinical Laboratory, the Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Minxia Ge
- Department of Clinical Laboratory, the Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| | - Xianhong He
- Department of Clinical Laboratory, the Third People’s Hospital of Xiaoshan, Hangzhou, People’s Republic of China
| |
Collapse
|
48
|
Salem GA, Abdelaziz ESA, Kamel MA, Rhouma NR, Ali RI. Prevalence of multidrug-resistant and extended-spectrum β-lactamase-producing Escherichia coli from chicken farms in Egypt. Vet World 2023; 16:1001-1007. [PMID: 37576762 PMCID: PMC10420707 DOI: 10.14202/vetworld.2023.1001-1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/03/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains exhibit antibiotic resistance and are known to infect humans worldwide. This study assessed the phenotypic and genotypic prevalence of ESBL-resistant E. coli isolates recovered from the respiratory tracts of chickens in El-Sharkia Governorate, Egypt. Materials and Methods We obtained 250 lung samples (one lung/bird) from 50 chicken farms (5 chickens/farm) to isolate, identify, and serotype E. coli. Antimicrobial resistance susceptibility was determined using the disk diffusion method, while the ESBL phenotype was identified using double disk synergy. We detected the β-lactamase genes, blaTEM, and blaSHV, using a polymerase chain reaction. Results The results showed that 140/250 (56%) were infected with E. coli. All the serogroups of isolated E. coli exhibited high multi-antimicrobial resistance index values (>0.2), and 65.7% were confirmed to have ESBL. Among the isolates with the ESBL phenotypes, 55 (60%) and 32 (35%) contained the blaTEM and blaSHV genes, respectively. Conclusion The widespread distribution of multidrug-resistant and ESBL-producing E. coli among poultry farms is a significant human health hazard. These results will help the Egyptian authorities to implement a national one-health approach to combat the antimicrobial resistance problem.
Collapse
Affiliation(s)
- Gamal A. Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - El-Sayed A. Abdelaziz
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohammed A. Kamel
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Nasreddin R. Rhouma
- Department of Microbiology, Faculty of Science, Misurata University, Misurata 2478, Libya
| | - Reem I. Ali
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
49
|
Sodagari HR, Varga C. Evaluating Antimicrobial Resistance Trends in Commensal Escherichia coli Isolated from Cecal Samples of Swine at Slaughter in the United States, 2013-2019. Microorganisms 2023; 11:microorganisms11041033. [PMID: 37110456 PMCID: PMC10142105 DOI: 10.3390/microorganisms11041033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) in commensal and pathogenic enteric bacteria of swine is a public health threat. This study evaluated publicly available AMR surveillance data collected by the National Antimicrobial Resistance Monitoring System (NARMS) by assessing AMR patterns and temporal trends in commensal E. coli isolated from cecal samples of swine at slaughter across the United States. We applied the Mann-Kendall test (MKT) and a linear regression trend line to detect significant trends in the proportion of resistant isolates to individual antimicrobials over the study period. A Poisson regression model assessed differences among years in the number of antimicrobials to which an E. coli isolate was resistant. Among the 3237 E. coli isolates, a very high prevalence of resistance for tetracycline (67.62%), and high resistance for streptomycin (24.13%), and ampicillin (21.10%) were identified. The MKT and the linear trend line showed a significantly increasing temporal trend for amoxicillin-clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftriaxone, and trimethoprim-sulfamethoxazole. Compared to 2013 the number of antimicrobials to which an E. coli isolate was resistant was significantly higher in the years 2017, 2018, and 2019. The increasing temporal trend of resistance to important antimicrobials for human medicine (e.g., third-generation cephalosporins) and the increase in multidrug resistance in the later years of the study are concerning and should be followed up by studies to identify sources and risk factors for the selection of AMR.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
50
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|