1
|
Lidsky PV, Yuan J, Lashkevich KA, Dmitriev SE, Andino R. Monitoring integrated stress response in live Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548942. [PMID: 37502856 PMCID: PMC10369977 DOI: 10.1101/2023.07.13.548942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/29/2023]
Abstract
Cells exhibit stress responses to various environmental changes. Among these responses, the integrated stress response (ISR) plays a pivotal role as a crucial stress signaling pathway. While extensive ISR research has been conducted on cultured cells, our understanding of its implications in multicellular organisms remains limited, largely due to the constraints of current techniques that hinder our ability to track and manipulate the ISR in vivo. To overcome these limitations, we have successfully developed an internal ribosome entry site (IRES)-based fluorescent reporter system. This innovative reporter enables us to label Drosophila cells, within the context of a living organism, that exhibit eIF2 phosphorylation-dependent translational shutoff - a characteristic feature of the ISR and viral infections. Through this methodology, we have unveiled tissue- and cell-specific regulation of stress response in Drosophila flies and have even been able to detect stressed tissues in vivo during virus and bacterial infections. To further validate the specificity of our reporter, we have engineered ISR-null eIF2αS50A mutant flies for stress response analysis. Our results shed light on the tremendous potential of this technique for investigating a broad range of developmental, stress, and infection-related experimental conditions. Combining the reporter tool with ISR-null mutants establishes Drosophila as an exceptionally powerful model for studying the ISR in the context of multicellular organisms.
Collapse
Affiliation(s)
- Peter V Lidsky
- University of California San Francisco, San Francisco, CA, 94158
| | - Jing Yuan
- University of California San Francisco, San Francisco, CA, 94158
| | - Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - Raul Andino
- University of California San Francisco, San Francisco, CA, 94158
| |
Collapse
|
2
|
Fluorescence resonance energy transfer in revealing protein-protein interactions in living cells. Emerg Top Life Sci 2021; 5:49-59. [PMID: 33856021 DOI: 10.1042/etls20200337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
Genes are expressed to proteins for a wide variety of fundamental biological processes at the cellular and organismal levels. However, a protein rarely functions alone, but rather acts through interactions with other proteins to maintain normal cellular and organismal functions. Therefore, it is important to analyze the protein-protein interactions to determine functional mechanisms of proteins, which can also guide to develop therapeutic targets for treatment of diseases caused by altered protein-protein interactions leading to cellular/organismal dysfunctions. There is a large number of methodologies to study protein interactions in vitro, in vivo and in silico, which led to the development of many protein interaction databases, and thus, have enriched our knowledge about protein-protein interactions and functions. However, many of these interactions were identified in vitro, but need to be verified/validated in living cells. Furthermore, it is unclear whether these interactions are direct or mediated via other proteins. Moreover, these interactions are representative of cell- and time-average, but not a single cell in real time. Therefore, it is crucial to detect direct protein-protein interactions in a single cell during biological processes in vivo, towards understanding the functional mechanisms of proteins in living cells. Importantly, a fluorescence resonance energy transfer (FRET)-based methodology has emerged as a powerful technique to decipher direct protein-protein interactions at a single cell resolution in living cells, which is briefly described in a limited available space in this mini-review.
Collapse
|
3
|
Khanna M, Gautam A, Rajput R, Sharma L. Natural Products as a Paradigm for the Treatment of Coxsackievirus - induced Myocarditis. Curr Top Med Chem 2020; 20:607-616. [PMID: 31995007 DOI: 10.2174/1568026620666200129094516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Coxsackievirus B3 (CVB3), a member of the Picornaviridae family, is considered to be one of the most important infectious agents to cause virus-induced myocarditis. Despite improvements in studying viral pathology, structure and molecular biology, as well as diagnosis of this disease, there is still no virus-specific drug in clinical use. Structural and nonstructural proteins produced during the coxsackievirus life cycle have been identified as potential targets for blocking viral replication at the step of attachment, entry, uncoating, RNA and protein synthesis by synthetic or natural compounds. Moreover, WIN (for Winthrop) compounds and application of nucleic-acid based strategies were shown to target viral capsid, entry and viral proteases, but have not reached to the clinical trials as a successful antiviral agent. There is an urgent need for diverse molecular libraries for phenotype-selective and high-throughput screening.
Collapse
Affiliation(s)
- Madhu Khanna
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi-110007, India
| | - Anju Gautam
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi-110007, India
| | - Roopali Rajput
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi-110007, India
| | - Latika Sharma
- Department of Microbiology (Virology Unit), Vallabhbhai Patel Chest Institute, University of Delhi, Delhi-110007, India
| |
Collapse
|
4
|
Dolskiy AA, Grishchenko IV, Yudkin DV. Cell Cultures for Virology: Usability, Advantages, and Prospects. Int J Mol Sci 2020; 21:ijms21217978. [PMID: 33121109 PMCID: PMC7662242 DOI: 10.3390/ijms21217978] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
Virus detection in natural and clinical samples is a complicated problem in research and diagnostics. There are different approaches for virus isolation and identification, including PCR, CRISPR/Cas technology, NGS, immunoassays, and cell-based assays. Following the development of genetic engineering methods, approaches that utilize cell cultures have become useful and informative. Molecular biology methods allow increases in the sensitivity and specificity of cell cultures for certain viruses and can be used to generate reporter cell lines. These cell lines express specific reporter proteins (e.g., GFP, luciferase, and CAT) in response to virus infection that can be detected in a laboratory setting. The development of genome editing and synthetic biology methods has given rise to new perspectives regarding the design of virus reporter systems in cell cultures. This review is aimed at describing both virology methods in general and examples of the development of cell-based methods that exist today.
Collapse
|
5
|
Karunanayake Mudiyanselage APKK, Wu R, Leon-Duque MA, Ren K, You M. "Second-generation" fluorogenic RNA-based sensors. Methods 2019; 161:24-34. [PMID: 30660865 PMCID: PMC6589113 DOI: 10.1016/j.ymeth.2019.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 02/07/2023] Open
Abstract
A fluorogenic aptamer can specifically interact with a fluorophore to activate its fluorescence. These nucleic acid-based fluorogenic modules have been dramatically developed over the past decade, and have been used as versatile reporters in the sensor development and for intracellular imaging. In this review, we summarize the design principles, applications, and challenges of the first-generation fluorogenic RNA-based sensors. Moreover, we discuss some strategies to develop next-generation biosensors with improved sensitivity, selectivity, quantification property, and eukaryotic robustness. Using genetically encoded catalytic hairpin assembly strategy as an example, we further introduce a standard protocol to design, characterize, and apply these fluorogenic RNA-based sensors for in vitro detection and cellular imaging of target biomolecules. By incorporating natural RNA machineries, nucleic acid nanotechnology, and systematic evolution approaches, next-generation fluorogenic RNA-based devices can be potentially engineered to be widely applied in cell biology and biomedicine.
Collapse
Affiliation(s)
| | - Rigumula Wu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Mark A Leon-Duque
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Kewei Ren
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
6
|
|
7
|
Zherdeva V, Kazachkina NI, Shcheslavskiy V, Savitsky AP. Long-term fluorescence lifetime imaging of a genetically encoded sensor for caspase-3 activity in mouse tumor xenografts. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 29500873 DOI: 10.1117/1.jbo.23.3.035002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/25/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Caspase-3 is known for its role in apoptosis and programmed cell death regulation. We detected caspase-3 activation in vivo in tumor xenografts via shift of mean fluorescence lifetimes of a caspase-3 sensor. We used the genetically encoded sensor TR23K based on the red fluorescent protein TagRFP and chromoprotein KFP linked by 23 amino acid residues (TagRFP-23-KFP) containing a specific caspase cleavage DEVD motif to monitor the activity of caspase-3 in tumor xenografts by means of fluorescence lifetime imaging-Forster resonance energy transfer. Apoptosis was induced by injection of paclitaxel for A549 lung adenocarcinoma and etoposide and cisplatin for HEp-2 pharynx adenocarcinoma. We observed a shift in lifetime distribution from 1.6 to 1.9 ns to 2.1 to 2.4 ns, which indicated the activation of caspase-3. Even within the same tumor, the lifetime varied presumably due to the tumor heterogeneity and the different depth of tumor invasion. Thus, processing time-resolved fluorescence images allows detection of both the cleaved and noncleaved states of the TR23K sensor in real-time mode during the course of several weeks noninvasively. This approach can be used in drug screening, facilitating the development of new anticancer agents as well as improvement of chemotherapy efficiency and its adaptation for personal treatment.
Collapse
Affiliation(s)
- Victoria Zherdeva
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry,, Russia
| | - Natalia I Kazachkina
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry,, Russia
| | | | - Alexander P Savitsky
- Research Center of Biotechnology of the Russian Academy of Sciences, Bach Institute of Biochemistry,, Russia
| |
Collapse
|
8
|
Goryashchenko AS, Khrenova MG, Savitsky AP. Detection of protease activity by fluorescent protein FRET sensors: from computer simulation to live cells. Methods Appl Fluoresc 2018; 6:022001. [DOI: 10.1088/2050-6120/aa9e47] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
|
9
|
Kainulainen MH, Nichol ST, Albariño CG, Spiropoulou CF. Rapid Determination of Ebolavirus Infectivity in Clinical Samples Using a Novel Reporter Cell Line. J Infect Dis 2017; 216:1380-1385. [PMID: 29029133 DOI: 10.1093/infdis/jix486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2017] [Accepted: 09/18/2017] [Indexed: 11/12/2022] Open
Abstract
Modern ebolavirus diagnostics rely primarily on quantitative reverse transcription-polymerase chain reaction (qRT-PCR), a sensitive method to detect viral genetic material in the acute phase of the disease. However, qRT-PCR does not confirm presence of infectious virus, presenting limitations in patient and outbreak management. Attempts to isolate infectious virus rely on in vivo or basic cell culture approaches, which prohibit rapid results and screening. In this study, we present a novel reporter cell line capable of detecting live ebolaviruses. These cells permit sensitive, large-scale screening and titration of infectious virus in experimental and clinical samples, independent of ebolavirus species and variant.
Collapse
Affiliation(s)
- Markus H Kainulainen
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - César G Albariño
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
10
|
Ekström JO, Hultmark D. A Novel Strategy for Live Detection of Viral Infection in Drosophila melanogaster. Sci Rep 2016; 6:26250. [PMID: 27189868 PMCID: PMC4870574 DOI: 10.1038/srep26250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2016] [Accepted: 04/29/2016] [Indexed: 02/07/2023] Open
Abstract
We have created a transgenic reporter for virus infection, and used it to study Nora virus infection in Drosophila melanogaster. The transgenic construct, Munin, expresses the yeast transcription factor Gal4, tethered to a transmembrane anchor via a linker that can be cleaved by a viral protease. In infected cells, liberated Gal4 will then transcribe any gene that is linked to a promoter with a UAS motif, the target for Gal4 transcription. For instance, infected cells will glow red in the offspring of a cross between the Munin stock and flies with a UAS-RFP(nls) transgene (expressing a red fluorescent protein). In such flies we show that after natural infection, via the faecal-oral route, 5-15% of the midgut cells are infected, but there is little if any infection elsewhere. By contrast, we can detect infection in many other tissues after injection of virus into the body cavity. The same principle could be applied for other viruses and it could also be used to express or suppress any gene of interest in infected cells.
Collapse
Affiliation(s)
- Jens-Ola Ekström
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
- BioMediTech, FI-33014 University of Tampere, Finland
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
- BioMediTech, FI-33014 University of Tampere, Finland
| |
Collapse
|
11
|
Emmott E, Sweeney TR, Goodfellow I. A Cell-based Fluorescence Resonance Energy Transfer (FRET) Sensor Reveals Inter- and Intragenogroup Variations in Norovirus Protease Activity and Polyprotein Cleavage. J Biol Chem 2015; 290:27841-53. [PMID: 26363064 PMCID: PMC4646915 DOI: 10.1074/jbc.m115.688234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2015] [Indexed: 12/22/2022] Open
Abstract
The viral protease represents a key drug target for the development of antiviral therapeutics. Because many protease inhibitors mimic protease substrates, differences in substrate recognition between proteases may affect their sensitivity to a given inhibitor. Here we use a cell-based FRET sensor to investigate the activity of different norovirus proteases upon cleavage of various norovirus cleavage sites inserted into a linker region separating cyan fluorescent protein and yellow fluorescent protein. Using this system, we demonstrate that differences in substrate processing exist between proteases from human noroviruses (genogroups I (GI) and II) and the commonly used murine norovirus (MNV, genogroup V) model. These altered the cleavage efficiency of specific cleavage sites both within and between genogroups. The differences observed between these proteases may affect sensitivity to protease inhibitors and the suitability of MNV as a model system for testing such molecules against the human norovirus protease. Finally, we demonstrate that replacement of MNV polyprotein cleavage sites with the GI or GII equivalents, with the exception of the NS6–7 junction, leads to the production of infectious virus when the MNV NS6 protease, but not the GI or GII proteases, are present.
Collapse
Affiliation(s)
- Edward Emmott
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Trevor R Sweeney
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Ian Goodfellow
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| |
Collapse
|
12
|
Shang L, Zhang S, Yang X, Sun J, Li L, Cui Z, He Q, Guo Y, Sun Y, Yin Z. Biochemical characterization of recombinant Enterovirus 71 3C protease with fluorogenic model peptide substrates and development of a biochemical assay. Antimicrob Agents Chemother 2015; 59:1827-36. [PMID: 25421478 PMCID: PMC4356770 DOI: 10.1128/aac.04698-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2014] [Accepted: 11/17/2014] [Indexed: 02/08/2023] Open
Abstract
Enterovirus 71 (EV71), a primary pathogen of hand, foot, and mouth disease (HFMD), affects primarily infants and children. Currently, there are no effective drugs against HFMD. EV71 3C protease performs multiple tasks in the viral replication, which makes it an ideal antiviral target. We synthesized a small set of fluorogenic model peptides derived from cleavage sites of EV71 polyprotein and examined their efficiencies of cleavage by EV71 3C protease. The novel peptide P08 [(2-(N-methylamino)benzoyl) (NMA)-IEALFQGPPK(DNP)FR] was determined to be the most efficiently cleaved by EV71 3C protease, with a kinetic constant kcat/Km of 11.8 ± 0.82 mM(-1) min(-1). Compared with literature reports, P08 gave significant improvement in the signal/background ratio, which makes it an attractive substrate for assay development. A Molecular dynamics simulation study elaborated the interactions between substrate P08 and EV71 3C protease. Arg39, which is located at the bottom of the S2 pocket of EV71 3C protease, may participate in the proteolysis process of substrates. With an aim to evaluate EV71 3C protease inhibitors, a reliable and robust biochemical assay with a Z' factor of 0.87 ± 0.05 was developed. A novel compound (compound 3) (50% inhibitory concentration [IC50] = 1.89 ± 0.25 μM) was discovered using this assay, which effectively suppressed the proliferation of EV 71 (strain Fuyang) in rhabdomyosarcoma (RD) cells with a highly selective index (50% effective concentration [EC50] = 4.54 ± 0.51 μM; 50% cytotoxic concentration [CC50] > 100 μM). This fast and efficient assay for lead discovery and optimization provides an ideal platform for anti-EV71 drug development targeting 3C protease.
Collapse
Affiliation(s)
- Luqing Shang
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, People's Republic of China Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China
| | - Shumei Zhang
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, People's Republic of China Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China
| | - Xi Yang
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, People's Republic of China Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China
| | - Jixue Sun
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, People's Republic of China
| | - Linfeng Li
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, People's Republic of China Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China
| | - Zhengjie Cui
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, People's Republic of China Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China
| | - Qiuhong He
- High-Throughput Molecular Drug Discovery Center, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, People's Republic of China
| | - Yu Guo
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, People's Republic of China
| | - Yuna Sun
- National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Science, Beijing, People's Republic of China
| | - Zheng Yin
- College of Pharmacy & State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, People's Republic of China Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People's Republic of China
| |
Collapse
|
13
|
Blackstock D, Sun Q, Chen W. Fluorescent protein-based molecular beacons by zinc finger protein-guided assembly. Biotechnol Bioeng 2014; 112:236-41. [DOI: 10.1002/bit.25441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2014] [Revised: 07/30/2014] [Accepted: 08/18/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Daniel Blackstock
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Qing Sun
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark Delaware 19716
| |
Collapse
|
14
|
Wang J, Su H, Zhang T, Du J, Cui S, Yang F, Jin Q. Inhibition of Enterovirus 71 replication by 7-hydroxyflavone and diisopropyl-flavon7-yl Phosphate. PLoS One 2014; 9:e92565. [PMID: 24664133 PMCID: PMC3963929 DOI: 10.1371/journal.pone.0092565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2013] [Accepted: 02/25/2014] [Indexed: 11/24/2022] Open
Abstract
Enterovirus 71 (EV71) is the major causative agent of hand, foot, and mouth disease, which has been continuously prevalent in Asia in recent years. In children, severe cases can lead to death, and no prophylactic or therapeutic measures against EV71 infection are available. The 3C proteases of EV71 play an important role in viral replication and are an ideal drug target. In previous work, we resolved the crystal structure for EV71 3Cpro. In this report, we took advantage of the automated docking program AutoDock 4.0 to simulate EV71 3Cpro-ligand conformation. 7-hydroxyflavone (HF) and its phosphate ester(FIP) were predicted to bind with EV71 3Cpro.In an in vitro protease inhibition assay, FIP inhibited EV71 3Cpro protease activity. Both flavones were highly active against EV71, protecting cells from EV71 infection. Replication of viral RNA and formation of EV71 plaque were all strongly inhibited in cells. These results indicated that HF and FIP may serve as potential protective agents in the treatment of patients with chronic EV71 infection.
Collapse
Affiliation(s)
- Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Haoxiang Su
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ting Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fan Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
15
|
Wang J, Zhang T, Du J, Cui S, Yang F, Jin Q. Anti-enterovirus 71 effects of chrysin and its phosphate ester. PLoS One 2014; 9:e89668. [PMID: 24598537 PMCID: PMC3943725 DOI: 10.1371/journal.pone.0089668] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2013] [Accepted: 01/21/2014] [Indexed: 12/14/2022] Open
Abstract
Enterovirus 71 (EV71) can cause severe disease and even lead to death in children, and an effective antiviral drug is currently unavailable. The anti-EV71 effect of chrysin (5,7-dihydroxyflavone), a natural flavonoid commonly found in many plants, was tested in this report. By using the predicting program Autodock 4.0 and an in vitro protease inhibition assay, we found that chrysin could suppress viral 3Cpro activity. Replication of viral RNA and production of viral capsid protein and the infectious virion were strongly inhibited by chrysin, without noticeable cytotoxicity. Cytopathic effects on cells were also prevented. Diisopropyl chrysin-7-yl phosphate (CPI), the phosphate ester for chrysin, was generated through a simplified Atheron-Todd reaction to achieve stronger anti-viral activity. CPI was also able to bind with and inhibit viral 3Cpro activity in vitro. As expected, CPI demonstrated more potent antiviral activity against EV71.
Collapse
Affiliation(s)
- Jianmin Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ting Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jiang Du
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fan Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
16
|
Blackstock D, Park M, Sun Q, Tsai SL, Chen W. Engineering protein modules for diagnostic applications. Curr Opin Chem Eng 2013. [DOI: 10.1016/j.coche.2013.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
17
|
Abstract
Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
18
|
Lee-Montiel FT, Reynolds KA, Riley MR. Detection and quantification of poliovirus infection using FTIR spectroscopy and cell culture. J Biol Eng 2011; 5:16. [PMID: 22142483 PMCID: PMC3260089 DOI: 10.1186/1754-1611-5-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2011] [Accepted: 12/05/2011] [Indexed: 11/15/2022] Open
Abstract
Background In a globalized word, prevention of infectious diseases is a major challenge. Rapid detection of viable virus particles in water and other environmental samples is essential to public health risk assessment, homeland security and environmental protection. Current virus detection methods, especially assessing viral infectivity, are complex and time-consuming, making point-of-care detection a challenge. Faster, more sensitive, highly specific methods are needed to quantify potentially hazardous viral pathogens and to determine if suspected materials contain viable viral particles. Fourier transform infrared (FTIR) spectroscopy combined with cellular-based sensing, may offer a precise way to detect specific viruses. This approach utilizes infrared light to monitor changes in molecular components of cells by tracking changes in absorbance patterns produced following virus infection. In this work poliovirus (PV1) was used to evaluate the utility of FTIR spectroscopy with cell culture for rapid detection of infective virus particles. Results Buffalo green monkey kidney (BGMK) cells infected with different virus titers were studied at 1 - 12 hours post-infection (h.p.i.). A partial least squares (PLS) regression method was used to analyze and model cellular responses to different infection titers and times post-infection. The model performs best at 8 h.p.i., resulting in an estimated root mean square error of cross validation (RMSECV) of 17 plaque forming units (PFU)/ml when using low titers of infection of 10 and 100 PFU/ml. Higher titers, from 103 to 106 PFU/ml, could also be reliably detected. Conclusions This approach to poliovirus detection and quantification using FTIR spectroscopy and cell culture could potentially be extended to compare biochemical cell responses to infection with different viruses. This virus detection method could feasibly be adapted to an automated scheme for use in areas such as water safety monitoring and medical diagnostics.
Collapse
Affiliation(s)
- Felipe T Lee-Montiel
- Agricultural and Biosystems Engineering, University of Arizona, Tucson, Arizona, USA 85721.
| | | | | |
Collapse
|
19
|
Hamza IA, Jurzik L, Überla K, Wilhelm M. Methods to detect infectious human enteric viruses in environmental water samples. Int J Hyg Environ Health 2011; 214:424-36. [PMID: 21920815 PMCID: PMC7106513 DOI: 10.1016/j.ijheh.2011.07.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2011] [Revised: 07/24/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023]
Abstract
Currently, a wide range of analytical methods is available for virus detection in environmental water samples. Molecular methods such as polymerase chain reaction (PCR) and quantitative real time PCR (qPCR) have the highest sensitivity and specificity to investigate virus contamination in water, so they are the most commonly used in environmental virology. Despite great sensitivity of PCR, the main limitation is the lack of the correlation between the detected viral genome and viral infectivity, which limits conclusions regarding the significance for public health. To provide information about the infectivity of the detected viruses, cultivation on animal cell culture is the gold standard. However, cell culture infectivity assays are laborious, time consuming and costly. Also, not all viruses are able to produce cytopathic effect and viruses such as human noroviruses have no available cell line for propagation. In this brief review, we present a summary and critical evaluation of different approaches that have been recently proposed to overcome limitations of the traditional cell culture assay and PCR assay such as integrated cell culture-PCR, detection of genome integrity, detection of capsid integrity, and measurement of oxidative damages on viral capsid protein. Techniques for rapid detection of infectious viruses such as fluorescence microscopy and automated flow cytometry have also been suggested to assess virus infectivity in water samples.
Collapse
Affiliation(s)
- Ibrahim Ahmed Hamza
- Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum, Germany.
| | | | | | | |
Collapse
|
20
|
Abstract
We report a bacterial system for the evolution of cyclic peptides that makes use of an expanded set of amino acid building blocks. Orthogonal aminoacyl-tRNA synthetase/tRNA(CUA) pairs, together with a split intein system were used to biosynthesize a library of ribosomal peptides containing amino acids with unique structures and reactivities. This peptide library was subsequently used to evolve an inhibitor of HIV protease using a selection based on cellular viability. Two of three cyclic peptides isolated after two rounds of selection contained the keto amino acid p-benzoylphenylalanine (pBzF). The most potent peptide (G12: GIXVSL; X=pBzF) inhibited HIV protease through the formation of a covalent Schiff base adduct of the pBzF residue with the ε-amino group of Lys 14 on the protease. This result suggests that an expanded genetic code can confer an evolutionary advantage in response to selective pressure. Moreover, the combination of natural evolutionary processes with chemically biased building blocks provides another strategy for the generation of biologically active peptides using microbial systems.
Collapse
|
21
|
Cui S, Wang J, Fan T, Qin B, Guo L, Lei X, Wang J, Wang M, Jin Q. Crystal structure of human enterovirus 71 3C protease. J Mol Biol 2011; 408:449-61. [PMID: 21396941 PMCID: PMC7094522 DOI: 10.1016/j.jmb.2011.03.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2010] [Revised: 03/03/2011] [Accepted: 03/03/2011] [Indexed: 12/03/2022]
Abstract
Human enterovirus 71 (EV71) is the major pathogen that causes hand, foot and mouth disease that particularly affects young children. Growing hand, foot and mouth disease outbreaks were observed worldwide in recent years and caused devastating losses both economically and politically. However, vaccines or effective drugs are unavailable to date. The genome of EV71 consists of a positive sense, single-stranded RNA of ∼7400 bp, encoding a large precursor polyprotein that requires proteolytic processing to generate mature viral proteins. The proteolytic processing mainly depends on EV71 3C protease (3C(pro)) that possesses both proteolysis and RNA binding activities, which enable the protease to perform multiple tasks in viral replication and pathogen-host interactions. The central roles played by EV71 3C(pro) make it an appealing target for antiviral drug development. We determined the first crystal structure of EV71 3C(pro) and analyzed its enzymatic activity. The crystal structure shows that EV71 3C(pro) has a typical chymotrypsin-like fold that is common in picornaviral 3C(pro). Strikingly, we found an important surface loop, also denoted as β-ribbon, which adopts a novel open conformation in EV71 3C(pro). We identified two important residues located at the base of the β-ribbon, Gly123 and His133, which form hinges that govern the intrinsic flexibility of the ribbon. Structure-guided mutagenesis studies revealed that the hinge residues are important to EV71 3C(pro) proteolytic activities. In summary, our work provides the first structural insight into EV71 3C(pro), including a mobile β-ribbon, which is relevant to the proteolytic mechanism. Our data also provides a framework for structure-guided inhibitor design against EV71 3C(pro).
Collapse
Key Words
- ev71, human enterovirus 71
- hfmd, hand, foot and mouth disease
- 3cpro, 3c protease
- fmdv, foot-and-mouth disease virus
- hav, hepatitis a virus
- pv, poliovirus
- hrv, human rhinovirus
- cvb, coxsackievirus b
- asu, asymmetric unit
- sars-cov, severe acute respiratory syndrome-coronavirus
- wt, wild-type
- pdb, protein data bank
- sls, swiss light source
- chymotrypsin-like fold
- β-ribbon
- picornaviral 3c
- hfmd
- crystallography
Collapse
Affiliation(s)
- Sheng Cui
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Jing Wang
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Tingting Fan
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Bo Qin
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Li Guo
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xiaobo Lei
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Jianwei Wang
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Meitian Wang
- Swiss Light Source at Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Qi Jin
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| |
Collapse
|
22
|
Sivaraman D, Biswas P, Cella LN, Yates MV, Chen W. Detecting RNA viruses in living mammalian cells by fluorescence microscopy. Trends Biotechnol 2011; 29:307-13. [PMID: 21529975 DOI: 10.1016/j.tibtech.2011.02.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2010] [Revised: 02/20/2011] [Accepted: 02/23/2011] [Indexed: 12/29/2022]
Abstract
Traditional methods that rely on viral isolation and culture techniques continue to be the gold standards used for detection of infectious viral particles. However, new techniques that rely on visualization of live cells can shed light on understanding virus-host interaction for early stage detection and potential drug discovery. Live-cell imaging techniques that incorporate fluorescent probes into viral components provide opportunities for understanding mRNA expression, interaction, and virus movement and localization. Other viral replication events inside a host cell can be exploited for non-invasive detection, such as single-virus tracking, which does not inhibit viral infectivity or cellular function. This review highlights some of the recent advances made using these novel approaches for visualization of viral entry and replication in live cells.
Collapse
Affiliation(s)
- Divya Sivaraman
- Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
23
|
Biswas P, Cella LN, Kang SH, Mulchandani A, Yates MV, Chen W. A quantum-dot based protein module for in vivo monitoring of protease activity through fluorescence resonance energy transfer. Chem Commun (Camb) 2011; 47:5259-61. [DOI: 10.1039/c1cc10648a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
24
|
Cantera JL, Chen W, Yates MV. A fluorescence resonance energy transfer-based fluorometer assay for screening anti-coxsackievirus B3 compounds. J Virol Methods 2011; 171:176-82. [DOI: 10.1016/j.jviromet.2010.10.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2010] [Revised: 10/13/2010] [Accepted: 10/19/2010] [Indexed: 02/01/2023]
|
25
|
Detection of infective poliovirus by a simple, rapid, and sensitive flow cytometry method based on fluorescence resonance energy transfer technology. Appl Environ Microbiol 2009; 76:584-8. [PMID: 19933336 DOI: 10.1128/aem.01851-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The rapid and effective detection of virus infection is critical for clinical management and prevention of disease spread during an outbreak. Several methods have been developed for this purpose, of which classical serological and viral nucleic acid detection are the most common. We describe an alternative approach that utilizes engineered cells expressing fluorescent proteins undergoing fluorescence resonance energy transfer (FRET) upon cleavage by the viral 2A protease (2A(pro)) as an indication of infection. Quantification of the infectious-virus titers was resolved by using flow cytometry, and utility was demonstrated for the detection of poliovirus 1 (PV1) infection. Engineered buffalo green monkey kidney (BGMK) cells expressing the cyan fluorescent protein (CFP)-yellow fluorescent protein (YFP) substrate linked by a cleavage recognition site for PV1 2A(pro) were infected with different titers of PV1. After incubation at various time points, cells were harvested, washed, and subjected to flow cytometry analysis. The number of infected cells was determined by counting the number of cells with an increased CFP-to-YFP ratio. As early as 5 h postinfection, a significant number of infected cells (3%) was detected by flow cytometry, and cells infected with only 1 PFU were detected after 12 h postinfection. When applied to an environmental water sample spiked with PV1, the flow cytometry-based assay provided a level of sensitivity similar to that of the plaque assay for detecting and quantifying infectious virus particles. This approach, therefore, is more rapid than plaque assays and can be used to detect other viruses that frequently do not form clear plaques on cell cultures.
Collapse
|
26
|
Yeh HY, Yates MV, Chen W, Mulchandani A. Real-time molecular methods to detect infectious viruses. Semin Cell Dev Biol 2009; 20:49-54. [PMID: 19429491 DOI: 10.1016/j.semcdb.2009.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2008] [Accepted: 01/23/2009] [Indexed: 01/18/2023]
Abstract
Waterborne transmitted viruses pose a public health threat due to their stability in aquatic environment and the easy transmission with high morbidity rates at low infectious doses. Two major challenge of virus analysis include a lack of adequate information in infectivity and the inability to cultivate certain epidemiologically important viruses in vitro. The use of fluorescent probes in conjunction with fluorescence microscopy allows us to reveal dynamic interactions of the viruses with different cellular structures in living cells that are impossible to detect by immunological or PCR-based experiments. Real-time viral detection in vivo provides sufficient information regarding multiple steps in infection process at molecular level, which will be valuable for the prevention and control of viral infection.
Collapse
Affiliation(s)
- Hsiao-Yun Yeh
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | | | | | | |
Collapse
|
27
|
Tsai MT, Cheng YH, Liu YN, Liao NC, Lu WW, Kung SH. Real-time monitoring of human enterovirus (HEV)-infected cells and anti-HEV 3C protease potency by fluorescence resonance energy transfer. Antimicrob Agents Chemother 2009; 53:748-55. [PMID: 19015331 PMCID: PMC2630644 DOI: 10.1128/aac.00841-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2008] [Revised: 08/14/2008] [Accepted: 11/12/2008] [Indexed: 11/20/2022] Open
Abstract
A real-time assay system that allows monitoring of intracellular human enterovirus (HEV) protease activity was established using the principle of fluorescence resonance energy transfer (FRET). It was accomplished by engineering cells to constitutively express a genetically encoded FRET probe. The FRET-based probe was designed to contain an enterovirus 71 3C protease (3C(pro)) cleavage motif flanked by the FRET pair composed of green fluorescent protein 2 and red fluorescent protein 2 (DsRed2). Efficient FRET from the stable line was detected in a real-time manner by fluorescence microscopy, and the disruption of FRET was readily monitored upon HEV infection. The level of the repressed FRET was proportional to the input virus titer and the infection duration as measured by the fluorometric method. The FRET biosensor cell line was also responsive to other related HEV serotypes, but not to the phylogenetically distant herpes simplex virus, which was confirmed by Western blot analysis. The FRET biosensor was then utilized to develop a format for the determination of antiviral susceptibility, as the reduced FRET appeared to reflect viral replication. Evaluations of the FRET biosensor system with representative HEV serotypes demonstrated that their susceptibilities to a 3C(pro) inhibitor, rupintrivir, were all accurately determined. In summary, this novel FRET-based system is a means for rapid detection, quantification, and drug susceptibility testing for HEVs, with potential for the development of a high-throughput screening assay.
Collapse
Affiliation(s)
- Meng-Tian Tsai
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Hwang YC, Chu JJH, Yang PL, Chen W, Yates MV. Rapid identification of inhibitors that interfere with poliovirus replication using a cell-based assay. Antiviral Res 2008; 77:232-6. [PMID: 18243348 PMCID: PMC7114228 DOI: 10.1016/j.antiviral.2007.12.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2007] [Revised: 12/13/2007] [Accepted: 12/15/2007] [Indexed: 11/28/2022]
Abstract
A small molecule library containing 480 known bioactive compounds was screened for antiviral activity against poliovirus (PV) using a cellular fluorescence resonance energy transfer (FRET) assay for viral protease activity. The infected reporter cells treated with the viral replication-suppressing compounds were examined via fluorescence microscope 7.5 h postinfection. Twelve molecules showed moderate to potent antiviral activity at concentrations less than 32 μM during the primary screening. Three compounds, anisomycin, linoleic acid, and lycorine, were chosen for validation. A dose-dependent cytotoxicity assay and a secondary screening using conventional plaque assay were conducted to confirm the results. The developed method can be used for rapid screening for molecules with antiviral activity.
Collapse
Affiliation(s)
- Yu-Chen Hwang
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
29
|
Ha JS, Song JJ, Lee YM, Kim SJ, Sohn JH, Shin CS, Lee SG. Design and application of highly responsive fluorescence resonance energy transfer biosensors for detection of sugar in living Saccharomyces cerevisiae cells. Appl Environ Microbiol 2007; 73:7408-14. [PMID: 17890334 PMCID: PMC2168232 DOI: 10.1128/aem.01080-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
A protein sensor with a highly responsive fluorescence resonance energy transfer (FRET) signal for sensing sugars in living Saccharomyces cerevisiae cells was developed by combinatorial engineering of the domain linker and the binding protein moiety. Although FRET sensors based on microbial binding proteins have previously been created for visualizing various sugars in vivo, such sensors are limited due to a weak signal intensity and a narrow dynamic range. In the present study, the length and composition of the linker moiety of a FRET-based sensor consisting of CFP-linker(1)-maltose-binding protein-linker(2)-YFP were redesigned, which resulted in a 10-fold-higher signal intensity. Molecular modeling of the composite linker moieties, including the connecting peptide and terminal regions of the flanking proteins, suggested that an ordered helical structure was preferable for tighter coupling of the conformational change of the binding proteins to the FRET response. When the binding site residue Trp62 of the maltose-binding protein was diversified by saturation mutagenesis, the Leu mutant exhibited an increased binding constant (82 microM) accompanied by further improvement in the signal intensity. Finally, the maltose sensor with optimized linkers was redesigned to create a sugar sensor with a new specificity and a wide dynamic range. When the optimized maltose sensors were employed as in vivo sensors, highly responsive FRET images were generated from real-time analysis of maltose uptake of Saccharomyces cerevisiae (baker's yeast).
Collapse
Affiliation(s)
- Jae-Seok Ha
- Systems Microbiology Research Center, KRIBB, 52, Oun-dong, Yusong-gu, Daejeon 305-333, Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Hsu YY, Liu YN, Wang W, Kao FJ, Kung SH. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun 2007; 353:939-45. [PMID: 17207462 DOI: 10.1016/j.bbrc.2006.12.145] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP2)-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2Apro) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2Apro from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research.
Collapse
Affiliation(s)
- Yueh-Ying Hsu
- Faculty of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
31
|
Hwang YC, Leong OM, Chen W, Yates MV. Comparison of a reporter assay and immunomagnetic separation real-time reverse transcription-PCR for the detection of enteroviruses in seeded environmental water samples. Appl Environ Microbiol 2007; 73:2338-40. [PMID: 17277214 PMCID: PMC1855679 DOI: 10.1128/aem.01758-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Two newly developed protocols for infective virus detection were compared to the plaque assay. An immunomagnetic separation procedure coupled with real-time reverse transcription-PCR of viral nucleic acids was developed to identify intact enteroviral particles, and a reporter cell system responding to viral replication based on fluorescent resonance energy transfer for detection of infectious enteroviruses was tested. Both new procedures detected infective viruses in environmental samples at the same level as the plaque assay.
Collapse
Affiliation(s)
- Yu-Chen Hwang
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|