1
|
Phu DH, Wongtawan T, Wintachai P, Nhung NT, Yen NTP, Carrique-Mas J, Turni C, Omaleki L, Blackall PJ, Thomrongsuwannakij T. Molecular characterization of Campylobacter spp. isolates obtained from commercial broilers and native chickens in Southern Thailand using whole genome sequencing. Poult Sci 2024; 103:103485. [PMID: 38335668 PMCID: PMC10869288 DOI: 10.1016/j.psj.2024.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Chickens are the primary reservoirs of Campylobacter spp., mainly C. jejuni and C. coli, that cause human bacterial gastrointestinal infections. However, genomic characteristics and antimicrobial resistance of Campylobacter spp. in low- to middle-income countries need more comprehensive exploration. This study aimed to characterize 21 C. jejuni and 5 C. coli isolates from commercial broilers and native chickens using whole genome sequencing and compare them to 28 reference Campylobacter sequences. Among the 26 isolates, 13 sequence types (ST) were identified in C. jejuni and 5 ST in C. coli. The prominent ST was ST 2274 (5 isolates, 19.2%), followed by ST 51, 460, 2409, and 6455 (2 isolates in each ST, 7.7%), while all remaining ST (464, 536, 595, 2083, 6736, 6964, 8096, 10437, 828, 872, 900, 8237, and 13540) had 1 isolate per ST (3.8%). Six types of antimicrobial resistance genes (ant(6)-Ia, aph(3')-III, blaOXA, cat, erm(B), and tet(O)) and one point mutations in the gyrA gene (Threonine-86-Isoleucine) and another in the rpsL gene (Lysine-43-Arginine) were detected. The blaOXA resistance gene was present in all isolates, the gyrA mutations was in 95.2% of C. jejuni and 80.0% of C. coli, and the tet(O) resistance gene in 76.2% of C. jejuni and 80.0% of C. coli. Additionally, 203 virulence-associated genes linked to 16 virulence factors were identified. In terms of phenotypic resistance, the C. jejuni isolates were all resistant to ciprofloxacin, enrofloxacin, and nalidixic acid, with lower levels of resistance to tetracycline (76.2%), tylosin (52.3%), erythromycin (23.8%), azithromycin (22.2%), and gentamicin (11.1%). Most C. coli isolates were resistant to all tested antimicrobials, while 1 C. coli was pan-susceptible except for tylosin. Single-nucleotide polymorphisms concordance varied widely, with differences of up to 13,375 single-nucleotide polymorphisms compared to the reference Campylobacter isolates, highlighting genetic divergence among comparative genomes. This study contributes to a deeper understanding of the molecular epidemiology of Campylobacter spp. in Thai chicken production systems.
Collapse
Affiliation(s)
- Doan Hoang Phu
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Doctoral Program in Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Vietnam
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Nguyen Thi Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam
| | | | - Juan Carrique-Mas
- Food and Agriculture Organization of the United Nations, Ha Noi 10000, Vietnam
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Lida Omaleki
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thotsapol Thomrongsuwannakij
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
2
|
A Cotransformation Method To Identify a Restriction-Modification Enzyme That Reduces Conjugation Efficiency in Campylobacter jejuni. Appl Environ Microbiol 2018; 84:AEM.02004-18. [PMID: 30242003 DOI: 10.1128/aem.02004-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 01/07/2023] Open
Abstract
Conjugation is an important mechanism for horizontal gene transfer in Campylobacter jejuni, the leading cause of human bacterial gastroenteritis in developed countries. However, to date, the factors that significantly influence conjugation efficiency in Campylobacter spp. are still largely unknown. Given that multiple recombinant loci could independently occur within one recipient cell during natural transformation, the genetic materials from a high-frequency conjugation (HFC) C. jejuni strain may be cotransformed with a selection marker into a low-frequency conjugation (LFC) recipient strain, creating new HFC transformants suitable for the identification of conjugation factors using a comparative genomics approach. To test this, an erythromycin resistance selection marker was created in an HFC C. jejuni strain; subsequently, the DNA of this strain was naturally transformed into NCTC 11168, an LFC C. jejuni strain, leading to the isolation of NCTC 11168-derived HFC transformants. Whole-genome sequencing analysis and subsequent site-directed mutagenesis identified Cj1051c, a putative restriction-modification enzyme (aka CjeI) that could drastically reduce the conjugation efficiency of NCTC 11168 (>5,000-fold). Chromosomal complementation of three diverse HFC C. jejuni strains with CjeI also led to a dramatic reduction in conjugation efficiency (∼1,000-fold). The purified recombinant CjeI could effectively digest the Escherichia coli-derived shuttle vector pRY107. The endonuclease activity of CjeI was abolished upon short heat shock treatment at 50°C, which is consistent with our previous observation that heat shock enhanced conjugation efficiency in C. jejuni Together, in this study, we successfully developed and utilized a unique cotransformation strategy to identify a restriction-modification enzyme that significantly influences conjugation efficiency in C. jejuni IMPORTANCE Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. Campylobacter jejuni, the leading foodborne bacterial organism, displays significant strain diversity due to horizontal gene transfer; however, the molecular components influencing conjugation efficiency in C. jejuni are still largely unknown. In this study, we developed a cotransformation strategy for comparative genomics analysis and successfully identified a restriction-modification enzyme that significantly influences conjugation efficiency in C. jejuni The new cotransformation strategy developed in this study is also expected to be broadly applied in other naturally competent bacteria for functional comparative genomics research.
Collapse
|
3
|
Saint-Cyr MJ, Guyard-Nicodème M, Messaoudi S, Chemaly M, Cappelier JM, Dousset X, Haddad N. Recent Advances in Screening of Anti-Campylobacter Activity in Probiotics for Use in Poultry. Front Microbiol 2016; 7:553. [PMID: 27303366 PMCID: PMC4885830 DOI: 10.3389/fmicb.2016.00553] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Campylobacter species involved in this infection usually include the thermotolerant species Campylobacter jejuni. The major reservoir for C. jejuni leading to human infections is commercial broiler chickens. Poultry flocks are frequently colonized by C. jejuni without any apparent symptoms. Risk assessment analyses have identified the handling and consumption of poultry meat as one of the most important sources of human campylobacteriosis, so elimination of Campylobacter in the poultry reservoir is a crucial step in the control of this foodborne infection. To date, the use of probiotics has demonstrated promising results to reduce Campylobacter colonization. This review provides recent insights into methods used for probiotic screening to reduce the prevalence and colonization of Campylobacter at the farm level. Different eukaryotic epithelial cell lines are employed to screen probiotics with an anti-Campylobacter activity and yield useful information about the inhibition mechanism involved. These in vitro virulence models involve only human intestinal or cervical cell lines whereas the use of avian cell lines could be a preliminary step to investigate mechanisms of C. jejuni colonization in poultry in the presence of probiotics. In addition, in vivo trials to evaluate the effect of probiotics on Campylobacter colonization are conducted, taking into account the complexity introduced by the host, the feed, and the microbiota. However, the heterogeneity of the protocols used and the short time duration of the experiments lead to results that are difficult to compare and draw conclusions at the slaughter-age of broilers. Nevertheless, the combined approach using complementary in vitro and in vivo tools (cell cultures and animal experiments) leads to a better characterization of probiotic strains and could be employed to assess reduced Campylobacter spp. colonization in chickens if some parameters are optimized.
Collapse
Affiliation(s)
| | - Muriel Guyard-Nicodème
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | - Soumaya Messaoudi
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | | | - Xavier Dousset
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Nabila Haddad
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| |
Collapse
|
4
|
Updated Campylobacter jejuni Capsule PCR Multiplex Typing System and Its Application to Clinical Isolates from South and Southeast Asia. PLoS One 2015; 10:e0144349. [PMID: 26630669 PMCID: PMC4668122 DOI: 10.1371/journal.pone.0144349] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2015] [Accepted: 11/17/2015] [Indexed: 11/19/2022] Open
Abstract
Campylobacter jejuni produces a polysaccharide capsule that is the major determinant of the Penner serotyping scheme. This passive slide agglutination typing system was developed in the early 1980’s and was recognized for over two decades as the gold standard for C. jejuni typing. A preliminary multiplex PCR technique covering 17 serotypes was previously developed in order to replace this classic serotyping scheme. Here we report the completion of the multiplex PCR technology that is able to identify all the 47 Penner serotypes types known for C. jejuni. The number of capsule types represented within the 47 serotypes is 35. We have applied this method to a collection of 996 clinical isolates from Thailand, Cambodia and Nepal and were able to successfully determine capsule types of 98% of these.
Collapse
|
5
|
Culotti A, Packman AI. Pseudomonas aeruginosafacilitatesCampylobacter jejunigrowth in biofilms under oxic flow conditions. FEMS Microbiol Ecol 2015; 91:fiv136. [DOI: 10.1093/femsec/fiv136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 11/01/2015] [Indexed: 11/14/2022] Open
|
6
|
Heat Shock-Enhanced Conjugation Efficiency in Standard Campylobacter jejuni Strains. Appl Environ Microbiol 2015; 81:4546-52. [PMID: 25911489 DOI: 10.1128/aem.00346-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2015] [Accepted: 04/21/2015] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni, the leading bacterial cause of human gastroenteritis in the United States, displays significant strain diversity due to horizontal gene transfer. Conjugation is an important horizontal gene transfer mechanism contributing to the evolution of bacterial pathogenesis and antimicrobial resistance. It has been observed that heat shock could increase transformation efficiency in some bacteria. In this study, the effect of heat shock on C. jejuni conjugation efficiency and the underlying mechanisms were examined. With a modified Escherichia coli donor strain, different C. jejuni recipient strains displayed significant variation in conjugation efficiency ranging from 6.2 × 10(-8) to 6.0 × 10(-3) CFU per recipient cell. Despite reduced viability, heat shock of standard C. jejuni NCTC 11168 and 81-176 strains (e.g., 48 to 54°C for 30 to 60 min) could dramatically enhance C. jejuni conjugation efficiency up to 1,000-fold. The phenotype of the heat shock-enhanced conjugation in C. jejuni recipient cells could be sustained for at least 9 h. Filtered supernatant from the heat shock-treated C. jejuni cells could not enhance conjugation efficiency, which suggests that the enhanced conjugation efficiency is independent of secreted substances. Mutagenesis analysis indicated that the clustered regularly interspaced short palindromic repeats system and the selected restriction-modification systems (Cj0030/Cj0031, Cj0139/Cj0140, Cj0690c, and HsdR) were dispensable for heat shock-enhanced conjugation in C. jejuni. Taking all results together, this study demonstrated a heat shock-enhanced conjugation efficiency in standard C. jejuni strains, leading to an optimized conjugation protocol for molecular manipulation of this organism. The findings from this study also represent a significant step toward elucidation of the molecular mechanism of conjugative gene transfer in C. jejuni.
Collapse
|
7
|
Vieira A, Seddon AM, Karlyshev AV. Campylobacter-Acanthamoeba interactions. MICROBIOLOGY-SGM 2015; 161:933-947. [PMID: 25757600 DOI: 10.1099/mic.0.000075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/16/2014] [Accepted: 03/09/2015] [Indexed: 02/02/2023]
Abstract
Campylobacter jejuni is a foodborne pathogen recognized as the major cause of human bacterial enteritis. Undercooked poultry products and contaminated water are considered as the most important sources of infection. Some studies suggest transmission and survival of this bacterial pathogen may be assisted by the free-living protozoa Acanthamoeba. The latter is known to play the role of a host for various pathogenic bacteria, protecting them from harsh environmental conditions. Importantly, there is a similarity between the mechanisms of bacterial survival within amoebae and macrophages, making the former a convenient tool for the investigation of the survival of pathogenic bacteria in the environment. However, the molecular mechanisms involved in the interaction between Campylobacter and Acanthamoeba are not well understood. Whilst some studies suggest the ability of C. jejuni to survive within the protozoa, the other reports support an extracellular mode of survival only. In this review, we focus on the studies investigating the interaction between Campylobacter and Acanthamoeba, address some reasons for the contradictory results, and discuss possible implications of these results for epidemiology. Additionally, as the molecular mechanisms involved remain unknown, we also suggest possible factors that may be involved in this process. Deciphering the molecular mechanisms of pathogen-protozoa interaction will assist in a better understanding of Campylobacter lifestyle and in the development of novel antibacterial drugs.
Collapse
Affiliation(s)
- Ana Vieira
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Alan M Seddon
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Andrey V Karlyshev
- Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| |
Collapse
|
8
|
Scott NE, Marzook NB, Cain JA, Solis N, Thaysen-Andersen M, Djordjevic SP, Packer NH, Larsen MR, Cordwell SJ. Comparative Proteomics and Glycoproteomics Reveal Increased N-Linked Glycosylation and Relaxed Sequon Specificity in Campylobacter jejuni NCTC11168 O. J Proteome Res 2014; 13:5136-50. [DOI: 10.1021/pr5005554] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Morten Thaysen-Andersen
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Steven P. Djordjevic
- i3
Institute, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Nicolle H. Packer
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Martin R. Larsen
- Protein
Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense 5000, Denmark
| | - Stuart J. Cordwell
- Discipline
of Pathology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
9
|
Watson E, Sherry A, Inglis NF, Lainson A, Jyothi D, Yaga R, Manson E, Imrie L, Everest P, Smith DGE. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity. EUPA OPEN PROTEOMICS 2014; 4:184-194. [PMID: 27525220 PMCID: PMC4975774 DOI: 10.1016/j.euprot.2014.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 12/24/2022]
Abstract
Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC-ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith-Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.
Collapse
Affiliation(s)
- Eleanor Watson
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Aileen Sherry
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Neil F Inglis
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Alex Lainson
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | | | - Raja Yaga
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Erin Manson
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Lisa Imrie
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom
| | - Paul Everest
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - David G E Smith
- Moredun Research Institute, Bush Loan, Penicuik, United Kingdom; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Complete Genome Sequence of Universal Bacteriophage Host Strain Campylobacter jejuni subsp. jejuni PT14. GENOME ANNOUNCEMENTS 2013; 1:1/6/e00969-13. [PMID: 24265498 PMCID: PMC3837179 DOI: 10.1128/genomea.00969-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Campylobacter jejuni strain PT14 is a clinical isolate previously used to propagate bacteriophages in the United Kingdom phage typing scheme. The strain has proven useful in the isolation of Campylobacter bacteriophages from several sources, and it functions as a model host in phage therapy experiments with poultry and poultry meat.
Collapse
|
11
|
Molecular methods to investigate adhesion, transmigration, invasion and intracellular survival of the foodborne pathogen Campylobacter jejuni. J Microbiol Methods 2013; 95:8-23. [DOI: 10.1016/j.mimet.2013.06.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 01/08/2023]
|
12
|
Taboada EN, Clark CG, Sproston EL, Carrillo CD. Current methods for molecular typing of Campylobacter species. J Microbiol Methods 2013; 95:24-31. [PMID: 23871858 DOI: 10.1016/j.mimet.2013.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 12/11/2022]
Abstract
Campylobacter remains one of the most common bacterial causes of gastroenteritis worldwide. Tracking sources of this organism is challenging due to the large numbers of human cases, and the prevalence of this organism throughout the environment due to growth in a wide range of animal species. Many molecular subtyping methods have been developed to characterize Campylobacter species, but only a few are commonly used in molecular epidemiology studies. This review examines the applicability of these methods, as well as the role that emerging whole genome sequencing technologies will play in tracking sources of Campylobacter spp. infection.
Collapse
Affiliation(s)
- Eduardo N Taboada
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, PO Box 640, Township Rd. 9-1, Lethbridge, AB T1J 3Z4, Canada.
| | | | | | | |
Collapse
|
13
|
Mwangi MM, Kim C, Chung M, Tsai J, Vijayadamodar G, Benitez M, Jarvie TP, Du L, Tomasz A. Whole-genome sequencing reveals a link between β-lactam resistance and synthetases of the alarmone (p)ppGpp in Staphylococcus aureus. Microb Drug Resist 2013; 19:153-9. [PMID: 23659600 DOI: 10.1089/mdr.2013.0053] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
The overwhelming majority of methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates exhibit a peculiar heterogeneous resistance to β-lactam antibiotics: in cultures of such strains, the majority of cells display only a low level of methicillin resistance--often close to the MIC breakpoint of susceptible strains. Yet, in the same cultures, subpopulations of bacteria exhibiting very high levels of resistance are also present with variable frequencies, which are characteristic of the particular MRSA lineage. The mechanism of heterogeneous resistance is not understood. We describe here an experimental system for exploring the mechanism of heterogeneous resistance. Copies of the resistance gene mecA cloned into a temperature-sensitive plasmid were introduced into the fully sequenced methicillin-susceptible clinical isolate S. aureus strain 476. Transductants of strain 476 expressed methicillin resistance in a heterogeneous fashion: the great majority of cells showed only low MIC (0.75 μg/ml) for the antibiotic, but a minority population of highly resistant bacteria (MIC >300 μg/ml) was also present with a frequency of ∼10(-4). The genetic backgrounds of the majority and minority cells were compared by whole-genome sequencing: the only differences detectable were two point mutations in relA of the highly resistant minority population of bacteria. The relA gene codes for the synthesis of (p)ppGpp, an effector of the stringent stress response. Titration of (p)ppGpp showed increased amounts of this effector in the highly resistant cells. Involvement of (p)ppGpp synthesis genes may explain some of the perplexing aspects of β-lactam resistance in MRSA, since many environmental and genetic changes can modulate cellular levels of (p)ppGpp.
Collapse
Affiliation(s)
- Michael M Mwangi
- Laboratory of Microbiology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pendleton S, Hanning I, Biswas D, Ricke S. Evaluation of whole-genome sequencing as a genotyping tool for Campylobacter jejuni in comparison with pulsed-field gel electrophoresis and flaA typing. Poult Sci 2013; 92:573-80. [DOI: 10.3382/ps.2012-02695] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
|
15
|
Contribution of amino acid catabolism to the tissue specific persistence of Campylobacter jejuni in a murine colonization model. PLoS One 2012; 7:e50699. [PMID: 23226358 PMCID: PMC3511319 DOI: 10.1371/journal.pone.0050699] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2012] [Accepted: 10/24/2012] [Indexed: 12/21/2022] Open
Abstract
Campylobacter jejuni is a major cause of food-borne disease in industrialized countries. Carbohydrate utilization by C. jejuni is severely restricted, and knowledge about which substrates fuel C. jejuni infection and growth is limited. Some amino acids have been shown to serve as carbon sources both in vitro and in vivo. In the present study we investigated the contribution of serine and proline catabolism to the invitro and invivo growth of C. jejuni 81-176. We confirmed that the serine transporter SdaC and the serine ammonia-lyase SdaA are required for serine utilization, and demonstrated that a predicted proline permease PutP and a bifunctional proline/delta-1-pyrroline-5-carboxylate dehydrogenase PutA are required for proline utilization by C. jejuni 81-176. C. jejuni 81-176 mutants unable to utilize serine were shown to be severely defective for colonization of the intestine and systemic tissues in a mouse model of infection. In contrast, C. jejuni 81-176 mutants unable to utilize proline were only defective for intestinal colonization. These results further emphasize the importance of amino acid utilization in C. jejuni colonization of various tissues.
Collapse
|
16
|
Fields JA, Thompson SA. Campylobacter jejuni CsrA complements an Escherichia coli csrA mutation for the regulation of biofilm formation, motility and cellular morphology but not glycogen accumulation. BMC Microbiol 2012; 12:233. [PMID: 23051923 PMCID: PMC3534301 DOI: 10.1186/1471-2180-12-233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2012] [Accepted: 10/01/2012] [Indexed: 11/12/2022] Open
Abstract
Background Although Campylobacter jejuni is consistently ranked as one of the leading causes of bacterial diarrhea worldwide, the mechanisms by which C. jejuni causes disease and how they are regulated have yet to be clearly defined. The global regulator, CsrA, has been well characterized in several bacterial genera and is known to regulate a number of independent pathways via a post transcriptional mechanism, but remains relatively uncharacterized in the genus Campylobacter. Previously, we reported data illustrating the requirement for CsrA in several virulence related phenotypes of C. jejuni strain 81–176, indicating that the Csr pathway is important for Campylobacter pathogenesis. Results We compared the Escherichia coli and C. jejuni orthologs of CsrA and characterized the ability of the C. jejuni CsrA protein to functionally complement an E. coli csrA mutant. Phylogenetic comparison of E. coli CsrA to orthologs from several pathogenic bacteria demonstrated variability in C. jejuni CsrA relative to the known RNA binding domains of E. coli CsrA and in several amino acids reported to be involved in E. coli CsrA-mediated gene regulation. When expressed in an E. coli csrA mutant, C. jejuni CsrA succeeded in recovering defects in motility, biofilm formation, and cellular morphology; however, it failed to return excess glycogen accumulation to wild type levels. Conclusions These findings suggest that C. jejuni CsrA is capable of efficiently binding some E. coli CsrA binding sites, but not others, and provide insight into the biochemistry of C. jejuni CsrA.
Collapse
Affiliation(s)
- Joshua A Fields
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, 1120 15th Street, Augusta, GA 30912, USA
| | | |
Collapse
|
17
|
Identification of Cj1051c as a major determinant for the restriction barrier of Campylobacter jejuni strain NCTC11168. Appl Environ Microbiol 2012; 78:7841-8. [PMID: 22923403 DOI: 10.1128/aem.01799-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni is a leading cause of human diarrheal illness in the world, and research on it has benefitted greatly by the completion of several genome sequences and the development of molecular biology tools. However, many hurdles remain for a full understanding of this unique bacterial pathogen. One of the most commonly used strains for genetic work with C. jejuni is NCTC11168. While this strain is readily transformable with DNA for genomic recombination, transformation with plasmids is problematic. In this study, we have identified a determinant of this to be cj1051c, predicted to encode a restriction-modification type IIG enzyme. Knockout mutagenesis of this gene resulted in a strain with a 1,000-fold-enhanced transformation efficiency with a plasmid purified from a C. jejuni host. Additionally, this mutation conferred the ability to be transformed by plasmids isolated from an Escherichia coli host. Sequence analysis suggested a high level of variability of the specificity domain between strains and that this gene may be subject to phase variation. We provide evidence that cj1051c is active in NCTC11168 and behaves as expected for a type IIG enzyme. The identification of this determinant provides a greater understanding of the molecular biology of C. jejuni as well as a tool for plasmid work with strain NCTC11168.
Collapse
|
18
|
Kienesberger S, Gorkiewicz G, Wolinski H, Zechner EL. New molecular microbiology approaches in the study of Campylobacter fetus. Microb Biotechnol 2012; 4:8-19. [PMID: 21255368 PMCID: PMC3815791 DOI: 10.1111/j.1751-7915.2010.00173.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
Campylobacter fetus infection is a substantial problem in herds of domestic cattle worldwide and a rising threat in human disease. Application of comparative and functional genomics approaches will be essential to understand the molecular basis of this pathogen's interactions with various hosts. Here we report recent progress in genome analyses of C. fetus ssp. fetus and C. fetus ssp. venerealis, and the development of molecular tools to determine the genetic basis of niche‐specific adaptations. Campylobacter research has been strengthened by the rapid advancements in imaging technology occurring throughout microbiology. To move forward in understanding the mechanisms underlying C. fetus virulence, current efforts focus on developing suitable in vitro models to reflect host‐ and tissue‐specific aspects of infection.
Collapse
Affiliation(s)
- Sabine Kienesberger
- 1Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/1, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
19
|
Gripp E, Hlahla D, Didelot X, Kops F, Maurischat S, Tedin K, Alter T, Ellerbroek L, Schreiber K, Schomburg D, Janssen T, Bartholomäus P, Hofreuter D, Woltemate S, Uhr M, Brenneke B, Grüning P, Gerlach G, Wieler L, Suerbaum S, Josenhans C. Closely related Campylobacter jejuni strains from different sources reveal a generalist rather than a specialist lifestyle. BMC Genomics 2011; 12:584. [PMID: 22122991 PMCID: PMC3283744 DOI: 10.1186/1471-2164-12-584] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2011] [Accepted: 11/28/2011] [Indexed: 11/22/2022] Open
Abstract
Background Campylobacter jejuni and Campylobacter coli are human intestinal pathogens of global importance. Zoonotic transmission from livestock animals or animal-derived food is the likely cause for most of these infections. However, little is known about their general and host-specific mechanisms of colonization, or virulence and pathogenicity factors. In certain hosts, Campylobacter species colonize persistently and do not cause disease, while they cause acute intestinal disease in humans. Results Here, we investigate putative host-specificity using phenotypic characterization and genome-wide analysis of genetically closely related C. jejuni strains from different sources. A collection of 473 fresh Campylobacter isolates from Germany was assembled between 2006 and 2010 and characterized using MLST. A subset of closely related C. jejuni strains of the highly prevalent sequence type ST-21 was selected from different hosts and isolation sources. PCR typing of strain-variable genes provided evidence that some genes differed between these strains. Furthermore, phenotypic variation of these strains was tested using the following criteria: metabolic variation, protein expression patterns, and eukaryotic cell interaction. The results demonstrated remarkable phenotypic diversity within the ST-21 group, which however did not correlate with isolation source. Whole genome sequencing was performed for five ST-21 strains from chicken, human, bovine, and food sources, in order to gain insight into ST-21 genome diversity. The comparisons showed extensive genomic diversity, primarily due to recombination and gain of phage-related genes. By contrast, no genomic features associated with isolation source or host were identified. Conclusions The genome information and phenotypic data obtained in vitro and in a chicken infection model provided little evidence of fixed adaptation to a specific host. Instead, the dominant C. jejuni ST-21 appeared to be characterized by phenotypic flexibility and high genetic microdiversity, revealing properties of a generalist. High genetic flexibility might allow generalist variants of C. jejuni to reversibly express diverse fitness factors in changing environments.
Collapse
Affiliation(s)
- Eugenia Gripp
- Institute for Medical Microbiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chaisowwong W, Kusumoto A, Hashimoto M, Harada T, Maklon K, Kawamoto K. Physiological characterization of Campylobacter jejuni under cold stresses conditions: its potential for public threat. J Vet Med Sci 2011; 74:43-50. [PMID: 21891974 DOI: 10.1292/jvms.11-0305] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Campylobacter jejuni is the major cause of human gastroenteritis worldwide. Under stress conditions, C. jejuni can enter a viable but non-culturable (VBNC) state. We found that the C. jejuni was able to enter a VBNC state by prolonged incubation at 4°C. The standard isolation methods using pre-enrichment steps in Bolton broth or Preston broth could not detect the VBNC cells in spiked chicken meat. The transcription levels of virulence-associated genes (flaA, flaB, cadF, ciaB, cdtA, cdtB and cdtC) were expressed in VBNC cells but in low levels. The VBNC cells retained the ability to invade Caco-2 human intestinal epithelial cells in vitro. In most cases, VBNC cells failed to resuscitate in Caco-2 cells, but in some experiments, they formed colonies after co-incubation with host cells. Collectively, C. jejuni enters into a VBNC state at 4°C and the VBNC C. jejuni remains virulent which may possibly lead to disease in humans. C. jejuni in VBNC state is a potential concern for food safety.
Collapse
Affiliation(s)
- Warangkhana Chaisowwong
- Section of Food Microbiology and Immunology, Research Center for Animal Hygiene and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Pootong P, Serichantalergs O, Bodhidatta L, Poly F, Guerry P, Mason CJ. Distribution of flagella secreted protein and integral membrane protein among Campylobacter jejuni isolated from Thailand. Gut Pathog 2011; 3:11. [PMID: 21745410 PMCID: PMC3145565 DOI: 10.1186/1757-4749-3-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/03/2011] [Accepted: 07/12/2011] [Indexed: 11/10/2022] Open
Abstract
Background Campylobacter jejuni, a gram-negative bacterium, is a frequent cause of gastrointestinal food-borne illness in humans throughout the world. There are several reports that the virulence of C. jejuni might be modulated by non-flagellar proteins that are secreted through the filament. Recently, FspA (Flagella secreted proteins) have been described. Two alleles of fspA (fspA1 and fspA2) based on sequence analysis were previously reported and only the fspA2 allele was found in Thai isolates. The aim of this study is to analyze the deduced amino acid sequences fspA and the adjacent putative integral membrane protein from 103 Thai C. jejuni isolates. Results A total of 103 representative C. jejuni isolates were amplified by PCR for the fspA gene and the adjacent integral membrane protein gene. Two PCR product sizes were amplified using the same primers, an approximately 1600-bp PCR product from 19 strains that contained fspA and integral membrane protein genes and an approximately 800-bp PCR product from 84 strains that contained only the fspA gene. DNA sequencing was performed on the amplified products. The deduced amino acid sequences of both genes were analyzed separately using CLC Free Workbench 4 software. The analysis revealed three groups of FspA. Only FspA group 1 sequences (19/103) (corresponding to fspA1) consisting of 5 subgroups were associated with the adjacent gene encoding the integral membrane protein. FspA group 2 was the largest group (67/103) consisting of 9 subgroups. FspA group 2p (17/103) consisting of 7 subgroups was found to contain stop codons at a position before the terminal 142 position. Conclusions This study reveals greater heterogeneity of FspA (group 1, 2 and 2p) among Thai C. jejuni isolates than previously reported. Furthermore, the subgroups of FspA groups 1 were associated with groups of integral membrane protein. The significance of these different FspA variants to virulence requires further study.
Collapse
Affiliation(s)
- Piyarat Pootong
- Enteric Diseases Department, Armed Forces Research Institute of Medical Sciences, Bangkok, 10400, Thailand.
| | | | | | | | | | | |
Collapse
|
22
|
Hepworth PJ, Ashelford KE, Hinds J, Gould KA, Witney AA, Williams NJ, Leatherbarrow H, French NP, Birtles RJ, Mendonca C, Dorrell N, Wren BW, Wigley P, Hall N, Winstanley C. Genomic variations define divergence of water/wildlife-associated Campylobacter jejuni niche specialists from common clonal complexes. Environ Microbiol 2011; 13:1549-60. [PMID: 21418497 PMCID: PMC3569610 DOI: 10.1111/j.1462-2920.2011.02461.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Although the major food-borne pathogen Campylobacter jejuni has been isolated from diverse animal, human and environmental sources, our knowledge of genomic diversity in C. jejuni is based exclusively on human or human food-chain-associated isolates. Studies employing multilocus sequence typing have indicated that some clonal complexes are more commonly associated with particular sources. Using comparative genomic hybridization on a collection of 80 isolates representing diverse sources and clonal complexes, we identified a separate clade comprising a group of water/wildlife isolates of C. jejuni with multilocus sequence types uncharacteristic of human food-chain-associated isolates. By genome sequencing one representative of this diverse group (C. jejuni 1336), and a representative of the bank-vole niche specialist ST-3704 (C. jejuni 414), we identified deletions of genomic regions normally carried by human food-chain-associated C. jejuni. Several of the deleted regions included genes implicated in chicken colonization or in virulence. Novel genomic insertions contributing to the accessory genomes of strains 1336 and 414 were identified. Comparative analysis using PCR assays indicated that novel regions were common but not ubiquitous among the water/wildlife group of isolates, indicating further genomic diversity among this group, whereas all ST-3704 isolates carried the same novel accessory regions. While strain 1336 was able to colonize chicks, strain 414 was not, suggesting that regions specifically absent from the genome of strain 414 may play an important role in this common route of Campylobacter infection of humans. We suggest that the genomic divergence observed constitutes evidence of adaptation leading to niche specialization.
Collapse
Affiliation(s)
- Philip J Hepworth
- Institute of Infection and Global Health Institute of Integrative Biology National Centre for Zoonosis Research, University of Liverpool, Liverpool L69 3GA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The polysaccharide capsule (CPS) of Campylobacter jejuni is the major serodeterminant of the Penner serotyping scheme. There are 47 Penner serotypes of C. jejuni, 22 of which fall into complexes of related serotypes. A multiplex PCR method for determination of capsule types of Campylobacter jejuni which is simpler and more affordable than classical Penner typing was developed. Primers specific for each capsule type were designed on the basis of a database of gene sequences from the variable capsule loci of 8 strains of major serotypes sequenced in this study and 10 published sequences of other serotypes. DNA sequence analysis revealed a mosaic nature of the capsule loci, suggesting reassortment of genes by horizontal transfer, and demonstrated a high degree of conservation of genes within Penner complexes. The multiplex PCR can distinguish 17 individual serotypes in two PCRs with sensitivities and specificities ranging from 90 to 100% using 244 strains of known Penner type.
Collapse
|
24
|
Identification of essential genes in C. jejuni genome highlights hyper-variable plasticity regions. Funct Integr Genomics 2011; 11:241-57. [PMID: 21344305 DOI: 10.1007/s10142-011-0214-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2010] [Revised: 01/31/2011] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
Abstract
A microarray transposon-based tracking approach was used to identify Campylobacter jejuni genes which are required for cell growth at 37°C, under a microaerophilic atmosphere and on a rich Mueller-Hinton medium. A transposon-based mutant library, comprised of 7,201 individual mutants was constructed, representing 4.48× coverage of the genome. An analysis of genes lacking a transposon insertion revealed 195 essential gene candidates. The function of these genes represent many of the expected core functions of the cell, such as energy metabolism, macromolecule and cofactor biosynthesis, cell structural proteins as well as basic cell processes. Forty-nine hypothetical proteins were also identified, further underlining the importance of currently unknown proteins and pathways within C. jejuni. Unlike other bacteria, the essential genes were not uniformly distributed along the chromosome with three main regions lacking essential genes. These particular regions corresponded to known hyper-variable plasticity regions of C. jejuni genome indicating, as expected, that these regions are dispensable in any given C. jejuni strain. Overall, this work identified dispensable and essential genes in C. jejuni that will ultimately lead to a better understanding of Campylobacter physiology.
Collapse
|
25
|
Zhang M, He L, Li Q, Sun H, Gu Y, You Y, Meng F, Zhang J. Genomic characterization of the Guillain-Barre syndrome-associated Campylobacter jejuni ICDCCJ07001 Isolate. PLoS One 2010; 5:e15060. [PMID: 21124772 PMCID: PMC2993937 DOI: 10.1371/journal.pone.0015060] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2010] [Accepted: 10/20/2010] [Indexed: 11/19/2022] Open
Abstract
Campylobacter jejuni ICDCCJ07001 (HS:41, ST2993) was isolated from a Guillain-Barré syndrome (GBS) patient during a 36-case GBS outbreak triggered by C. jejuni infections in north China in 2007. Sequence analysis revealed that the ICDCCJ07001 genome consisted of 1,664,840 base pairs (bp) and one tetracycline resistance plasmid of 44,084 bp. The GC content was 59.29% and 1,579 and 37 CDSs were identified on the chromosome and plasmid, respectively. The ICDCCJ07001 genome was compared to C. jejuni subsp. jejuni strains 81-176, 81116, NCTC11168, RM1221 and C. jejuni subsp. doylei 269.97. The length and organization of ICDCCJ07001 was similar to that of NCTC11168, 81-176 and 81-116 except that CMLP1 had a reverse orientation in strain ICDCCJ07001. Comparative genomic analyses were also carried out between GBS-associated C. jejuni strains. Thirteen common genes were present in four GBS-associated strains and 9 genes mapped to the LOS cluster and the ICDCCJ07001_pTet (44 kb) plasmid was mosaic in structure. Thirty-seven predicted CDS in ICDCCJ07001_pTet were homologous to genes present in three virulence-associated plasmids in Campylobacter: 81-176_pTet, pCC31 and 81-176_pVir. Comparative analysis of virulence loci and virulence-associated genes indicated that the LOS biosynthesis loci of ICDCCJ07001 belonged to type A, previously reported to be associated with cases of GBS. The polysaccharide capsular biosynthesis (CPS) loci and the flagella modification (FM) loci of ICDCCJ07001 were similar to corresponding sequences of strain 260.94 of similar serotype as strain ICDCCJ07001. Other virulence-associated genes including cadF, peb1, jlpA, cdt and ciaB were conserved between the C. jejuni strains examined.
Collapse
Affiliation(s)
- Maojun Zhang
- Department of Communicable Disease Diagnostics (DCDD), Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Lihua He
- Department of Communicable Disease Diagnostics (DCDD), Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Qun Li
- Office for Disease Control and Emergency Response, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Honghe Sun
- Department of Applied Medical Science, Beijing Genomics Institute (BGI), Beijing, China
| | - Yixin Gu
- Department of Communicable Disease Diagnostics (DCDD), Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yuanhai You
- Department of Communicable Disease Diagnostics (DCDD), Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Fanliang Meng
- Department of Communicable Disease Diagnostics (DCDD), Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Jianzhong Zhang
- Department of Communicable Disease Diagnostics (DCDD), Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
26
|
Friis C, Wassenaar TM, Javed MA, Snipen L, Lagesen K, Hallin PF, Newell DG, Toszeghy M, Ridley A, Manning G, Ussery DW. Genomic characterization of Campylobacter jejuni strain M1. PLoS One 2010; 5:e12253. [PMID: 20865039 PMCID: PMC2928727 DOI: 10.1371/journal.pone.0012253] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2010] [Accepted: 07/22/2010] [Indexed: 11/18/2022] Open
Abstract
Campylobacter jejuni strain M1 (laboratory designation 99/308) is a rarely documented case of direct transmission of C. jejuni from chicken to a person, resulting in enteritis. We have sequenced the genome of C. jejuni strain M1, and compared this to 12 other C. jejuni sequenced genomes currently publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core genome comprised 1,295 gene families, or about two-thirds of the gene content of the average of the sequenced C. jejuni genomes. Various comparison and visualization tools were applied to the 13 C. jejuni genome sequences, including a species pan- and core genome plot, a BLAST Matrix and a BLAST Atlas. Trees based on 16S rRNA sequences and on the total gene families in each genome are presented. The findings are discussed in the background of the proven virulence potential of M1.
Collapse
Affiliation(s)
- Carsten Friis
- Department of Systems Biology, The Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Haddad N, Marce C, Magras C, Cappelier JM. An overview of methods used to clarify pathogenesis mechanisms of Campylobacter jejuni. J Food Prot 2010; 73:786-802. [PMID: 20377972 DOI: 10.4315/0362-028x-73.4.786] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
Abstract
Thermotolerant campylobacters are the most frequent cause of bacterial infection of the lower intestine worldwide. The mechanism of pathogenesis of Campylobacter jejuni comprises four main stages: adhesion to intestinal cells, colonization of the digestive tract, invasion of targeted cells, and toxin production. In response to the high number of cases of human campylobacteriosis, various virulence study models are available according to the virulence stage being analyzed. The aim of this review is to compare the different study models used to look at human disease. Molecular biology tools used to identify genes or proteins involved in virulence mechanisms are also summarized. Despite high cost and limited availability, animal models are frequently used to study digestive disease, in particular to analyze the colonization stage. Eukaryotic cell cultures have been developed because of fewer restrictions on their use and the lower cost of these cultures compared with animal models, and this ex vivo approach makes it possible to mimic the bacterial cell-host interactions observed in natural disease cases. Models are complemented by molecular biology tools, especially mutagenesis and DNA microarray methods to identify putative virulence genes or proteins and permit their characterization. No current model seems to be ideal for studying the complete range of C. jejuni virulence. However, the models available deal with different aspects of the complex pathogenic mechanisms particular to this bacterium.
Collapse
Affiliation(s)
- N Haddad
- Unit INRA 1014 SECALIM, National Veterinary School of Nantes, Route de Gachet, Nantes cedex 3, France
| | | | | | | |
Collapse
|
28
|
Imelfort M, Edwards D. De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 2009; 10:609-18. [DOI: 10.1093/bib/bbp039] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
|
29
|
Characterization of a Campylobacter jejuni VirK protein homolog as a novel virulence determinant. Infect Immun 2009; 77:5428-36. [PMID: 19797067 DOI: 10.1128/iai.00528-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023] Open
Abstract
Campylobacter jejuni is a leading cause of food-borne illness in the United States. Despite significant recent advances, its mechanisms of pathogenesis are poorly understood. A unique feature of this pathogen is that, with some exceptions, it lacks homologs of known virulence factors from other pathogens. Through a genetic screen, we have identified a C. jejuni homolog of the VirK family of virulence factors, which is essential for antimicrobial peptide resistance and mouse virulence.
Collapse
|
30
|
Scott NE, Bogema DR, Connolly AM, Falconer L, Djordjevic SP, Cordwell SJ. Mass Spectrometric Characterization of the Surface-Associated 42 kDa Lipoprotein JlpA as a Glycosylated Antigen in Strains of Campylobacter jejuni. J Proteome Res 2009; 8:4654-64. [DOI: 10.1021/pr900544x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nichollas E. Scott
- School of Molecular and Microbial Biosciences, The University of Sydney, Australia 2006, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden, Australia 2570, School of Biological Sciences, University of Wollongong, Wollongong, Australia 2522, and Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia 2006
| | - Daniel R. Bogema
- School of Molecular and Microbial Biosciences, The University of Sydney, Australia 2006, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden, Australia 2570, School of Biological Sciences, University of Wollongong, Wollongong, Australia 2522, and Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia 2006
| | - Angela M. Connolly
- School of Molecular and Microbial Biosciences, The University of Sydney, Australia 2006, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden, Australia 2570, School of Biological Sciences, University of Wollongong, Wollongong, Australia 2522, and Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia 2006
| | - Linda Falconer
- School of Molecular and Microbial Biosciences, The University of Sydney, Australia 2006, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden, Australia 2570, School of Biological Sciences, University of Wollongong, Wollongong, Australia 2522, and Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia 2006
| | - Steven P. Djordjevic
- School of Molecular and Microbial Biosciences, The University of Sydney, Australia 2006, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden, Australia 2570, School of Biological Sciences, University of Wollongong, Wollongong, Australia 2522, and Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia 2006
| | - Stuart J. Cordwell
- School of Molecular and Microbial Biosciences, The University of Sydney, Australia 2006, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Camden, Australia 2570, School of Biological Sciences, University of Wollongong, Wollongong, Australia 2522, and Discipline of Pathology, School of Medical Sciences, The University of Sydney, Australia 2006
| |
Collapse
|
31
|
Rathbun KM, Hall JE, Thompson SA. Cj0596 is a periplasmic peptidyl prolyl cis-trans isomerase involved in Campylobacter jejuni motility, invasion, and colonization. BMC Microbiol 2009; 9:160. [PMID: 19664234 PMCID: PMC2782263 DOI: 10.1186/1471-2180-9-160] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2009] [Accepted: 08/08/2009] [Indexed: 12/01/2022] Open
Abstract
Background Campylobacter jejuni is a gastrointestinal pathogen of humans, but part of the normal flora of poultry, and therefore grows well at the respective body temperatures of 37°C and 42°C. Proteomic studies on temperature regulation in C. jejuni strain 81–176 revealed the upregulation at 37°C of Cj0596, a predicted periplasmic chaperone that is similar to proteins involved in outer membrane protein folding and virulence in other bacteria. Results The cj0596 gene was highly conserved in 24 strains and species of Campylobacter, implying the importance of this gene. To study the role that Cj0596 plays in C. jejuni pathogenesis, a mutant derivative of strain 81–176 was constructed in which the cj0596 gene was precisely deleted. A revertant of this mutant was isolated by restoring the gene to its original chromosomal location using streptomycin counterselection. The cj0596 mutant strain demonstrated a slightly decreased growth rate and lower final growth yield, yet was more motile and more invasive of human intestinal epithelial cells than wild-type. In either single or mixed infections, the mutant was less able to colonize mice than 81–176. The cj0596 mutant also expressed altered levels of several proteins. Conclusion Mutation of cj0596 has an effect on phenotypes related to C. jejuni pathogenesis, probably due to its role in the proper folding of critical outer membrane proteins.
Collapse
Affiliation(s)
- Kimberly M Rathbun
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA.
| | | | | |
Collapse
|
32
|
Scott NE, Cordwell SJ. Campylobacter proteomics: guidelines, challenges and future perspectives. Expert Rev Proteomics 2009; 6:61-74. [PMID: 19210127 DOI: 10.1586/14789450.6.1.61] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
Campylobacter species are a major cause of disease in mammalian systems. The most common human etiological agent within this genus is Campylobacter jejuni - the leading cause of bacterial gastroenteritis in the developed world. While this organism has been extensively studied at the cellular level, and the genome sequences of several strains have now been elucidated, little is known regarding the role of individual proteins in virulence processes, such as adhesion, colonization and toxicity towards host cells. Proteomics encompasses the global analysis of proteins at the organism level. The technologies included under this term have now started to be utilized for understanding how Campylobacter species respond to changes in the environment, with an emphasis on the human host, as well as to map subcellular locations of proteins, in particular those that are surface-associated. C. jejuni is also of great significance as, unlike most other bacteria, it is able to post-translationally modify its proteins. The analysis of such proteins represents a major challenge in understanding this organism at the proteomic and cellular levels. This review will examine the state-of-the-art in Campylobacter proteomics, as well as provide insights into strategies that need to be undertaken to provide a comprehensive understanding of this organism at the molecular and functional level.
Collapse
Affiliation(s)
- Nichollas E Scott
- School of Molecular and Microbial Biosciences, Building GO8, Maze Crescent, The University of Sydney, Australia.
| | | |
Collapse
|
33
|
Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni. Appl Environ Microbiol 2009; 75:5064-73. [PMID: 19502436 DOI: 10.1128/aem.00149-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023] Open
Abstract
Arsenic is commonly present in the natural environment and is also used as a feed additive for animal production. Poultry is a major reservoir for Campylobacter jejuni, a major food-borne human pathogen causing gastroenteritis. It has been shown that Campylobacter isolates from poultry are highly resistant to arsenic compounds, but the molecular mechanisms responsible for the resistance have not been determined, and it is unclear if the acquired arsenic resistance affects the susceptibility of Campylobacter spp. to other antimicrobials. In this study, we identified a four-gene operon that contributes to arsenic resistance in Campylobacter. This operon encodes a putative membrane permease (ArsP), a transcriptional repressor (ArsR), an arsenate reductase (ArsC), and an efflux protein (Acr3). PCR analysis of various clinical C. jejuni isolates indicated a significant association of this operon with elevated resistance to arsenite and arsenate. Gene-specific mutagenesis confirmed the role of the ars operon in conferring arsenic resistance. It was further shown that this operon is subject to regulation by ArsR, which directly binds to the ars promoter and inhibits the transcription of the operon. Arsenite inhibits the binding of ArsR to the ars promoter DNA and induces the expression of the ars genes. Mutation of the ars genes did not affect the susceptibility of C. jejuni to commonly used antibiotics. These results identify the ars operon as an important mechanism for arsenic resistance and sensing in Campylobacter.
Collapse
|
34
|
Jagusztyn-Krynicka EK, Łaniewski P, Wyszyńska A. Update on Campylobacter jejuni vaccine development for preventing human campylobacteriosis. Expert Rev Vaccines 2009; 8:625-45. [PMID: 19397419 DOI: 10.1586/erv.09.21] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
Campylobacteriosis constitutes a serious medical and socioeconomic problem worldwide. Rapidly increasing antibiotic resistance of bacterial strains compels us to develop alternative therapeutic strategies and to search for efficient immunoprophylactic methods. The vast majority of Campylobacter infections in developed countries occur as sporadic cases, mainly caused by eating undercooked Campylobacter-contaminated poultry. The most efficient strategy of decreasing the number of human Campylobacter infections is by implementing protective vaccinations for humans and/or chickens. Despite more than 10 years of research, an effective anti-Campylobacter vaccine has not been developed. This review highlights our increasing knowledge of Campylobacter interaction with host cells and focuses on recently published data describing the efficacy of anti-Campylobacter vaccine prototypes.
Collapse
|
35
|
Functional characterization of excision repair and RecA-dependent recombinational DNA repair in Campylobacter jejuni. J Bacteriol 2009; 191:3785-93. [PMID: 19376866 DOI: 10.1128/jb.01817-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The presence and functionality of DNA repair mechanisms in Campylobacter jejuni are largely unknown. In silico analysis of the complete translated genome of C. jejuni NCTC 11168 suggests the presence of genes involved in methyl-directed mismatch repair (MMR), nucleotide excision repair, base excision repair (BER), and recombinational repair. To assess the functionality of these putative repair mechanisms in C. jejuni, mutS, uvrB, ung, and recA knockout mutants were constructed and analyzed for their ability to repair spontaneous point mutations, UV irradiation-induced DNA damage, and nicked DNA. Inactivation of the different putative DNA repair genes did not alter the spontaneous mutation frequency. Disruption of the UvrB and RecA orthologues, but not the putative MutS or Ung proteins, resulted in a significant reduction in viability after exposure to UV irradiation. Assays performed with uracil-containing plasmid DNA showed that the putative uracil-DNA glycosylase (Ung) protein, important for initiation of the BER pathway, is also functional in C. jejuni. Inactivation of recA also resulted in a loss of natural transformation. Overall, the data indicate that C. jejuni has multiple functional DNA repair systems that may protect against DNA damage and limit the generation of genetic diversity. On the other hand, the apparent absence of a functional MMR pathway may enhance the frequency of on-and-off switching of phase variable genes typical for C. jejuni and may contribute to the genetic heterogeneity of the C. jejuni population.
Collapse
|
36
|
Duong T, Konkel ME. Comparative studies of Campylobacter jejuni genomic diversity reveal the importance of core and dispensable genes in the biology of this enigmatic food-borne pathogen. Curr Opin Biotechnol 2009; 20:158-65. [PMID: 19346123 DOI: 10.1016/j.copbio.2009.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2008] [Revised: 03/02/2009] [Accepted: 03/09/2009] [Indexed: 11/19/2022]
Abstract
MLST, DNA microarrays, and genome sequencing has allowed for a greater understanding of the metabolic capacity and epidemiology of Campylobacter jejuni. While strain-specific genes may provide an isolate a selective advantage in environments and contribute to the organism's pathogenicity, recent work indicates that C. jejuni pathogenicity is dictated by variations in the nucleotide sequence of core genes. Challenges facing C. jejuni researchers include determining (a) the degree to which genomic diversity enables this bacterium to persist in particular environments; (b) if C. jejuni virulence and disease severity can be predicted on the basis of genotype; (c) the set of core and variable genes whose products contribute to virulence; and (d) the genes in which nucleotide changes can affect a strain's pathogenicity.
Collapse
Affiliation(s)
- Tri Duong
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|
37
|
Monteiro MA, Baqar S, Hall ER, Chen YH, Porter CK, Bentzel DE, Applebee L, Guerry P. Capsule polysaccharide conjugate vaccine against diarrheal disease caused by Campylobacter jejuni. Infect Immun 2009; 77:1128-36. [PMID: 19114545 PMCID: PMC2643618 DOI: 10.1128/iai.01056-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2008] [Revised: 10/31/2008] [Accepted: 12/20/2008] [Indexed: 11/20/2022] Open
Abstract
The capsule polysaccharide (CPS) of Campylobacter jejuni is one of the few identified virulence determinants of this important human pathogen. Since CPS conjugate vaccines have been so effective against other mucosal pathogens, we evaluated this approach using CPSs from two strains of C. jejuni, 81-176 (HS23 and HS36 serotype complex) and CG8486 (HS4 serotype complex). The CPSs of 81-176 and CG8486 were independently linked to the carrier protein CRM(197) by reductive amination between an aldehyde(s), strategically created at the nonreducing end of each CPS, and accessible amines of CRM(197). In both cases, the CPS:CRM(197) ratio used was 2:1 by weight. Mass spectrometry and gel electrophoresis showed that on average, each glycoconjugate preparation contained, at least in part, two to five CPSs attached to one CRM(197). When administered subcutaneously to mice, these vaccines elicited robust immune responses and significantly reduced the disease following intranasal challenge with the homologous strains of C. jejuni. The CPS(81-176)-CRM(197) vaccine also provided 100% protection against diarrhea in the New World monkey Aotus nancymaae following orogastric challenge with C. jejuni 81-176.
Collapse
Affiliation(s)
- Mario A Monteiro
- Dept of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wine E, Chan VL, Sherman PM. Campylobacter jejuni mediated disruption of polarized epithelial monolayers is cell-type specific, time dependent, and correlates with bacterial invasion. Pediatr Res 2008; 64:599-604. [PMID: 18679160 DOI: 10.1203/pdr.0b013e31818702b9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
The precise mechanism by which the most common cause of bacterial enterocolitis in humans, Campylobacter jejuni, perturbs the intestinal mucosa remains elusive. To define effects of C. jejuni infection on mucosal permeability, Madin-Darby canine kidney (MDCK)-I and T84 cell monolayers were infected with C. jejuni for up to 48 h. All three tested C. jejuni strains caused a 73-78% reduction in transepithelial electrical resistance (TER) in intestinal (T84) cell monolayers, whereas only one strain slightly reduced TER of MDCK-I cells by 25% after 48 h infection. Infection with C. jejuni strains also caused a 2.3-4.5-fold increase in dextran permeability, but only in T84 cells. C. jejuni infection of monolayers also caused morphologic changes in desmosomes, observed by transmission electron microscopy. The cell-type specificity, demonstrated by increased T84 monolayer permeability, correlated with higher bacterial invasion into these cells, relative to MDCK-I cells. In T84 cells, invasion and bacterial translocation preceded barrier disruption and inhibition of C. jejuni invasion using a pharmacological inhibitor of phosphoinositide 3-kinase, reduced the drop in TER. These findings suggest that C. jejuni disruption of monolayers is mediated by invasion, provide new insights into C. jejuni-host epithelial barrier interactions, and offer potential mechanisms of intestinal injury and chronic immune stimulation.
Collapse
Affiliation(s)
- Eytan Wine
- Department of Paediatrics, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | | | | |
Collapse
|
39
|
Hofreuter D, Novik V, Galán JE. Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe 2008; 4:425-33. [PMID: 18996343 DOI: 10.1016/j.chom.2008.10.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2008] [Revised: 09/15/2008] [Accepted: 10/02/2008] [Indexed: 11/19/2022]
Abstract
Campylobacter jejuni is a leading cause of foodborne illness in industrialized countries. This pathogen exhibits significant strain-to-strain variability, which results in differences in virulence potential and clinical presentations. Here, we report that acquisition of the capacity to utilize specific nutrients enhanced the ability of a highly pathogenic strain of C. jejuni to colonize specific tissues. The acquisition of a gene encoding a gamma-glutamyltranspeptidase enabled this strain to utilize glutamine and glutathione and enhanced its ability to colonize the intestine. Furthermore, the acquisition of a DNA segment, which added a sec-dependent secretion signal to an otherwise cytoplasmic asparaginase, allowed this pathogen to utilize asparagine and to more efficiently colonize the liver. Our results reveal that subtle genetic changes in a bacterial pathogen result in significant changes in its ability to colonize specific tissues. In addition, these studies revealed remarkably specific nutritional requirements for a pathogen to effectively colonize different tissues.
Collapse
Affiliation(s)
- Dirk Hofreuter
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | | | | |
Collapse
|
40
|
Characterization of two Campylobacter jejuni strains for use in volunteer experimental-infection studies. Infect Immun 2008; 76:5655-67. [PMID: 18809665 DOI: 10.1128/iai.00780-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
The development of vaccines against Campylobacter jejuni would be facilitated by the ability to perform phase II challenge studies. However, molecular mimicry of the lipooligosaccharide (LOS) of most C. jejuni strains with human gangliosides presents safety concerns about the development of Guillain-Barré syndrome. Clinical isolates of C. jejuni that appeared to lack genes for the synthesis of ganglioside mimics were identified by DNA probe analyses. Two clinical isolates from Southeast Asia (strains BH-01-0142 and CG8421) were determined to express the LOS type containing N-acetyl quinovosamine. No ganglioside structures were observed to be present in the LOSs of these strains, and pyrosequence analyses of the genomes of both strains confirmed the absence of genes involved in ganglioside mimicry. The capsule polysaccharide (CPS) of BH-01-0142 was determined to be composed of galactose (Gal), 6-deoxy-ido-heptose, and, in smaller amounts, D-glycero-D-ido-heptose, and the CPS of CG8421 was observed to contain Gal, 6-deoxy-altro-heptose, N-acetyl-glucosamine, and minor amounts of 6-deoxy-3-O-Me-altro-heptose. Both CPSs were shown to carry O-methyl-phosphoramidate. The two genomes contained strain-specific zones, some of which could be traced to a plasmid origin, and both contained a large chromosomal insertion related to the CJEI3 element of C. jejuni RM1221. The genomes of both strains shared a high degree of similarity to each other and, with the exception of the capsule locus of CG8421, to the type strain of the HS3 serotype, TGH9011.
Collapse
|
41
|
Guerry P, Szymanski CM. Campylobacter sugars sticking out. Trends Microbiol 2008; 16:428-35. [PMID: 18707886 DOI: 10.1016/j.tim.2008.07.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2008] [Revised: 07/01/2008] [Accepted: 07/03/2008] [Indexed: 12/01/2022]
Abstract
The amazing repertoire of glycoconjugates that are found in Campylobacter jejuni includes lipooligosaccharides mimicking human glycolipids, capsular polysaccharides with complex and unusual sugars, and proteins that are post-translationally modified with either O- or N-linked glycans. Thus, the glycome of this important food-borne pathogen is an excellent toolbox for glycobiologists to understand the fundamentals of these pathways and their role in host-microbe interactions, develop new techniques for glycobiology and exploit these pathways for novel diagnostics and therapeutics. The exciting surge in recent research activities will be summarized in this review.
Collapse
Affiliation(s)
- Patricia Guerry
- Enteric Diseases Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | | |
Collapse
|
42
|
Hiett KL, Stintzi A, Andacht TM, Kuntz RL, Seal BS. Genomic differences between Campylobacter jejuni isolates identify surface membrane and flagellar function gene products potentially important for colonizing the chicken intestine. Funct Integr Genomics 2008; 8:407-20. [PMID: 18592283 DOI: 10.1007/s10142-008-0087-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2008] [Revised: 05/21/2008] [Accepted: 06/01/2008] [Indexed: 11/27/2022]
Abstract
Campylobacter spp. are one of the leading bacterial etiologic agents of acute human gastroenteritis among industrialized countries. Poultry are implicated as a major source of the organism for human illness; however, the factors involved with colonization of poultry gastrointestinal systems remain unclear. Genomics and proteomics analyses were used to identify differences between poor- versus robust-colonizing Campylobacter jejuni isolates, 11168(GS) and A74/C, respectively. Sequence analyses of subtracted DNA resulted in A74/C-specifc genes similar to a dimethyl sulfoxide reductase, a serine protease, polysaccharide modification proteins, and restriction modification proteins. DNA microarray analyses were performed for comparison of A74/C to the complete genome sequences published for two C. jejuni. A total of 114 genes (7.1%) were determined absent from A74/C relative to those genomes. Additionally, proteomics was completed on both soluble and membrane protein extracts from 11168(GS) and A74/C. Variation in protein expression and physical characteristics such as pI was detected between the two isolates that included the major outer membrane protein, flagella, and aconitate hydratase. Several proteins including cysteine synthase and a Ni/Fe hydrogenase were determined to be differentially present between the two isolates. Finally, DNA hybridization analyses of 19 C. jejuni isolates recovered from chickens and humans worldwide over the past 20 years were performed to determine the distribution of a subset of differentially identified gene sequences.
Collapse
Affiliation(s)
- Kelli L Hiett
- Agricultural Research Service, Poultry Microbiological Safety Research Unit, Russell Research Center, United States Department of Agriculture, P.O. Box 5677, Athens, GA, 30604-5677, USA.
| | | | | | | | | |
Collapse
|
43
|
|
44
|
The chemical structure and genetic locus of Campylobacter jejuni CG8486 (serotype HS:4) capsular polysaccharide: the identification of 6-deoxy-d-ido-heptopyranose. Carbohydr Res 2008; 343:1034-40. [DOI: 10.1016/j.carres.2008.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2008] [Revised: 02/25/2008] [Accepted: 02/27/2008] [Indexed: 11/22/2022]
|
45
|
Immunogenicity and protective efficacy of recombinant Campylobacter jejuni flagellum-secreted proteins in mice. Infect Immun 2008; 76:3170-5. [PMID: 18426878 DOI: 10.1128/iai.00076-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Immunogenicity and protective efficacy of three Campylobacter jejuni flagellum-secreted proteins, FlaC, FspA1, and FspA2, were compared by use of a mouse model. Mice were immunized intranasally with each protein with or without LTR192G as the adjuvant and challenged intranasally with C. jejuni 81-176 or CG8486. All three proteins were immunogenic, although FspA1 induced the highest levels of serum immunoglobulin G (IgG) and fecal IgA. Although immunogenic, FlaC provided only 18% protection against disease from C. jejuni 81-176. Immunization with FspA1 resulted in 57.8% protection without adjuvant or 63.8% protection with adjuvant against homologous challenge with 81-176. Alternatively, immunization with FspA2 provided 38.4% (without adjuvant) or 47.2% (with adjuvant) protection against disease from homologous challenge with CG8486. In contrast to FspA2, FspA1 provided some heterologous protection against C. jejuni CG8486 when delivered with (31.2%) or without (44.8%) LTR192G. These results suggest that FspA1 may be a good subunit vaccine candidate against C. jejuni disease.
Collapse
|
46
|
Competing isogenic Campylobacter strains exhibit variable population structures in vivo. Appl Environ Microbiol 2008; 74:3857-67. [PMID: 18424530 DOI: 10.1128/aem.02835-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Consumption of poultry contaminated with Campylobacter jejuni is a risk factor for human gastrointestinal disease. The rational development of control strategies for Campylobacter within chickens requires an understanding of the colonization process at the molecular and population levels, both within and between hosts. Experiments employing competing strains of Campylobacter have been used to investigate colonization. Implicit in these studies is the assumption that the behavior of competing strains is reproducible between experiments. Variability in the recovery of mutants from the chicken gastrointestinal tract during signature-tagged mutagenesis studies demonstrated that this is not always the case. To further investigate this phenomenon in the absence of confounding factors due to phenotypic differences between mutants, we constructed individually identifiable wild-type isogenic tagged strains (WITS) that have indistinguishable phenotypes in pure culture. By using mixtures of WITS, it is possible to monitor the relative amounts of subpopulations of essentially wild-type bacteria. Using a 2-week-old chicken model of colonization, we observed unpredictable variations in population structure both within and between experiments, even in the simplest case of two competing strains. This variation occurred both when birds were simultaneously infected with two WITS and when birds inoculated with different WITS were cohoused. We present evidence for founder effects during initial colonization with subsequent bird-to-bird transmission. We suggest that these and phenotypic variation contribute to the observed variability. These factors render simple models of colonization which do not take them into account inappropriate for Campylobacter and impact the planning and interpretation of competition experiments using this organism.
Collapse
|
47
|
Pop M, Salzberg SL. Bioinformatics challenges of new sequencing technology. Trends Genet 2008; 24:142-9. [DOI: 10.1016/j.tig.2007.12.006] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 12/24/2022]
|
48
|
The impact of next-generation sequencing technology on genetics. Trends Genet 2008; 24:133-41. [PMID: 18262675 DOI: 10.1016/j.tig.2007.12.007] [Citation(s) in RCA: 1163] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2007] [Revised: 12/15/2007] [Accepted: 12/17/2007] [Indexed: 12/20/2022]
Abstract
If one accepts that the fundamental pursuit of genetics is to determine the genotypes that explain phenotypes, the meteoric increase of DNA sequence information applied toward that pursuit has nowhere to go but up. The recent introduction of instruments capable of producing millions of DNA sequence reads in a single run is rapidly changing the landscape of genetics, providing the ability to answer questions with heretofore unimaginable speed. These technologies will provide an inexpensive, genome-wide sequence readout as an endpoint to applications ranging from chromatin immunoprecipitation, mutation mapping and polymorphism discovery to noncoding RNA discovery. Here I survey next-generation sequencing technologies and consider how they can provide a more complete picture of how the genome shapes the organism.
Collapse
|
49
|
CmeR functions as a pleiotropic regulator and is required for optimal colonization of Campylobacter jejuni in vivo. J Bacteriol 2008; 190:1879-90. [PMID: 18178742 DOI: 10.1128/jb.01796-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
CmeR functions as a transcriptional repressor modulating the expression of the multidrug efflux pump CmeABC in Campylobacter jejuni. To determine if CmeR also regulates other genes in C. jejuni, we compared the transcriptome of the cmeR mutant with that of the wild-type strain using a DNA microarray. This comparison identified 28 genes that showed a > or = 2-fold change in expression in the cmeR mutant. Independent real-time quantitative reverse transcription-PCR experiments confirmed 27 of the 28 differentially expressed genes. The CmeR-regulated genes encode membrane transporters, proteins involved in C4-dicarboxylate transport and utilization, enzymes for biosynthesis of capsular polysaccharide, and hypothetical proteins with unknown functions. Among the genes whose expression was upregulated in the cmeR mutant, Cj0561c (encoding a putative periplasmic protein) showed the greatest increase in expression. Subsequent experiments demonstrated that this gene is strongly repressed by CmeR. The presence of the known CmeR-binding site, an inverted repeat of TGTAAT, in the promoter region of Cj0561c suggests that CmeR directly inhibits the transcription of Cj0561c. Similar to expression of cmeABC, transcription of Cj0561c is strongly induced by bile compounds, which are normally present in the intestinal tracts of animals. Inactivation of Cj0561c did not affect the susceptibility of C. jejuni to antimicrobial compounds in vitro but reduced the fitness of C. jejuni in chickens. Loss-of-function mutation of cmeR severely reduced the ability of C. jejuni to colonize chickens. Together, these findings indicate that CmeR governs the expression of multiple genes with diverse functions and is required for Campylobacter adaptation in the chicken host.
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Molecular pathogenesis of Campylobacter jejuni has lagged behind that of other enteric pathogens. This review summarizes advances in the biology and pathogenesis of C. jejuni. RECENT FINDINGS Multiple genome sequences have defined conserved and hypervariable loci in the C. jejuni genome. Interaction of C. jejuni with eukaryotic cells results in numerous signal transduction changes and release of proinflammatory cytokines. In-vivo models based on immune knockout mice have also revealed new information on pathogenesis. SUMMARY New information and new methods are available that should provide important tools to further understand pathogenesis of this elusive pathogen.
Collapse
|