1
|
Kaku M, Ishidaira M, Satoh S, Ozaki M, Kohari D, Chohnan S. Fatty Acid Production by Enhanced Malonyl-CoA Supply in Escherichia coli. Curr Microbiol 2022; 79:269. [PMID: 35881256 DOI: 10.1007/s00284-022-02969-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/07/2022] [Indexed: 11/24/2022]
Abstract
The expression of exogenous genes encoding acetyl-CoA carboxylase (Acc) and pantothenate kinase (CoaA) in Escherichia coli enable highly effective fatty acid production. Acc-only strains grown at 37 °C or 23 °C produced an approximately twofold increase in fatty acid content, and additional expression of CoaA achieved a further twofold accumulation. In the presence of pantothenate, which is the starting material for the CoA biosynthetic pathway, the size of the intracellular CoA pool at 23 °C was comparable to that at 30 °C during cultivation, and more than 500 mg/L of culture containing cellular fatty acids was produced, even at 23 °C. However, the highest yield of cellular fatty acids (1100 mg/L of culture) was produced in cells possessing the gene encoding type I bacterial fatty acid synthase (FasA) along with the acc and coaA, when the transformant was cultivated at 30 °C in M9 minimal salt medium without pantothenate or IPTG. This E. coli transformant contained 141 mg/L of oleic acid attributed to FasA under noninducible conditions. The increased fatty acid content was brought about by a greatly improved specific productivity of 289 mg/g of dry cell weight. Thus, the effectiveness of the foreign acc and coaA in fatty acid production was unambiguously confirmed at culture temperatures of 23 °C to 37 °C. Cofactor engineering in E. coli using the exogenous coaA and acc genes resulted in fatty acid production over 1 g/L of culture and could effectively function at 23 °C.
Collapse
Affiliation(s)
- Moena Kaku
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Mei Ishidaira
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Shusaku Satoh
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Miho Ozaki
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Daisuke Kohari
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Shigeru Chohnan
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan.
| |
Collapse
|
2
|
Yeh V, Goode A, Johnson D, Cowieson N, Bonev BB. The Role of Lipid Chains as Determinants of Membrane Stability in the Presence of Styrene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1348-1359. [PMID: 35045250 DOI: 10.1021/acs.langmuir.1c02332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biofermentative production of styrene from renewable carbon sources is crucially dependent on strain tolerance and viability at elevated styrene concentrations. Solvent-driven collapse of bacterial plasma membranes limits yields and is technologically restrictive. Styrene is a hydrophobic solvent that readily partitions into the membrane interior and alters membrane-chain order and packing. We investigate styrene incorporation into model membranes and the role lipid chains play as determinants of membrane stability in the presence of styrene. MD simulations reveal styrene phase separation followed by irreversible segregation into the membrane interior. Solid state NMR shows committed partitioning of styrene into the membrane interior with persistence of the bilayer phase up to 67 mol % styrene. Saturated-chain lipid membranes were able to retain integrity even at 80 mol % styrene, whereas in unsaturated lipid membranes, we observe the onset of a non-bilayer phase of small lipid aggregates in coexistence with styrene-saturated membranes. Shorter-chain saturated lipid membranes were seen to tolerate styrene better, which is consistent with observed chain length reduction in bacteria grown in the presence of small molecule solvents. Unsaturation at mid-chain position appears to reduce the membrane tolerance to styrene and conversion from cis- to trans-chain unsaturation does not alter membrane phase stability but the lipid order in trans-chains is less affected than cis.
Collapse
Affiliation(s)
- Vivien Yeh
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| | - Alice Goode
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| | - David Johnson
- Lucite International, Wilton Centre, Wilton, Redcar TS10 4RF, U.K
| | | | - Boyan B Bonev
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, U.K
| |
Collapse
|
3
|
Yeh V, Goode A, Eastham G, Rambo RP, Inoue K, Doutch J, Bonev BB. Membrane Stability in the Presence of Methacrylate Esters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9649-9657. [PMID: 32202793 DOI: 10.1021/acs.langmuir.9b03759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bioproduction of poly(methyl methacrylate) is a fast growing global industry that is limited by cellular toxicity of monomeric methacrylate intermediates to the producer strains. Maintaining high methacrylate concentrations during biofermentation, required by economically viable technologies, challenges bacterial membrane stability and cellular viability. Studying the stability of model lipid membranes in the presence of methacrylates offers unique molecular insights into the mechanisms of methacrylate toxicity, as well as into the fundamental structural bases of membrane assembly. We investigate the structure and stability of model membranes in the presence of high levels of methacrylate esters using solid-state nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS). Wide-line 31P NMR spectroscopy shows that butyl methacrylate (BMA) can be incorporated into the lipid bilayer at concentrations as high as 75 mol % without significantly disrupting membrane integrity and that lipid acyl chain composition can influence membrane tolerance and ability to accommodate BMA. Using high resolution 13C magic angle spinning (MAS) NMR, we show that the presence of 75 mol % BMA lowers the lipid main transition temperature by over 12 degrees, which suggests that BMA intercalates between the lipid chains, causing uncoupling of collective lipid motions that are typically dominated by chain trans-gauche isomerization. Potential uncoupling of the bilayer leaflets to accommodate a separate BMA subphase was not supported by the SAXS experiments, which showed that membrane thickness remained unchanged even at 80% BMA. Reduced X-ray scattering contrast at the polar/apolar interface suggests BMA localization in that region between the lipid molecules.
Collapse
Affiliation(s)
- Vivien Yeh
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Alice Goode
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Graham Eastham
- Lucite International, Wilton Centre, Wilton, Redcar TS10 4RF, United Kingdom
| | - Robert P Rambo
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Katsuaki Inoue
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - James Doutch
- Science and Technology Facilities Council, ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Boyan B Bonev
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
4
|
Cardiolipin synthases of Escherichia coli have phospholipid class specific phospholipase D activity dependent on endogenous and foreign phospholipids. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1345-1353. [DOI: 10.1016/j.bbalip.2018.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 11/23/2022]
|
5
|
Liu Y, Wang C, Yan J, Zhang W, Guan W, Lu X, Li S. Hydrogen peroxide-independent production of α-alkenes by OleTJE P450 fatty acid decarboxylase. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:28. [PMID: 24565055 PMCID: PMC3937522 DOI: 10.1186/1754-6834-7-28] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/10/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cytochrome P450 OleTJE from Jeotgalicoccus sp. ATCC 8456, a new member of the CYP152 peroxygenase family, was recently found to catalyze the unusual decarboxylation of long-chain fatty acids to form α-alkenes using H2O2 as the sole electron and oxygen donor. Because aliphatic α-alkenes are important chemicals that can be used as biofuels to replace fossil fuels, or for making lubricants, polymers and detergents, studies on OleTJE fatty acid decarboxylase are significant and may lead to commercial production of biogenic α-alkenes in the future, which are renewable and more environmentally friendly than petroleum-derived equivalents. RESULTS We report the H2O2-independent activity of OleTJE for the first time. In the presence of NADPH and O2, this P450 enzyme efficiently decarboxylates long-chain fatty acids (C12 to C20) in vitro when partnering with either the fused P450 reductase domain RhFRED from Rhodococcus sp. or the separate flavodoxin/flavodoxin reductase from Escherichia coli. In vivo, expression of OleTJE or OleTJE-RhFRED in different E. coli strains overproducing free fatty acids resulted in production of variant levels of multiple α-alkenes, with a highest total hydrocarbon titer of 97.6 mg·l-1. CONCLUSIONS The discovery of the H2O2-independent activity of OleTJE not only raises a number of fundamental questions on the monooxygenase-like mechanism of this peroxygenase, but also will direct the future metabolic engineering work toward improvement of O2/redox partner(s)/NADPH for overproduction of α-alkenes by OleTJE.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Jinyong Yan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Wei Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Wenna Guan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| | - Shengying Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong 266101, China
| |
Collapse
|
6
|
Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system. Appl Microbiol Biotechnol 2012; 97:1501-11. [DOI: 10.1007/s00253-012-4358-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
|
7
|
Mora-Buyé N, Faijes M, Planas A. An engineered E.coli strain for the production of glycoglycerolipids. Metab Eng 2012; 14:551-9. [DOI: 10.1016/j.ymben.2012.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/12/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
|
8
|
Spitsmeister M, Adamberg K, Vilu R. UPLC/MS based method for quantitative determination of fatty acid composition in Gram-negative and Gram-positive bacteria. J Microbiol Methods 2010; 82:288-95. [PMID: 20621131 DOI: 10.1016/j.mimet.2010.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/02/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
Quantitative fatty acid composition of microorganisms at various growth space points is required for understanding membrane associated processes of cells, but the majority of the relevant publications still restrict to the relative compositions. In the current study, a simple and reliable method for quantitative measurement of fatty acid content in bacterial biomass without prior derivatization using ultra performance liquid chromatography-electrospray ionization mass spectrometry was developed. The method was applied for investigating the influence of specific growth rate and pH on the fatty acid profiles of two biotechnologically important microorganisms - Gram-negative bacteria Escherichia coli and Gram-positive bacteria Lactococcus lactis grown in controlled physiological states. It was found that the membranes of slowly growing cells are more rigid and that the fatty acid fraction of the cells of L. lactis diminishes considerably with increasing growth rate.
Collapse
Affiliation(s)
- Merli Spitsmeister
- Competence Centre of Food and Fermentation Technologies, Akadeemia tee 15, 12618, Tallinn, Estonia
| | | | | |
Collapse
|
9
|
Tang YJ, Sapra R, Joyner D, Hazen TC, Myers S, Reichmuth D, Blanch H, Keasling JD. Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerantGeobacillusstrain. Biotechnol Bioeng 2009; 102:1377-86. [DOI: 10.1002/bit.22181] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Ku KL, Chiou JL, Liu FC, Chiou RYY. Advanced gas chromatographic-mass spectrometric studies for identification of the cellular octadecenoate isomers and changes of fatty acid composition induced by ethanol stress in Escherichia coli and Escherichia coli O157: H7. J Food Prot 2007; 70:616-22. [PMID: 17388049 DOI: 10.4315/0362-028x-70.3.616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ethanol can be introduced to foods of various origins and is commonly used for surface disinfection. Low concentrations of residual ethanol may provide an opportunity for pathogens to adapt and grow. Change of cellular fatty acid composition is one of adaptation mechanisms enabling bacteria to grow under varied stresses. Since instrumental analyses of bacterial octadecenoate isomers are sophisticated, gas chromatographic analyses of the isomers, namely trans-9-octadecenoate, trans-11-octadecenoate, cis-9-octadecenoate, and cis-11-octadecenoate, and ethanol-induced formation of trans-9-octadecenoate in Escherichia coli and E. coli O157:H7 were intensively investigated. When an HP-1, a nonpolar capillary column, was used for gas chromatographic analyses of 28 authentic bacterial acid methyl esters, resolution was satisfied for all fatty acid components except trans-9-octadecenoate and cis-11-octadecenoate, being overlapped. When the column was replaced by an RTx-2330, a polar capillary column, all of the above-mentioned octadecenoate isomers were resolved. When cells of E. coli and E. coli O157:H7 were harvested after submerged cultivation (30 degrees C, 150 rpm) in tryptic soy broth and tryptic soy broth supplemented with 5% ethanol at early stationary phase and subjected to cellular fatty acid analyses by using an HP-1 and RTx-2330 coupled with a mass detector, 12 fatty acids, i.e., trans-9-octadecenoate, 5 saturated fatty acids, 2 cyclopropane fatty acids and 4 cis-unsaturated fatty acids, were identified. Individual fatty acid contents varied depending on nature of fatty acid, strain of E. coli, and supplement of ethanol. As affected by ethanol stress for both E. coli strains, contents of trans-9-octadecenoate increased, whereas contents of cyc-9,10-methylene octadecanoate (cyc-9,10-19:0) decreased significantly (P < 0.05). Apparently, both E. coli strains have rendered necessary fatty acid adaptation to survive and grow under ethanol stress.
Collapse
Affiliation(s)
- Kuo-Long Ku
- Department of Applied Chemistry, National Chiayi University, 300 University Road, Chiayi 60083, Taiwan
| | | | | | | |
Collapse
|
11
|
Meyer D, Bühler B, Schmid A. Process and catalyst design objectives for specific redox biocatalysis. ADVANCES IN APPLIED MICROBIOLOGY 2006; 59:53-91. [PMID: 16829256 DOI: 10.1016/s0065-2164(06)59003-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Meyer
- Department of Biochemical and Chemical Engineering, University of Dortmund, Emil-Figge-Strasse 66 D-44227 Dortmund, Germany
| | | | | |
Collapse
|
12
|
Svensson M, Svensson I, Enfors SO. Osmotic stability of the cell membrane of Escherichia coli from a temperature-limited fed-batch process. Appl Microbiol Biotechnol 2004; 67:345-50. [PMID: 15856216 DOI: 10.1007/s00253-004-1832-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 10/22/2004] [Accepted: 10/23/2004] [Indexed: 11/28/2022]
Abstract
The temperature-limited fed-batch (TLFB) process is a technique where the oxygen consumption rate is controlled by a gradually declining temperature profile rather than a growth-limiting glucose-feeding profile. In Escherichia coli cultures, it has been proven to prevent an extensive release of endotoxins, i.e. lipopolysaccharides, that occurs in the glucose-limited fed-batch (GLFB) processes at specific growth rates below 0.1 h(-1). The TLFB and the GLFB process were compared to each other when applied to produce the periplasmic, constitutively expressed, enzyme beta-lactamase. The extraction of the enzyme was performed by osmotic shock. A higher production of beta-lactamase was achieved with the TLFB technique while no difference in the endotoxin release was found during the extraction procedure. Furthermore, it was found that growth at declining temperature, generated by the TLFB technique, gradually stabilizes the cytoplasmic membrane, resulting in a significantly increased product quality in the extract from the TLFB cultures in the osmotic shock treatment.
Collapse
Affiliation(s)
- Marie Svensson
- Department of Biotechnology, Royal Institute of Technology (KTH), Albanova University Centre, S-10691 Stockholm, Sweden
| | | | | |
Collapse
|
13
|
Chiou RYY, Phillips RD, Zhao P, Doyle MP, Beuchat LR. Ethanol-mediated variations in cellular fatty acid composition and protein profiles of two genotypically different strains of Escherichia coli O157:H7. Appl Environ Microbiol 2004; 70:2204-10. [PMID: 15066814 PMCID: PMC383136 DOI: 10.1128/aem.70.4.2204-2210.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two strains of Escherichia coli O157:H7 were grown in tryptic soy broth (TSB, pH 7.1) supplemented with 0, 2.5, 5.0, 7.5, and 10% ethanol at 30 degrees C for up to 54 h. Growth rates in TSB supplemented with 0, 2.5, and 5.0% ethanol decreased with an increase in ethanol concentration. Growth was not observed in TSB supplemented with 7.5 or 10% ethanol. The pH of TSB containing 5.0% ethanol decreased to 5.8 within 12 h and then increased to 7.0 at 54 h. The ethanol content in TSB supplemented with 2.5 or 5.0% ethanol did not change substantially during the first 36 h of incubation but decreased slightly thereafter, indicating utilization or degradation of ethanol by both strains. Glucose was depleted in TSB supplemented with 0, 2.5, or 5.0% ethanol within 12 h. Cells grown under ethanol stress contained a higher amount of fatty acids. With the exceptions of cis-oleic acid and nonadecanoic acid, larger amounts of fatty acid were present in stationary-phase cells of the two strains grown in TSB supplemented with 5.0% ethanol for 30 h than in cells grown in TSB without ethanol for 22 h. The trans-oleic acid content was 10-fold higher in the cells grown in TSB with 5.0% ethanol than those grown in TSB without ethanol. In contrast, cis-oleic acid was not detected in ethanol-stressed cells but was present at concentrations of 0.32 and 0.36 mg/g of cells of the two strains grown in TSB without ethanol. Protein content was higher in ethanol-stressed cells than in nonstressed cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profiles varied qualitatively as affected by the strain and the presence of ethanol in TSB. An ethanol-mediated protein (28 kDa) was observed in the ethanol-stressed cells but not in control cells. It is concluded that the two test strains of E. coli O157:H7 underwent phenotypic modifications in cellular fatty acid composition and protein profiles in response to ethanol stress. The potential for cross protection against subsequent stresses applied in food preservation technologies as a result of these changes is under investigation.
Collapse
Affiliation(s)
- R Y-Y Chiou
- Graduate Institute of Biotechnology, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | |
Collapse
|
14
|
Leão C, Van Uden N. Effects of ethanol and other alkanols on the kinetics and the activation parameters of thermal death inSaccharomyces cerevisiae. Biotechnol Bioeng 2004; 24:1581-90. [DOI: 10.1002/bit.260240711] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Loffhagen N, Härtig C, Babel W. Suitability of the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida NCTC 10936 as an indicator of the acute toxicity of chemicals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2001; 50:65-71. [PMID: 11534954 DOI: 10.1006/eesa.2001.2089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study explored the suitability of using the trans/cis ratio of unsaturated fatty acids as an indicator of the acute toxicity of membrane active hazardous chemicals. The conversion of cis into trans fatty acids in Pseudomonas putida NCTC 10936 in response to 4-chlorophenol and temperature changes was compared with the results from another kind of toxicity test using the same organism, based on the sensitivity of its xylose oxidation-driven ATP synthesis to uncoupling. The response of both indicators is believed to be largely due to changes in the fluidity of the cytoplasmic membrane. However, the electron transport phosphorylation reacted faster and more sensitively to the fluidizing effect of 4-chlorophenol than the isomerization of unsaturated fatty acids. Therefore, measuring the trans/cis ratio does not provide as good early warning signals of acute toxicity as monitoring the response of the electron transport phosphorylation. If used as an indicator of chemostress, with Pseudomonas species as test organisms, the ratio should only be used in conjunction with other parameters reflecting the energetic state of the cells.
Collapse
Affiliation(s)
- N Loffhagen
- Sektion Umweltmikrobiologie, UFZ Umweltforschungszentrum Leipzing-Halle GmbH, Permoserstrasse 15, D-04318 Leipzig, Germany
| | | | | |
Collapse
|
16
|
Weber FJ, de Bont JA. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1286:225-45. [PMID: 8982284 DOI: 10.1016/s0304-4157(96)00010-x] [Citation(s) in RCA: 288] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- F J Weber
- Department of Food Science, Wageningen Agricultural University, The Netherlands.
| | | |
Collapse
|
17
|
Loffhagen N, Härtig C, Babel W. The glucose dehydrogenase-mediated energization of Acinetobacter calcoaceticus as a tool for evaluating its susceptibility to, and defence against, hazardous chemicals. Appl Microbiol Biotechnol 1995; 42:738-43. [PMID: 7765916 DOI: 10.1007/bf00171955] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells of Acinetobacter calcoaceticus 69-V could be energized by glucose oxidation after the growth on acetate, ethanol, hexanol and benzoate. The velocities of glucose oxidation-driven ATP syntheses were relatively constant in the range from pH 5.4 to 7.5. With decreasing pH values (7.0, 6.0, 5.4) ATP synthesis was inhibited more strongly by the action of 2,4-dinitrophenol and at the same pH value glucose oxidation was nearly unimpaired or inhibited more weakly. This finding is expressed by a decrease of the P/O ratios, indicating the uncoupling of the electron-transport phosphorylation by 2,4-dinitrophenol. The sensitivity towards this uncoupling effect was higher in ethanol-grown cells of Acinetobacter calcoaceticus 69-V than in hexanol- or acetate-grown cells. This increase in sensitivity was accompanied by a decrease of the ratio of saturated (mainly C16:0) to unsaturated (C16:1, C18:1) fatty acids in ethanol-grown cells compared with hexanol-grown ones. The knowledge of such differences in the susceptibility and its molecular background, e.g. possible substrate-induced changes of the fatty acid composition of the cytoplasmic membranes, should help elucidate mechanisms of poisoning by membrane-active hazardous chemicals and develop defence strategies.
Collapse
Affiliation(s)
- N Loffhagen
- Umweltforschungszentrum Leipzig-Halle GmbH, Sektion Umweltmikrobiologie, Germany
| | | | | |
Collapse
|
18
|
Schäfer A, Kalinowski J, Pühler A. Increased fertility of Corynebacterium glutamicum recipients in intergeneric matings with Escherichia coli after stress exposure. Appl Environ Microbiol 1994; 60:756-9. [PMID: 8135527 PMCID: PMC201381 DOI: 10.1128/aem.60.2.756-759.1994] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Corynebacterial recipient cells exposed to heat, organic solvents, pH shifts, or detergents show an increased fertility in subsequent interspecific matings with Escherichia coli. This effect is independent of de novo protein biosynthesis and seems to be due to a direct inactivation of a restriction system active against foreign DNA that enters the cell by IncP-mediated conjugation.
Collapse
Affiliation(s)
- A Schäfer
- Department of Genetics, University of Bielefeld, Germany
| | | | | |
Collapse
|
19
|
Jung S, Lowe S, Hollingsworth R, Zeikus J. Sarcina ventriculi synthesizes very long chain dicarboxylic acids in response to different forms of environmental stress. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53848-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
A distributed parameter diffusion-reaction model for the alcoholic fermentation process. Appl Biochem Biotechnol 1991. [DOI: 10.1007/bf02922037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Effects of various alcoholic supplements on the growth rate of Clostridium acetobutylicum ATCC 824. Appl Microbiol Biotechnol 1989. [DOI: 10.1007/bf00262459] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Proulx P. Fluorescence studies on prokaryotic membranes. Subcell Biochem 1988; 13:281-321. [PMID: 2577858 DOI: 10.1007/978-1-4613-9359-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Tolan JS, Finn RK. Fermentation of
d
-Xylose to Ethanol by Genetically Modified
Klebsiella planticola. Appl Environ Microbiol 1987; 53:2039-44. [PMID: 16347427 PMCID: PMC204054 DOI: 10.1128/aem.53.9.2039-2044.1987] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
d
-Xylose is a plentiful pentose sugar derived from agricultural or forest residues. Enteric bacteria such as
Klebsiella
spp. ferment
d
-xylose to form mixed acids and butanediol in addition to ethanol. Thus the ethanol yield is normally low.
Zymomonas
spp. and most yeasts are unable to ferment xylose, but they do ferment hexose sugars to ethanol in high yield because they contain pyruvate decarboxylase (EC 4.1.1.1), a key enzyme that is absent from enteric bacteria. This report describes the fermentation of
d
-xylose by
Klebsiella planticola
ATCC 33531 bearing multicopy plasmids containing the
pdc
gene inserted from
Zymomonas mobilis
. Expression of the gene markedly increased the yield of ethanol to 1.3 mol/mol of xylose, or 25.1 g/liter. Concurrently, there were significant decreases in the yields of formate, acetate, lactate, and butanediol. Transconjugant
Klebsiella
spp. grew almost as fast as the wild type and tolerated up to 4% ethanol. The plasmid was retained by the cells during at least one batch culture, even in the absence of selective pressure by antibiotics to maintain the plasmid. Ethanol production was 31.6 g/liter from 79.6 g of mixed substrate per liter chosen to simulate hydrolyzed hemicellulose. The physiology of the wild-type of
K. planticola
is described in more detail than in the original report of its isolation.
Collapse
Affiliation(s)
- J S Tolan
- School of Chemical Engineering, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
24
|
Abstract
It is now certain that the inherent ethanol tolerance of the Saccharomyces strain used is not the prime factor regulating the level of ethanol that can be produced in a high sugar brewing, wine, sake, or distillery fermentation. In fact, in terms of the maximum concentration that these yeasts can produce under batch (16 to 17% [v/v]) or fed-batch conditions, there is clearly no difference in ethanol tolerance. This is not to say, however, that under defined conditions there is no difference in ethanol tolerance among different Saccharomyces yeasts. This property, although a genetic determinant, is clearly influenced by many factors (carbohydrate level, wort nutrition, temperature, osmotic pressure/water activity, and substrate concentration), and each yeast strain reacts to each factor differently. This will indeed lead to differences in measured tolerance. Thus, it is extremely important that each of these be taken into consideration when determining "tolerance" for a particular set of fermentation conditions. The manner in which each alcohol-related industry has evolved is now known to have played a major role in determining traditional thinking on ethanol tolerance in Saccharomyces yeasts. It is interesting to speculate on how different our thinking on ethanol tolerance would be today if sake fermentations had not evolved with successive mashing and simultaneous saccharification and fermentation of rice carbohydrate, if distillers' worts were clarified prior to fermentation but brewers' wort were not, and if grape skins with their associated unsaturated lipids had not been an integral part of red wine musts. The time is now ripe for ethanol-related industries to take advantage of these findings to improve the economies of production. In the authors' opinion, breweries could produce higher alcohol beers if oxygenation (leading to unsaturated lipids) and "usable" nitrogen source levels were increased in high gravity worts. White wine fermentations could also, if desired, match the higher ethanol levels in red wines if oxygenation (to provide the unsaturated lipids deleted in part by the removal of the grape skins) were practiced and if care were given to assimilable nitrogen concentrations. This would hold true even at 10 to 14 degrees C, and the more rapid fermentations would maximize utilization of winery tankage.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
25
|
|
26
|
|
27
|
|
28
|
Ingram LO, Vreeland NS. Differential effects of ethanol and hexanol on the Escherichia coli cell envelope. J Bacteriol 1980; 144:481-8. [PMID: 7000746 PMCID: PMC294694 DOI: 10.1128/jb.144.2.481-488.1980] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Both ethanol and hexanol inhibited the growth of Escherichia coli, but their effects on the organization and composition of the cell envelope were quite different. Hexanol (7.8 x 10(-3) mM) increased membrane fluidity, whereas ethanol (0.67 M) had little effect. During growth in the presence of ethanol, the proportion of unsaturated fatty acids increased. The opposite change was induced by hexanol. Unlike hexanol, growth in the presence of ethanol resulted in the production of un-cross-linked peptidoglycan with subsequent lysis. Salt (0.3 M) protected cells against ethanol-induced lysis but potentiated growth inhibition by hexanol. Mutants isolated for resistance to ethanol-induced lysis synthesized cross-linked peptidoglycan during growth in the presence of ethanol but remained sensitive to hexanol. A general hypothesis was presented to explain the differential effects of ethanol and hexanol. All alcohols are viewed as similar in having both an apolar chain capable of interacting with hydrophobic environments and a hydroxyl function capable of hydrogen bonding. The differential effects of short-chain alcohols may represent effects due to the high molar concentrations of hydrogen bonding groups with an apolar end within the environment. These may replace bound water in some cases. With longer-chain alcohols such as hexanol, the effects of the acyl chain would dominate, and limitations of solubility and cellular integrity would mask these hydroxyl effects.
Collapse
|
29
|
Taneja R, Khuller G. Ethanol-induced alterations in phopholipids and fatty acids ofMycobacterium smegmatisATCC 607. FEMS Microbiol Lett 1980. [DOI: 10.1111/j.1574-6968.1980.tb05055.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
30
|
Berger B, Carty CE, Ingram LO. Alcohol-induced changes in the phospholipid molecular species of Escherichia coli. J Bacteriol 1980; 142:1040-4. [PMID: 6991490 PMCID: PMC294137 DOI: 10.1128/jb.142.3.1040-1044.1980] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Escherichia coli, the additon of ethanol resulted in the synthesis of an increased proportion of phospholipids containing two unsaturated fatty acids. The addition of hexanol resulted in the opposite effect, an increase in the proportion of monounsaturated molecular species. The alcohol-induced changes were quantitatively similar to those caused by changing growth temperature. These results suggest that both adaptation to temperature and alcohol-induced changes in lipid composition share some common regulatory features.
Collapse
|