1
|
Kohlmeier MG, Bailey-Elkin BA, Mark BL, Oresnik IJ. Characterization of the sorbitol dehydrogenase SmoS from Sinorhizobium meliloti 1021. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:380-390. [PMID: 33645541 DOI: 10.1107/s2059798321001017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/23/2020] [Accepted: 01/28/2021] [Indexed: 11/10/2022]
Abstract
Sinorhizobium meliloti 1021 is a Gram-negative alphaproteobacterium with a robust capacity for carbohydrate metabolism. The enzymes that facilitate these reactions assist in the survival of the bacterium across a range of environmental niches, and they may also be suitable for use in industrial processes. SmoS is a dehydrogenase that catalyzes the oxidation of the commonly occurring sugar alcohols sorbitol and galactitol to fructose and tagatose, respectively, using NAD+ as a cofactor. The main objective of this study was to evaluate SmoS using biochemical techniques. The nucleotide sequence was codon-optimized for heterologous expression in Escherichia coli BL21 (DE3) Gold cells and the protein was subsequently overexpressed and purified. Size-exclusion chromatography and X-ray diffraction experiments suggest that SmoS is a tetramer. SmoS was crystallized, and crystals obtained in the absence of substrate diffracted to 2.1 Å resolution and those of a complex with sorbitol diffracted to 2.0 Å resolution. SmoS was characterized kinetically and shown to have a preference for sorbitol despite having a higher affinity for galactitol. Computational ligand-docking experiments suggest that tagatose binds the protein in a more energetically favourable complex than fructose, which is retained in the active site over a longer time frame following oxidation and reduces the rate of the reaction. These results supplement the inventory of biomolecules with potential for industrial applications and enhance the understanding of metabolism in the model organism S. meliloti.
Collapse
Affiliation(s)
- MacLean G Kohlmeier
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ben A Bailey-Elkin
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Role of O2 in the Growth of Rhizobium leguminosarum bv. viciae 3841 on Glucose and Succinate. J Bacteriol 2016; 199:JB.00572-16. [PMID: 27795326 DOI: 10.1128/jb.00572-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2016] [Accepted: 10/01/2016] [Indexed: 12/12/2022] Open
Abstract
Insertion sequencing (INSeq) analysis of Rhizobium leguminosarum bv. viciae 3841 (Rlv3841) grown on glucose or succinate at both 21% and 1% O2 was used to understand how O2 concentration alters metabolism. Two transcriptional regulators were required for growth on glucose (pRL120207 [eryD] and RL0547 [phoB]), five were required on succinate (pRL100388, RL1641, RL1642, RL3427, and RL4524 [ecfL]), and three were required on 1% O2 (pRL110072, RL0545 [phoU], and RL4042). A novel toxin-antitoxin system was identified that could be important for generation of new plasmidless rhizobial strains. Rlv3841 appears to use the methylglyoxal pathway alongside the Entner-Doudoroff (ED) pathway and tricarboxylic acid (TCA) cycle for optimal growth on glucose. Surprisingly, the ED pathway was required for growth on succinate, suggesting that sugars made by gluconeogenesis must undergo recycling. Altered amino acid metabolism was specifically needed for growth on glucose, including RL2082 (gatB) and pRL120419 (opaA, encoding omega-amino acid:pyruvate transaminase). Growth on succinate specifically required enzymes of nucleobase synthesis, including ribose-phosphate pyrophosphokinase (RL3468 [prs]) and a cytosine deaminase (pRL90208 [codA]). Succinate growth was particularly dependent on cell surface factors, including the PrsD-PrsE type I secretion system and UDP-galactose production. Only RL2393 (glnB, encoding nitrogen regulatory protein PII) was specifically essential for growth on succinate at 1% O2, conditions similar to those experienced by N2-fixing bacteroids. Glutamate synthesis is constitutively activated in glnB mutants, suggesting that consumption of 2-ketoglutarate may increase flux through the TCA cycle, leading to excess reductant that cannot be reoxidized at 1% O2 and cell death. IMPORTANCE Rhizobium leguminosarum, a soil bacterium that forms N2-fixing symbioses with several agriculturally important leguminous plants (including pea, vetch, and lentil), has been widely utilized as a model to study Rhizobium-legume symbioses. Insertion sequencing (INSeq) has been used to identify factors needed for its growth on different carbon sources and O2 levels. Identification of these factors is fundamental to a better understanding of the cell physiology and core metabolism of this bacterium, which adapts to a variety of different carbon sources and O2 tensions during growth in soil and N2 fixation in symbiosis with legumes.
Collapse
|
3
|
Iyer B, Rajput MS, Jog R, Joshi E, Bharwad K, Rajkumar S. Organic acid mediated repression of sugar utilization in rhizobia. Microbiol Res 2016; 192:211-220. [PMID: 27664739 DOI: 10.1016/j.micres.2016.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 01/17/2023]
Abstract
Rhizobia are a class of symbiotic diazotrophic bacteria which utilize C4 acids in preference to sugars and the sugar utilization is repressed as long as C4 acids are present. This can be manifested as a diauxie when rhizobia are grown in the presence of a sugar and a C4 acid together. Succinate, a C4 acid is known to repress utilization of sugars, sugar alcohols, hydrocarbons, etc by a mechanism termed as Succinate Mediated Catabolite Repression (SMCR). Mechanism of catabolite repression determines the hierarchy of carbon source utilization in bacteria. Though the mechanism of catabolite repression has been well studied in model organisms like E. coli, B. subtilis and Pseudomonas sp., mechanism of SMCR in rhizobia has not been well elucidated. C4 acid uptake is important for effective symbioses while mutation in the sugar transport and utilization genes does not affect symbioses. Deletion of hpr and sma0113 resulted in the partial relief of SMCR of utilization of galactosides like lactose, raffinose and maltose in the presence of succinate. However, no such regulators governing SMCR of glucoside utilization have been identified till date. Though rhizobia can utilize multitude of sugars, high affinity transporters for many sugars are yet to be identified. Identifying high affinity sugar transporters and studying the mechanism of catabolite repression in rhizobia is important to understand the level of regulation of SMCR and the key regulators involved in SMCR.
Collapse
Affiliation(s)
- Bhagya Iyer
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | | | - Rahul Jog
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India; Environmental Molecular Biology Laboratory, Division of Biosphere, Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ekta Joshi
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Krishna Bharwad
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Shalini Rajkumar
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India.
| |
Collapse
|
4
|
Geddes BA, Oresnik IJ. The Mechanism of Symbiotic Nitrogen Fixation. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
|
5
|
Yan Z, Hossain MS, Arikit S, Valdés-López O, Zhai J, Wang J, Libault M, Ji T, Qiu L, Meyers BC, Stacey G. Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393j-3p in soybean nodulation. THE NEW PHYTOLOGIST 2015; 207:748-59. [PMID: 25783944 DOI: 10.1111/nph.13365] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/18/2014] [Accepted: 02/09/2015] [Indexed: 05/25/2023]
Abstract
Plant microRNAs (miRNAs) play important regulatory roles in a number of developmental processes. The present work investigated the roles of miRNAs during nodule development in the crop legume soybean (Glycine max). Fifteen soybean small RNA libraries were sequenced from different stages of nodule development, including young nodules, mature nodules and senescent nodules. In order to identify the regulatory targets of the miRNAs, five parallel analysis of RNA ends (PARE) libraries were also sequenced from the same stages of nodule development. Sequencing identified 284 miRNAs, including 178 novel soybean miRNAs. Analysis of miRNA abundance identified 139 miRNAs whose expression was significantly regulated during nodule development, including 12 miRNAs whose expression changed > 10-fold. Analysis of the PARE libraries identified 533 miRNA targets, including three nodulation-related genes and eight nodule-specific genes. miR393j-3p was selected for detailed analysis as its expression was significantly regulated during nodule formation, and it targeted a nodulin gene, Early Nodulin 93 (ENOD93). Strong, ectopic expression of miR393j-3p, as well as RNAi silencing of ENOD93 expression, significantly reduced nodule formation. The data indicate that miR393j-3p regulation of ENOD93 mRNA abundance is a key control point for soybean nodule formation.
Collapse
Affiliation(s)
- Zhe Yan
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Md Shakhawat Hossain
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Siwaret Arikit
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Oswaldo Valdés-López
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Jixian Zhai
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Jun Wang
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Marc Libault
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, 209D Middlebush Hall, Columbia, MO, 65211, USA
| | - Lijuan Qiu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Blake C Meyers
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
6
|
Geddes BA, Oresnik IJ. Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti. Can J Microbiol 2014; 60:491-507. [PMID: 25093748 DOI: 10.1139/cjm-2014-0306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
A large proportion of genes within a genome encode proteins that play a role in metabolism. The Alphaproteobacteria are a ubiquitous group of bacteria that play a major role in a number of environments. For well over 50 years, carbon metabolism in Rhizobium has been studied at biochemical and genetic levels. Here, we review the pre- and post-genomics literature of the metabolism of the alphaproteobacterium Sinorhizobium meliloti. This review provides an overview of carbon metabolism that is useful to readers interested in this organism and to those working on other organisms that do not follow other model system paradigms.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
7
|
O'Gara F, Birkenhead K, Boesten B, Fitzmaurice A. Carbon metabolism and catabolite repression inRhizobiumspp. FEMS Microbiol Lett 2013. [DOI: 10.1111/j.1574-6968.1989.tb14104.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022] Open
|
8
|
Terpolilli JJ, Hood GA, Poole PS. What determines the efficiency of N(2)-fixing Rhizobium-legume symbioses? Adv Microb Physiol 2012; 60:325-89. [PMID: 22633062 DOI: 10.1016/b978-0-12-398264-3.00005-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
Biological nitrogen fixation is vital to nutrient cycling in the biosphere and is the major route by which atmospheric dinitrogen (N(2)) is reduced to ammonia. The largest single contribution to biological N(2) fixation is carried out by rhizobia, which include a large group of both alpha and beta-proteobacteria, almost exclusively in association with legumes. Rhizobia must compete to infect roots of legumes and initiate a signaling dialog with host plants that leads to nodule formation. The most common form of infection involves the growth of rhizobia down infection threads which are laid down by the host plant. Legumes form either indeterminate or determinate types of nodules, with these groups differing widely in nodule morphology and often in the developmental program by which rhizobia form N(2) fixing bacteroids. In particular, indeterminate legumes from the inverted repeat-lacking clade (IRLC) (e.g., peas, vetch, alfalfa, medics) produce a cocktail of antimicrobial peptides which cause endoreduplication of the bacterial genome and force rhizobia into a nongrowing state. Bacteroids often become dependent on the plant for provision of key cofactors, such as homocitrate needed for nitrogenase activity or for branched chain amino acids. This has led to the suggestion that bacteroids at least from the IRLC can be considered as ammoniaplasts, where they are effectively facultative plant organelles. A low O(2) tension is critical both to induction of genes needed for N(2) fixation and to the subsequent exchange of nutrient between plants and bacteroids. To achieve high rates of N(2) fixation, the legume host and Rhizobium must be closely matched not only for infection, but for optimum development, nutrient exchange, and N(2) fixation. In this review, we consider the multiple steps of selection and bacteroid development and how these alter the overall efficiency of N(2) fixation.
Collapse
Affiliation(s)
- Jason J Terpolilli
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | |
Collapse
|
9
|
Reding HK, Lepo JE. Physiological Characterization of Dicarboxylate-Induced Pleomorphic Forms of Bradyrhizobium japonicum. Appl Environ Microbiol 2010; 55:666-71. [PMID: 16347873 PMCID: PMC184177 DOI: 10.1128/aem.55.3.666-671.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
When Bradyrhizobium japonicum I-110 was transferred into medium containing 40 mM succinate or 40 mM fumarate, over 90% of the bacteria acquired a swollen, pleomorphic form similar to that of bacteroids. The induction of pleomorphism was dependent on the carbon substrate and concentration but was independent of the hydrogen ion and sodium ion concentration. Cell extracts of rod-shaped and pleomorphic cells contained enzymes required for sugar catabolism and gluconeogenesis. Variations in these enzyme profiles were correlated with the carbon source used and not with the conversion to the bacteroid-like morphology. Rod-shaped cells cultured on glucose or 10 mM succinate transported glucose and succinate; however, the pleomorphic cells behaved similarly to symbiotic bacteroids in that they lacked the ability to transport glucose and transported succinate at lower rates than did rod-shaped cells.
Collapse
Affiliation(s)
- H K Reding
- Department of Biology, The University of Mississippi, University, Mississippi 38677
| | | |
Collapse
|
10
|
Deletion of citrate synthase restores growth of Sinorhizobium meliloti 1021 aconitase mutants. J Bacteriol 2009; 191:7581-6. [PMID: 19820082 DOI: 10.1128/jb.00777-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023] Open
Abstract
The symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti 1021 encodes only one predicted aconitase (AcnA) in its genome. AcnA has a significant degree of similarity with other bacterial aconitases that behave as dual proteins: enzymes and posttranscriptional regulators of gene expression. Similar to the case with these bacterial aconitases, AcnA activity was reversibly labile and was regained upon reconstitution with reduced iron. The aconitase promoter was active in root nodules. acnA mutants grew very poorly, had secondary mutations, and were quickly outgrown by pseudorevertants. The acnA gene was stably interrupted in a citrate synthase (gltA) null background, indicating that the intracellular accumulation of citrate may be deleterious for survival of strain 1021. No aconitase activity was detected in this mutant, suggesting that the acnA gene encodes the only functional aconitase of strain 1021. To uncover a function of AcnA beyond its catalytic role in the tricarboxylic acid cycle pathway, the gltA acnA double mutant was compared with the gltA single mutant for differences in motility, resistance to oxidative stress, nodulation, and growth on different substrates. However, no differences in any of these characteristics were found.
Collapse
|
11
|
Imperlini E, Bianco C, Lonardo E, Camerini S, Cermola M, Moschetti G, Defez R. Effects of indole-3-acetic acid on Sinorhizobium meliloti survival and on symbiotic nitrogen fixation and stem dry weight production. Appl Microbiol Biotechnol 2009; 83:727-38. [PMID: 19343341 DOI: 10.1007/s00253-009-1974-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2008] [Revised: 03/18/2009] [Accepted: 03/19/2009] [Indexed: 11/24/2022]
Abstract
We evaluated the effects of the main auxin phytohormone, indole-3-acetic acid (IAA), on the central metabolism of Sinorhizobium meliloti 1021. We either treated S. meliloti 1021 wild-type cells with 0.5 mM IAA, 1021+, or use a derivative, RD64, of the same strain harboring an additional pathway for IAA biosynthesis (converting tryptophan into IAA via indoleacetamide). We assayed the activity of tricarboxylic acid cycle (TCA) key enzymes and found that activity of citrate synthase and alpha-ketoglutarate dehydrogenase were increased in both 1021+ and RD64 as compared to the wild-type strain. We also showed that the intracellular acetyl-CoA content was enhanced in both RD64 and 1021+ strains when compared to the control strain. The activity of key enzymes, utilizing acetyl-CoA for poly-beta-hydroxybutyrate (PHB) biosynthesis, was also induced. The PHB level measured in these cells were significantly higher than that found in control cells. Moreover, 4-week-long survival experiments showed that 80% of 1021 cells died, whereas 50% of RD64 cells were viable. Medicago truncatula plants nodulated by RD64 (Mt-RD64) showed an induction of both acetylene reduction activity and stem dry weight production.
Collapse
Affiliation(s)
- Esther Imperlini
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
HPrK regulates succinate-mediated catabolite repression in the gram-negative symbiont Sinorhizobium meliloti. J Bacteriol 2008; 191:298-309. [PMID: 18931135 DOI: 10.1128/jb.01115-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The HPrK kinase/phosphatase is a common component of the phosphotransferase system (PTS) of gram-positive bacteria and regulates catabolite repression through phosphorylation/dephosphorylation of its substrate, the PTS protein HPr, at a conserved serine residue. Phosphorylation of HPr by HPrK also affects additional phosphorylation of HPr by the PTS enzyme EI at a conserved histidine residue. Sinorhizobium meliloti can live as symbionts inside legume root nodules or as free-living organisms and is one of the relatively rare gram-negative bacteria known to have a gene encoding HPrK. We have constructed S. meliloti mutants that lack HPrK or that lack key amino acids in HPr that are likely phosphorylated by HPrK and EI. Deletion of hprK in S. meliloti enhanced catabolite repression caused by succinate, as did an S53A substitution in HPr. Introduction of an H22A substitution into HPr alleviated the strong catabolite repression phenotypes of strains carrying Delta hprK or hpr(S53A) mutations, demonstrating that HPr-His22-P is needed for strong catabolite repression. Furthermore, strains with a hpr(H22A) allele exhibited relaxed catabolite repression. These results suggest that HPrK phosphorylates HPr at the serine-53 residue, that HPr-Ser53-P inhibits phosphorylation at the histidine-22 residue, and that HPr-His22-P enhances catabolite repression in the presence of succinate. Additional experiments show that Delta hprK mutants overproduce exopolysaccharides and form nodules that do not fix nitrogen.
Collapse
|
13
|
|
14
|
Yuan ZC, Haudecoeur E, Faure D, Kerr KF, Nester EW. Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole-3-acetic acid and gamma-amino butyric acid reveals signalling cross-talk and Agrobacterium--plant co-evolution. Cell Microbiol 2008; 10:2339-54. [PMID: 18671824 DOI: 10.1111/j.1462-5822.2008.01215.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Agrobacterium has evolved sophisticated strategies to perceive and transduce plant-derived cues. Recent studies have found that numerous plant signals, including salicylic acid (SA), indole-3-acetic acid (IAA) and gamma-amino butyric acid (GABA), profoundly affect Agrobacterium-plant interactions. Here we determine and compare the transcriptome profiles of Agrobacterium in response to these three plant signals. Collectively, the transcription of 103, 115 and 95 genes was significantly altered by SA, IAA and GABA respectively. Both distinct cellular responses and overlapping signalling pathways were elicited by these three plant signals. Interestingly, these three plant compounds function additively to shut off the Agrobacterium virulence programme and activate the quorum-quenching machinery. Moreover, the repression of the virulence programme by SA and IAA and the inactivation of quorum-sensing signals by SA and GABA are regulated through independent pathways. Our data indicate that these plant signals, while cross-talk in plant signalling networks, also act as cross-kingdom signals and play redundant roles in tailoring Agrobacterium regulatory pathways, resulting in intensive signalling cross-talk in Agrobacterium. Our results support the notion that Agrobacterium has evolved the ability to hijack plant signals for its own benefit. The complex signalling interplay between Agrobacterium and its plant hosts reflects an exquisite co-evolutionary balance.
Collapse
Affiliation(s)
- Ze-Chun Yuan
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
15
|
Pinedo CA, Bringhurst RM, Gage DJ. Sinorhizobium meliloti mutants lacking phosphotransferase system enzyme HPr or EIIA are altered in diverse processes, including carbon metabolism, cobalt requirements, and succinoglycan production. J Bacteriol 2008; 190:2947-56. [PMID: 18281401 PMCID: PMC2293241 DOI: 10.1128/jb.01917-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2007] [Accepted: 02/06/2008] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti is a member of the Alphaproteobacteria that fixes nitrogen when it is in a symbiotic relationship. Genes for an incomplete phosphotransferase system (PTS) have been found in the genome of S. meliloti. The genes present code for Hpr and ManX (an EIIA(Man)-type enzyme). HPr and EIIA regulate carbon utilization in other bacteria. hpr and manX in-frame deletion mutants exhibited altered carbon metabolism and other phenotypes. Loss of HPr resulted in partial relief of succinate-mediated catabolite repression, extreme sensitivity to cobalt limitation, rapid die-off during stationary phase, and altered succinoglycan production. Loss of ManX decreased expression of melA-agp and lac, the operons needed for utilization of alpha- and beta-galactosides, slowed growth on diverse carbon sources, and enhanced accumulation of high-molecular-weight succinoglycan. A strain with both hpr and manX deletions exhibited phenotypes similar to those of the strain with a single hpr deletion. Despite these strong phenotypes, deletion mutants exhibited wild-type nodulation and nitrogen fixation when they were inoculated onto Medicago sativa. The results show that HPr and ManX (EIIA(Man)) are involved in more than carbon regulation in S. meliloti and suggest that the phenotypes observed occur due to activity of HPr or one of its phosphorylated forms.
Collapse
Affiliation(s)
- Catalina Arango Pinedo
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Rd., U-3125, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
16
|
Ramírez-Trujillo JA, Encarnación S, Salazar E, de los Santos AG, Dunn MF, Emerich DW, Calva E, Hernández-Lucas I. Functional characterization of the Sinorhizobium meliloti acetate metabolism genes aceA, SMc00767, and glcB. J Bacteriol 2007; 189:5875-84. [PMID: 17526694 PMCID: PMC1952029 DOI: 10.1128/jb.00385-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The genes encoding malate synthase (glcB) and isocitrate lyase (aceA) and a 240-bp open reading frame (SMc00767) located downstream of aceA were isolated and functionally characterized in Sinorhizobium meliloti. Independent and double interposon mutants of each gene were constructed, and the corresponding phenotypes were analyzed. aceA mutants failed to grow on acetate, and mutants deficient in SMc00767 were also affected in acetate utilization. In contrast, mutants deficient in glcB grew on acetate similar to wild-type strain Rm5000. Complementation experiments showed that aceA and SMc00767 gene constructs were able to restore the growth on acetate in the corresponding single mutants. aceA-glcB, aceA-SMc00767, and glcB-SMc00767 double knockouts were also unable to grow on acetate, but this ability was recovered when the wild-type aceA-glcB or aceA-SMc00767 loci were introduced into the double mutants. These data confirm the functional role of aceA and SMc00767 and show that glcB, in the absence of SMc00767, is required for acetate metabolism. Isocitrate lyase and malate synthase activities were measured in strain Rm5000, the mutant derivatives, and complemented strains. aceA and glcB were able to complement the enzymatic activity lacking in the corresponding single mutants. The enzymatic activities also showed that SMc00767 represses the activity of isocitrate lyase in cells grown on acetate. Gene fusions confirmed the repressor role of SMc00767, which regulates aceA expression at the transcriptional level. Comparison of the transcriptional profiles of the SMc00767 mutant and wild-type strain Rm5000 showed that SMc00767 represses the expression of a moderate number of open reading frames, including aceA; thus, we propose that SMc00767 is a novel repressor involved in acetate metabolism in S. meliloti. Genetic and functional analyses indicated that aceA and SMc00767 constitute a functional two-gene operon, which is conserved in other alpha-proteobacteria. Alfalfa plants infected with the aceA and glcB mutants were not impaired in nodulation or nitrogen fixation, and so the glyoxylate cycle is not required in the Rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- J A Ramírez-Trujillo
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
A Tn5 mutant strain of Sinorhizobium meliloti with an insertion in tpiA (systematic identifier SMc01023), a putative triose phosphate isomerase (TPI)-encoding gene, was isolated. The tpiA mutant grew more slowly than the wild type on rhamnose and did not grow with glycerol as a sole carbon source. The genome of S. meliloti wild-type Rm1021 contains a second predicted TPI-encoding gene, tpiB (SMc01614). We have constructed mutations and confirmed that both genes encode functional TPI enzymes. tpiA appears to be constitutively expressed and provides the primary TPI activity for central metabolism. tpiB has been shown to be required for growth with erythritol. TpiB activity is induced by growth with erythritol; however, basal levels of TpiB activity present in tpiA mutants allow for growth with gluconeogenic carbon sources. Although tpiA mutants can be complemented by tpiB, tpiA cannot substitute for mutations in tpiB with respect to erythritol catabolism. Mutations in tpiA or tpiB alone do not cause symbiotic defects; however, mutations in both tpiA and tpiB caused reduced symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Nathan J Poysti
- Department of Microbiology, University of Manitoba, Winnipeg R3T 2N2, Manitoba, Canada
| | | |
Collapse
|
18
|
Abstract
Sinorhizobium meliloti dctA encodes a transport protein needed for a successful nitrogen-fixing symbiosis between the bacteria and alfalfa. Using the toxicity of the DctA substrate fluoroorotic acid as a selective agent in an iterated selection procedure, four independent S. meliloti dctA mutants were isolated that retained some ability to transport dicarboxylates. Two mutations were located in a region called motif B located in a predicted transmembrane helix of the protein that has been shown in other members of the glutamate transporter family to be involved in cation binding. A G114D mutation was located in the third transmembrane helix, which had not previously been directly implicated in transport. Multiple sequence alignment of more than 60 members of the glutamate transporter family revealed a glycine at this position in nearly all members of the family. The fourth mutant was able to transport succinate at almost wild-type levels but was impaired in malate and fumarate transport. It contains two mutations: one in a periplasmic domain and the other predicted to be in the cytoplasm. Separation of the mutations showed that each contributed to the altered substrate preference. dctA deletion mutants that contain the mutant dctA alleles on a plasmid can proceed further in symbiotic development than null mutants of dctA, but none of the plasmids could support symbiotic nitrogen fixation, although they can transport dicarboxylates, some at relatively high levels.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University Pullman, WA 99164-6340, USA
| | | |
Collapse
|
19
|
Dymov SI, Meek DJJ, Steven B, Driscoll BT. Insertion of transposon Tn5tac1 in the Sinorhizobium meliloti malate dehydrogenase (mdh) gene results in conditional polar effects on downstream TCA cycle genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1318-1327. [PMID: 15597737 DOI: 10.1094/mpmi.2004.17.12.1318] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/24/2023]
Abstract
To isolate Sinorhizobium meliloti mutants deficient in malate dehydrogenase (MDH) activity, random transposon Tn5tac1 insertion mutants were screened for conditional lethal phenotypes on complex medium. Tn5tac1 has an outward-oriented isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoter (Ptac). The insertion in strain Rm30049 was mapped to the mdh gene, which was found to lie directly upstream of the genes encoding succinyl-CoA synthetase (sucCD) and 2-oxoglutarate dehydrogenase (sucAB and lpdA). Rm30049 required IPTG for wild-type growth in complex media, and had a complex growth phenotype in minimal media with different carbon sources. The mdh:: Tn5tacl insertion eliminated MDH activity under all growth conditions, and activities of succinyl-CoA synthetase, 2-oxoglutarate dehydrogenase, and succinate dehydrogenase were affected by the addition of IPTG. Reverse-transcriptase polymerase chain reaction (RT-PCR) studies confirmed that expression from Ptac was induced by IPTG and leaky in its absence. Alfalfa plants inoculated with Rm30049 were chlorotic and stunted, with small white root nodules, and had shoot dry weight and percent-N content values similar to those of uninoculated plants. Cosmid clone pDS15 restored MDH activity to Rm30049, complemented both the mutant growth and symbiotic phenotypes, and was found to carry six complete (sdhB, mdh, sucCDAB) and two partial (IpdA, sdhA) tricarboxylic acid cycle genes.
Collapse
Affiliation(s)
- Sergiy I Dymov
- Department of Natural Resource Sciences, McGill University, QC, Canada
| | | | | | | |
Collapse
|
20
|
Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:487-512. [PMID: 15272870 DOI: 10.1111/j.1365-313x.2004.02150.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/09/2023]
Abstract
Research on legume nodule metabolism has contributed greatly to our knowledge of primary carbon and nitrogen metabolism in plants in general, and in symbiotic nitrogen fixation in particular. However, most previous studies focused on one or a few genes/enzymes involved in selected metabolic pathways in many different legume species. We utilized the tools of transcriptomics and metabolomics to obtain an unprecedented overview of the metabolic differentiation that results from nodule development in the model legume, Lotus japonicus. Using an array of more than 5000 nodule cDNA clones, representing 2500 different genes, we identified approximately 860 genes that were more highly expressed in nodules than in roots. One-third of these are involved in metabolism and transport, and over 100 encode proteins that are likely to be involved in signalling, or regulation of gene expression at the transcriptional or post-transcriptional level. Several metabolic pathways appeared to be co-ordinately upregulated in nodules, including glycolysis, CO(2) fixation, amino acid biosynthesis, and purine, haem, and redox metabolism. Insight into the physiological conditions that prevail within nodules was obtained from specific sets of induced genes. In addition to the expected signs of hypoxia, numerous indications were obtained that nodule cells also experience P-limitation and osmotic stress. Several potential regulators of these stress responses were identified. Metabolite profiling by gas chromatography coupled to mass spectrometry revealed a distinct metabolic phenotype for nodules that reflected the global changes in metabolism inferred from transcriptome analysis.
Collapse
Affiliation(s)
- Gillian Colebatch
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Krishnan HB, Kim WS, Sun-Hyung J, Kim KY, Jiang G. Citrate synthase mutants of Sinorhizobium fredii USDA257 form ineffective nodules with aberrant ultrastructure. Appl Environ Microbiol 2003; 69:3561-8. [PMID: 12788763 PMCID: PMC161545 DOI: 10.1128/aem.69.6.3561-3568.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2002] [Accepted: 02/26/2003] [Indexed: 11/20/2022] Open
Abstract
The tricarboxylic acid (TCA) cycle plays an important role in generating the energy required by bacteroids to fix atmospheric nitrogen. Citrate synthase is the first enzyme that controls the entry of carbon into the TCA cycle. We cloned and determined the nucleotide sequence of the gltA gene that encodes citrate synthase in Sinorhizobium fredii USDA257, a symbiont of soybeans (Glycine max [L.] Merr.) and several other legumes. The deduced citrate synthase protein has a molecular weight of 48,198 and exhibits sequence similarity to citrate synthases from several bacterial species, including Sinorhizobium meliloti and Rhizobium tropici. Southern blot analysis revealed that the fast-growing S. fredii strains and Rhizobium sp. strain NGR234 contained a single copy of the gene located in the bacterial chromosome. S. fredii USDA257 gltA mutant HBK-CS1, which had no detectable citrate synthase activity, had diminished nodulation capacity and produced ineffective nodules on soybean. Light and electron microscopy observations revealed that the nodules initiated by HBK-CS1 contained very few bacteroids. The infected cells contained large vacuoles and prominent starch grains. Within the vacuoles, membrane structures that appeared to be reminiscent of disintegrating bacteroids were detected. The citrate synthase mutant had altered cell surface characteristics and produced three times more exopolysaccarides than the wild type produced. A plasmid carrying the USDA257 gltA gene, when introduced into HBK-CS1, was able to restore all of the defects mentioned above. Our results demonstrate that a functional citrate synthase gene of S. fredii USDA257 is essential for efficient soybean nodulation and nitrogen fixation.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, Columbia, Missouri 65211, USA.
| | | | | | | | | |
Collapse
|
22
|
Batista S, Catalán AI, Hernández-Lucas I, Martínez-Romero E, Aguilar OM, Martínez-Drets G. Identification of a system that allows a Rhizobium tropici dctA mutant to grow on succinate, but not on other C4-dicarboxylates. Can J Microbiol 2001; 47:509-18. [PMID: 11467726 DOI: 10.1139/w01-041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
A defined insertion mutant of a gene encoding a homolog of the rhizobial C4-dicarboxylate permease (dctA) was constructed in Rhizobium tropici strain CIAT899. This mutant (GA1) was unable to grow on fumarate or malate; however, in contrast with other rhizobial dctA mutants, it retained a limited ability to grow on succinate with ammonia as a nitrogen source. Our results suggest the presence of a novel succinate-specific transport system in R. tropici. Biochemical characterization indicated that this alternative transport system in GAI is active and dependent on an energized membrane. It was also induced by succinate and aspartate, and was repressed by glucose and glycerol. Bean plants inoculated with GA1 showed a reduced nitrogen-fixing ability, achieving only 29% of the acetylene reduction activity determined in CIAT899 strain nodules, 33 days after inoculation. Also, bean plants inoculated with GA1 had reduced shoot dry weight compared with plants inoculated with the wild-type strain.
Collapse
Affiliation(s)
- S Batista
- Departamento de Bioquímica, Instituto de Investigaciones Biológicas Clemente Estable, Facultad de Ciencias, Montevideo, Uruguay.
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
One of the paradigms of symbiotic nitrogen fixation has been that bacteroids reduce N2 to ammonium and secrete it without assimilation into amino acids. This has recently been challenged by work with soybeans showing that only alanine is excreted in 15N2 labelling experiments. Work with peas shows that the bacteroid nitrogen secretion products during in vitro experiments depend on the experimental conditions. There is a mixed secretion of both ammonium and alanine depending critically on the concentration of bacteroids and ammonium concentration. The pathway of alanine synthesis has been shown to be via alanine dehydrogenase, and mutation of this enzyme indicates that in planta there is likely to be mixed secretion of ammonium and alanine. Alanine synthesis directly links carbon catabolism and nitrogen assimilation in the bacteroid. There is now overwhelming evidence that the principal carbon sources of bacteroids are the C4-dicarboxylic acids. This is based on labelling and bacteroid respiration data, and mutation of both the dicarboxylic acid transport system (dct) and malic enzyme. L-malate is at a key bifurcation point in bacteroid metabolism, being oxidized to oxaloacetate and oxidatively decarboxylated to pyruvate. Pyruvate can be aminated to alanine or converted to acetyl-CoA where it either enters the TCA cycle by condensation with oxaloacetate or forms polyhydroxybutyrate (PHB). Thus regulation of carbon and nitrogen metabolism are strongly connected. Efficient catabolism of C4-dicarboxylates requires the balanced input and removal of intermediates from the TCA cycle. The TCA cycle in bacteroids may be limited by the redox state of NADH/NAD+ at the 2-ketoglutarate dehydrogenase complex, and a number of pathways may be involved in bypassing this block. These pathways include PHB synthesis, glutamate synthesis, glycogen synthesis, GABA shunt and glutamine cycling. Their operation may be critical in maintaining the optimum redox poise and carbon balance of the TCA cycle. They can also be considered to be overflow pathways since they act to remove or add electrons and carbon into the TCA cycle. Optimum operation of the TCA cycle has a major impact on nitrogen fixation.
Collapse
Affiliation(s)
- P Poole
- Division of Microbiology, School of Animal and Microbial Sciences, University of Reading, UK
| | | |
Collapse
|
24
|
Mortimer MW, McDermott TR, York GM, Walker GC, Kahn ML. Citrate synthase mutants of Sinorhizobium meliloti are ineffective and have altered cell surface polysaccharides. J Bacteriol 1999; 181:7608-13. [PMID: 10601220 PMCID: PMC94220 DOI: 10.1128/jb.181.24.7608-7613.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The gltA gene, encoding Sinorhizobium meliloti 104A14 citrate synthase, was isolated by complementing an Escherichia coli gltA mutant. The S. meliloti gltA gene was mutated by inserting a kanamycin resistance gene and then using homologous recombination to replace the wild-type gltA with the gltA::kan allele. The resulting strain, CSDX1, was a glutamate auxotroph, and enzyme assays confirmed the absence of a requirement for glutamate. CSDX1 did not grow on succinate, malate, aspartate, pyruvate, or glucose. CSDX1 produced an unusual blue fluorescence on medium containing Calcofluor, which is different from the green fluorescence found with 104A14. High concentrations of arabinose (0.4%) or succinate (0. 2%) restored the green fluorescence to CSDX1. High-performance liquid chromatography analyses showed that CSDX1 produced partially succinylated succinoglycan. CSDX1 was able to form nodules on alfalfa, but these nodules were not able to fix nitrogen. The symbiotic defect of a citrate synthase mutant could thus be due to disruption of the infection process or to the lack of energy generated by the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- M W Mortimer
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Rhizobia are a diverse group of Gram-negative bacteria comprised of the genera Rhizobium, Bradyrhizobium, Mesorhizobium, Sinorhizobium and Azorhizobium. A unifying characteristic of the rhizobia is their capacity to reduce (fix) atmospheric nitrogen in symbiotic association with a compatible plant host. Symbiotic nitrogen fixation requires a substantial input of energy from the rhizobial symbiont. This review focuses on recent studies of rhizobial carbon metabolism which have demonstrated the importance of a functional tricarboxylic acid (TCA) cycle in allowing rhizobia to efficiently colonize the plant host and/or develop an effective nitrogen fixing symbiosis. Several anaplerotic pathways have also been shown to maintain TCA cycle activity under specific conditions. Biochemical and physiological characterization of carbon metabolic mutants, along with the analysis of cloned genes and their corresponding gene products, have greatly advanced our understanding of the function of enzymes such as citrate synthase, oxoglutarate dehydrogenase, pyruvate carboxylase and malic enzymes. However, much remains to be learned about the control and function of these and other key metabolic enzymes in rhizobia.
Collapse
Affiliation(s)
- M F Dunn
- Departamento de Ecología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
26
|
Abstract
Infection of legume roots or stems with soil bacteria of the Rhizobiaceae results in the formation of nodules that become symbiotic nitrogen-fixing organs. Within the infected cells of these nodules, bacteria are enveloped in a membrane of plant origin, called the peribacteroid membrane (PBM), and divide and differentiate to form nitrogen-fixing bacteroids. The organelle-like structure comprised of PBM and bacteroids is termed the symbiosome, and is the basic nitrogen-fixing unit of the nodule. The major exchange of nutrients between the symbiotic partners is reduced carbon from the plant, to fuel nitrogenase activity in the bacteroid, and fixed nitrogen from the bacteroid, which is assimilated in the plant cytoplasm. However, many other metabolites are also exchanged. The metabolic interaction between the plant and the bacteroids is regulated by a series of transporters and channels on the PBM and the bacteroid membrane, and these form the focus of this review.
Collapse
Affiliation(s)
- Michael K. Udvardi
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra ACT, 0200, Australia
| | | |
Collapse
|
27
|
Hernández-Lucas I, Pardo MA, Segovia L, Miranda J, Martínez-Romero E. Rhizobium tropici chromosomal citrate synthase gene. Appl Environ Microbiol 1995; 61:3992-7. [PMID: 8526514 PMCID: PMC167707 DOI: 10.1128/aem.61.11.3992-3997.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023] Open
Abstract
Two genes encoding citrate synthase, a key enzyme in the Krebs cycle, have been found in Rhizobium tropici. One of them is in the bacterial chromosome, while the other is in the symbiotic plasmid. We sequenced the chromosomal gene and found that it is very similar to the previously reported plasmidic gene sequence in its structural region but not in its regulatory region. The chromosomal gene is able to complement an Escherichia coli citrate synthase mutant. In R. tropici, a mutant in the chromosomal citrate synthase gene has a diminished citrate synthase activity (in free-living bacteria), a diminished nodulation capacity, and forms nitrogen-fixing nodules. In contrast, the citrate synthase double mutant forms ineffective nodules devoid of bacteroids and forms less nodules than the single chromosomal mutant. It is inferred that both genes are functional and required during the nodulation process in R. tropici.
Collapse
Affiliation(s)
- I Hernández-Lucas
- Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
28
|
Urban JE, Gerren R, Zoelle J. Effects of microgravity on the binding of acetylsalicylic acid by Rhizobium leguminosarum bv. trifolii. ACTA ASTRONAUTICA 1995; 36:129-133. [PMID: 11540747 DOI: 10.1016/0094-5765(95)00047-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/23/2023]
Abstract
Bacteroids can be induced in vitro by treating growing Rhizobium leguminosarum bv. trifolii with succinic acid or succinic acid structural analogs like acetysalicylic acid. Quantitating bacteroid induction by measuring acetylsalicylic binding under normal (1 g) conditions showed two forms of binding to occur. In one form of binding cells immediately bound comparatively high levels of acetylsalicylic acid, but the binding was quickly reversed. The second form of binding increased with time by first order kinetics and reached saturation in 40 s. Similar experiments performed in the microgravity environment aboard the NASA 930 aircraft showed only one form of binding and total acetylsalicyclic acid bound was 32% higher than at 1 g.
Collapse
Affiliation(s)
- J E Urban
- BioServe Space Technologies, Kansas State University, Manhattan 66506-4901, USA
| | | | | |
Collapse
|
29
|
Michiels J, Vanderleyden J. Molecular basis of the establishment and functioning of a N2-fixing root nodule. World J Microbiol Biotechnol 1994; 10:612-30. [DOI: 10.1007/bf00327946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Revised: 07/27/1994] [Accepted: 08/03/1994] [Indexed: 12/01/2022]
|
30
|
The C4-dicarboxylate transport system ofRhizobium meliloti and its role in nitrogen fixation during symbiosis with alfalfa (Medicago sativa). ACTA ACUST UNITED AC 1994. [DOI: 10.1007/bf01923473] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
|
31
|
Effect of divalent cations on succinate transport in Rhizobium tropici, R. leguminosarum bv phaseoli and R. loti. World J Microbiol Biotechnol 1994; 10:249-55. [PMID: 24421004 DOI: 10.1007/bf00414856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Revised: 09/06/1993] [Accepted: 09/07/1993] [Indexed: 10/26/2022]
Abstract
Rhizobium tropici, R. leguminosarum bv phaseoli and R. loti each have an active C4-dicarboxylic acid transport system dependent on an energized membrane. Free thiol groups are probably involved at the active site. Since EDTA inhibited succinate transport in R. leguminosarum bv phaseoli and R. loti, divalent cations may participate in the process; the activity was reconstituted by the addition of Ca(2+) or Mg(2+). However, EDTA had no effect on succinate transport in R. tropici, R. meliloti or R. trifolii strains. Ca(2+) or Mg(2+) had a similar effect on the growth rates of R. tropici and R. leguminosarum bv phaseoli; R. tropici did not require Ca(2+) to grow on minimal medium supplemented with succinate but R. leguminosarum bv phaseoli required either or both of the divalent cations Ca(2+) and Mg(2+). A R. tropici Mu-dI (lacZ) mutant defective in dicarboxylic acid transport, was isolated and found unable to form effective bean nodules.
Collapse
|
32
|
Abstract
We identified several linked genes of a lactose regulon in Rhizobium meliloti. These were lacZ, the structural gene for beta-galactosidase; lacR, the lactose repressor gene; and two genes encoding proteins of unknown function, lacW and lacX. Insertion mutants in lacW and lacZ belonged to a single genetic complementation group, and lacW appeared to lie upstream of lacZ in an operon. Expression of lacZ, lacW and lacX was repressed by lacR, and expression of lacZ and lacW was derepressed by lactose. lacZ was not required for induction of lacW by lactose, suggesting that lactose itself, rather than a processed form of lactose, may be the actual inducer molecule. Expression of all three genes was repressed by succinate, and the lacR independence of this repression showed that inducer exclusion could not be the sole mechanism. This pattern of lac gene organization and regulation differs in several ways from that observed in enteric bacteria.
Collapse
Affiliation(s)
- J G Jelesko
- Department of Microbiology, University of Washington, Seattle 98195
| | | |
Collapse
|
33
|
|
34
|
Osterås M, Finan TM, Stanley J. Site-directed mutagenesis and DNA sequence of pckA of Rhizobium NGR234, encoding phosphoenolpyruvate carboxykinase: gluconeogenesis and host-dependent symbiotic phenotype. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:257-69. [PMID: 1720862 DOI: 10.1007/bf00290676] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
We have cloned and sequenced the pckA gene of Rhizobium sp. NGR234, a broad host-range strain. The gene encodes phosphoenolpyruvate carboxykinase (PEPCK), a key enzyme of gluconeogenesis. The locus was isolated and subcloned from a genomic library of NGR234 employing hybridization with an R. meliloti pck gene probe and complementation of a Tn5 mutant in this species. The DNA sequence of pckA (NGR234) was determined and encoded a PEPCK protein of 535 amino acids with a molecular weight of 58.4 kDa. The deduced polypeptide sequence was compared to those of three known ATP-dependent PEPCKs. Slightly higher homology was observed with yeast and trypanosome polypeptides than with that of Escherichia coli. We have identified several regions that are conserved in all four PEPCK proteins. A mutant constructed in the pck gene by site-directed mutagenesis with interposon omega failed to grow on succinate, malate and arabinose but grew on glucose and glycerol as sole carbon sources. These data show that NGR234 requires PEPCK-driven gluconeogenesis to grow on TCA cycle intermediates. A host-dependent effect of the pckA mutation was observed on nodule development and nitrogen fixation. Nodules formed by the site-directed mutant on Leucaena leucocephala and Macroptilium atropurpureum were FixRed, but on Vigna unguiculata were Fix-. The expression of the gene was positively regulated in free-living cells of NGR234 by either succinate or host-plant exudates, and was subject to catabolite repression by glucose.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- DNA, Bacterial/genetics
- Fabaceae/microbiology
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Genes, Bacterial
- Gluconeogenesis
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Nucleic Acid Hybridization
- Phenotype
- Phosphoenolpyruvate Carboxykinase (GTP)/genetics
- Plants, Medicinal
- RNA, Bacterial/genetics
- RNA, Messenger/genetics
- Restriction Mapping
- Rhizobium/genetics
- Rhizobium/growth & development
- Rhizobium/ultrastructure
- Sequence Alignment
- Symbiosis/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- M Osterås
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, University of Geneva, Switzerland
| | | | | |
Collapse
|
35
|
Rastogi VK, Watson RJ. Aspartate aminotransferase activity is required for aspartate catabolism and symbiotic nitrogen fixation in Rhizobium meliloti. J Bacteriol 1991; 173:2879-87. [PMID: 2019560 PMCID: PMC207869 DOI: 10.1128/jb.173.9.2879-2887.1991] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022] Open
Abstract
A mutant of Rhizobium meliloti, 4R3, which is unable to grow on aspartate has been isolated. The defect is specific to aspartate utilization, since 4R3 is not an auxotroph and grows as well as its parent strain on other carbon and nitrogen sources. The defect was correlated with an inability to fix nitrogen within nodules formed on alfalfa. Transport of aspartate into the mutant cells was found to be normal. Analysis of enzymes involved in aspartate catabolism showed a significantly lower level of aspartate aminotransferase activity in cell extracts of 4R3 than in the wild type. Two unrelated regions identified from a genomic cosmid bank each complemented the aspartate catabolism and symbiotic defects in 4R3. One of the cosmids was found to encode an aspartate aminotransferase enzyme and resulted in restoration of aspartate aminotransferase activity in the mutant. Analysis of the region cloned in this cosmid by transposon mutagenesis showed that mutations within this region generate the original mutant phenotypes. The second type of cosmid was found to encode an aromatic aminotransferase enzyme and resulted in highly elevated levels of aromatic aminotransferase activity. This enzyme apparently compensated for the mutation by its ability to partially utilize aspartate as a substrate. These findings demonstrate that R. meliloti contains an aspartate aminotransferase activity required for symbiotic nitrogen fixation and implicate aspartate as an essential substrate for bacteria in the nodule.
Collapse
Affiliation(s)
- V K Rastogi
- Plant Research Centre, Agriculture Canada, Ottawa, Ontario
| | | |
Collapse
|
36
|
Hornez JP, El Guezzar M, Derieux JC. Succinate transport inRhizobium meliloti: Characteristics and impact on symbiosis. Curr Microbiol 1989. [DOI: 10.1007/bf01570163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022]
|
37
|
O'Brian MR, Maier RJ. Molecular aspects of the energetics of nitrogen fixation in Rhizobium-legume symbioses. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 974:229-46. [PMID: 2659085 DOI: 10.1016/s0005-2728(89)80239-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Affiliation(s)
- M R O'Brian
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
38
|
Abstract
We characterized mutants of Rhizobium meliloti SU47 that were unable to grow on succinate as the carbon source. The mutants fell into five groups based on complementation of the succinate mutations by individual recombinant plasmids isolated from a R. meliloti clone bank. Enzyme analysis showed that mutants in the following groups lacked the indicated common enzyme activities: group II, enolase (Eno); group III, phosphoenolpyruvate carboxykinase (Pck); group IV, glyceraldehyde-3-phosphate dehydrogenase (Gap), and 3-phosphoglycerate kinase (Pgk). Mutants in groups I and V lacked C4-dicarboxylate transport (Dct-) activity. Wild-type cells grown on succinate as the carbon source had high Pck activity, whereas no Pck activity was detected in cells that were grown on glucose as the carbon source. It was found that in free-living cells, Pck is required for the synthesis of phosphoenolpyruvate during gluconeogenesis. In addition, the enzymes of the lower half of the Embden-Meyerhoff-Parnas pathway were absolutely required for gluconeogenesis. Eno, Gap, Pck, and one of the Dct loci (ntrA) mapped to different regions of the chromosome; the other Dct locus was tightly linked to a previously mapped thi locus, which was located on the megaplasmid pRmeSU47b.
Collapse
Affiliation(s)
- T M Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
39
|
El Guezzar M, Hornez JP, Courtois B, Derieux JC. Study of a fructose-negative mutant ofRhizobium meliloti. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb02770.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022] Open
|
40
|
Watson RJ, Chan YK, Wheatcroft R, Yang AF, Han SH. Rhizobium meliloti genes required for C4-dicarboxylate transport and symbiotic nitrogen fixation are located on a megaplasmid. J Bacteriol 1988; 170:927-34. [PMID: 2828335 PMCID: PMC210744 DOI: 10.1128/jb.170.2.927-934.1988] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023] Open
Abstract
A mutant of Rhizobium meliloti unable to transport C4 dicarboxylates (dct) was isolated after Tn5 mutagenesis. The mutant, 4F6, could not grow on aspartate or the tricarboxylic acid cycle intermediates succinate, fumarate, or malate. It produced symbiotically ineffective nodules on Medicago sativa in which bacteroids appeared normal, but the symbiotic zone was reduced and the plant cells contained numerous starch granules at their peripheries. Cosmids containing the dct region were obtained by selecting those which restored the ability of 4F6 to grow on succinate. The Tn5 insertion in 4F6 was found to be within a 5.9-kilobase (kb) EcoRI fragment common to the complementing cosmids. Site-specific Tn5-mutagenesis revealed dct genes in a segment of DNA about 4 kb in size extending from within the 5.9-kb EcoRI fragment into an adjacent 2.9-kb EcoRI fragment. The 4F6 mutation was found to be in a complementation group in which mutations yielded a Fix- phenotype, whereas other dct mutations in the region resulted in mutants which produced effective nodules in most, although not all, plant tests (partially Fix-). The dct region was found to be located on a megaplasmid known to carry genes required for exopolysaccharide production.
Collapse
Affiliation(s)
- R J Watson
- Plant Research Centre, Agriculture Canada, Ottawa, Ontario
| | | | | | | | | |
Collapse
|
41
|
Appels MA, Haaker H. Identification of cytoplasmic nodule-associated forms of malate dehydrogenase involved in the symbiosis between Rhizobium leguminosarum and Pisum sativum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 171:515-22. [PMID: 3162212 DOI: 10.1111/j.1432-1033.1988.tb13820.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
The malate dehydrogenase activity (EC 1.1.1.37), present in the cytoplasm of Pisum sativum root nodules, can be separated by ion-exchange chromatography into four different fractions. Malate dehydrogenase activity present in the cytoplasm of roots elutes mainly as a single peak. During nodule development an increase in malate dehydrogenase activity per gram of material was observed. This increase occurred concomitantly with the increase in nitrogenase activity. The kinetic properties of the separated malate dehydrogenases of root nodule cytoplasm and root cytoplasm were studied. The Km values for malate (2.6 mM), NAD+ (27 microM), oxaloacetate (18 microM) and NADH (13 microM) of the dominant form of the root nodule cytoplasm are much lower than those of the dominant malate dehydrogenase root form (64 mM, 4.4 mM, 89 microM and 70 microM respectively). Binding of malate by the enzyme-NADH complex from root nodules results in an abortive complex, thereby blocking the further reduction of oxaloacetate by NADH. The dominant root malate dehydrogenase does not form the abortive complex. From the kinetic data it is concluded, first, that the root nodule forms of the enzyme are capable of catalysing at a high rate the reduction of oxaloacetate, to meet the demands for malate governed by the bacteroid and the infected plant cell. The second conclusion, drawn from the kinetic data, is that under physiological conditions the conversion of oxaloacetate can be controlled just by the malate concentration. Consequently the major root nodule forms of malate dehydrogenase are able to allow a high flux of malate production from oxaloacetate but also to establish a sufficient oxaloacetate concentration necessary for the assimilation and transport of fixed nitrogen.
Collapse
Affiliation(s)
- M A Appels
- Department of Biochemistry, Agricultural University, Wageningen, The Netherlands
| | | |
Collapse
|
42
|
Birkenhead K, Manian SS, O'Gara F. Dicarboxylic acid transport in Bradyrhizobium japonicum: use of Rhizobium meliloti dct gene(s) to enhance nitrogen fixation. J Bacteriol 1988; 170:184-9. [PMID: 3422072 PMCID: PMC210624 DOI: 10.1128/jb.170.1.184-189.1988] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
A recombinant plasmid encoding Rhizobium meliloti sequences involved in dicarboxylic acid transport (plasmid pRK290:4:46) (E. Bolton, B. Higgisson, A. Harrington, and F. O'Gara, Arch. Microbiol. 144:142-146, 1986) was used to study the relationship between dicarboxylic acid transport and nitrogen fixation in Bradyrhizobium japonicum. The expression of the dct sequences on plasmid pRK290:4:46 in B. japonicum CJ1 resulted in increased growth rates in media containing dicarboxylic acids as the sole source of carbon. In addition, strain CJ1(pRK290:4:46) exhibited enhanced succinate uptake activity when grown on dicarboxylic acids under aerobic conditions. Under free-living nitrogen-fixing conditions, strain CJ1(pRK290:4:46) exhibited higher nitrogenase (acetylene reduction) activity compared with that of the wild-type strain. This increase in nitrogenase activity also correlated with an enhanced dicarboxylic acid uptake rate under these microaerobic conditions. The regulation of dicarboxylic acid transport by factors such as metabolic inhibitors and the presence of additional carbon sources was similar in both the wild-type and the engineered strains. The implications of increasing nitrogenase activity through alterations in the dicarboxylic acid transport system are discussed.
Collapse
Affiliation(s)
- K Birkenhead
- Department of Microbiology, University College, Cork, Ireland
| | | | | |
Collapse
|
43
|
Gardiol AE, Truchet GL, Dazzo FB. Requirement of succinate dehydrogenase activity for symbiotic bacteroid differentiation of Rhizobium meliloti in alfalfa nodules. Appl Environ Microbiol 1987; 53:1947-50. [PMID: 3662521 PMCID: PMC204031 DOI: 10.1128/aem.53.8.1947-1950.1987] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023] Open
Abstract
Transmission electron microscopy was used to study the cellular morphologies of a wild-type Rhizobium meliloti strain (L5-30), a nitrogen fixation-ineffective (Fix-) succinate dehydrogenase mutant (Sdh-) strain, and a Fix+ Sdh+ revertant strain within alfalfa nodules and after free-living growth in a minimal medium containing 27 mM mannitol plus 20 mM succinate. The results showed a requirement of succinate dehydrogenase activity for symbiotic differentiation and maintenance of R. meliloti bacteroids within alfalfa nodules and for succinate-induced cellular pleomorphism in free-living cultures. Also, the Sdh- strain had a 3.5-fold lower rate of oxygen consumption in the defined medium than did the wild type.
Collapse
Affiliation(s)
- A E Gardiol
- Department of Microbiology, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|
44
|
|
45
|
Dicarboxylic acid transport in Rhizobium meliloti: isolation of mutants and cloning of dicarboxylic acid transport genes. Arch Microbiol 1986. [DOI: 10.1007/bf00414724] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
|
46
|
|
47
|
|
48
|
Cerveñanský C, Arias A. Glucose-6-phosphate dehydrogenase deficiency in pleiotropic carbohydrate-negative mutant strains of Rhizobium meliloti. J Bacteriol 1984; 160:1027-30. [PMID: 6501224 PMCID: PMC215813 DOI: 10.1128/jb.160.3.1027-1030.1984] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023] Open
Abstract
Several mutant strains of Rhizobium meliloti isolated after nitrosoguanidine mutagenesis were selected as unable to grow on mannose. Some of them also failed to grow on glucose, fructose, ribose, and xylose but grew on L-arabinose, galactose, and many other carbon sources. Biochemical analysis demonstrated that the mutants lacked NAD- and NADP-linked glucose-6-phosphate dehydrogenase activities that reside on a single enzyme species. One such mutant was found to accumulate glucose-6-phosphate, and this could partially explain the inhibition of growth observed on mixtures of permissive and nonpermissive carbon sources. Symbiotic properties remained unaffected in all these mutants.
Collapse
|
49
|
Reibach PH, Streeter JG. Evaluation of active versus passive uptake of metabolites by Rhizobium japonicum bacteroids. J Bacteriol 1984; 159:47-52. [PMID: 6203891 PMCID: PMC215590 DOI: 10.1128/jb.159.1.47-52.1984] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023] Open
Abstract
Rhizobium japonicum bacteroids were isolated anaerobically from soybean [Glycine max (L.) Merr] nodules. The bacteroids, which were capable of acetylene reduction and respiration, were used to study the uptake of metabolites by a method which permits correction for nonspecific adsorption of metabolites and estimation of total cell volume. These determinations permit active uptake to be assessed from metabolite accumulation against a concentration gradient. Succinate, malate, alpha-ketoglutarate, and glutamate were absorbed via an active mechanism. Plots of 1/V versus 1/[S] for succinate and malate indicated the presence of two uptake components: a saturable and presumably active or carrier-mediated component and a nonsaturable and presumably passive component. The uptake of glucose, malonate, D-pinitol, myo-inositol, and glucose 6-phosphate was slow and not active.
Collapse
|
50
|
Abstract
We have demonstrated that the transport of succinate into the cells of Rhizobium japonicum strains USDA 110 and USDA 217 is severely inhibited by cyanide, azide, and 2,4-dinitrophenol, but not by arsenate. These results suggest an active mechanism of transport that is dependent on an energized membrane, but does not directly utilize ATP. The apparent Km for succinate was 3.8 microM for strain USDA 110 and 1.8 microM for strain USDA 217; maximal transport velocities were 1.5 and 3.3 nmol of succinate per min per mg of protein, respectively. The expression of the succinate uptake activity was inducible rather than constitutive, with succinate and structurally related compounds being the most effective inducers. The mechanism showed some specificity for succinate and similar organic acids; fumarate and L-malate were classical competitive inhibitors of the system. In general, the best competing compounds were also the best carbon substrates for induction of succinate uptake activity. EDTA inhibited the transport of succinate, implying a role for divalent cations in the system. When various divalent cations were used to reconstitute EDTA-inhibited activity, Ca2+ was most effective, followed by Mg2+, which restored activity at about half the efficiency of Ca2+. Growth media that were supplemented with increased Ca2+ concentration supported more rapid growth with succinate as the carbon substrate, and cells from such media showed higher specific activities of succinate transport.
Collapse
|