1
|
Goad DW, Bressy C, Holbrook MC, Grdzelishvili VZ. Acquired chemoresistance can lead to increased resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus. Mol Ther Oncolytics 2022; 24:59-76. [PMID: 34977342 PMCID: PMC8703189 DOI: 10.1016/j.omto.2021.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/27/2021] [Indexed: 01/23/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is a promising oncolytic virus (OV) against different malignancies, including pancreatic ductal adenocarcinoma (PDAC). Our previous studies have demonstrated that VSV-based OVs are effective against the majority of tested human PDAC cell lines. However, some PDAC cell lines are resistant to VSV. PDAC is one of the deadliest types of human malignancies in part due to intrinsic or acquired chemoresistance. Here, we investigated how acquired chemoresistance impacts the efficacy of VSV-based OV therapy. Using an experimental evolution approach, we generated PDAC cell lines with increased resistance to gemcitabine and examined their responsiveness to oncolytic virotherapy. We found that gemcitabine-resistant PDAC cells become more resistant to VSV. The cross-resistance correlated with upregulated levels of a subset of interferon-stimulated genes, resembling the interferon-related DNA damage resistance signature (IRDS), often associated with resistance of cancer cells to chemotherapy and/or radiation therapy. Analysis of ten different PDAC cell lines showed that four PDAC cell lines most resistant to VSV were also highly resistant to gemcitabine, and they all displayed IRDS-like expression in our previous reports. Our study highlights a possible interaction between two different therapies that should be considered in the future for the development of rational treatment regimens.
Collapse
Affiliation(s)
- Dakota W. Goad
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Christian Bressy
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Molly C. Holbrook
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Valery Z. Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Corresponding author Valery Z. Grdzelishvili, Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA.
| |
Collapse
|
2
|
Cell Cycle Arrest in G 2/M Phase Enhances Replication of Interferon-Sensitive Cytoplasmic RNA Viruses via Inhibition of Antiviral Gene Expression. J Virol 2019; 93:JVI.01885-18. [PMID: 30487274 PMCID: PMC6364032 DOI: 10.1128/jvi.01885-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 10/28/2018] [Indexed: 02/06/2023] Open
Abstract
Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51 are widely used model systems to study mechanisms of virus-host interactions. Here, we investigated how the cell cycle affects replication of these viruses using an array of cell lines with different levels of impairment of antiviral signaling and a panel of chemical compounds arresting the cell cycle at different phases. We observed that all compounds inducing cell cycle arrest in G2/M phase strongly enhanced the replication of VSV-ΔM51 in cells with functional antiviral signaling. G2/M arrest strongly inhibited type I and type III interferon (IFN) production as well as expression of IFN-stimulated genes in response to exogenously added IFN. Moreover, G2/M arrest enhanced the replication of Sendai virus (a paramyxovirus), which is also highly sensitive to the type I IFN response but did not stimulate the replication of a wild-type VSV that is more effective at evading antiviral responses. In contrast, the positive effect of G2/M arrest on virus replication was not observed in cells defective in IFN signaling. Altogether, our data show that replication of IFN-sensitive cytoplasmic viruses can be strongly stimulated during G2/M phase as a result of inhibition of antiviral gene expression, likely due to mitotic inhibition of transcription, a global repression of cellular transcription during G2/M phase. The G2/M phase thus could represent an "Achilles' heel" of the infected cell, a phase when the cell is inadequately protected. This model could explain at least one of the reasons why many viruses have been shown to induce G2/M arrest.IMPORTANCE Vesicular stomatitis virus (VSV) (a rhabdovirus) and its variant VSV-ΔM51 are widely used model systems to study mechanisms of virus-host interactions. Here, we investigated how the cell cycle affects replication of VSV and VSV-ΔM51. We show that G2/M cell cycle arrest strongly enhances the replication of VSV-ΔM51 (but not of wild-type VSV) and Sendai virus (a paramyxovirus) via inhibition of antiviral gene expression, likely due to mitotic inhibition of transcription, a global repression of cellular transcription during G2/M phase. Our data suggest that the G2/M phase could represent an "Achilles' heel" of the infected cell, a phase when the cell is inadequately protected. This model could explain at least one of the reasons why many viruses have been shown to induce G2/M arrest, and it has important implications for oncolytic virotherapy, suggesting that frequent cell cycle progression in cancer cells could make them more permissive to viruses.
Collapse
|
3
|
Efficient Delivery of Human Cytomegalovirus T Cell Antigens by Attenuated Sendai Virus Vectors. J Virol 2018; 92:JVI.00569-18. [PMID: 29769344 DOI: 10.1128/jvi.00569-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) represents a major cause of clinical complications during pregnancy as well as immunosuppression, and the licensing of a protective HCMV vaccine remains an unmet global need. Here, we designed and validated novel Sendai virus (SeV) vectors delivering the T cell immunogens IE-1 and pp65. To enhance vector safety, we used a replication-deficient strain (rdSeV) that infects target cells in a nonproductive manner while retaining viral gene expression. In this study, we explored the impact that transduction with rdSeV has on human dendritic cells (DCs) by comparing it to the parental, replication-competent Sendai virus strain (rcSeV) as well as the poxvirus strain modified vaccinia Ankara (MVA). We found that wild-type SeV is capable of replicating to high titers in DCs while rdSeV infects cells abortively. Due to the higher degree of attenuation, IE-1 and pp65 protein levels mediated by rdSeV after infection of DCs were markedly reduced compared to those of the parental Sendai virus recombinants, but antigen-specific restimulation of T cell clones was not negatively affected by this. Importantly, rdSeV showed reduced cytotoxic effects compared to rcSeV and MVA and was capable of mediating DC maturation as well as secretion of alpha interferon and interleukin-6. Finally, in a challenge model with a murine cytomegalovirus (MCMV) strain carrying an HCMV pp65 peptide, we found that viral replication was restricted if mice were previously vaccinated with rdSeV-pp65. Taken together, these data demonstrate that rdSeV has great potential as a vector system for the delivery of HCMV immunogens.IMPORTANCE HCMV is a highly prevalent betaherpesvirus that establishes lifelong latency after primary infection. Congenital HCMV infection is the most common viral complication in newborns, causing a number of late sequelae ranging from impaired hearing to mental retardation. At the same time, managing HCMV reactivation during immunosuppression remains a major hurdle in posttransplant care. Since options for the treatment of HCMV infection are still limited, the development of a vaccine to confine HCMV-related morbidities is urgently needed. We generated new vaccine candidates in which the main targets of T cell immunity during natural HCMV infection, IE-1 and pp65, are delivered by a replication-deficient, Sendai virus-based vector system. In addition to classical prophylactic vaccine concepts, these vectors could also be used for therapeutic applications, thereby expanding preexisting immunity in high-risk groups such as transplant recipients or for immunotherapy of glioblastomas expressing HCMV antigens.
Collapse
|
4
|
Wiegand MA, Gori-Savellini G, Gandolfo C, Papa G, Kaufmann C, Felder E, Ginori A, Disanto MG, Spina D, Cusi MG. A Respiratory Syncytial Virus Vaccine Vectored by a Stable Chimeric and Replication-Deficient Sendai Virus Protects Mice without Inducing Enhanced Disease. J Virol 2017; 91:e02298-16. [PMID: 28250126 PMCID: PMC5411584 DOI: 10.1128/jvi.02298-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/21/2017] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in children and elderly people, and no marketed vaccine exists. In this study, we generated and analyzed a subunit vaccine against RSV based on a novel genome replication-deficient Sendai virus (SeV) vector. We inserted the RSV F protein, known to be a genetically stable antigen, into our vector in a specific way to optimize the vaccine features. By exchanging the ectodomain of the SeV F protein for its counterpart from RSV, we created a chimeric vectored vaccine that contains the RSV F protein as an essential structural component. In this way, the antigen is actively expressed on the surfaces of vaccine particles in its prefusion conformation, and as recently reported for other vectored vaccines, the occurrence of silencing mutations of the transgene in the vaccine genome can be prevented. In addition, its active gene expression contributes to further stimulation of the immune response. In order to understand the best route of immunization, we compared vaccine efficacies after intranasal (i.n.) or intramuscular (i.m.) immunization of BALB/c mice. Via both routes, substantial RSV-specific immune responses were induced, consisting of serum IgG and neutralizing antibodies, as well as cytotoxic T cells. Moreover, i.n. immunization was also able to stimulate specific mucosal IgA in the upper and lower respiratory tract. In virus challenge experiments, animals were protected against RSV infection after both i.n. and i.m. immunization without inducing vaccine-enhanced disease. Above all, the replication-deficient SeV appeared to be safe and well tolerated.IMPORTANCE Respiratory syncytial virus (RSV) is a major cause of respiratory diseases in young children and elderly people worldwide. There is a great demand for a licensed vaccine. Promising existing vaccine approaches based on live-attenuated vaccines or viral vectors have suffered from unforeseen drawbacks related to immunogenicity and attenuation. We provide a novel RSV vaccine concept based on a genome replication-deficient Sendai vector that has many favorable vaccine characteristics. The specific vaccine design guarantees genetic stability of the transgene; furthermore, it supports a favorable presentation of the antigen, activating the adaptive response, features that other vectored vaccine approaches have often had difficulties with. Wide immunological and pathological analyses in mice confirmed the validity and efficacy of this approach after both parenteral and mucosal administration. Above all, this concept is suitable for initiating clinical studies, and it could also be applied to other infectious diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Female
- Genetic Vectors
- Immunization
- Immunoglobulin A/immunology
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus Vaccines/chemistry
- Respiratory Syncytial Virus Vaccines/genetics
- Respiratory Syncytial Virus Vaccines/immunology
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Respiratory Syncytial Virus, Human/physiology
- Sendai virus/genetics
- Sendai virus/immunology
- Vaccines, Attenuated
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/chemistry
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Viral Fusion Proteins/genetics
- Viral Fusion Proteins/immunology
- Virus Replication
Collapse
Affiliation(s)
| | - Gianni Gori-Savellini
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| | - Claudia Gandolfo
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| | - Guido Papa
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| | | | - Eva Felder
- AmVac Research GmbH, Martinsried, Germany
| | - Alessandro Ginori
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Giulia Disanto
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Donatella Spina
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Grazia Cusi
- Department of Medical Biotechnologies, Microbiology Section, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Cataldi M, Shah NR, Felt SA, Grdzelishvili VZ. Breaking resistance of pancreatic cancer cells to an attenuated vesicular stomatitis virus through a novel activity of IKK inhibitor TPCA-1. Virology 2015; 485:340-54. [PMID: 26331681 DOI: 10.1016/j.virol.2015.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
Vesicular stomatitis virus (VSV) is an effective oncolytic virus against most human pancreatic ductal adenocarcinoma (PDAC) cell lines. However, some PDAC cell lines are highly resistant to oncolytic VSV-ΔM51 infection. To better understand the mechanism of resistance, we tested a panel of 16 small molecule inhibitors of different cellular signaling pathways, and identified TPCA-1 (IKK-β inhibitor) and ruxolitinib (JAK1/2 inhibitor), as strong enhancers of VSV-ΔM51 replication and virus-mediated oncolysis in all VSV-resistant PDAC cell lines. Both TPCA-1 and ruxolitinib similarly inhibited STAT1 and STAT2 phosphorylation and decreased expression of antiviral genes MxA and OAS. Moreover, an in situ kinase assay provided biochemical evidence that TPCA-1 directly inhibits JAK1 kinase activity. Together, our data demonstrate that TPCA-1 is a unique dual inhibitor of IKK-β and JAK1 kinase, and provide a new evidence that upregulated type I interferon signaling plays a major role in resistance of pancreatic cancer cells to oncolytic viruses.
Collapse
Affiliation(s)
- Marcela Cataldi
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Nirav R Shah
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Sébastien A Felt
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Valery Z Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
6
|
Manjunath S, Kumar GR, Mishra BP, Mishra B, Sahoo AP, Joshi CG, Tiwari AK, Rajak KK, Janga SC. Genomic analysis of host - Peste des petits ruminants vaccine viral transcriptome uncovers transcription factors modulating immune regulatory pathways. Vet Res 2015; 46:15. [PMID: 25827022 PMCID: PMC4337102 DOI: 10.1186/s13567-015-0153-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/16/2015] [Indexed: 12/21/2022] Open
Abstract
Peste des petits ruminants (PPR), is an acute transboundary viral disease of economic importance, affecting goats and sheep. Mass vaccination programs around the world resulted in the decline of PPR outbreaks. Sungri 96 is a live attenuated vaccine, widely used in Northern India against PPR. This vaccine virus, isolated from goat works efficiently both in sheep and goat. Global gene expression changes under PPR vaccine virus infection are not yet well defined. Therefore, in this study we investigated the host-vaccine virus interactions by infecting the peripheral blood mononuclear cells isolated from goat with PPRV (Sungri 96 vaccine virus), to quantify the global changes in the transcriptomic signature by RNA-sequencing. Viral genome of Sungri 96 vaccine virus was assembled from the PPRV infected transcriptome confirming the infection and demonstrating the feasibility of building a complete non-host genome from the blood transcriptome. Comparison of infected transcriptome with control transcriptome revealed 985 differentially expressed genes. Functional analysis showed enrichment of immune regulatory pathways under PPRV infection. Key genes involved in immune system regulation, spliceosomal and apoptotic pathways were identified to be dysregulated. Network analysis revealed that the protein - protein interaction network among differentially expressed genes is significantly disrupted in infected state. Several genes encoding TFs that govern immune regulatory pathways were identified to co-regulate the differentially expressed genes. These data provide insights into the host - PPRV vaccine virus interactome for the first time. Our findings suggested dysregulation of immune regulatory pathways and genes encoding Transcription Factors (TFs) that govern these pathways in response to viral infection.
Collapse
|
7
|
Sequence of events in measles virus replication: role of phosphoprotein-nucleocapsid interactions. J Virol 2014; 88:10851-63. [PMID: 25008930 DOI: 10.1128/jvi.00664-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED The genome of nonsegmented negative-strand RNA viruses is tightly embedded within a nucleocapsid made of a nucleoprotein (N) homopolymer. To ensure processive RNA synthesis, the viral polymerase L in complex with its cofactor phosphoprotein (P) binds the nucleocapsid that constitutes the functional template. Measles virus P and N interact through two binding sites. While binding of the P amino terminus with the core of N (NCORE) prevents illegitimate encapsidation of cellular RNA, the interaction between their C-terminal domains, P(XD) and N(TAIL) is required for viral RNA synthesis. To investigate the binding dynamics between the two latter domains, the P(XD) F497 residue that makes multiple hydrophobic intramolecular interactions was mutated. Using a quantitative mammalian protein complementation assay and recombinant viruses, we found that an increase in P(XD)-to-N(TAIL) binding strength is associated with a slower transcript accumulation rate and that abolishing the interaction renders the polymerase nonfunctional. The use of a newly developed system allowing conditional expression of wild-type or mutated P genes, revealed that the loss of the P(XD)-N(TAIL) interaction results in reduced transcription by preformed transcriptases, suggesting reduced engagement on the genomic template. These intracellular data indicate that the viral polymerase entry into and progression along its genomic template relies on a protein-protein interaction that serves as a tightly controlled dynamic anchor. IMPORTANCE Mononegavirales have a unique machinery to replicate RNA. Processivity of their polymerase is only achieved when the genome template is entirely embedded into a helical homopolymer of nucleoproteins that constitutes the nucleocapsid. The polymerase binds to the nucleocapsid template through the phosphoprotein. How the polymerase complex enters and travels along the nucleocapsid template to ensure uninterrupted synthesis of up to ∼ 6,700-nucleotide messenger RNAs from six to ten consecutive genes is unknown. Using a quantitative protein complementation assay and a biGene-biSilencing system allowing conditional expression of two P genes copies, the role of the P-to-N interaction in polymerase function was further characterized. We report here a dynamic protein anchoring mechanism that differs from all other known polymerases that rely only onto a sustained and direct binding to their nucleic acid template.
Collapse
|
8
|
Zimmermann M, Armeanu-Ebinger S, Bossow S, Lampe J, Smirnow I, Schenk A, Lange S, Weiss TS, Neubert W, Lauer UM, Bitzer M. Attenuated and protease-profile modified sendai virus vectors as a new tool for virotherapy of solid tumors. PLoS One 2014; 9:e90508. [PMID: 24598703 PMCID: PMC3944018 DOI: 10.1371/journal.pone.0090508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/01/2014] [Indexed: 12/03/2022] Open
Abstract
Multiple types of oncolytic viruses are currently under investigation in clinical trials. To optimize therapeutic outcomes it is believed that the plethora of different tumor types will require a diversity of different virus types. Sendai virus (SeV), a murine parainfluenza virus, displays a broad host range, enters cells within minutes and already has been applied safely as a gene transfer vector in gene therapy patients. However, SeV spreading naturally is abrogated in human cells due to a lack of virus activating proteases. To enable oncolytic applications of SeV we here engineered a set of novel recombinant vectors by a two-step approach: (i) introduction of an ubiquitously recognized cleavage-motive into SeV fusion protein now enabling continuous spreading in human tissues, and (ii) profound attenuation of these rSeV by the knockout of viral immune modulating accessory proteins. When employing human hepatoma cell lines, newly generated SeV variants now reached high titers and induced a profound tumor cell lysis. In contrast, virus release from untransformed human fibroblasts or primary human hepatocytes was found to be reduced by about three log steps in a time course experiment which enables the cumulation of kinetic differences of the distinct phases of viral replication such as primary target cell infection, target cell replication, and progeny virus particle release. In a hepatoma xenograft animal model we found a tumor-specific spreading of our novel recombinant SeV vectors without evidence of biodistribution into non-malignant tissues. In conclusion, we successfully developed novel tumor-selective oncolytic rSeV vectors, constituting a new tool for virotherapy of solid tumors being ready for further preclinical and clinical development to address distinct tumor types.
Collapse
Affiliation(s)
- Martina Zimmermann
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | | | - Sascha Bossow
- Department of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - Johanna Lampe
- Institute for Molecular Medicine Finland FIMM, Helsinki, Finland
| | - Irina Smirnow
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Andrea Schenk
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Sebastian Lange
- Medizinische Klinik, Klinikum rechts der Isar, Technische Universität, München, Germany
| | - Thomas S. Weiss
- Center for Liver Cell Research, Department of Pediatrics and Adolescent Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Wolfgang Neubert
- Max-Planck-Institute for Biochemistry, Department Molecular Virology, Martinsried Germany
| | - Ulrich M. Lauer
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
| | - Michael Bitzer
- Department of Internal Medicine I, Medical University Hospital, Tübingen, Germany
- * E-mail:
| |
Collapse
|
9
|
Wiegand M, Gori-Savellini G, Martorelli B, Bossow S, Neubert WJ, Cusi MG. Evaluation of a novel immunogenic vaccine platform based on a genome replication-deficient Sendai vector. Vaccine 2013; 31:3888-93. [PMID: 23831325 DOI: 10.1016/j.vaccine.2013.06.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/11/2013] [Accepted: 06/19/2013] [Indexed: 11/17/2022]
Abstract
We developed a novel vaccine platform based on a paramyxoviral, genome replication-deficient Sendai virus vector that can express heterologous genes inserted into the genome. To validate the novel approach in vivo, we generated a combined vaccine candidate against human respiratory syncytial virus (RSV) and human parainfluenza virus type 3 (PIV3). The present study compares two different methods of displaying heterologous antigens: (i) the RSV fusion (F) protein, encoded as a secretable version in an additional transcription unit, serves as an antigen only after being expressed in infected cells; (ii) PIV3 fusion (F) and hemagglutinin-neuraminidase (HN) genes, replacing Sendai counterparts in the vector genome, are also expressed as structural components on the surface of vaccine particles. The efficacy of this prototype vaccine was assessed in a mouse model after mucosal administration. The vaccine candidate was able to elicit specific mucosal, humoral and T cell-mediated immune responses against RSV and PIV3. However, PIV3 antigen display on the vaccine particles' surface induced higher antibody titers than the RSV antigen, being expressed only after cell infection. Consequently, this construct induced an adequate neutralizing antibody response only to PIV3. Finally, replicating virus particles were not detected in the lungs of immunized mice, confirming the genome stability and replication deficiency of this vaccine vector in vivo. Both factors can contribute substantially to the safety profile of vaccine candidates. In conclusion, this replication-deficient Sendai vector represents an efficient platform that can be used for vaccine developments against various viral pathogens.
Collapse
Affiliation(s)
- Marian Wiegand
- Department of Molecular Virology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Vesicular stomatitis virus as an oncolytic agent against pancreatic ductal adenocarcinoma. J Virol 2012; 86:3073-87. [PMID: 22238308 DOI: 10.1128/jvi.05640-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is a promising oncolytic agent against a variety of cancers. However, it has never been tested in any pancreatic cancer model. Pancreatic ductal adenocarcinoma (PDA) is the most common and aggressive form of pancreatic cancer. In this study, the oncolytic potentials of several VSV variants were analyzed in a panel of 13 clinically relevant human PDA cell lines and compared to conditionally replicative adenoviruses (CRAds), Sendai virus and respiratory syncytial virus. VSV variants showed oncolytic abilities superior to those of other viruses, and some cell lines that exhibited resistance to other viruses were successfully killed by VSV. However, PDA cells were highly heterogeneous in their susceptibility to virus-induced oncolysis, and several cell lines were resistant to all tested viruses. Resistant cells showed low levels of very early VSV RNA synthesis, indicating possible defects at initial stages of infection. In addition, unlike permissive PDA cell lines, most of the resistant cell lines were able to both produce and respond to interferon, suggesting that intact type I interferon responses contributed to their resistance phenotype. Four cell lines that varied in their permissiveness to VSV-ΔM51 and CRAd dl1520 were tested in mice, and the in vivo results closely mimicked those in vitro. While our results demonstrate that VSV is a promising oncolytic agent against PDA, further studies are needed to better understand the molecular mechanisms of resistance of some PDAs to oncolytic virotherapy.
Collapse
|
11
|
Abstract
Ebola virus (EBOV), an enveloped, single-stranded, negative-sense RNA virus, causes severe hemorrhagic fever in humans and nonhuman primates. The EBOV glycoprotein (GP) gene encodes the nonstructural soluble glycoprotein (sGP) but also produces the transmembrane glycoprotein (GP₁,₂) through transcriptional editing. A third GP gene product, a small soluble glycoprotein (ssGP), has long been postulated to be produced also as a result of transcriptional editing. To identify and characterize the expression of this new EBOV protein, we first analyzed the relative ratio of GP gene-derived transcripts produced during infection in vitro (in Vero E6 cells or Huh7 cells) and in vivo (in mice). The average percentages of transcripts encoding sGP, GP₁,₂, and ssGP were approximately 70, 25, and 5%, respectively, indicating that ssGP transcripts are indeed produced via transcriptional editing. N-terminal sequence similarity with sGP, the absence of distinguishing antibodies, and the abundance of sGP made it difficult to identify ssGP through conventional methodology. Optimized 2-dimensional (2D) gel electrophoresis analyses finally verified the expression and secretion of ssGP in tissue culture during EBOV infection. Biochemical analysis of recombinant ssGP characterized this protein as a disulfide-linked homodimer that was exclusively N glycosylated. In conclusion, we have identified and characterized a new EBOV nonstructural glycoprotein, which is expressed as a result of transcriptional editing of the GP gene. While ssGP appears to share similar structural properties with sGP, it does not appear to have the same anti-inflammatory function on endothelial cells as sGP.
Collapse
|
12
|
Abe T, Masuda S, Ban H, Hayashi S, Ueda Y, Inoue M, Hasegawa M, Nagao Y, Hanazono Y. Ex vivo expansion of human HSCs with Sendai virus vector expressing HoxB4 assessed by sheep in utero transplantation. Exp Hematol 2010; 39:47-54. [PMID: 20875838 DOI: 10.1016/j.exphem.2010.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The homeobox B4 (HoxB4) gene promotes expansion of hematopoietic stem cells (HSCs). However, frequent development of leukemia in large animals due to retrovirally transduced HoxB4 gene has been reported. To prevent tumorigenesis, we developed a nonintegrating and nonreplicating Sendai virus vector that did not contain the phosphoprotein gene (SeV/ΔP), which enabled clearance of the vector and transgene shortly after transduction. We tested the SeV/ΔP vector expressing the HoxB4 gene (SeV/ΔP/HoxB4) for the ex vivo expansion of human cord blood CD34(+) cells (HSCs) using a sheep in utero transplantation assay. MATERIALS AND METHODS Human HSCs were ex vivo-expanded by transduction with SeV/ΔP/HoxB4 vector and transplanted into the abdominal cavity of fetal sheep. The engraftment of human HSCs in the lambs was quantitatively evaluated by hematopoietic colony-forming unit assays. RESULTS After transplantation, the HoxB4-transduced HSCs contributed to longer-period (up to 20 months) repopulation in sheep, and human hematopoietic progenitors were detected more frequently in the bone marrow of the HoxB4 group as compared with the control untreated group (p < 0.05). The expansion of human HSCs with the SeV/ΔP/HoxB4 vector was comparable with previously reported retroviral vectors expressing HoxB4. The SeV/ΔP/HoxB4 vector and the transgene were cleared from the recipient sheep and leukemia was not detected at 20 months post-transplantation. CONCLUSIONS The SeV/ΔP vector would be suitable for transient expression of HoxB4 in human CD34(+) cells. In addition, the SeV/ΔP vector is free of concern about transgene-related and insertional leukemogenesis and should be safer than retroviral vectors.
Collapse
Affiliation(s)
- Tomoyuki Abe
- Division of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cell type mediated resistance of vesicular stomatitis virus and Sendai virus to ribavirin. PLoS One 2010; 5:e11265. [PMID: 20582319 PMCID: PMC2889835 DOI: 10.1371/journal.pone.0011265] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 06/02/2010] [Indexed: 12/14/2022] Open
Abstract
Ribavirin (RBV) is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus) and Sendai virus (SeV, a paramyxovirus). Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake) in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro.
Collapse
|
14
|
Ilkow CS, Willows SD, Hobman TC. Rubella virus capsid protein: a small protein with big functions. Future Microbiol 2010; 5:571-84. [PMID: 20353299 DOI: 10.2217/fmb.10.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Virus replication occurs in the midst of a life or death struggle between the virus and the infected host cell. To limit virus replication, host cells can activate a number of antiviral pathways, the most drastic of which is programmed cell death. Whereas large DNA viruses have the luxury of encoding accessory proteins whose main function is to interfere with host cell defences, the genomes of RNA viruses are not large enough to encode proteins of this type. Recent studies have revealed that proteins encoded by RNA viruses often play multiple roles in the battles between viruses and host cells. In this article, we discuss the many functions of the rubella virus capsid protein. This protein has well-defined roles in virus assembly, but recent research suggests that it also functions to modulate virus replication and block host cell defences.
Collapse
Affiliation(s)
- Carolina S Ilkow
- Department of Cell Biology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | | | | |
Collapse
|
15
|
Chauhan VS, Furr SR, Sterka DG, Nelson DA, Moerdyk-Schauwecker M, Marriott I, Grdzelishvili VZ. Vesicular stomatitis virus infects resident cells of the central nervous system and induces replication-dependent inflammatory responses. Virology 2010; 400:187-96. [PMID: 20172575 DOI: 10.1016/j.virol.2010.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 01/11/2010] [Accepted: 01/20/2010] [Indexed: 11/18/2022]
Abstract
Vesicular stomatitis virus (VSV) infection of mice via intranasal administration results in a severe encephalitis with rapid activation and proliferation of microglia and astrocytes. We have recently shown that these glial cells express RIG-I and MDA5, cytosolic pattern recognition receptors for viral RNA. However, it is unclear whether VSV can replicate in glial cells or if such replication is required for their inflammatory responses. Here we demonstrate that primary microglia and astrocytes are permissive for VSV infection and limited productive replication. Importantly, we show that viral replication is required for robust inflammatory mediator production by these cells. Finally, we have confirmed that in vivo VSV administration can result in viral infection of glial cells in situ. These results suggest that viral replication within resident glial cells might play an important role in CNS inflammation following infection with VSV and possibly other neurotropic nonsegmented negative-strand RNA viruses.
Collapse
Affiliation(s)
- Vinita S Chauhan
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Identification of sendai virus L protein amino acid residues affecting viral mRNA cap methylation. J Virol 2008; 83:1669-81. [PMID: 19052078 DOI: 10.1128/jvi.01438-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Viruses of the order Mononegavirales all encode a large (L) polymerase protein responsible for the replication and transcription of the viral genome as well as all posttranscriptional modifications of viral mRNAs. The L protein is conserved among all members of the Mononegavirales and has six conserved regions ("domains"). Using vesicular stomatitis virus (VSV) (family Rhabdoviridae) experimental system, we and others recently identified several conserved amino acid residues within L protein domain VI which are required for viral mRNA cap methylation. To verify that these critical amino acid residues have a similar function in other members of the Mononegavirales, we examined the Sendai virus (SeV) (family Paramyxoviridae) L protein by targeting homologous amino acid residues important for cap methylation in VSV which are highly conserved among all members of the Mononegavirales and are believed to constitute the L protein catalytic and S-adenosylmethionine-binding sites. In addition, an SeV L protein mutant with a deletion of the entire domain VI was generated. First, L mutants were tested for their abilities to synthesize viral mRNAs. While the domain VI deletion completely inactivated L, most of the amino acid substitutions had minor effects on mRNA synthesis. Using a reverse genetics approach, these mutations were introduced into the SeV genome, and recombinant infectious SeV mutants with single alanine substitutions at L positions 1782, 1804, 1805, and 1806 or a double substitution at positions 1804 and 1806 were generated. The mutant SeV virions were purified, detergent activated, and analyzed for their abilities to synthesize viral mRNAs methylated at their cap structures. In addition, further studies were done to examine these SeV mutants for a possible host range phenotype, which was previously shown for VSV cap methylation-defective mutants. In agreement with a predicted role of the SeV L protein invariant lysine 1782 as a catalytic residue, the recombinant virus with a single K1782A substitution was completely defective in cap methylation and showed a host range phenotype. In addition, the E1805A mutation within the putative S-adenosylmethionine-binding site of L resulted in a 60% reduction in cap methylation. In contrast to the homologous VSV mutants, other recombinant SeV mutants with amino acid substitutions at this site were neither defective in cap methylation nor host range restricted. The results of this initial study using an SeV experimental system demonstrate similarities as well as differences between the L protein cap methylation domains in different members of the Mononegavirales.
Collapse
|
17
|
Mir MA, Panganiban AT. A protein that replaces the entire cellular eIF4F complex. EMBO J 2008; 27:3129-39. [PMID: 18971945 DOI: 10.1038/emboj.2008.228] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Accepted: 10/02/2008] [Indexed: 11/09/2022] Open
Abstract
The eIF4F cap-binding complex mediates the initiation of cellular mRNA translation. eIF4F is composed of eIF4E, which binds to the mRNA cap, eIF4G, which indirectly links the mRNA cap with the 43S pre-initiation complex, and eIF4A, which is a helicase necessary for initiation. Viral nucleocapsid proteins (N) function in both genome replication and RNA encapsidation. Surprisingly, we find that hantavirus N has multiple intrinsic activities that mimic and substitute for each of the three peptides of the cap-binding complex thereby enhancing the translation of viral mRNA. N binds with high affinity to the mRNA cap replacing eIF4E. N binds directly to the 43S pre-initiation complex facilitating loading of ribosomes onto capped mRNA functionally replacing eIF4G. Finally, N obviates the requirement for the helicase, eIF4A. The expression of a multifaceted viral protein that functionally supplants the cellular cap-binding complex is a unique strategy for viral mRNA translation initiation. The ability of N to directly mediate translation initiation would ensure the efficient translation of viral mRNA.
Collapse
Affiliation(s)
- Mohammad A Mir
- Department of Molecular Genetics and Microbiology and the Center for Infectious Diseases & Immunity, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | |
Collapse
|
18
|
Deffrasnes C, Cavanagh MH, Goyette N, Cui K, Ge Q, Seth S, Templin MV, Quay SC, Johnson PH, Boivin G. Inhibition of Human Metapneumovirus Replication by Small Interfering RNA. Antivir Ther 2008. [DOI: 10.1177/135965350801300603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Human metapneumovirus (hMPV) is a major respiratory viral pathogen in young children, elderly individuals and immunocompromised patients. Despite its major effects related to bronchiolitis, pneumonia and its potential role in recurrent wheezing episodes, there is still no commercial treatment or vaccine available against this paramyxovirus. Methods We tested a therapeutic strategy for hMPV that was based on RNA interference. Results An hMPV genome-wide search for small interfering RNAs (siRNAs) by computational analysis revealed 200 potentially effective 21-mer siRNAs. Initial screening with a luciferase assay identified 57 siRNAs of interest. Further evaluation of their inhibitory potential against the four hMPV subgroups by quantitative real-time reverse transcriptase PCR and plaque immunoassay identified two highly potent siRNAs with 50% inhibitory concentration (IC50) values in the subnanomolar range. siRNA45 targets the nucleoprotein messenger RNA (mRNA) and had IC50 values <0.078 nM against representative strains from the four hMPV subgroups, whereas siRNA60, which targets the phosphoprotein mRNA, had IC50 values between 0.090– <0.078 nM against the same panel of hMPV strains. Longer 25/27-mer siRNAs known as Dicer substrates designed from the top two siRNA candidates were also evaluated and were at least as effective as their corresponding 21-mer siRNAs. Interestingly, the presence of one or two nucleotide mismatches in the target mRNA sequence of some hMPV subgroups did not always affect hMPV inhibition in vitro. Conclusions We successfully identified two highly efficient siRNAs against hMPV targeting essential components of the hMPV replication complex.
Collapse
Affiliation(s)
- Céline Deffrasnes
- Infectious Disease Research Centre of the Centre Hospitalier Universitaire de Québec and Laval University, Quebec City, QC, Canada
| | - Marie-Hélène Cavanagh
- Infectious Disease Research Centre of the Centre Hospitalier Universitaire de Québec and Laval University, Quebec City, QC, Canada
| | - Nathalie Goyette
- Infectious Disease Research Centre of the Centre Hospitalier Universitaire de Québec and Laval University, Quebec City, QC, Canada
| | | | - Qing Ge
- MDRNA Inc., Bothell, WA, USA
- Somagenics Inc., Santa Cruz, CA, USA
| | | | | | | | - Paul H Johnson
- MDRNA Inc., Bothell, WA, USA
- PhaseRx Pharmaceuticals, Seattle, WA, USA
| | - Guy Boivin
- Infectious Disease Research Centre of the Centre Hospitalier Universitaire de Québec and Laval University, Quebec City, QC, Canada
| |
Collapse
|
19
|
Whelan SP. Response to “Non-segmented negative-strand RNA virus RNA synthesis in vivo”. Virology 2008; 371:234-7. [DOI: 10.1016/j.virol.2007.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/16/2007] [Indexed: 12/22/2022]
|
20
|
Curran J, Kolakofsky D. Nonsegmented negative-strand RNA virus RNA synthesis in vivo. Virology 2008; 371:227-30. [PMID: 18177685 DOI: 10.1016/j.virol.2007.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 11/16/2007] [Indexed: 12/16/2022]
|