1
|
Neira JL. Fluorescence, Circular Dichroism and Mass Spectrometry as Tools to Study Virus Structure. Subcell Biochem 2024; 105:207-245. [PMID: 39738948 DOI: 10.1007/978-3-031-65187-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Fluorescence and circular dichroism, as analytical spectroscopic techniques, and mass spectrometry, as an analytical tool to determine molecular mass, are important biophysical methods in structural virology. Although they do not provide atomic or near-atomic details as cryogenic electron microscopy, X-ray crystallography or nuclear magnetic resonance spectroscopy can, they do deliver important insights into virus particle composition, structure, conformational stability and dynamics, assembly and maturation and interactions with other viral and cellular biomolecules. They can also be used to investigate the molecular determinants of virus particle structure and properties and the changes induced in them by external factors. In this chapter, the physical foundations of these three techniques will be described, alongside examples demonstrating their contribution in understanding the structure and physicochemical properties of virus particles.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain.
| |
Collapse
|
2
|
Klupp BG, Mettenleiter TC. The Knowns and Unknowns of Herpesvirus Nuclear Egress. Annu Rev Virol 2023; 10:305-323. [PMID: 37040797 DOI: 10.1146/annurev-virology-111821-105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Nuclear egress of herpesvirus capsids across the intact nuclear envelope is an exceptional vesicle-mediated nucleocytoplasmic translocation resulting in the delivery of herpesvirus capsids into the cytosol. Budding of the (nucleo)capsid at and scission from the inner nuclear membrane (INM) is mediated by the viral nuclear egress complex (NEC) resulting in a transiently enveloped virus particle in the perinuclear space followed by fusion of the primary envelope with the outer nuclear membrane (ONM). The dimeric NEC oligomerizes into a honeycomb-shaped coat underlining the INM to induce membrane curvature and scission. Mutational analyses complemented structural data defining functionally important regions. Questions remain, including where and when the NEC is formed and how membrane curvature is mediated, vesicle formation is regulated, and directionality is secured. The composition of the primary enveloped virion and the machinery mediating fusion of the primary envelope with the ONM is still debated. While NEC-mediated budding apparently follows a highly conserved mechanism, species and/or cell type-specific differences complicate understanding of later steps.
Collapse
Affiliation(s)
- Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | |
Collapse
|
3
|
RNA helicase DDX3X modulates herpes simplex virus 1 nuclear egress. Commun Biol 2023; 6:134. [PMID: 36725983 PMCID: PMC9892522 DOI: 10.1038/s42003-023-04522-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
DDX3X is a mammalian RNA helicase that regulates RNA metabolism, cancers, innate immunity and several RNA viruses. We discovered that herpes simplex virus 1, a nuclear DNA replicating virus, redirects DDX3X to the nuclear envelope where it surprisingly modulates the exit of newly assembled viral particles. DDX3X depletion also leads to an accumulation of virions in intranuclear herniations. Mechanistically, we show that DDX3X physically and functionally interacts with the virally encoded nuclear egress complex at the inner nuclear membrane. DDX3X also binds to and stimulates the incorporation in mature particles of pUs3, a herpes kinase that promotes viral nuclear release across the outer nuclear membrane. Overall, the data highlights two unexpected roles for an RNA helicase during the passage of herpes simplex viral particles through the nuclear envelope. This reveals a highly complex interaction between DDX3X and viruses and provides new opportunities to target viral propagation.
Collapse
|
4
|
Herpesvirus Nuclear Egress across the Outer Nuclear Membrane. Viruses 2021; 13:v13122356. [PMID: 34960625 PMCID: PMC8706699 DOI: 10.3390/v13122356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/22/2023] Open
Abstract
Herpesvirus capsids are assembled in the nucleus and undergo a two-step process to cross the nuclear envelope. Capsids bud into the inner nuclear membrane (INM) aided by the nuclear egress complex (NEC) proteins UL31/34. At that stage of egress, enveloped virions are found for a short time in the perinuclear space. In the second step of nuclear egress, perinuclear enveloped virions (PEVs) fuse with the outer nuclear membrane (ONM) delivering capsids into the cytoplasm. Once in the cytoplasm, capsids undergo re-envelopment in the Golgi/trans-Golgi apparatus producing mature virions. This second step of nuclear egress is known as de-envelopment and is the focus of this review. Compared with herpesvirus envelopment at the INM, much less is known about de-envelopment. We propose a model in which de-envelopment involves two phases: (i) fusion of the PEV membrane with the ONM and (ii) expansion of the fusion pore leading to release of the viral capsid into the cytoplasm. The first phase of de-envelopment, membrane fusion, involves four herpes simplex virus (HSV) proteins: gB, gH/gL, gK and UL20. gB is the viral fusion protein and appears to act to perturb membranes and promote fusion. gH/gL may also have similar properties and appears to be able to act in de-envelopment without gB. gK and UL20 negatively regulate these fusion proteins. In the second phase of de-envelopment (pore expansion and capsid release), an alpha-herpesvirus protein kinase, US3, acts to phosphorylate NEC proteins, which normally produce membrane curvature during envelopment. Phosphorylation of NEC proteins reverses tight membrane curvature, causing expansion of the membrane fusion pore and promoting release of capsids into the cytoplasm.
Collapse
|
5
|
Sucharita S, Zhang K, van Drunen Littel-van den Hurk S. VP8, the Major Tegument Protein of Bovine Herpesvirus-1, Is Partially Packaged during Early Tegument Formation in a VP22-Dependent Manner. Viruses 2021; 13:v13091854. [PMID: 34578435 PMCID: PMC8472402 DOI: 10.3390/v13091854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/31/2023] Open
Abstract
Bovine herpesvirus-1 (BoHV-1) is a major cause of rhinotracheitis and vulvovaginitis in cattle. VP8, the major tegument protein of BoHV-1, is essential for viral replication in the host. VP8 is phosphorylated by the viral kinase US3, mediating its translocation to the cytoplasm. VP8 remains nuclear when not phosphorylated. Interestingly, VP8 has a significant presence in mature BoHV-1YmVP8, in which the VP8 phosphorylation sites are mutated. This suggests that VP8 might be packaged during primary envelopment of BoHV-1. This was investigated by mass spectrometry and Western blotting, which showed VP8, as well as VP22, to be constituents of the primary enveloped virions. VP8 and VP22 were shown to interact via co-immunoprecipitation experiments, in both BoHV-1-infected and VP8-transfected cells. VP8 and VP22 also co-localised with one another and with nuclear lamin-associated protein 2 in BoHV-1-infected cells, suggesting an interaction between VP8 and VP22 in the perinuclear region. In cells infected with VP22-deleted BoHV-1 (BoHV-1ΔUL49), VP8 was absent from the primary enveloped virions, implying that VP22 might be critical for the early packaging of VP8. In conclusion, a novel VP22-dependent mechanism for packaging of VP8 was identified, which may be responsible for a significant amount of VP8 in the viral particle.
Collapse
Affiliation(s)
- Soumya Sucharita
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Kuan Zhang
- Department of Virology and Immunology, Shanghai Virogin Biotechnology Co. Ltd., Shanghai 201108, China;
| | - Sylvia van Drunen Littel-van den Hurk
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence: ; Tel.: +1-(306)-966-1559
| |
Collapse
|
6
|
Avula K, Singh B, Kumar PV, Syed GH. Role of Lipid Transfer Proteins (LTPs) in the Viral Life Cycle. Front Microbiol 2021; 12:673509. [PMID: 34248884 PMCID: PMC8260984 DOI: 10.3389/fmicb.2021.673509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses are obligate parasites that depend on the host cell machinery for their replication and dissemination. Cellular lipids play a central role in multiple stages of the viral life cycle such as entry, replication, morphogenesis, and egress. Most viruses reorganize the host cell membranes for the establishment of viral replication complex. These specialized structures allow the segregation of replicating viral RNA from ribosomes and protect it from host nucleases. They also facilitate localized enrichment of cellular components required for viral replication and assembly. The specific composition of the lipid membrane governs its ability to form negative or positive curvature and possess a rigid or flexible form, which is crucial for membrane rearrangement and establishment of viral replication complexes. In this review, we highlight how different viruses manipulate host lipid transfer proteins and harness their functions to enrich different membrane compartments with specific lipids in order to facilitate multiple aspects of the viral life cycle.
Collapse
Affiliation(s)
- Kiran Avula
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Bharati Singh
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | - Preethy V Kumar
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | - Gulam H Syed
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India
| |
Collapse
|
7
|
Host Vesicle Fusion Protein VAPB Contributes to the Nuclear Egress Stage of Herpes Simplex Virus Type-1 (HSV-1) Replication. Cells 2019; 8:cells8020120. [PMID: 30717447 PMCID: PMC6406291 DOI: 10.3390/cells8020120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
The primary envelopment/de-envelopment of Herpes viruses during nuclear exit is poorly understood. In Herpes simplex virus type-1 (HSV-1), proteins pUL31 and pUL34 are critical, while pUS3 and some others contribute; however, efficient membrane fusion may require additional host proteins. We postulated that vesicle fusion proteins present in the nuclear envelope might facilitate primary envelopment and/or de-envelopment fusion with the outer nuclear membrane. Indeed, a subpopulation of vesicle-associated membrane protein-associated protein B (VAPB), a known vesicle trafficking protein, was present in the nuclear membrane co-locating with pUL34. VAPB knockdown significantly reduced both cell-associated and supernatant virus titers. Moreover, VAPB depletion reduced cytoplasmic accumulation of virus particles and increased levels of nuclear encapsidated viral DNA. These results suggest that VAPB is an important player in the exit of primary enveloped HSV-1 virions from the nucleus. Importantly, VAPB knockdown did not alter pUL34, calnexin or GM-130 localization during infection, arguing against an indirect effect of VAPB on cellular vesicles and trafficking. Immunogold-labelling electron microscopy confirmed VAPB presence in nuclear membranes and moreover associated with primary enveloped HSV-1 particles. These data suggest that VAPB could be a cellular component of a complex that facilitates UL31/UL34/US3-mediated HSV-1 nuclear egress.
Collapse
|
8
|
Abstract
The assembly and egress of herpes simplex virus (HSV) is a complicated multistage process that involves several different cellular compartments and the activity of many viral and cellular proteins. The process begins in the nucleus, with capsid assembly followed by genome packaging into the preformed capsids. The DNA-filled capsids (nucleocapsids) then exit the nucleus by a process of envelopment at the inner nuclear membrane followed by fusion with the outer nuclear membrane. In the cytoplasm nucleocapsids associate with tegument proteins, which form a complicated protein network that links the nucleocapsid to the cytoplasmic domains of viral envelope proteins. Nucleocapsids and associated tegument then undergo secondary envelopment at intracellular membranes originating from late secretory pathway and endosomal compartments. This leads to assembled virions in the lumen of large cytoplasmic vesicles, which are then transported to the cell periphery to fuse with the plasma membrane and release virus particles from the cell. The details of this multifaceted process are described in this chapter.
Collapse
|
9
|
Extended Synaptotagmin 1 Interacts with Herpes Simplex Virus 1 Glycoprotein M and Negatively Modulates Virus-Induced Membrane Fusion. J Virol 2017; 92:JVI.01281-17. [PMID: 29046455 DOI: 10.1128/jvi.01281-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022] Open
Abstract
Enveloped viruses typically encode their own fusion machinery to enter cells. Herpesviruses are unusual, as they fuse with a number of cellular compartments throughout their life cycles. As uncontrolled fusion of the host membranes should be avoided in these events, tight regulation of the viral fusion machinery is critical. While studying herpes simplex virus 1 (HSV-1) glycoprotein gM, we identified the cellular protein E-Syt1 (extended synaptotagmin 1) as an interaction partner. The interaction took place in both infected and transfected cells, suggesting other viral proteins were not required for the interaction. Most interestingly, E-Syt1 is a member of the synaptotagmin family of membrane fusion regulators. However, the protein is known to promote the tethering of the endoplasmic reticulum (ER) to the plasma membrane. We now show that E-Syt1, along with the related E-Syt3, negatively modulates viral release into the extracellular milieu, cell-to-cell viral spread, and viral entry, all processes that implicate membrane fusion events. Similarly, these E-Syt proteins impacted the formation of virus-induced syncytia. Altogether, these findings hint at the modulation of the viral fusion machinery by the E-Syt family of proteins.IMPORTANCE Viruses typically encode their own fusion apparatus to enable them to enter cells. For many viruses, this means a single fusogenic protein. However, herpesviruses are large entities that express several accessory viral proteins to regulate their fusogenic activity. The present study hints at the additional participation of cellular proteins in this process, suggesting the host can also modulate viral fusion to some extent. Hence E-Syt proteins 1 and 3 seem to negatively modulate the different viral fusion events that take place during the HSV-1 life cycle. This could represent yet another innate immunity response to the virus.
Collapse
|
10
|
Newcomb WW, Fontana J, Winkler DC, Cheng N, Heymann JB, Steven AC. The Primary Enveloped Virion of Herpes Simplex Virus 1: Its Role in Nuclear Egress. mBio 2017; 8:e00825-17. [PMID: 28611252 PMCID: PMC5472190 DOI: 10.1128/mbio.00825-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/28/2022] Open
Abstract
Many viruses migrate between different cellular compartments for successive stages of assembly. The HSV-1 capsid assembles in the nucleus and then transfers into the cytoplasm. First, the capsid buds through the inner nuclear membrane, becoming coated with nuclear egress complex (NEC) protein. This yields a primary enveloped virion (PEV) whose envelope fuses with the outer nuclear membrane, releasing the capsid into the cytoplasm. We investigated the associated molecular mechanisms by isolating PEVs from US3-null-infected cells and imaging them by cryo-electron microscopy and tomography. (pUS3 is a viral protein kinase in whose absence PEVs accumulate in the perinuclear space.) Unlike mature extracellular virions, PEVs have very few glycoprotein spikes. PEVs are ~20% smaller than mature virions, and the little space available between the capsid and the NEC layer suggests that most tegument proteins are acquired later in the egress pathway. Previous studies have proposed that NEC is organized as hexamers in honeycomb arrays in PEVs, but we find arrays of heptameric rings in extracts from US3-null-infected cells. In a PEV, NEC contacts the capsid predominantly via the pUL17/pUL25 complexes which are located close to the capsid vertices. Finally, the NEC layer dissociates from the capsid as it leaves the nucleus, possibly in response to pUS3-mediated phosphorylation. Overall, nuclear egress emerges as a process driven by a program of multiple weak interactions.IMPORTANCE On its maturation pathway, the newly formed HSV-1 nucleocapsid must traverse the nuclear envelope, while respecting the integrity of that barrier. Nucleocapsids (125 nm in diameter) are too large to pass through the nuclear pore complexes that conduct most nucleocytoplasmic traffic. It is now widely accepted that the process involves envelopment/de-envelopment of a key intermediate-the primary enveloped virion. In wild-type infections, PEVs are short-lived, which has impeded study. Using a mutant that accumulates PEVs in the perinuclear space, we were able to isolate PEVs in sufficient quantity for structural analysis by cryo-electron microscopy and tomography. The findings not only elucidate the maturation pathway of an important human pathogen but also have implications for cellular processes that involve the trafficking of large macromolecular complexes.
Collapse
Affiliation(s)
- William W Newcomb
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Juan Fontana
- Astbury Centre for Structural Molecular Biology and Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Dennis C Winkler
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Naiqian Cheng
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - J Bernard Heymann
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Weed DJ, Nicola AV. Herpes simplex virus Membrane Fusion. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:29-47. [PMID: 28528438 PMCID: PMC5869023 DOI: 10.1007/978-3-319-53168-7_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Herpes simplex virus mediates multiple distinct fusion events during infection. HSV entry is initiated by fusion of the viral envelope with either the limiting membrane of a host cell endocytic compartment or the plasma membrane. In the infected cell during viral assembly, immature, enveloped HSV particles in the perinuclear space fuse with the outer nuclear membrane in a process termed de-envelopment. A cell infected with some strains of HSV with defined mutations spread to neighboring cells by a fusion event called syncytium formation. Two experimental methods, the transient cell-cell fusion approach and fusion from without, are useful surrogate assays of HSV fusion. These five fusion processes are considered in terms of their requirements, mechanism, and regulation. The execution and modulation of these events require distinct yet often overlapping sets of viral proteins and host cell factors. The core machinery of HSV gB, gD, and the heterodimer gH/gL is required for most if not all of the HSV fusion mechanisms.
Collapse
Affiliation(s)
- Darin J Weed
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
12
|
Roller RJ, Baines JD. Herpesvirus Nuclear Egress. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:143-169. [PMID: 28528443 DOI: 10.1007/978-3-319-53168-7_7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herpesviruses assemble and package their genomes into capsids in the nucleus, but complete final assembly of the mature virion in the cell cytoplasm. This requires passage of the genome-containing capsid across the double-membrane nuclear envelope. Herpesviruses have evolved a mechanism that relies on a pair of conserved viral gene products to shuttle the capsids from the nucleus to the cytoplasm by way of envelopment and de-envelopment at the inner and outer nuclear membranes, respectively. This complex process requires orchestration of the activities of viral and cellular factors to alter the architecture of the nuclear membrane, select capsids at the appropriate stage for egress, and accomplish efficient membrane budding and fusion events. The last few years have seen major advances in our understanding of the membrane budding mechanism and helped clarify the roles of viral and cellular proteins in the other, more mysterious steps. Here, we summarize and place into context this recent research and, hopefully, clarify both the major advances and major gaps in our understanding.
Collapse
Affiliation(s)
- Richard J Roller
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Joel D Baines
- Kenneth F. Burns Chair in Veterinary Medicine, School of Veterinary Medicine, Skip Bertman Drive, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
13
|
The Interaction between Herpes Simplex Virus 1 Tegument Proteins UL51 and UL14 and Its Role in Virion Morphogenesis. J Virol 2016; 90:8754-67. [PMID: 27440890 DOI: 10.1128/jvi.01258-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/15/2016] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED To investigate the molecular mechanism(s) by which herpes simplex virus 1 (HSV-1) tegument protein UL51 promotes viral replication, we screened for viral proteins that interact with UL51 in infected cells. Affinity purification of tagged UL51 in HSV-1-infected Vero cells was coupled with immunoblotting of the purified UL51 complexes with various antibodies to HSV-1 virion proteins. Subsequent analyses revealed that UL51 interacted with another tegument protein, UL14, in infected cells. Mutational analyses of UL51 showed that UL51 amino acid residues Leu-111, Ile-119, and Tyr-123 were required for interaction with UL14 in HSV-1-infected cells. Alanine substitutions of these UL51 amino acid residues reduced viral replication and produced an accumulation of unenveloped and partially enveloped nucleocapsids in the cytoplasm at levels comparable to those of UL51-null, UL14-null, and UL51/UL14 double-null mutations. In addition, although UL51 and UL14 colocalized at juxtanuclear domains in HSV-1-infected cells, the amino acid substitutions in UL51 produced aberrant localization of UL51 and UL14. The effects of these substitutions on localization of UL51 and UL14 were similar to those of the UL51-null and UL14-null mutations on localization of UL14 and UL51, respectively. These results suggested that the interaction between UL51 and UL14 was required for proper localization of these viral proteins in infected cells and that the UL51-UL14 complex regulated final viral envelopment for efficient viral replication. IMPORTANCE Herpesviruses contain a unique virion structure designated the tegument, which is a protein layer between the nucleocapsid and the envelope. HSV-1 has dozens of viral proteins in the tegument, which are thought to facilitate viral envelopment by interacting with other virion components. However, although numerous interactions among virion proteins have been reported, data on how these interactions facilitate viral envelopment is limited. In this study, we have presented data showing that the interaction of HSV-1 tegument proteins UL51 and UL14 promoted viral final envelopment for efficient viral replication. In particular, prevention of this interaction induced aberrant accumulation of partially enveloped capsids in the cytoplasm, suggesting that the UL51-UL14 complex acted in the envelopment process but not in an upstream event, such as transport of capsids to the site for envelopment. This is the first report showing that an interaction between HSV-1 tegument proteins directly regulated final virion envelopment.
Collapse
|
14
|
Hellberg T, Paßvogel L, Schulz KS, Klupp BG, Mettenleiter TC. Nuclear Egress of Herpesviruses: The Prototypic Vesicular Nucleocytoplasmic Transport. Adv Virus Res 2016; 94:81-140. [PMID: 26997591 DOI: 10.1016/bs.aivir.2015.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herpesvirus particles mature in two different cellular compartments. While capsid assembly and packaging of the genomic linear double-stranded DNA occur in the nucleus, virion formation takes place in the cytoplasm by the addition of numerous tegument proteins as well as acquisition of the viral envelope by budding into cellular vesicles derived from the trans-Golgi network containing virally encoded glycoproteins. To gain access to the final maturation compartment, herpesvirus nucleocapsids have to cross a formidable barrier, the nuclear envelope (NE). Since the ca. 120 nm diameter capsids are unable to traverse via nuclear pores, herpesviruses employ a vesicular transport through both leaflets of the NE. This process involves proteins which support local dissolution of the nuclear lamina to allow access of capsids to the inner nuclear membrane (INM), drive vesicle formation from the INM and mediate inclusion of the capsid as well as scission of the capsid-containing vesicle (also designated as "primary virion"). Fusion of the vesicle membrane (i.e., the "primary envelope") with the outer nuclear membrane subsequently results in release of the nucleocapsid into the cytoplasm for continuing virion morphogenesis. While this process has long been thought to be unique for herpesviruses, a similar pathway for nuclear egress of macromolecular complexes has recently been observed in Drosophila. Thus, herpesviruses may have coopted a hitherto unrecognized cellular mechanism of vesicle-mediated nucleocytoplasmic transport. This could have far reaching consequences for our understanding of cellular functions as again unraveled by the study of viruses.
Collapse
Affiliation(s)
- Teresa Hellberg
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Lars Paßvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
15
|
Diefenbach RJ. Conserved tegument protein complexes: Essential components in the assembly of herpesviruses. Virus Res 2015; 210:308-17. [PMID: 26365681 DOI: 10.1016/j.virusres.2015.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022]
Abstract
One of the structural components of herpesviruses is a protein layer called the tegument. Several of the tegument proteins are highly conserved across the herpesvirus family and serve as a logical focus for defining critical interactions required for viral assembly. A number of studies have helped to elucidate a role for conserved tegument proteins in the process of secondary envelopment during the course of herpesviral assembly. This review highlights how these tegument proteins directly contribute to bridging the nucleocapsid and envelope of virions during secondary envelopment.
Collapse
Affiliation(s)
- Russell J Diefenbach
- Centre for Virus Research, Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
16
|
Herpes Simplex Virus Capsid-Organelle Association in the Absence of the Large Tegument Protein UL36p. J Virol 2015; 89:11372-82. [PMID: 26339048 DOI: 10.1128/jvi.01893-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/25/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED UL36p (VP1/2) is the largest protein encoded by herpes simplex virus 1 (HSV-1) and resides in the innermost layer of the viral tegument, lying between the capsid and the envelope. UL36p performs multiple functions in the HSV life cycle, including an essential role in cytoplasmic envelopment. We earlier described the isolation of a virion-associated cytoplasmic membrane fraction from HSV-infected cells. Biochemical and ultrastructural analyses showed that the organelles in this buoyant fraction contain enveloped infectious HSV particles in their lumens and naked capsids docked to their cytoplasmic surfaces. These organelles can also recruit molecular motors and transport their cargo virions along microtubules in vitro. Here we examine the properties of these HSV-associated organelles in the absence of UL36p. We find that while capsid envelopment is clearly defective, a subpopulation of capsids nevertheless still associate with the cytoplasmic faces of these organelles. The existence of these capsid-membrane structures was confirmed by subcellular fractionation, immunocytochemistry, lipophilic dye fluorescence microscopy, thin-section electron microscopy, and correlative light and electron microscopy. We conclude that capsid-membrane binding can occur in the absence of UL36p and propose that this association may precede the events of UL36p-driven envelopment. IMPORTANCE Membrane association and envelopment of the HSV capsid are essential for the assembly of an infectious virion. Envelopment involves the complex interplay of a large number of viral and cellular proteins; however, the function of most of them is unknown. One example of this is the viral protein UL36p, which is clearly essential for envelopment but plays a poorly understood role. Here we demonstrate that organelles utilized for HSV capsid envelopment still accumulate surface-bound capsids in the absence of UL36p. We propose that UL36p-independent binding of capsids to organelles occurs prior to the function of UL36p in capsid envelopment.
Collapse
|
17
|
Schulz KS, Klupp BG, Granzow H, Passvogel L, Mettenleiter TC. Herpesvirus nuclear egress: Pseudorabies Virus can simultaneously induce nuclear envelope breakdown and exit the nucleus via the envelopment-deenvelopment-pathway. Virus Res 2015; 209:76-86. [PMID: 25678269 DOI: 10.1016/j.virusres.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/01/2015] [Accepted: 02/02/2015] [Indexed: 12/19/2022]
Abstract
Herpesvirus replication takes place in the nucleus and in the cytosol. After entering the cell, nucleocapsids are transported to nuclear pores where viral DNA is released into the nucleus. After gene expression and DNA replication new nucleocapsids are assembled which have to exit the nucleus for virion formation in the cytosol. Since nuclear pores are not wide enough to allow passage of the nucleocapsid, nuclear egress occurs by vesicle-mediated transport through the nuclear envelope. To this end, nucleocapsids bud at the inner nuclear membrane (INM) recruiting a primary envelope which then fuses with the outer nuclear membrane (ONM). In the absence of this regulated nuclear egress, mutants of the alphaherpesvirus pseudorabies virus have been described that escape from the nucleus after virus-induced nuclear envelope breakdown. Here we review these exit pathways and demonstrate that both can occur simultaneously under appropriate conditions.
Collapse
Affiliation(s)
- Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Harald Granzow
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Lars Passvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
18
|
Wild P, Leisinger S, de Oliveira AP, Schraner EM, Kaech A, Ackermann M, Tobler K. Herpes simplex virus 1 Us3 deletion mutant is infective despite impaired capsid translocation to the cytoplasm. Viruses 2015; 7:52-71. [PMID: 25588052 PMCID: PMC4306828 DOI: 10.3390/v7010052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/30/2014] [Indexed: 11/29/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) capsids are assembled in the nucleus bud at the inner nuclear membrane into the perinuclear space, acquiring envelope and tegument. In theory, these virions are de-enveloped by fusion of the envelope with the outer nuclear membrane and re-enveloped by Golgi membranes to become infective. Us3 enables the nucleus to cytoplasm capsid translocation. Nevertheless, Us3 is not essential for the production of infective progeny viruses. Determination of phenotype distribution by quantitative electron microscopy, and calculation per mean nuclear or cell volume revealed the following: (i) The number of R7041(∆US3) capsids budding at the inner nuclear membrane was significantly higher than that of wild type HSV-1; (ii) The mean number of R7041(∆US3) virions per mean cell volume was 2726, that of HSV-1 virions 1460 by 24 h post inoculation; (iii) 98% of R7041(∆US3) virions were in the perinuclear space; (iv) The number of R7041(∆US3) capsids in the cytoplasm, including those budding at Golgi membranes, was significantly reduced. Cell associated R7041(∆US3) yields were 2.37×10(8) and HSV-1 yields 1.57×10(8) PFU/mL by 24 h post inoculation. We thus conclude that R7041(∆US3) virions, which acquire envelope and tegument by budding at the inner nuclear membrane into the perinuclear space, are infective.
Collapse
Affiliation(s)
- Peter Wild
- Institute of Veterinar Anatomy, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.
| | - Sabine Leisinger
- Institute of Veterinar Anatomy, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.
| | | | - Elisabeth M Schraner
- Institute of Veterinar Anatomy, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland.
| | - Andres Kaech
- Center for Microscopy and Image Analysis, Winterthurerstrasse 190,CH-8057 Zürich, Switzerland.
| | - Mathias Ackermann
- Institute of Virology, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.
| | - Kurt Tobler
- Institute of Virology, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.
| |
Collapse
|
19
|
Herpes simplex virus 1 UL47 interacts with viral nuclear egress factors UL31, UL34, and Us3 and regulates viral nuclear egress. J Virol 2014; 88:4657-67. [PMID: 24522907 DOI: 10.1128/jvi.00137-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Herpesviruses have evolved a unique mechanism for nuclear egress of nascent progeny nucleocapsids: the nucleocapsids bud through the inner nuclear membrane into the perinuclear space between the inner and outer nuclear membranes (primary envelopment), and enveloped nucleocapsids then fuse with the outer nuclear membrane to release nucleocapsids into the cytoplasm (de-envelopment). We have shown that the herpes simplex virus 1 (HSV-1) major virion structural protein UL47 (or VP13/VP14) is a novel regulator for HSV-1 nuclear egress. In particular, we demonstrated the following: (i) UL47 formed a complex(es) with HSV-1 proteins UL34, UL31, and/or Us3, which have all been reported to be critical for viral nuclear egress, and these viral proteins colocalized at the nuclear membrane in HSV-1-infected cells; (ii) the UL47-null mutation considerably reduced primary enveloped virions in the perinuclear space although capsids accumulated in the nucleus; and (iii) UL47 was detected in primary enveloped virions in the perinuclear space by immunoelectron microscopy. These results suggested that UL47 promoted HSV-1 primary envelopment, probably by interacting with the critical HSV-1 regulators for viral nuclear egress and by modulating their functions. IMPORTANCE Like other herpesviruses, herpes simplex virus 1 (HSV-1) has evolved a vesicle-mediated nucleocytoplasmic transport mechanism for nuclear egress of nascent progeny nucleocapsids. Although previous reports identified and characterized several HSV-1 and cellular proteins involved in viral nuclear egress, complete details of HSV-1 nuclear egress remain to be elucidated. In this study, we have presented data suggesting (i) that the major HSV-1 virion structural protein UL47 (or VP13/VP14) formed a complex with known viral regulatory proteins critical for viral nuclear egress and (ii) that UL47 played a regulatory role in HSV-1 primary envelopment. Thus, we identified UL47 as a novel regulator for HSV-1 nuclear egress.
Collapse
|
20
|
Kordyukova LV, Serebryakova MV. Mass spectrometric approaches to study enveloped viruses: new possibilities for structural biology and prophylactic medicine. BIOCHEMISTRY (MOSCOW) 2013; 77:830-42. [PMID: 22860905 PMCID: PMC7087845 DOI: 10.1134/s0006297912080044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This review considers principles of the use of mass spectrometry for the study of biological macromolecules. Some examples of protein identification, virion proteomics, testing vaccine preparations, and strain surveillance are represented. Possibilities of structural characterization of viral proteins and their posttranslational modifications are shown. The authors’ studies by MALDI-MS on S-acylation of glycoproteins from various families of enveloped viruses and on oligomerization of the influenza virus hemagglutinin transmembrane domains are summarized.
Collapse
Affiliation(s)
- L V Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| | | |
Collapse
|
21
|
Bell C, Desjardins M, Thibault P, Radtke K. Proteomics analysis of herpes simplex virus type 1-infected cells reveals dynamic changes of viral protein expression, ubiquitylation, and phosphorylation. J Proteome Res 2013; 12:1820-9. [PMID: 23418649 DOI: 10.1021/pr301157j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herpesviruses are among the most complex and widespread human viruses and cause a number of diseases ranging from cold sores to genital infections and encephalitis. While the composition of viral particles has been studied, less is known about the expression of the whole viral proteome in infected cells. Here, we analyzed the proteome of the prototypical Herpes Simplex Virus type 1 (HSV1) in infected cells by mass spectrometry. Using a high sensitivity LTQ-Orbitrap, we achieved a very high level of protein coverage and identified a total of 67 structural and nonstructural viral proteins. We also identified 90 novel phosphorylation sites and 10 novel ubiquitylation sites on different viral proteins. Ubiquitylation was observed on nine HSV1 proteins. We identified phosphorylation sites on about half of the detected viral proteins; many of the highly phosphorylated ones are known to regulate gene expression. Treatment with inhibitors of DNA replication induced changes of both viral protein abundance and modifications, highlighting the interdependence of viral proteins during the life cycle. Given the importance of expression dynamics, ubiquitylation, and phosphorylation for protein function, these findings will serve as important tools for future studies on herpesvirus biology.
Collapse
Affiliation(s)
- Christina Bell
- Département de Chimie, ‡Proteomics and Mass Spectrometry Research Unit, Institute for Research in Immunology and Cancer, and §Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128-Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
22
|
Abstract
Herpes simplex virus type 1 particles are multilayered structures with a DNA genome surrounded by a capsid, tegument, and envelope. While the protein content of mature virions is known, the sequence of addition of the tegument and the intracellular compartments where this occurs are intensely debated. To probe this process during the initial stages of egress, we used two approaches: an in vitro nuclear egress assay, which reconstitutes the exit of nuclear capsids to the cytoplasm, and a classical nuclear capsid sedimentation assay. As anticipated, in vitro cytoplasmic capsids did not harbor UL34, UL31, or viral glycoproteins but contained US3. In agreement with previous findings, both nuclear and in vitro capsids were positive for ICP0 and ICP4. Unexpectedly, nuclear C capsids and cytoplasmic capsids produced in vitro without any cytosolic viral proteins also scored positive for UL36 and UL37. Immunoelectron microscopy confirmed that these tegument proteins were closely associated with nuclear capsids. When cytosolic viral proteins were present in the in vitro assay, no additional tegument proteins were detected on the capsids. As previously reported, the tegument was sensitive to high-salt extraction but, surprisingly, was stabilized by exogenous proteins. Finally, some tegument proteins seemed partially lost during egress, while others possibly were added at multiple steps or modified along the way. Overall, an emerging picture hints at the early coating of capsids with up to 5 tegument proteins at the nuclear stage, the shedding of some viral proteins during nuclear egress, and the acquisition of others tegument proteins during reenvelopment.
Collapse
|
23
|
Directional spread of alphaherpesviruses in the nervous system. Viruses 2013; 5:678-707. [PMID: 23435239 PMCID: PMC3640521 DOI: 10.3390/v5020678] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022] Open
Abstract
Alphaherpesviruses are pathogens that invade the nervous systems of their mammalian hosts. Directional spread of infection in the nervous system is a key component of the viral lifecycle and is critical for the onset of alphaherpesvirus-related diseases. Many alphaherpesvirus infections originate at peripheral sites, such as epithelial tissues, and then enter neurons of the peripheral nervous system (PNS), where lifelong latency is established. Following reactivation from latency and assembly of new viral particles, the infection typically spreads back out towards the periphery. These spread events result in the characteristic lesions (cold sores) commonly associated with herpes simplex virus (HSV) and herpes zoster (shingles) associated with varicella zoster virus (VZV). Occasionally, the infection spreads transsynaptically from the PNS into higher order neurons of the central nervous system (CNS). Spread of infection into the CNS, while rarer in natural hosts, often results in severe consequences, including death. In this review, we discuss the viral and cellular mechanisms that govern directional spread of infection in the nervous system. We focus on the molecular events that mediate long distance directional transport of viral particles in neurons during entry and egress.
Collapse
|
24
|
Neira JL. Fluorescence, circular dichroism and mass spectrometry as tools to study virus structure. Subcell Biochem 2013; 68:177-202. [PMID: 23737052 DOI: 10.1007/978-94-007-6552-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fluorescence and circular dichroism, as analytical spectroscopic techniques, and mass spectrometry as an analytical tool to determine the molecular mass, provide important biophysical approaches in structural virology. Although they do not provide atomic, or near-atomic, details as electron microscopy, X-ray crystallography or nuclear magnetic resonance spectroscopy can do, they do provide important insights into virus particle composition, structure, conformational stability and dynamics, assembly and maturation, and interactions with other viral and cellular biomolecules. They can be used also to investigate the molecular determinants of virus particle structure and properties, and the changes induced in them by external factors. In this chapter, I describe the physical bases of these three techniques, and some examples on how they have helped us to understand virus particle structure and physicochemical properties.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain,
| |
Collapse
|
25
|
Lemnitzer F, Raschbichler V, Kolodziejczak D, Israel L, Imhof A, Bailer SM, Koszinowski U, Ruzsics Z. Mouse cytomegalovirus egress protein pM50 interacts with cellular endophilin-A2. Cell Microbiol 2012. [PMID: 23189961 DOI: 10.1111/cmi.12080] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The herpesvirus replication cycle comprises maturation processes in the nucleus and cytoplasm of the infected cells. After their nuclear assembly viral capsids translocate via primary envelopment towards the cytoplasm. This event is mediated by the nuclear envelopment complex, which is composed by two conserved viral proteins belonging to the UL34 and UL31 protein families. Here, we generated recombinant viruses, which express affinity-tagged pM50 and/or pM53, the pUL34 and pUL31 homologues of the murine cytomegalovirus. We extracted pM50- and pM53-associated protein complexes from infected cells and analysed their composition after affinity purification by mass spectrometry. We observed reported interaction partners and identified new putative protein-protein interactions for both proteins. Endophilin-A2 was observed as the most prominent cellular partner of pM50. We found that endophilin-A2 binds to pM50 directly, and this interaction seems to be conserved in the pUL34 family.
Collapse
Affiliation(s)
- Frederic Lemnitzer
- Max von Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Pettenkoferstr. 9a, 80336 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mettenleiter TC, Müller F, Granzow H, Klupp BG. The way out: what we know and do not know about herpesvirus nuclear egress. Cell Microbiol 2012; 15:170-8. [PMID: 23057731 DOI: 10.1111/cmi.12044] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/03/2012] [Accepted: 10/03/2012] [Indexed: 11/28/2022]
Abstract
Herpesvirus capsids are assembled in the nucleus of infected cells whereas final maturation occurs in the cytosol. To access the final maturation compartment, intranuclear capsids have to cross the nuclear envelope which represents a formidable barrier. They do so by budding at the inner nuclear membrane, thereby forming a primary enveloped particle residing in the perinuclear cleft. Formation of primary envelopes is driven by a heterodimeric complex of two conserved herpesviral proteins, designated in the herpes simplex virus nomenclature as pUL34, a tail-anchored transmembrane protein located in the nuclear envelope, and pUL31. This nuclear egress complex recruits viral and cellular kinases to soften the nuclear lamina and allowing access of capsids to the inner nuclear membrane. How capsids are recruited to the budding site and into the primary virus particle is still not completely understood, nor is the composition of the primary enveloped virion in the perinuclear cleft. Fusion of the primary envelope with the outer nuclear membrane then results in translocation of the capsid to the cytosol. This fusion event is clearly different from fusion during infectious entry of free virions into target cells in that it does not require the conserved essential core herpesvirus fusion machinery. Nuclear egress can thus be viewed as a vesicle (primary envelope)-mediated transport of cargo (capsids) through thenuclear envelope, a process which had been unique in cell biology. Only recently has a similar process been identified in Drosophila for nuclear egress of large ribonucleoprotein complexes. Thus, herpesviruses appear to subvert a hitherto cryptic cellular pathway for translocation of capsids from the nucleus to the cytosol.
Collapse
Affiliation(s)
- Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| | | | | | | |
Collapse
|
27
|
Lippé R. Deciphering novel host-herpesvirus interactions by virion proteomics. Front Microbiol 2012; 3:181. [PMID: 22783234 PMCID: PMC3390586 DOI: 10.3389/fmicb.2012.00181] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/27/2012] [Indexed: 12/15/2022] Open
Abstract
Over the years, a vast array of information concerning the interactions of viruses with their hosts has been collected. However, recent advances in proteomics and other system biology techniques suggest these interactions are far more complex than anticipated. One particularly interesting and novel aspect is the analysis of cellular proteins incorporated into mature virions. Though sometimes considered purification contaminants in the past, their repeated detection by different laboratories suggests that a number of these proteins are bona fide viral components, some of which likely contribute to the viral life cycles. The present mini review focuses on cellular proteins detected in herpesviruses. It highlights the common cellular functions of these proteins, their potential implications for host–pathogen interactions, discusses technical limitations, the need for complementing methods and probes potential future research avenues.
Collapse
Affiliation(s)
- Roger Lippé
- Department of Pathology and Cell biology, University of Montreal Montreal, QC, Canada
| |
Collapse
|
28
|
Ren X, Xue C, Kong Q, Zhang C, Bi Y, Cao Y. Proteomic analysis of purified Newcastle disease virus particles. Proteome Sci 2012; 10:32. [PMID: 22571704 PMCID: PMC3413529 DOI: 10.1186/1477-5956-10-32] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/09/2012] [Indexed: 12/20/2022] Open
Abstract
Background Newcastle disease virus (NDV) is an enveloped RNA virus, bearing severe economic losses to the poultry industry worldwide. Previous virion proteomic studies have shown that enveloped viruses carry multiple host cellular proteins both internally and externally during their life cycle. To address whether it also occurred during NDV infection, we performed a comprehensive proteomic analysis of highly purified NDV La Sota strain particles. Results In addition to five viral structural proteins, we detected thirty cellular proteins associated with purified NDV La Sota particles. The identified cellular proteins comprised several functional categories, including cytoskeleton proteins, annexins, molecular chaperones, chromatin modifying proteins, enzymes-binding proteins, calcium-binding proteins and signal transduction-associated proteins. Among these, three host proteins have not been previously reported in virions of other virus families, including two signal transduction-associated proteins (syntenin and Ras small GTPase) and one tumor-associated protein (tumor protein D52). The presence of five selected cellular proteins (i.e., β-actin, tubulin, annexin A2, heat shock protein Hsp90 and ezrin) associated with the purified NDV particles was validated by Western blot or immunogold labeling assays. Conclusions The current study presented the first standard proteomic profile of NDV. The results demonstrated the incorporation of cellular proteins in NDV particles, which provides valuable information for elucidating viral infection and pathogenesis.
Collapse
Affiliation(s)
- Xiangpeng Ren
- School of Environmental Science and Public Health, Wenzhou Medical College, Wenzhou, 325035, Peoples Republic of China.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Qingming Kong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Chengwen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Peoples Republic of China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| |
Collapse
|
29
|
A physical link between the pseudorabies virus capsid and the nuclear egress complex. J Virol 2011; 85:11675-84. [PMID: 21880751 DOI: 10.1128/jvi.05614-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Following their assembly, herpesvirus capsids exit the nucleus by budding at the inner nuclear membrane. Two highly conserved viral proteins are required for this process, pUL31 and pUL34. In this report, we demonstrate that the pUL31 component of the pseudorabies virus nuclear egress complex is a conditional capsid-binding protein that is unmasked in the absence of pUL34. The interaction between pUL31 and capsids was confirmed through fluorescence microscopy and Western blot analysis of purified intranuclear capsids. Three viral proteins were tested for their abilities to mediate the pUL31-capsid interaction: the minor capsid protein pUL25, the portal protein pUL6, and the terminase subunit pUL33. Despite the requirement for each protein in nuclear egress, none of these viral proteins were required for the pUL31-capsid interaction. These findings provide the first formal evidence that a herpesvirus nuclear egress complex interacts with capsids and have implications for how DNA-containing capsids are selectively targeted for nuclear egress.
Collapse
|
30
|
Abstract
Herpes simplex virus 1 (HSV-1) capsids leave the nucleus by a process of envelopment and de-envelopment at the nuclear envelope (NE) that is accompanied by structural alterations of the NE. As capsids translocate across the NE, transient primary enveloped virions form in the perinuclear space. Here, we provide evidence that torsinA (TA), a ubiquitously expressed ATPase, has a role in HSV-1 nuclear egress. TA resides within the lumen of the endoplasmic reticulum (ER)/NE and functions in maintaining normal NE architecture. We show that perturbation of TA normal function by overexpressing torsinA wild type (TAwt) inhibits HSV-1 production. Ultrastructural analysis of infected cells overexpressing TAwt revealed reduced levels of surface virions in addition to accumulation of novel, double-membrane structures called virus-like vesicles (VLVs). Although mainly found in the cytoplasm, VLVs resemble primary virions in their size, by the appearance of the inner membrane, and by the presence of pUL34, a structural component of primary virions. Collectively, our data suggest a model in which interference of TA normal function by overexpression impairs de-envelopment of the primary virions leading to their accumulation in a cytoplasmic membrane compartment. This implies novel functions for TA at the NE.
Collapse
|
31
|
Disulfide bond formation contributes to herpes simplex virus capsid stability and retention of pentons. J Virol 2011; 85:8625-34. [PMID: 21697480 DOI: 10.1128/jvi.00214-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Disulfide bonds reportedly stabilize the capsids of several viruses, including papillomavirus, polyomavirus, and simian virus 40, and have been detected in herpes simplex virus (HSV) capsids. In this study, we show that in mature HSV-1 virions, capsid proteins VP5, VP23, VP19C, UL17, and UL25 participate in covalent cross-links, and that these are susceptible to dithiothreitol (DTT). In addition, several tegument proteins were found in high-molecular-weight complexes, including VP22, UL36, and UL37. Cross-linked capsid complexes can be detected in virions isolated in the presence and absence of N-ethylmaleimide (NEM), a chemical that reacts irreversibly with free cysteines to block disulfide formation. Intracellular capsids isolated in the absence of NEM contain disulfide cross-linked species; however, intracellular capsids isolated from cells pretreated with NEM did not. Thus, the free cysteines in intracellular capsids appear to be positioned such that disulfide bond formation can occur readily if they are exposed to an oxidizing environment. These results indicate that disulfide cross-links are normally present in extracellular virions but not in intracellular capsids. Interestingly, intracellular capsids isolated in the presence of NEM are unstable; B and C capsids are converted to a novel form that resembles A capsids, indicating that scaffold and DNA are lost. Furthermore, these capsids also have lost pentons and peripentonal triplexes as visualized by cryoelectron microscopy. These data indicate that capsid stability, and especially the retention of pentons, is regulated by the formation of disulfide bonds in the capsid.
Collapse
|
32
|
Abstract
Herpesviruses replicate their DNA and package this DNA into capsids in the nucleus. These capsids then face substantial obstacles to their release from cells. Unlike other DNA viruses, herpesviruses do not depend on disruption of nuclear and cytoplasmic membranes for their release. Enveloped particles are formed by budding through inner nuclear membranes, and then these perinuclear enveloped particles fuse with outer nuclear membranes. Unenveloped capsids in the cytoplasm are decorated with tegument proteins and then undergo secondary envelopment by budding into trans-Golgi network membranes, producing infectious particles that are released. In this Review, we describe the remodelling of host membranes that facilitates herpesvirus egress.
Collapse
Affiliation(s)
- David C Johnson
- Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, Oregon 97219, USA
| | | |
Collapse
|
33
|
Bucks MA, Murphy MA, O'Regan KJ, Courtney RJ. Identification of interaction domains within the UL37 tegument protein of herpes simplex virus type 1. Virology 2011; 416:42-53. [PMID: 21601231 DOI: 10.1016/j.virol.2011.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/03/2011] [Accepted: 04/26/2011] [Indexed: 12/16/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) UL37 is a 1123 amino acid tegument protein that self-associates and binds to the tegument protein UL36 (VP1/2). Studies were undertaken to identify regions of UL37 involved in these protein-protein interactions. Coimmunoprecipitation assays showed that residues within the carboxy-terminal half of UL37, amino acids 568-1123, are important for interaction with UL36. Coimmunoprecipitation assays also revealed that amino acids 1-300 and 568-1123 of UL37 are capable of self-association. UL37 appears to self-associate only under conditions when UL36 is not present or is present in low amounts, suggesting UL36 and UL37 may compete for binding. Transfection-infection experiments were performed to identify domains of UL37 that complement the UL37 deletion virus, K∆UL37. The carboxy-terminal region of UL37 (residues 568-1123) partially rescues the K∆UL37 infection. These results suggest the C-terminus of UL37 may contribute to its essential functional role within the virus-infected cell.
Collapse
Affiliation(s)
- Michelle A Bucks
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
34
|
Carter C. Alzheimer's disease plaques and tangles: Cemeteries of a Pyrrhic victory of the immune defence network against herpes simplex infection at the expense of complement and inflammation-mediated neuronal destruction. Neurochem Int 2011; 58:301-20. [DOI: 10.1016/j.neuint.2010.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/29/2022]
|
35
|
Guo H, Shen S, Wang L, Deng H. Role of tegument proteins in herpesvirus assembly and egress. Protein Cell 2010; 1:987-98. [PMID: 21153516 DOI: 10.1007/s13238-010-0120-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022] Open
Abstract
Morphogenesis and maturation of viral particles is an essential step of viral replication. An infectious herpesviral particle has a multilayered architecture, and contains a large DNA genome, a capsid shell, a tegument and an envelope spiked with glycoproteins. Unique to herpesviruses, tegument is a structure that occupies the space between the nucleocapsid and the envelope and contains many virus encoded proteins called tegument proteins. Historically the tegument has been described as an amorphous structure, but increasing evidence supports the notion that there is an ordered addition of tegument during virion assembly, which is consistent with the important roles of tegument proteins in the assembly and egress of herpesviral particles. In this review we first give an overview of the herpesvirus assembly and egress process. We then discuss the roles of selected tegument proteins in each step of the process, i.e., primary envelopment, de-envelopment, secondary envelopment and transport of viral particles. We also suggest key issues that should be addressed in the near future.
Collapse
Affiliation(s)
- Haitao Guo
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
36
|
Söllner J, Heinzel A, Summer G, Fechete R, Stipkovits L, Szathmary S, Mayer B. Concept and application of a computational vaccinology workflow. Immunome Res 2010; 6 Suppl 2:S7. [PMID: 21067549 PMCID: PMC2981879 DOI: 10.1186/1745-7580-6-s2-s7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The last years have seen a renaissance of the vaccine area, driven by clinical needs in infectious diseases but also chronic diseases such as cancer and autoimmune disorders. Equally important are technological improvements involving nano-scale delivery platforms as well as third generation adjuvants. In parallel immunoinformatics routines have reached essential maturity for supporting central aspects in vaccinology going beyond prediction of antigenic determinants. On this basis computational vaccinology has emerged as a discipline aimed at ab-initio rational vaccine design.Here we present a computational workflow for implementing computational vaccinology covering aspects from vaccine target identification to functional characterization and epitope selection supported by a Systems Biology assessment of central aspects in host-pathogen interaction. We exemplify the procedures for Epstein Barr Virus (EBV), a clinically relevant pathogen causing chronic infection and suspected of triggering malignancies and autoimmune disorders. RESULTS We introduce pBone/pView as a computational workflow supporting design and execution of immunoinformatics workflow modules, additionally involving aspects of results visualization, knowledge sharing and re-use. Specific elements of the workflow involve identification of vaccine targets in the realm of a Systems Biology assessment of host-pathogen interaction for identifying functionally relevant targets, as well as various methodologies for delineating B- and T-cell epitopes with particular emphasis on broad coverage of viral isolates as well as MHC alleles.Applying the workflow on EBV specifically proposes sequences from the viral proteins LMP2, EBNA2 and BALF4 as vaccine targets holding specific B- and T-cell epitopes promising broad strain and allele coverage. CONCLUSION Based on advancements in the experimental assessment of genomes, transcriptomes and proteomes for both, pathogen and (human) host, the fundaments for rational design of vaccines have been laid out. In parallel, immunoinformatics modules have been designed and successfully applied for supporting specific aspects in vaccine design. Joining these advancements, further complemented by novel vaccine formulation and delivery aspects, have paved the way for implementing computational vaccinology for rational vaccine design tackling presently unmet vaccine challenges.
Collapse
Affiliation(s)
- Johannes Söllner
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
| | - Andreas Heinzel
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
- University of Applied Sciences, Softwarepark 11, 4232 Hagenberg, Austria
| | - Georg Summer
- University of Applied Sciences, Softwarepark 11, 4232 Hagenberg, Austria
| | - Raul Fechete
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
| | | | - Susan Szathmary
- Galenbio Kft., Erdőszél köz 21, 1037 Budapest, Hungary and GalenBio, Inc., 5922 Farnsworth Ct, Carlsbad, CA 92008, USA
| | - Bernd Mayer
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
- Institute for Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| |
Collapse
|
37
|
Abstract
The nuclear envelope of eukaryotic cells is composed of double lipid-bilayer membranes, the membrane-connected nuclear pore complexes and an underlying nuclear lamina network. The nuclear pore complexes serve as gates for regulating the transport of macromolecules between cytoplasm and nucleus. The nuclear lamina not only provides an intact meshwork for maintaining the nuclear stiffness but also presents a natural barrier against most DNA viruses. Herpesviruses are large DNA viruses associated with multiple human and animal diseases. The complex herpesviral virion contains more than 30 viral proteins. After viral DNA replication, the newly synthesised genome is packaged into the pre-assembled intranuclear capsid. The nucleocapsid must then transverse through the nuclear envelope to the cytoplasm for the subsequent maturation process. Information regarding how nucleocapsid breaches the rigid nuclear lamina barrier and accesses the inner nuclear membrane for primary envelopment has emerged recently. From the point of view of both viral components and nuclear structure, this review summarises recent advances in the complicated protein-protein interactions and the phosphorylation regulations involved in the nuclear egress of herpesviral nucleocapsids.
Collapse
Affiliation(s)
- Chung-Pei Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
38
|
Zhang C, Xue C, Li Y, Kong Q, Ren X, Li X, Shu D, Bi Y, Cao Y. Profiling of cellular proteins in porcine reproductive and respiratory syndrome virus virions by proteomics analysis. Virol J 2010; 7:242. [PMID: 20849641 PMCID: PMC2949843 DOI: 10.1186/1743-422x-7-242] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/18/2010] [Indexed: 11/14/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped virus, bearing severe economic consequences to the swine industry worldwide. Previous studies on enveloped viruses have shown that many incorporated cellular proteins associated with the virion's membranes that might play important roles in viral infectivity. In this study, we sought to proteomically profile the cellular proteins incorporated into or associated with the virions of a highly virulent PRRSV strain GDBY1, and to provide foundation for further investigations on the roles of incorporated/associated cellular proteins on PRRSV's infectivity. Results In our experiment, sixty one cellular proteins were identified in highly purified PRRSV virions by two-dimensional gel electrophoresis coupled with mass spectrometric approaches. The identified cellular proteins could be grouped into eight functional categories including cytoskeletal proteins, chaperones, macromolecular biosynthesis proteins, metabolism-associated proteins, calcium-dependent membrane-binding proteins and other functional proteins. Among the identified proteins, four have not yet been reported in other studied envelope viruses, namely, guanine nucleotide-binding proteins, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase, peroxiredoxin 1 and galectin-1 protein. The presence of five selected cellular proteins (i.e., β-actin, Tubulin, Annexin A2, heat shock protein Hsp27, and calcium binding proteins S100) in the highly purified PRRSV virions was validated by Western blot and immunogold labeling assays. Conclusions Taken together, the present study has demonstrated the incorporation of cellular proteins in PRRSV virions, which provides valuable information for the further investigations for the effects of individual cellular proteins on the viral replication, assembly, and pathogenesis.
Collapse
Affiliation(s)
- Chengwen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The capsid protein encoded by U(L)17 of herpes simplex virus 1 interacts with tegument protein VP13/14. J Virol 2010; 84:7642-50. [PMID: 20504930 DOI: 10.1128/jvi.00277-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The U(L)17 protein (pU(L)17) of herpes simplex virus 1 (HSV-1) likely associates with the surfaces of DNA-containing capsids in a heterodimer with pU(L)25. pU(L)17 is also associated with viral light particles that lack capsid proteins, suggesting its presence in the tegument of the HSV-1 virion. To help determine how pU(L)17 becomes incorporated into virions and its functions therein, we identified pU(L)17-interacting proteins by immunoprecipitation with pU(L)17-specific IgY at 16 h postinfection, followed by mass spectrometry. Coimmunoprecipitated proteins included cellular histone proteins H2A, H3, and H4; the intermediate filament protein vimentin; the major HSV-1 capsid protein VP5; and the HSV tegument proteins VP11/12 (pU(L)46) and VP13/14 (pU(L)47). The pU(L)17-VP13/14 interaction was confirmed by coimmunoprecipitation in the presence and absence of intact capsids and by affinity copurification of pU(L)17 and VP13/14 from lysates of cells infected with a recombinant virus encoding His-tagged pU(L)17. pU(L)17 and VP13/14-HA colocalized in the nuclear replication compartment, in the cytoplasm, and at the plasma membrane between 9 and 18 h postinfection. One possible explanation of these data is that pU(L)17 links the external face of the capsid to VP13/14 and associated tegument components.
Collapse
|
40
|
Complex mechanisms for the packaging of the UL16 tegument protein into herpes simplex virus. Virology 2010; 398:208-13. [PMID: 20051283 DOI: 10.1016/j.virol.2009.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/19/2009] [Accepted: 12/02/2009] [Indexed: 12/18/2022]
Abstract
The conserved UL16 tegument protein of herpes simplex virus exhibits dynamic capsid-binding properties with a release mechanism that is triggered during initial virus attachment events. In an effort to understand the capsid association and subsequent release of UL16, we sought to define the mechanism by which this protein is packaged into virions. The data presented here support a model for the addition of some UL16 to capsids prior to their arrival at the TGN. UL16 was found on capsids isolated from cells infected with viruses lacking UL36, UL37 or gE/gD, which are defective for budding and accumulate non-enveloped capsids in the cytoplasm. Additionally, membrane-flotation experiments showed that UL16 co-purified with cytoplasmic capsids that are not associated with membranes. Moreover, the amount of UL16 packaged into extracellular particles was severely reduced in the absence of two conserved binding partners, UL21 or UL11.
Collapse
|
41
|
The major determinant for addition of tegument protein pUL48 (VP16) to capsids in herpes simplex virus type 1 is the presence of the major tegument protein pUL36 (VP1/2). J Virol 2009; 84:1397-405. [PMID: 19923173 DOI: 10.1128/jvi.01721-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study a number of herpes simplex virus type 1 (HSV-1) proteins were screened, using a yeast-two-hybrid assay, for interaction with the tegument protein pUL48 (VP16). This approach identified interactions between pUL48 and the capsid proteins pUL19 (VP5), pUL38 (VP19C), and pUL35 (VP26). In addition, the previously identified interaction of pUL48 with the major tegument protein pUL36 (VP1/2) was confirmed. All of these interactions, except that of pUL35 and pUL48, could be confirmed using an in vitro pulldown assay. A subsequent pulldown assay with intact in vitro-assembled capsids, consisting of pUL19, pUL38, and pUL18 (VP23) with or without pUL35, showed no binding of pUL48, suggesting that the capsid/pUL48 interactions initially identified were more then likely not biologically relevant. This was confirmed by using a series of HSV-1 mutants lacking the gene encoding either pUL35, pUL36, or pUL37. For each HSV-1 mutant, analysis of purified deenveloped C capsids indicated that only in the absence of pUL36 was there a complete loss of capsid-bound pUL48, as well as pUL37. Collectively, this study shows for the first time that pUL36 is a major factor for addition of both pUL48 and pUL37, likely through a direct interaction of both with nonoverlapping sites in pUL36, to unenveloped C capsids during assembly of HSV-1.
Collapse
|
42
|
Kelly BJ, Fraefel C, Cunningham AL, Diefenbach RJ. Functional roles of the tegument proteins of herpes simplex virus type 1. Virus Res 2009; 145:173-86. [PMID: 19615419 DOI: 10.1016/j.virusres.2009.07.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 07/07/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Herpes virions consist of four morphologically distinct structures, a DNA core, capsid, tegument, and envelope. Tegument occupies the space between the nucleocapsid (capsid containing DNA core) and the envelope. A combination of genetic, biochemical and proteomic analysis of alphaherpes virions suggest the tegument contains in the order of 20 viral proteins. Historically the tegument has been described as amorphous but increasing evidence suggests there is an ordered addition of tegument during assembly. This review highlights the diverse roles, in addition to structural, that tegument plays during herpes viral replication using as an example herpes simplex virus type 1. Such diverse roles include: capsid transport during entry and egress; targeting of the capsid to the nucleus; regulation of transcription, translation and apoptosis; DNA replication; immune modulation; cytoskeletal assembly; nuclear egress of capsid; and viral assembly and final egress.
Collapse
Affiliation(s)
- Barbara J Kelly
- Centre for Virus Research, The Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | | | | | | |
Collapse
|
43
|
Mettenleiter TC, Klupp BG, Granzow H. Herpesvirus assembly: an update. Virus Res 2009; 143:222-34. [PMID: 19651457 DOI: 10.1016/j.virusres.2009.03.018] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/28/2009] [Accepted: 03/28/2009] [Indexed: 12/30/2022]
Abstract
The order Herpesvirales contains viruses infecting animals from molluscs to men with a common virion morphology which have been classified into the families Herpesviridae, Alloherpesviridae and Malacoherpesviridae. Herpes virions are among the most complex virus particles containing a multitude of viral and cellular proteins which assemble into nucleocapsid, envelope and tegument. After autocatalytic assembly of the capsid and packaging of the newly replicated viral genome, a process which occurs in the nucleus and resembles head formation and genome packaging in the tailed double-stranded DNA bacteriophages, the nucleocapsid is translocated to the cytoplasm by budding at the inner nuclear membrane followed by fusion of the primary envelope with the outer nuclear membrane. Viral and cellular proteins are involved in mediating this 'nuclear egress' which entails substantial remodeling of the nuclear architecture. For final maturation within the cytoplasm tegument components associate with the translocated nucleocapsid, with themselves, and with the future envelope containing viral membrane proteins in a complex network of interactions resulting in the formation of an infectious herpes virion. The diverse interactions between the involved proteins exhibit a striking redundancy which is still insufficiently understood. In this review, recent advances in our understanding of the molecular processes resulting in herpes virion maturation will be presented and discussed as an update of a previous contribution [Mettenleiter, T.C., 2004. Budding events in herpesvirus morphogenesis. Virus Res. 106, 167-180].
Collapse
|