1
|
Kato G. Regulatory Roles of the N-Terminal Intrinsically Disordered Region of Modular Src. Int J Mol Sci 2022; 23:2241. [PMID: 35216357 PMCID: PMC8874404 DOI: 10.3390/ijms23042241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Src, the prototype of Src family kinases (SFKs), is a modular protein consisting of SH4 (SH4) and unique (UD) domains in an N-terminal intrinsically disordered region (IDR), and SH3, SH2, and kinase (KD) folded domains conserved among SFKs. Src functions as a pleiotropic signaling hub in proliferating and post-mitotic cells, and it is related to cancer and neurological diseases. However, its regulatory mechanism is unclear because the existing canonical model is derived from crystallographic analyses of folded constructs lacking the IDR. This work reviews nuclear magnetic resonance analyses of partially structured lipid-binding segments in the flexible UD and the fuzzy intramolecular complex (FIMC) comprising IDR and SH3 domains, which interacts with lipid membranes and proteins. Furthermore, recently determined IDR-related Src characteristics are discussed, including dimerization, SH4/KD intramolecular fastener bundling of folded domains, and the sorting of adhesive structures. Finally, the modulatory roles of IDR phosphorylation in Src activities involving the FIMC are explored. The new regulatory roles of IDRs are integrated with the canonical model to elucidate the functions of full-length Src. This review presents new aspects of Src regulation, and provides a future direction for studies on the structure and function of Src, and their implications for pathological processes.
Collapse
Affiliation(s)
- Goro Kato
- Laboratory of Biological Chemistry, Center for Medical Education and Sciences, University of Yamanashi, 1110 Shimokato, Chuo 409-3898, Yamanashi, Japan
| |
Collapse
|
2
|
Chojnacka K, Mruk DD. The Src non-receptor tyrosine kinase paradigm: New insights into mammalian Sertoli cell biology. Mol Cell Endocrinol 2015; 415:133-42. [PMID: 26296907 DOI: 10.1016/j.mce.2015.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/27/2015] [Accepted: 08/09/2015] [Indexed: 11/23/2022]
Abstract
Src kinases are non-receptor tyrosine kinases that phosphorylate diverse substrates, which control processes such as cell proliferation, differentiation and survival; cell adhesion; and cell motility. c-Src, the prototypical member of this protein family, is widely expressed by several organs that include the testis. In the seminiferous epithelium of the adult rat testis, c-Src is highest at the tubule lumen during the release of mature spermatids. Other studies show that testosterone regulates spermatid adhesion to Sertoli cells via c-Src, indicating Src phosphorylates key substrates that prompt the disassembly of Sertoli cell-spermatid junctions. A more recent in vitro study reveals that c-Src participates in the internalization of proteins that constitute the blood-testis barrier, which is present between Sertoli cells, suggesting a similar mechanism of junction disassembly is at play during spermiation. In this review, we discuss recent findings on c-Src, with an emphasis on its role in spermatogenesis in the mammalian testis.
Collapse
Affiliation(s)
| | - Dolores D Mruk
- Center for Biomedical Research, Population Council, New York, USA.
| |
Collapse
|
3
|
Etkovitz N, Tirosh Y, Chazan R, Jaldety Y, Daniel L, Rubinstein S, Breitbart H. Bovine sperm acrosome reaction induced by G-protein-coupled receptor agonists is mediated by epidermal growth factor receptor transactivation. Dev Biol 2009; 334:447-57. [PMID: 19666015 DOI: 10.1016/j.ydbio.2009.08.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/22/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
Abstract
We have previously demonstrated the presence of active epidermal growth factor receptor (EGFR) and its involvement in sperm capacitation and the acrosome reaction; however, the mechanism of EGFR activation was not clear. We show here that the sperm EGFR can be transactivated by angiotensin II or by lysophosphatydic acid, two ligands which activate specific G-protein-coupled receptors (GPCR), or by directly activating protein kinase A using 8Br-cAMP. This transactivation occurs in noncapacitated sperm and is mediated by PKA, SRC and a metalloproteinase. We also show that the EGFR is activated in sperm incubated under in vitro capacitation conditions, without any added ligand, but not in bicarbonate-deficient medium or when PKA is blocked. Despite the fact that EGFR is activated in capacitated sperm, this state is not sufficient to induce the acrosome reaction. We conclude that the EGFR is stimulated during capacitation via PKA activation, while further activation of the EGFR in capacitated sperm is required in order to induce the acrosome reaction. The acrosome reaction can be induced by GPCR via the transactivation of the EGFR by a signaling pathway involving PKA, SRC and metalloproteinase and the EGFR down-stream effectors PI3K, PLC and PKC.
Collapse
Affiliation(s)
- Nir Etkovitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
4
|
Kuga T, Nakayama Y, Hoshino M, Higashiyama Y, Obata Y, Matsuda D, Kasahara K, Fukumoto Y, Yamaguchi N. Differential mitotic activation of endogenous c-Src, c-Yes, and Lyn in HeLa cells. Arch Biochem Biophys 2007; 466:116-24. [PMID: 17692281 DOI: 10.1016/j.abb.2007.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/03/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
Src-family tyrosine kinases (SFKs) play an important role in mitosis. Despite overlapping expression of multiple SFK members, little is known about how individual SFK members are activated in M phase. Here, we examined mitotic activation of endogenous c-Src, c-Yes, and Lyn, which are co-expressed in HeLa cells. c-Src, c-Yes, and Lyn were activated at different levels in M phase, and the activation was inhibited by Cdc2 inactivation. Mitotic c-Src and c-Yes exhibited normal- and retarded-electrophoretic-mobility forms on SDS-polyacrylamide gels, whereas Lyn did not show mobility retardation. Like c-Src, the retardation of electrophoretic mobility of c-Yes was caused by Cdc2-mediated phosphorylation. The normal- and retarded-mobility forms of c-Src were comparably activated, but activation of the retarded-mobility form of c-Yes was higher than that of the normal-mobility form of c-Yes. Thus, these results suggest that endogenous c-Src, c-Yes, and Lyn are differentially activated through Cdc2 activation during M phase.
Collapse
Affiliation(s)
- Takahisa Kuga
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Baker MA, Hetherington L, Aitken RJ. Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. J Cell Sci 2006; 119:3182-92. [PMID: 16835269 DOI: 10.1242/jcs.03055] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fertilization of the mammalian oocyte depends on the ability of spermatozoa to undergo a process known as capacitation as they ascend the female reproductive tract. A fundamental feature of this process is a marked increase in tyrosine phosphorylation by an unusual protein kinase A (PKA)-mediated pathway. To date, the identity of the intermediate PKA-activated tyrosine kinase driving capacitation is still unresolved. In this study, we have identified SRC as a candidate intermediate kinase centrally involved in the control of sperm capacitation. Consistent with this conclusion, the SRC kinase inhibitor SU6656 was shown to suppress both tyrosine phosphorylation and hyperactivation in murine spermatozoa. Moreover, SRC co-immunoprecipitated with PKA and this interaction was found to lead to an activating phosphorylation of SRC at position Y416. We have also used difference-in-2D-gel-electrophoresis (DIGE) in combination with mass spectrometry to identify a number of SRC substrates that become phosphorylated during capacitation including enolase, HSP90 and tubulin. Our data further suggest that the activation of SRC during capacitation is negatively controlled by C-terminal SRC kinase. The latter was localized to the acrosome and flagellum of murine spermatozoa by immunocytochemistry, whereas capacitation was associated with an inactivating serine phosphosphorylation of this inhibitory kinase.
Collapse
Affiliation(s)
- Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | |
Collapse
|
6
|
Obara Y, Labudda K, Dillon TJ, Stork PJS. PKA phosphorylation of Src mediates Rap1 activation in NGF and cAMP signaling in PC12 cells. J Cell Sci 2004; 117:6085-94. [PMID: 15546918 DOI: 10.1242/jcs.01527] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies suggest that the tyrosine kinase Src plays an important role in the hormonal regulation of extracellular signal-regulated kinases (ERKs) via cyclic AMP (cAMP). Src has also been proposed to mediate signals downstream of nerve growth factor (NGF). Here, we report that the cAMP-dependent protein kinase A (PKA) induced the phosphorylation of Src at residue serine17 (S17) in multiple cell types including PC12, Hek293, AtT-20 and CHO cells. In PC12 cells, Src phosphorylation on S17 participates in the activation of the small G protein Rap1 by both cAMP and NGF. In these cells, Rap1 is required for cAMP/PKA signaling to ERKs and also for the sustained activation of ERKs by NGF. The activation of Rap1 by both cAMP and NGF was blocked by PP2, an inhibitor of Src family kinases, and by a Src mutant incapable of being phosphorylated by PKA (SrcS17A), consistent with the requirement of PKA phosphorylation of Src at S17 in these actions. PP2 and SrcS17A also inhibited the Rap1-dependent activation of ERKs by both agents. These results strongly indicate that PKA phosphorylation of Src at S17 is essential for cAMP and NGF signaling in PC12 cells and identify PKA as an important downstream target of NGF. PKA phosphorylation of Src may therefore be required for Rap1 activation in PC12 cells.
Collapse
Affiliation(s)
- Yutaro Obara
- The Vollum Institute, L474, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
7
|
Sato KI, Iwasaki T, Hirahara S, Nishihira Y, Fukami Y. Molecular dissection of egg fertilization signaling with the aid of tyrosine kinase-specific inhibitor and activator strategies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:103-21. [PMID: 15023354 DOI: 10.1016/j.bbapap.2003.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 11/12/2003] [Indexed: 11/28/2022]
Abstract
Fertilization is triggered by sperm-egg interaction and fusion that initiate a transient rise(s) in the free intracellular calcium ([Ca(2+)](i)) that is responsible for a series of biochemical and cell biological events, so-called "egg activation". Calcium-dependent egg activation leads to the initiation of developmental program that culminates in the birth of individuals. A growing body of knowledge has uncovered the molecular mechanisms underlying sperm-induced transient [Ca(2+)](i) increase(s) to some extent; namely, in most animals so far studied, a second messenger inositol 1,4,5-trisphosphate (IP(3)) seems to play a pivotal role in inducing [Ca(2+)](i) transient(s) at fertilization. However, signaling mechanisms used by sperm to initiate IP(3)-[Ca(2+)](i) transient pathway have not been elucidated. To approach this problem, we have employed African clawed frog, Xenopus laevis, as a model animal and conducted experiments designed specifically to determine the role of the Src family protein-tyrosine kinases (SFKs or Src family PTKs) in the sperm-induced egg activation. This review compiles information about the use of PTK-specific inhibitors and activators for analyzing signal transduction events in egg fertilization. Specifically, we focus on molecular identification of Xenopus Src and the signaling mechanism of the Src-dependent egg activation that has been established recently. We also summarize recent advances in understanding the role of the Src family kinases in egg fertilization of other model organisms, and discuss future directions of the field.
Collapse
Affiliation(s)
- Ken-ichi Sato
- Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
8
|
Klinger M, Kudlacek O, Seidel MG, Freissmuth M, Sexl V. MAP kinase stimulation by cAMP does not require RAP1 but SRC family kinases. J Biol Chem 2002; 277:32490-7. [PMID: 12082090 DOI: 10.1074/jbc.m200556200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small G protein RAP1 and the kinase B-RAF have been proposed to link elevations of cAMP to activation of ERK/mitogen-activated protein (MAP) kinase. In order to delineate signaling pathways that link receptor-generated cAMP to the activation of MAP kinase, the human A(2A)-adenosine receptor, a prototypical G(s)-coupled receptor, was heterologously expressed in Chinese hamster ovary cells (referred as CHO-A(2A) cells). In CHO-A(2A) cells, the stimulation of the A(2A)-receptor resulted in an activation of RAP1 and formation of RAP1-B-RAF complexes. However, overexpression of a RAP1 GTPase-activating protein (RAP1GAP), which efficiently clamped cellular RAP1 in the inactive GDP-bound form, did not affect A(2A)-agonist-mediated MAP kinase stimulation. In contrast, the inhibitor of protein kinase A H89 efficiently suppressed A(2A)-agonist-mediated MAP kinase stimulation. Neither dynamin-dependent receptor internalization nor receptor-promoted shedding of matrix-bound growth factors accounted for A(2A)-receptor-dependent MAP kinase activation. PP1, an inhibitor of SRC family kinases, blunted both the A(2A)-receptor- and the forskolin-induced MAP kinase stimulation (IC(50) = 50 nm); this was also seen in PC12 cells, which express the A(2A)-receptor endogenously, and in NIH3T3 fibroblasts, in which cAMP causes MAP kinase stimulation. In the corresponding murine fibroblast cell line SYF, which lacks the ubiquitously expressed SRC family kinases SRC, YES, and FYN, forskolin barely stimulated MAP kinase; this reduction was reversed in cells in which c-SRC had been reintroduced. These findings show that activation of MAP kinase by cAMP requires a SRC family kinase that lies downstream of protein kinase A. A role for RAP1, as documented for the beta(2)-adrenergic receptor, is apparently contingent on receptor endocytosis.
Collapse
Affiliation(s)
- Markus Klinger
- Institute of Pharmacology, University of Vienna, Währinger Strasse 13a, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
9
|
Leclerc P, Goupil S. Regulation of the human sperm tyrosine kinase c-yes. Activation by cyclic adenosine 3',5'-monophosphate and inhibition by Ca(2+). Biol Reprod 2002; 67:301-7. [PMID: 12080032 DOI: 10.1095/biolreprod67.1.301] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
During the process of capacitation, spermatozoa go through a whole set of signaling cascade events in order to become fully competent at fertilizing the egg. An increase in sperm protein tyrosine phosphorylation has been described during this final maturational event in different animal species as well as in humans. Although the phosphotyrosine content of sperm protein is modulated by cAMP, Ca(2+), BSA, oxygen derivatives, and cholesterol, no protein tyrosine kinase (PTK) nor the phosphotyrosine protein phosphatase (PTPase) directly involved in the control of the phosphotyrosine content of sperm protein has been identified. Therefore, the goal of the present study was to identify the tyrosine kinases putatively responsible for the increases in sperm protein phosphotyrosine content. In the present study, we show that the src-related tyrosine kinase c-yes is present in the head of human spermatozoa in both membranes and Triton X-100-insoluble extracts. Our hypothesis was that c-yes is a tyrosine kinase responsible for at least some of the capacitation-induced increase in protein tyrosine phosphorylation. When spermatozoa were previously incubated in the presence of 3-isobutyl-1-methylxanthine or 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, treatments known to increase the phosphotyrosine content of human sperm proteins, an increase in the kinase activity of immunoprecipitated yes was measured using enolase as a substrate. These results suggest that cAMP activates while Ca(2+) inhibits human sperm c-yes kinase activity.
Collapse
Affiliation(s)
- Pierre Leclerc
- Endocrinologie de la Reproduction, Department of OB/GYN, Centre de Recherche du CHUQ, Université Laval, Pavillon Saint-François d'Assise 10, de l'Espinay, Quebec, PQ, Canada G1L 3L5.
| | | |
Collapse
|
10
|
Lei S, Lu WY, Xiong ZG, Orser BA, Valenzuela CF, MacDonald JF. Platelet-derived growth factor receptor-induced feed-forward inhibition of excitatory transmission between hippocampal pyramidal neurons. J Biol Chem 1999; 274:30617-23. [PMID: 10521446 DOI: 10.1074/jbc.274.43.30617] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth factor receptors provide a major mechanism for the activation of the nonreceptor tyrosine kinase c-Src, and this kinase in turn up-regulates the activity of N-methyl-D-aspartate (NMDA) receptors in CA1 hippocampal neurons (1). Unexpectedly, applications of platelet-derived growth factor (PDGF)-BB to cultured and isolated CA1 hippocampal neurons depressed NMDA-evoked currents. The PDGF-induced depression was blocked by a PDGF-selective tyrosine kinase inhibitor, by a selective inhibitor of phospholipase C-gamma, and by blocking the intracellular release of Ca(2+). Inhibitors of cAMP-dependent protein kinase (PKA) also eliminated the PDGF-induced depression, whereas a phosphodiesterase inhibitor enhanced it. The NMDA receptor-mediated component of excitatory synaptic currents was also inhibited by PDGF, and this inhibition was prevented by co-application of a PKA inhibitor. Src inhibitors also prevented this depression. In recordings from inside-out patches, the catalytic fragment of PKA did not itself alter NMDA single channel activity, but it blocked the up-regulation of these channels by a Src activator peptide. Thus, PDGF receptors depress NMDA channels through a Ca(2+)- and PKA-dependent inhibition of their modulation by c-Src.
Collapse
Affiliation(s)
- S Lei
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Sun G, Ke S, Budde RJ. Csk phosphorylation and inactivation in vitro by the cAMP-dependent protein kinase. Arch Biochem Biophys 1997; 343:194-200. [PMID: 9224730 DOI: 10.1006/abbi.1997.0156] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Csk is a protein tyrosine kinase that phosphorylates other protein tyrosine kinases of the Src family and down-regulates their activities. It is not known how Csk is regulated. We investigated the possibility that Csk is regulated through phosphorylation by examining if Csk can serve as an in vitro substrate for a panel of protein kinases. We found that Csk was phosphorylated by the cAMP-dependent protein kinase (PKA), but not by protein kinase C, Src, or the fibroblast growth factor receptor kinase. Csk phosphorylation in vitro by PKA is on a serine residue(s) and can reach a stoichiometry of approximately 0.6 mol phosphate per mole of enzyme. Furthermore, incubation with PKA in the presence of ATP and magnesium ion results in a time-dependent decrease in Csk kinase activity. A six-fold decrease in Csk activity (expressed as Vmax/Km ratio) was achieved due to a threefold increase in its Km and a twofold decrease in its Vmax value within 1 h of incubation with the catalytic subunit of PKA and ATP-Mg. Both phosphorylation and inactivation by PKA were blocked by a PKA-specific inhibitor. Csk mutants with a deleted SH2 or SH3 domain retained their ability to be phosphorylated and inactivated by PKA, indicating that the phosphorylation site is located within the catalytic domain. These studies suggest that the cAMP-dependent protein kinase can regulate Csk activity.
Collapse
Affiliation(s)
- G Sun
- Department of Neuro-Oncology, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|
12
|
O'Connell JC, McCallum JF, McPhee I, Wakefield J, Houslay ES, Wishart W, Bolger G, Frame M, Houslay MD. The SH3 domain of Src tyrosyl protein kinase interacts with the N-terminal splice region of the PDE4A cAMP-specific phosphodiesterase RPDE-6 (RNPDE4A5). Biochem J 1996; 318 ( Pt 1):255-61. [PMID: 8761480 PMCID: PMC1217616 DOI: 10.1042/bj3180255] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The PDE4A (type IV) cAMP-specific, rolipram-inhibited phosphodiesterase RPDE-6 (RNPDE4A5), when transiently expressed in COS7 cells, could be complexed with the v-Src-SH3 domain expressed as a glutathione S-transferase (GST) fusion protein. RPDE-6 did not interact with GST itself. This complex was not disrupted by treatment with high NaCl concentration together with Triton X-100. Interaction was apparently determined by the N-terminal splice region of RPDE-6, as the PDE4A splice variant RPDE-39, which differs from RPDE-6 at the extreme N-terminus, failed to associate with v-Src-SH3; met26RD1 (where RD1 is rat 'dunc-like' PDE), which has the N-terminal splice region deleted, failed to associate with v-Src-SH3, and the association of RPDE-6 and v-Src-SH3 was blocked by a fusion protein formed from the N-terminal splice region. RDPE-6 showed binding to GST fusion proteins of both the intact Src kinase and an SH2-SH3 construct but did not bind to the Src-SH2 domain or to the adaptor protein Grb-2. RPDE-6 could be co-immunoprecipitated from cytosol extracts of transfected cells by using anti-Src antiserum. RPDE-6 exhibited selectivity in binding to the SH3 domains of c-Abl, Crk, Csk, Lck, Lyn, Fyn and v-Src, with binding to the SH3 regions of the Src-related tyrosyl kinases Lyn and Fyn being the most effective. The binding of RPDE-6 to the SH3 domains of Crk, Csk and Lck led to a marked reduction in PDE activity, but no change was apparent in complexes with other species. Endogenous RPDE-6 from brain, but not endogenous RPDE-39 from testis, bound to the Src-SH3 domain. We suggest that the PDE4A splice variant RPDE-6 has a propensity for interaction with selective SH3 domains, in particular those from Src and the Src-related tyrosyl kinases Lyn and Fyn. This interaction seems to be governed by alternative splicing of the PDE4A gene, because RPDE-39, a splice variant that lacks the proline-rich N-terminal splice region of RPDE-6, does not interact with these SH3 domains. It is proposed that the binding site on RPDE-6 for SH3 domains lies within the unique first 102 residues of its N-terminal splice domain, where two motifs representing Class I SH3 binding sites with selectivity for Src kinase SH3 domains can be identified and one motif for a putative Class II SH3 binding site.
Collapse
Affiliation(s)
- J C O'Connell
- Division of Biochemistry and Molecular Biology, I.B.L.S., University of Glasgow, Scotland, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Park J, Cartwright CA. Src activity increases and Yes activity decreases during mitosis of human colon carcinoma cells. Mol Cell Biol 1995; 15:2374-82. [PMID: 7739521 PMCID: PMC230466 DOI: 10.1128/mcb.15.5.2374] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Src and Yes protein-tyrosine kinase activities are elevated in malignant and premalignant tumors of the colon. To determine whether Src activity is elevated throughout the human colon carcinoma cell cycle as it is in polyomavirus middle T antigen- or F527 Src-transformed cells, and whether Yes activity, which is lower than that of Src in the carcinoma cells, is regulated differently, we measured their activities in cycling cells. We observed that the activities of both kinases were higher throughout all phases of the HT-29 colon carcinoma cell cycle than in corresponding phases of the fibroblast cycle. In addition, during mitosis of HT-29 cells, Src specific activity increased two- to threefold more, while Yes activity and abundance decreased threefold. The decreased steady-state protein levels of Yes during mitosis appeared to be due to both decreased synthesis and increased degradation of the protein. Inhibition of tyrosine but not serine/threonine phosphatases abolished the mitotic activation of Src. Mitotic Src was phosphorylated at novel serine and threonine sites and dephosphorylated at Tyr-527. Two cellular proteins (p160 and p180) were phosphorylated on tyrosine only during mitosis. Tyrosine phosphorylation of several other proteins decreased during mitosis. Thus, Src in HT-29 colon carcinoma cells, similar to Src complexed to polyomavirus middle T antigen or activated by mutation at Tyr-527, is highly active in all phases of the cell cycle. Moreover, Src activity further increases during mitosis, whereas Yes activity and abundance decrease. Thus, Src and Yes appear to be regulated differently during mitosis of HT-29 colon carcinoma cells.
Collapse
Affiliation(s)
- J Park
- Department of Medicine, Stanford University, California 94305, USA
| | | |
Collapse
|
14
|
Budde RJ. Evidence for kinetically distinct forms of pp60c-src with different Km values for their protein substrate. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74545-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Liebenhoff U, Brockmeier D, Presek P. Substrate affinity of the protein tyrosine kinase pp60c-src is increased on thrombin stimulation of human platelets. Biochem J 1993; 295 ( Pt 1):41-8. [PMID: 7692843 PMCID: PMC1134817 DOI: 10.1042/bj2950041] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human blood platelets contain high levels of non-receptor protein tyrosine kinases of the Src family, particularly pp60c-src, suggesting an important role for these enzymes in platelet physiology. Indeed, in response to various agonists of platelet function, a number of proteins become phosphorylated at tyrosine residues. However, no enzymic activation of an Src-related tyrosine kinase has yet been shown in platelets. In searching for the kinase(s) responsible, we found that all agonists tested that directly or indirectly activate protein kinase C in platelets (phorbol 12-myristate, 13-acetate, thrombin, vasopressin, collagen, calcium ionophore A23187) increased the overall activity of pp60c-src determined by IgG phosphorylation in an immunocomplex assay in the presence of low ATP concentrations. On the other hand, elevation of cyclic AMP directly by forskolin or indirectly by prostaglandin E1, or elevation of cyclic GMP by sodium nitroprusside did not significantly affect the activity of the enzyme. To substantiate the differences in enzyme activity, we determined Km and Vmax, values of pp60c-src from resting and thrombin-stimulated platelets. Thrombin treatment increased substrate affinity of pp60c-src as indicated by a 2- to 3-fold decrease in the Km values for ATP and the exogenous protein substrate casein. Vmax. values were only slightly altered under the assay conditions used. To further rule out modifications of pp60c-src in phosphorylation as a probable cause of the changed substrate affinity, we analysed tryptic phosphopeptides of immunoprecipitated, 32P-labelled pp60c-src of unstimulated and stimulated platelets. The platelet agonists listed above induced an increase in pp60c-src phosphorylation at Ser-12, which is the amino acid phosphorylated by protein kinase C. Surprisingly, we found that elevation of cyclic AMP did not affect 32P labelling of pp60c-src. On the basis of our data, we suggest that phosphorylation at Ser-12 might be one of the signal-triggering events that cause the increase in substrate affinity of pp60c-src.
Collapse
Affiliation(s)
- U Liebenhoff
- Rudolf-Buchheim-Institut für Pharmakologie, Justus-Liebig-Universität, Giessen, Federal Republic of Germany
| | | | | |
Collapse
|
16
|
Differential modulation of plasminogen activator gene expression by oncogene-encoded protein tyrosine kinases. Mol Cell Biol 1993. [PMID: 7689154 DOI: 10.1128/mcb.13.9.5888] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA) gene transcription is increased > or = 50-fold in chicken embryo fibroblasts (CEF) following transformation by the protein tyrosine kinase pp60v-src. Protein phosphorylation appears to play a critical role in uPA gene expression in these cells; protein kinase C-activating phorbol esters cooperate with pp60v-src to synergistically increase uPA mRNA, whereas cyclic AMP (cAMP)-dependent protein kinase-activating agents (e.g., 8-bromo cAMP) repress uPA mRNA levels. To explore the relationship between transforming oncogenes and uPA gene expression, uPA mRNA levels were measured in CEF infected with selected avian retroviruses. We report that v-ras and the transforming protein tyrosine kinases v-src, v-yes, and v-ros all increase cellular uPA mRNAs. However, transformation with the protein tyrosine kinase encoded by v-erbB, or the nuclear proteins encoded by v-jun, v-ski, or v-myc, did not increase uPA mRNA detectably. Ras and all of the protein tyrosine kinases analyzed, including the v-erbB product, but none of the nuclear oncoproteins sensitized cells to phorbol ester induction of uPA gene expression. Thus, increased uPA gene expression is not simply a secondary consequence of cell transformation but, rather, is regulated or comodulated by only a subset of oncogene products. Analysis of cells expressing site-directed mutants of pp60v-src showed that the induction of the uPA gene is dependent on protein tyrosine kinase catalytic activity, myristylation, and plasma membrane localization. However, these properties together are not sufficient; an additional feature in the src homology 2 domain is also required. The major sites of serine phosphorylation, serines 12 and 17, and the autophosphorylation site, tyrosine 416, are not essential for uPA gene induction. However, the reduction of uPA mRNA in pp60v-src-transformed cells by 8-bromo cAMP is dependent on tyrosine 416.
Collapse
|
17
|
Bell SM, Connolly DC, Maihle NJ, Degen JL. Differential modulation of plasminogen activator gene expression by oncogene-encoded protein tyrosine kinases. Mol Cell Biol 1993; 13:5888-97. [PMID: 7689154 PMCID: PMC360337 DOI: 10.1128/mcb.13.9.5888-5897.1993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Urokinase-type plasminogen activator (uPA) gene transcription is increased > or = 50-fold in chicken embryo fibroblasts (CEF) following transformation by the protein tyrosine kinase pp60v-src. Protein phosphorylation appears to play a critical role in uPA gene expression in these cells; protein kinase C-activating phorbol esters cooperate with pp60v-src to synergistically increase uPA mRNA, whereas cyclic AMP (cAMP)-dependent protein kinase-activating agents (e.g., 8-bromo cAMP) repress uPA mRNA levels. To explore the relationship between transforming oncogenes and uPA gene expression, uPA mRNA levels were measured in CEF infected with selected avian retroviruses. We report that v-ras and the transforming protein tyrosine kinases v-src, v-yes, and v-ros all increase cellular uPA mRNAs. However, transformation with the protein tyrosine kinase encoded by v-erbB, or the nuclear proteins encoded by v-jun, v-ski, or v-myc, did not increase uPA mRNA detectably. Ras and all of the protein tyrosine kinases analyzed, including the v-erbB product, but none of the nuclear oncoproteins sensitized cells to phorbol ester induction of uPA gene expression. Thus, increased uPA gene expression is not simply a secondary consequence of cell transformation but, rather, is regulated or comodulated by only a subset of oncogene products. Analysis of cells expressing site-directed mutants of pp60v-src showed that the induction of the uPA gene is dependent on protein tyrosine kinase catalytic activity, myristylation, and plasma membrane localization. However, these properties together are not sufficient; an additional feature in the src homology 2 domain is also required. The major sites of serine phosphorylation, serines 12 and 17, and the autophosphorylation site, tyrosine 416, are not essential for uPA gene induction. However, the reduction of uPA mRNA in pp60v-src-transformed cells by 8-bromo cAMP is dependent on tyrosine 416.
Collapse
Affiliation(s)
- S M Bell
- Division of Basic Science Research, Children's Hospital Research Foundation, Cincinnati, Ohio 45229
| | | | | | | |
Collapse
|
18
|
Walker F, deBlaquiere J, Burgess A. Translocation of pp60c-src from the plasma membrane to the cytosol after stimulation by platelet-derived growth factor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36551-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Rudd CE, Janssen O, Prasad KV, Raab M, da Silva A, Telfer JC, Yamamoto M. src-related protein tyrosine kinases and their surface receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1155:239-66. [PMID: 8357828 DOI: 10.1016/0304-419x(93)90007-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The CD4-p56lck and CD8-p56lck complexes have served as a paradym for an expanding number of interactions between src-family members (p56lck, p59fyn, p56lyn, p55blk) and surface receptors. These interactions implicate src-related kinases in the regulation of a variety of intracellular events, from lymphokine production and cytotoxicity to the expression of specific nuclear binding proteins. Different molecular mechanisms appear to have evolved to facilitate the receptor-kinase interactions, including the use of N-terminal regions, SH2 regions and kinase domains. Variation exists in stoichiometry, affinity and the nature of signals generated by these complexes in cells. The CD4-p56lck complex differs from receptor-tyrosine kinases in a number of important ways, including mechanisms of kinase domain regulation and recruitment of substrates such as PI 3-kinase. Furthermore, they may have a special affinity for receptor-substrates such as the TcR zeta, MB1/B29 or CD5 receptors, and act to recruit other SH2-carrying proteins, such as ZAP-70 to the receptor complexes. Receptor-src kinase interactions represent the first step in a cascade of intracellular events within the protein-tyrosine kinase/phosphatase cascade.
Collapse
Affiliation(s)
- C E Rudd
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | | | | | | | | | | |
Collapse
|
20
|
Winkler DG, Park I, Kim T, Payne NS, Walsh CT, Strominger JL, Shin J. Phosphorylation of Ser-42 and Ser-59 in the N-terminal region of the tyrosine kinase p56lck. Proc Natl Acad Sci U S A 1993; 90:5176-80. [PMID: 8506364 PMCID: PMC46678 DOI: 10.1073/pnas.90.11.5176] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Ser-42 and Ser-59 in the N-terminal region have been identified as the major phorbol ester-induced phosphorylation sites of p56lck. Phosphorylation of Ser-59 results in a gel shift from 56 kDa to 61 kDa. Simultaneous phosphorylation of Ser-42 and Ser-59 results in a further gel shift to 63 kDa. In vitro kinase assays show that Ser-59 can be uniquely phosphorylated by mitogen-activated protein kinase and that Ser-42 can be phosphorylated by either protein kinase A or protein kinase C.
Collapse
Affiliation(s)
- D G Winkler
- Division of Tumor Virology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | | | | | | | | | | |
Collapse
|
21
|
The sites of phosphorylation by protein kinase C and an intact SH2 domain are required for the enhanced response to beta-adrenergic agonists in cells overexpressing c-src. Mol Cell Biol 1993. [PMID: 7681147 DOI: 10.1128/mcb.13.4.2391] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we demonstrated that C3H10T1/2 murine fibroblasts overexpressing avian c-src exhibit elevated levels of cyclic AMP (cAMP) in response to beta-adrenergic agonists compared with that in control cells and that this enhanced response requires c-src kinase activity (W. A. Bushman, L. K. Wilson, D. K. Luttrell, J. S. Moyers, and S. J. Parsons, Proc. Natl. Acad. Sci. USA 87:7462-7466, 1990). However, it is not yet known which components of the beta-adrenergic receptor pathway, if any, interact with pp60c-src. It has recently been shown that immune complexes of pp60c-src phosphorylate recombinant G alpha proteins in vitro to stoichiometric levels, resulting in alterations of GTP binding and GTPase activity (W. P. Hausdorff, J. A. Pitcher, D. K. Luttrell, M. E. Linder, H. Kurose, S. J. Parsons, M. G. Caron, and R. J. Lefkowitz, Proc. Natl. Acad. Sci. USA 89:5720-5724, 1992), raising the possibility that the Gs alpha protein may be an in vivo target for the interaction with pp60c-src. To further characterize the involvement of pp60c-src in the beta-adrenergic signalling pathway, we have overexpressed, in 10T1/2 cells, pp60c-src containing mutations in several domains which are believed to be important for signalling processes. In this study we show that the sites of phosphorylation by protein kinase C (PKC) (Ser-12 and Ser-48) as well as the SH2 region of pp60c-src are required for the enhanced response of c-src overexpressors to beta-agonist stimulation. Mutation at the site of myristylation (Gly-2) results in a decrease in the enhanced response, while mutation at the site of phosphorylation by cAMP-dependent protein kinase (Ser-17) has no effect. Two-dimensional phosphotryptic analyses indicate that phosphorylation on Ser-12 and Ser-48 in unstimulated cells is associated with the ability of overexpressed pp60c-src to potentiate beta-adrenergic signalling. Cells overexpressing wild-type c-src also exhibit enhanced cAMP accumulation upon treatment with cholera toxin, an effect that is abated in cells overexpressing pp60c-src defective in the kinase or SH2 domains or altered at the sites of phosphorylation by PKC. These studies provide the first evidence for the physiological significance of the pp60c-src sites of PKC phosphorylation. In addition, they show that the SH2, Ser-12/48, and myristylation regions may be important for efficient interaction of pp60c-src with components of the beta-adrenergic pathway. Our data also support the possibility that the Gs alpha protein may be an in vivo target for alteration by pp60c-src.
Collapse
|
22
|
Moyers JS, Bouton AH, Parsons SJ. The sites of phosphorylation by protein kinase C and an intact SH2 domain are required for the enhanced response to beta-adrenergic agonists in cells overexpressing c-src. Mol Cell Biol 1993; 13:2391-400. [PMID: 7681147 PMCID: PMC359560 DOI: 10.1128/mcb.13.4.2391-2400.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previously we demonstrated that C3H10T1/2 murine fibroblasts overexpressing avian c-src exhibit elevated levels of cyclic AMP (cAMP) in response to beta-adrenergic agonists compared with that in control cells and that this enhanced response requires c-src kinase activity (W. A. Bushman, L. K. Wilson, D. K. Luttrell, J. S. Moyers, and S. J. Parsons, Proc. Natl. Acad. Sci. USA 87:7462-7466, 1990). However, it is not yet known which components of the beta-adrenergic receptor pathway, if any, interact with pp60c-src. It has recently been shown that immune complexes of pp60c-src phosphorylate recombinant G alpha proteins in vitro to stoichiometric levels, resulting in alterations of GTP binding and GTPase activity (W. P. Hausdorff, J. A. Pitcher, D. K. Luttrell, M. E. Linder, H. Kurose, S. J. Parsons, M. G. Caron, and R. J. Lefkowitz, Proc. Natl. Acad. Sci. USA 89:5720-5724, 1992), raising the possibility that the Gs alpha protein may be an in vivo target for the interaction with pp60c-src. To further characterize the involvement of pp60c-src in the beta-adrenergic signalling pathway, we have overexpressed, in 10T1/2 cells, pp60c-src containing mutations in several domains which are believed to be important for signalling processes. In this study we show that the sites of phosphorylation by protein kinase C (PKC) (Ser-12 and Ser-48) as well as the SH2 region of pp60c-src are required for the enhanced response of c-src overexpressors to beta-agonist stimulation. Mutation at the site of myristylation (Gly-2) results in a decrease in the enhanced response, while mutation at the site of phosphorylation by cAMP-dependent protein kinase (Ser-17) has no effect. Two-dimensional phosphotryptic analyses indicate that phosphorylation on Ser-12 and Ser-48 in unstimulated cells is associated with the ability of overexpressed pp60c-src to potentiate beta-adrenergic signalling. Cells overexpressing wild-type c-src also exhibit enhanced cAMP accumulation upon treatment with cholera toxin, an effect that is abated in cells overexpressing pp60c-src defective in the kinase or SH2 domains or altered at the sites of phosphorylation by PKC. These studies provide the first evidence for the physiological significance of the pp60c-src sites of PKC phosphorylation. In addition, they show that the SH2, Ser-12/48, and myristylation regions may be important for efficient interaction of pp60c-src with components of the beta-adrenergic pathway. Our data also support the possibility that the Gs alpha protein may be an in vivo target for alteration by pp60c-src.
Collapse
Affiliation(s)
- J S Moyers
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | |
Collapse
|
23
|
Myristylation is required for Tyr-527 dephosphorylation and activation of pp60c-src in mitosis. Mol Cell Biol 1993. [PMID: 7680096 DOI: 10.1128/mcb.13.3.1464] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The chicken proto-oncoprotein c-Src is phosphorylated by p34cdc2 during mitosis concomitant with increased c-Src tyrosine kinase activity. On the basis of indirect evidence, we previously suggested that this is caused by partial dephosphorylation at Tyr-527, the phosphorylation of which suppresses c-Src kinase activity. In support of this hypothesis, we now show that treatment of cells with a protein tyrosine phosphatase inhibitor, sodium vanadate, blocks the mitotic increase in Src kinase activity. Also, we show that an amino-terminal mutation that prevents myristylation (and membrane localization) of c-Src does not interfere with the p34cdc2-mediated phosphorylations but blocks both mitotic dephosphorylation of Tyr-527 (in kinase-defective Src) and stimulation of c-Src kinase activity. Furthermore, in unsynchronized cells, the kinase activity of nonmyristylated c-Src is suppressed by 60% relative to wild-type c-Src, presumably because of increased Tyr-527 phosphorylation. Consistent with this, the Tyr-527 dephosphorylation rate measured in cell homogenates is much higher for wild-type, myristylated c-Src than for nonmyristylated c-Src. Tyr-527 phosphatase activity was primarily associated with the nonsoluble subcellular fraction. These findings suggest that the phosphatase(s) that acts on Tyr-527 is membrane bound and indicate that membrane localization of c-Src is necessary for its mitotic activation by dephosphorylation of Tyr-527.
Collapse
|
24
|
Bagrodia S, Taylor SJ, Shalloway D. Myristylation is required for Tyr-527 dephosphorylation and activation of pp60c-src in mitosis. Mol Cell Biol 1993; 13:1464-70. [PMID: 7680096 PMCID: PMC359457 DOI: 10.1128/mcb.13.3.1464-1470.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The chicken proto-oncoprotein c-Src is phosphorylated by p34cdc2 during mitosis concomitant with increased c-Src tyrosine kinase activity. On the basis of indirect evidence, we previously suggested that this is caused by partial dephosphorylation at Tyr-527, the phosphorylation of which suppresses c-Src kinase activity. In support of this hypothesis, we now show that treatment of cells with a protein tyrosine phosphatase inhibitor, sodium vanadate, blocks the mitotic increase in Src kinase activity. Also, we show that an amino-terminal mutation that prevents myristylation (and membrane localization) of c-Src does not interfere with the p34cdc2-mediated phosphorylations but blocks both mitotic dephosphorylation of Tyr-527 (in kinase-defective Src) and stimulation of c-Src kinase activity. Furthermore, in unsynchronized cells, the kinase activity of nonmyristylated c-Src is suppressed by 60% relative to wild-type c-Src, presumably because of increased Tyr-527 phosphorylation. Consistent with this, the Tyr-527 dephosphorylation rate measured in cell homogenates is much higher for wild-type, myristylated c-Src than for nonmyristylated c-Src. Tyr-527 phosphatase activity was primarily associated with the nonsoluble subcellular fraction. These findings suggest that the phosphatase(s) that acts on Tyr-527 is membrane bound and indicate that membrane localization of c-Src is necessary for its mitotic activation by dephosphorylation of Tyr-527.
Collapse
Affiliation(s)
- S Bagrodia
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
25
|
Lydon NB, Gay B, Mett H, Murray B, Liebetanz J, Gutzwiller A, Piwnica-Worms H, Roberts TM, McGlynn E. Purification and biochemical characterization of non-myristoylated recombinant pp60c-src kinase. Biochem J 1992; 287 ( Pt 3):985-93. [PMID: 1280108 PMCID: PMC1133104 DOI: 10.1042/bj2870985] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To obtain sufficient material for the biochemical and biophysical study of pp60c-src, we have utilized a recombinant pp60c-src baculovirus lacking the myristoylation site at codon 2. On infection of Sf9 cells, this virus produced large amounts of soluble non-myristoylated pp60c-src. The use of non-myristoylated pp60c-src (1) increases production of pp60c-src compared with the wild-type protein, (2) facilitates purification, (3) yields a stable product and (4) allows biochemical studies in the absence of detergents. Up to 20 mg of pp60c-src of greater than 95% purity has been purified from 6 litres of Sf9 cells grown in a bioreactor. One major and multiple minor forms of pp60c-src were separated by Mono Q f.p.l.c. Isoelectric focusing of purified pp60c-src species revealed heterogeneity, some of which could be attributed to differences in the tyrosine phosphorylation state of the enzyme. Kinetic analysis of non-myristoylated pp60c-src kinase in the presence of Mg2+ gave Km values for angiotensin II and ATP of 2 mM and 30 microM respectively and a Vmax. of 620 nmol/min per mg. The kinetic constants and metal ion preferences of a number of copolymers and peptide substrates have been compared. Polylysine and poly(GLAT), which was not phosphorylated by the pp60c-src kinase, dramatically activated autophosphorylation of Tyr-416, suggesting a conformation modulation of pp60c-src by charged polymers. This finding implies that Tyr-527 dephosphorylation is not sufficient for full activation of pp60c-src in vitro.
Collapse
Affiliation(s)
- N B Lydon
- Research Department, Ciba-Geigy Limited, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shenoy S, Chackalaparampil I, Bagrodia S, Lin PH, Shalloway D. Role of p34cdc2-mediated phosphorylations in two-step activation of pp60c-src during mitosis. Proc Natl Acad Sci U S A 1992; 89:7237-41. [PMID: 1379736 PMCID: PMC49681 DOI: 10.1073/pnas.89.15.7237] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Phosphorylation of pp60c-src by p34cdc2 at three amino-proximal serine/threonine residues is temporally correlated with, but insufficient for, mitotic activation of c-Src kinase. The direct cause of activation during mitosis appears to be temporally correlated partial dephosphorylation of Tyr-527, a residue whose phosphorylation strongly suppresses pp60c-src activity. Site-directed mutagenesis of the serine/threonine phosphorylation sites blocks half the mitosis-specific decrease in Tyr-527 phosphorylation and half the increase in pp60c-src kinase activity. We conclude that p34cdc2 partially activates pp60c-src by a two-step process in which its serine/threonine phosphorylations either sensitize pp60c-src to a Tyr-527 phosphatase or desensitize it to a Tyr-527 kinase. Furthermore, additional events, independent of these p34cdc2-mediated phosphorylations, participate in mitotic activation of pp60c-src.
Collapse
Affiliation(s)
- S Shenoy
- Department of Pathology, Cornell University, Ithaca, NY 14853
| | | | | | | | | |
Collapse
|
27
|
Coe MR, Summers TA, Parsons SJ, Boskey AL, Balian G. Matrix mineralization in hypertrophic chondrocyte cultures. Beta glycerophosphate increases type X collagen messenger RNA and the specific activity of pp60c-src kinase. BONE AND MINERAL 1992; 18:91-106. [PMID: 1381978 DOI: 10.1016/0169-6009(92)90850-d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phenomenon of chondrocyte hypertrophy is accompanied by the expression of type X collagen and the appearance of matrix mineralization. These events are also associated with changes in the phosphorylation of intracellular proteins. In this study the addition of 10 mM beta-glycerophosphate to hypertrophic chondrocytes resulted in stimulation of type X collagen synthesis up to 10 days in culture and an increase in the expression of type X collagen mRNA. This was followed by the onset of mineralization and the appearance of calcium hydroxyapatite. In contrast, the addition of beta-glycerophosphate to non-hypertrophic chondrocytes failed to induce expression of type X collagen or to produce changes in calcium and phosphate. The increased formation of type X collagen and of mineral in hypertrophic chondrocytes was accompanied by changes in the tyrosine kinase pp60c-src. While the level of c-src protein decreased approximately 2.5-fold in hypertrophic chondrocytes after 17 days of beta-glycerophosphate treatment, the specific activity of pp60c-src kinase increased approximately 3-fold in the cells that could be induced to mineralize but remained unchanged in cells that did not exhibit this property. Regulation of kinase activity may be an important event in endochondral ossification.
Collapse
Affiliation(s)
- M R Coe
- University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | | | |
Collapse
|
28
|
Wu Z, Chaconas G. Flanking host sequences can exert an inhibitory effect on the cleavage step of the in vitro mu DNA strand transfer reaction. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50126-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Regulation of the oncogenic activity of the cellular src protein requires the correct spacing between the kinase domain and the C-terminal phosphorylated tyrosine (Tyr-527). Mol Cell Biol 1991. [PMID: 1719372 DOI: 10.1128/mcb.11.12.5832] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repression of the tyrosine kinase activity of the cellular src protein (pp60c-src) depends on the phosphorylation of a tyrosine residue (Tyr-527) near the carboxy terminus. Tyr-527 is located 11 residues C terminal from the genetically defined end of the kinase domain (Leu-516) and is therefore in a negative regulatory region. Because the precise sequence of amino acids surrounding Tyr-527 appears to be unimportant for regulation, we hypothesized that the conformational constraints induced by phosphorylated Tyr-527 may require the correct spacing between the kinase domain (Leu-516) and Tyr-527. In this report, we show that deletions at residue 518 of two, four, or seven amino acids or insertions at this residue of two or four amino acids activated the kinase activity and thus the transforming potential of pp60c-src. As is the case for the prototype transforming variant, pp60527F, activation caused by these deletions or insertions was abolished when Tyr-416 (the autophosphorylation site) was changed to phenylalanine. In comparison with wild-type pp60c-src, the src proteins containing the alterations at residue 518 showed a lower phosphorylation state at Tyr-527 regardless of whether residue 416 was a tyrosine or a phenylalanine. Mechanisms dealing with the importance of spacing between the kinase domain and Tyr-527 are discussed.
Collapse
|
30
|
Cobb BS, Payne DM, Reynolds AB, Parsons JT. Regulation of the oncogenic activity of the cellular src protein requires the correct spacing between the kinase domain and the C-terminal phosphorylated tyrosine (Tyr-527). Mol Cell Biol 1991; 11:5832-8. [PMID: 1719372 PMCID: PMC361728 DOI: 10.1128/mcb.11.12.5832-5838.1991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Repression of the tyrosine kinase activity of the cellular src protein (pp60c-src) depends on the phosphorylation of a tyrosine residue (Tyr-527) near the carboxy terminus. Tyr-527 is located 11 residues C terminal from the genetically defined end of the kinase domain (Leu-516) and is therefore in a negative regulatory region. Because the precise sequence of amino acids surrounding Tyr-527 appears to be unimportant for regulation, we hypothesized that the conformational constraints induced by phosphorylated Tyr-527 may require the correct spacing between the kinase domain (Leu-516) and Tyr-527. In this report, we show that deletions at residue 518 of two, four, or seven amino acids or insertions at this residue of two or four amino acids activated the kinase activity and thus the transforming potential of pp60c-src. As is the case for the prototype transforming variant, pp60527F, activation caused by these deletions or insertions was abolished when Tyr-416 (the autophosphorylation site) was changed to phenylalanine. In comparison with wild-type pp60c-src, the src proteins containing the alterations at residue 518 showed a lower phosphorylation state at Tyr-527 regardless of whether residue 416 was a tyrosine or a phenylalanine. Mechanisms dealing with the importance of spacing between the kinase domain and Tyr-527 are discussed.
Collapse
Affiliation(s)
- B S Cobb
- Department of Microbiology, University of Virginia, Health Sciences Center, Charlottesville 22908
| | | | | | | |
Collapse
|
31
|
Kato G, Wakabayashi K. Novel serine phosphorylation occurs in the fibroblast form of pp60c-src from Y79 retinoblastoma cells. Biochem Biophys Res Commun 1991; 178:764-72. [PMID: 1713455 DOI: 10.1016/0006-291x(91)90174-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two-dimensional tryptic peptide analysis showed that pp60c-src from the human retinoblastoma cell line Y79 gave a unique phosphopeptide, which was not found in human fibroblast RT59. There was no significant difference in the extent of phosphorylation of other peptides between the two cell lines. Only phosphoserine was detected in this phosphopeptide. Both the fibroblast form and the neuronal form of pp60c-src from Y79 cells had this unique peptide phosphorylated to the same extent. The phosphorylation site was inferred to be serine 97 by comparing the tryptic map and the arginyl-endopeptidase map. The specific protein kinase activity of pp60c-src from Y79 cells was nearly equal to that of RT59 pp60c-src. This unique serine phosphorylation in the fibroblast form was discussed in relation to the oncogenic change of Y79 cells.
Collapse
Affiliation(s)
- G Kato
- Department of Biochemistry, Yamanashi Medical College, Japan
| | | |
Collapse
|
32
|
Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S. Oncogenes and signal transduction. Cell 1991; 64:281-302. [PMID: 1846320 DOI: 10.1016/0092-8674(91)90639-g] [Citation(s) in RCA: 2149] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- L C Cantley
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | | | | | | | | | | |
Collapse
|
33
|
Angiotensin II stimulates protein-tyrosine phosphorylation in a calcium-dependent manner. Mol Cell Biol 1991. [PMID: 1701016 DOI: 10.1128/mcb.10.12.6290] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cellular responses to epidermal growth factor (EGF) are dependent on the tyrosine-specific protein kinase activity of the cell-surface EGF receptor. Previous studies using WB rat liver epithelial cells have detected at least 10 proteins whose phosphotyrosine (P-Tyr) content is increased by EGF. In this study, we have examined alternate modes of activating tyrosine phosphorylation. Treatment of WB cells with hormones linked to Ca2+ mobilization and protein kinase C (PKC) activation, including angiotensin II, [Arg8]vasopressin, or epinephrine, stimulated rapid (less than or equal to 15-s) and transient increases in the P-Tyr content of several proteins (p120/125, p75/78, and p66). These proteins, detected by anti-P-Tyr immunoblotting, were similar in molecular weight to a subset of EGF-sensitive P-Tyr-containing proteins (P-Tyr-proteins). The increased P-Tyr content was confirmed by [32P]phosphoamino acid analysis of proteins recovered by anti-P-Tyr immunoprecipitation. Elevating intracellular [Ca2+] with the ionophore A23187 or ionomycin or with the tumor promoter thapsigargin mimicked the effects of hormones on tyrosine phosphorylation, whereas treatment with a PKC-activating phorbol ester did not. In addition, responses to angiotensin II were not diminished in PKC-depleted cells. Ca2+ mobilization, measured by fura-2 fluorescence, was coincident with the increase in tyrosine phosphorylation in response to angiotensin II or thapsigargin. Loading cells with the intracellular Ca2+ chelator bis-(o-aminophenoxy)ethane-N ,N ,N' , N'-tetraacetic acid (BAPTA) inhibited the appearance of all P-Tyr-proteins in response to angiotensin II, thapsigargin, or ionophores, as well as two EGF-stimulated P-Tyr-proteins. The majority of EGF-stimulated P-Tyr-proteins were not affected by BAPTA. These studies indicate that angiotensin II can alter protein-tyrosine phosphorylation in a manner that is secondary to, and apparently dependent on, Ca2+ mobilization. Thus, ligands such as EGF and angiotensin II, which act through distinct types of receptors, may activate secondary pathways involving tyrosine phosphorylation. These results also raise the possibility that certain growth-promoting effects of Ca2+ -mobilizing agents such as angiotensin II may be mediated via tyrosine phosphorylation.
Collapse
|
34
|
Bouton AH, Kanner SB, Vines RR, Parsons JT. Tyrosine phosphorylation of three cellular proteins correlates with transformation of rat 1 cells by pp60src. Mol Carcinog 1991; 4:145-52. [PMID: 1710464 DOI: 10.1002/mc.2940040210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The analysis of phosphotyrosine-containing proteins in Rat 1 cells overexpressing either the tyrosine kinase pp60c-src or genetic variants containing alterations in functional and structural domains has led to the identification of three proteins whose tyrosine phosphorylation correlated with pp60src-induced cellular transformation. The tyrosine phosphorylation of one of these proteins, p120, has been previously shown by us and others to coincide with the presence of kinase-activated, membrane-associated pp60src in chicken embryo cells. The second protein was identified as the ras-associated GTPase-activating protein (GAP). The third protein whose tyrosine phosphorylation was markedly elevated in Rat 1 cells expressing activated, membrane-bound forms of pp60src had an apparent molecular mass of 64-67 kDa. The electrophoretic mobility of this protein varied in cells expressing different pp60src variants. The tyrosine-phosphorylated form of p64-67 was present in immune complexes containing GAP, suggesting a stable interaction between these two cellular proteins.
Collapse
Affiliation(s)
- A H Bouton
- Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville 22908
| | | | | | | |
Collapse
|
35
|
Pearson RB, Kemp BE. Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol 1991; 200:62-81. [PMID: 1956339 DOI: 10.1016/0076-6879(91)00127-i] [Citation(s) in RCA: 843] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Affiliation(s)
- D Shalloway
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | |
Collapse
|
37
|
Bolen JB, Thompson PA, Eiseman E, Horak ID. Expression and interactions of the Src family of tyrosine protein kinases in T lymphocytes. Adv Cancer Res 1991; 57:103-49. [PMID: 1950702 DOI: 10.1016/s0065-230x(08)60997-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J B Bolen
- Laboratory of Tumor Virus Biology, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
38
|
Huckle WR, Prokop CA, Dy RC, Herman B, Earp S. Angiotensin II stimulates protein-tyrosine phosphorylation in a calcium-dependent manner. Mol Cell Biol 1990; 10:6290-8. [PMID: 1701016 PMCID: PMC362904 DOI: 10.1128/mcb.10.12.6290-6298.1990] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cellular responses to epidermal growth factor (EGF) are dependent on the tyrosine-specific protein kinase activity of the cell-surface EGF receptor. Previous studies using WB rat liver epithelial cells have detected at least 10 proteins whose phosphotyrosine (P-Tyr) content is increased by EGF. In this study, we have examined alternate modes of activating tyrosine phosphorylation. Treatment of WB cells with hormones linked to Ca2+ mobilization and protein kinase C (PKC) activation, including angiotensin II, [Arg8]vasopressin, or epinephrine, stimulated rapid (less than or equal to 15-s) and transient increases in the P-Tyr content of several proteins (p120/125, p75/78, and p66). These proteins, detected by anti-P-Tyr immunoblotting, were similar in molecular weight to a subset of EGF-sensitive P-Tyr-containing proteins (P-Tyr-proteins). The increased P-Tyr content was confirmed by [32P]phosphoamino acid analysis of proteins recovered by anti-P-Tyr immunoprecipitation. Elevating intracellular [Ca2+] with the ionophore A23187 or ionomycin or with the tumor promoter thapsigargin mimicked the effects of hormones on tyrosine phosphorylation, whereas treatment with a PKC-activating phorbol ester did not. In addition, responses to angiotensin II were not diminished in PKC-depleted cells. Ca2+ mobilization, measured by fura-2 fluorescence, was coincident with the increase in tyrosine phosphorylation in response to angiotensin II or thapsigargin. Loading cells with the intracellular Ca2+ chelator bis-(o-aminophenoxy)ethane-N ,N ,N' , N'-tetraacetic acid (BAPTA) inhibited the appearance of all P-Tyr-proteins in response to angiotensin II, thapsigargin, or ionophores, as well as two EGF-stimulated P-Tyr-proteins. The majority of EGF-stimulated P-Tyr-proteins were not affected by BAPTA. These studies indicate that angiotensin II can alter protein-tyrosine phosphorylation in a manner that is secondary to, and apparently dependent on, Ca2+ mobilization. Thus, ligands such as EGF and angiotensin II, which act through distinct types of receptors, may activate secondary pathways involving tyrosine phosphorylation. These results also raise the possibility that certain growth-promoting effects of Ca2+ -mobilizing agents such as angiotensin II may be mediated via tyrosine phosphorylation.
Collapse
Affiliation(s)
- W R Huckle
- Cell Biology Program of the Lineberger Cancer Research Center, Chapel Hill, North Carolina
| | | | | | | | | |
Collapse
|
39
|
David-Pfeuty T, Nouvian-Dooghe Y. Serine/threonine-specific protein kinase activity associated with viral pp60src protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:55-61. [PMID: 2169417 DOI: 10.1111/j.1432-1033.1990.tb19194.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three different types of experiments are presented in this paper, the results of which converge to indicate that the viral src protein associates with and modulates the activity and/or the specificity of a serine/threonine protein kinase. Firstly, a 60-kDa protein from extracts of FR3T3 rat fibroblasts transformed by wild-type Rous sarcoma virus (SRD-FR3T3) is shown to be immunoprecipitated with a monoclonal antibody (mAb) raised against bacterially produced pp60v-src, the mAb327 [Lipsich, L. A., Lewis, A. J. & Brugge, J. S. (1983) J. Virol. 48, 352-360] and to be phosphorylated in vitro at serine/threonine/tyrosine residues, in the ratio 25:53:22. Under the same experimental conditions, the pp60c-src protein immunoprecipitated with mAb327 from extracts of NIH c-src overexpresser cells is phosphorylated exclusively on tyrosine residues. Secondly, the results of immunoprecipitation experiments using a tumor-bearing rabbit (TBR) serum and reported in an earlier work [David-Pfeuty, T. & Hovanessian, A. (1984) Eur. J. Biochem. 140, 325-342], together with those reported here, suggest that the TBR-immunoprecipitated pp60v-src coprecipitates with a cellular protein related to the 60-kDa subunit of the Ca2+/calmodulin protein kinase II from brain. Finally, partially purified preparations of pp60v-src, but not of pp60c-src, are shown to contain a Ca2+/calmodulin-dependent protein kinase activity that phosphorylates a 52-kDa protein substrate.
Collapse
Affiliation(s)
- T David-Pfeuty
- Institut Curie-Biologie, Centre Universitaire, Orsay, France
| | | |
Collapse
|
40
|
Feder D, Bishop JM. Purification and enzymatic characterization of pp60c-src from human platelets. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39058-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Takekura N, Yasui W, Yoshida K, Tsujino T, Nakayama H, Kameda T, Yokozaki H, Nishimura Y, Ito H, Tahara E. pp60c-src protein kinase activity in human gastric carcinomas. Int J Cancer 1990; 45:847-51. [PMID: 2110550 DOI: 10.1002/ijc.2910450510] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We examined pp60c-src protein kinase activity in human gastric carcinoma cell lines and gastric carcinoma tissues as well as normal mucosa. pp60c-src kinase activity was detected in all 5 carcinoma cell lines at various levels. Of 16 gastric carcinoma tissues, 8 showed higher pp60c-src kinase activity in tumor tissues than in corresponding normal mucosa. However, the levels of expression of pp60c-src detected by Western blotting were not always consistent with the activities of pp60c-src protein kinase. These findings suggest that the increase in pp60c-src protein kinase activity might be brought about by post-translational changes.
Collapse
Affiliation(s)
- N Takekura
- First Department of Pathology, Hiroshima University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Danielian S, Fagard R, Boulet I, Fischer S. The retarded electrophoretic migration of p56lck induced by vanadate in lymphoma cells correlates with modified kinase activity. Biochimie 1990; 72:315-22. [PMID: 2119816 DOI: 10.1016/0300-9084(90)90026-d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
p56lck is a src related lymphocyte specific tyrosine protein kinase which undergoes specific changes during T-cell activation, particularly the appearance of slow migrating forms. To analyze these forms, LSTRA cells were treated with vanadate. This resulted in increased phosphorylation of p56lck with the appearance of slow migrating forms. Renaturation of the p56lck bands after gel migration showed that vanadate mostly increased the activity of the lower band of p56lck. The upper bands had a reduced specific activity. In addition, the upper bands from vanadate treated cells displayed additional phosphorylated sites.
Collapse
|
43
|
Early activation of endogenous pp60src kinase activity during neuronal differentiation of cultured human neuroblastoma cells. Mol Cell Biol 1990. [PMID: 2136766 DOI: 10.1128/mcb.10.1.361] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proto-oncogene product pp60c-src is a tyrosine-specific kinase with a still unresolved cellular function. High levels of pp60c-src in neurons and the existence of a neuronal pp60c-src variant, pp60c-srcN, suggest participation in the progress or maintenance of the differentiated phenotype of neurons. We have previously reported that phorbol esters, e.g., 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulate human SH-SY5Y neuroblastoma cells to neuronal differentiation, as monitored by morphological, biochemical, and functional differentiation markers. In this report, we describe activation of the pp60src (pp60c-src and pp60c-srcN) kinase activity observed at 6 h after induction of SH-SY5Y cells with TPA. This phenomenon coincides in time with neurite outgrowth, formation of growth cone-like structures, and an increase of GAP43 mRNA expression, which are the earliest indications of neuronal differentiation in these cells. The highest specific src kinase activity (a three- to fourfold increase 4 days after induction) was noted in cells treated with 16 nM TPA; this concentration is optimal for development of the TPA-induced neuronal phenotype. During differentiation, there was no alteration in the 1:1 ratio of pp60c-src to pp60c-srcN found in untreated SH-SY5Y cells. V8 protease and trypsin phosphopeptide mapping of pp60src from in vivo 32P-labeled cells showed that the overall phosphorylation of pp60src was higher in differentiated than in untreated cells, mainly because of an intense serine 12 phosphorylation. Tyrosine 416 phosphorylation was not detectable in either cell type, and no change during differentiation in tyrosine 527 phosphorylation was observed.
Collapse
|
44
|
Bjelfman C, Meyerson G, Cartwright CA, Mellström K, Hammerling U, Påhlman S. Early activation of endogenous pp60src kinase activity during neuronal differentiation of cultured human neuroblastoma cells. Mol Cell Biol 1990; 10:361-70. [PMID: 2136766 PMCID: PMC360755 DOI: 10.1128/mcb.10.1.361-370.1990] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The proto-oncogene product pp60c-src is a tyrosine-specific kinase with a still unresolved cellular function. High levels of pp60c-src in neurons and the existence of a neuronal pp60c-src variant, pp60c-srcN, suggest participation in the progress or maintenance of the differentiated phenotype of neurons. We have previously reported that phorbol esters, e.g., 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulate human SH-SY5Y neuroblastoma cells to neuronal differentiation, as monitored by morphological, biochemical, and functional differentiation markers. In this report, we describe activation of the pp60src (pp60c-src and pp60c-srcN) kinase activity observed at 6 h after induction of SH-SY5Y cells with TPA. This phenomenon coincides in time with neurite outgrowth, formation of growth cone-like structures, and an increase of GAP43 mRNA expression, which are the earliest indications of neuronal differentiation in these cells. The highest specific src kinase activity (a three- to fourfold increase 4 days after induction) was noted in cells treated with 16 nM TPA; this concentration is optimal for development of the TPA-induced neuronal phenotype. During differentiation, there was no alteration in the 1:1 ratio of pp60c-src to pp60c-srcN found in untreated SH-SY5Y cells. V8 protease and trypsin phosphopeptide mapping of pp60src from in vivo 32P-labeled cells showed that the overall phosphorylation of pp60src was higher in differentiated than in untreated cells, mainly because of an intense serine 12 phosphorylation. Tyrosine 416 phosphorylation was not detectable in either cell type, and no change during differentiation in tyrosine 527 phosphorylation was observed.
Collapse
Affiliation(s)
- C Bjelfman
- Department of Pathology, University Hospital, University of Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Piwnica-Worms H, Williams NG, Cheng SH, Roberts TM. Regulation of pp60c-src and its interaction with polyomavirus middle T antigen in insect cells. J Virol 1990; 64:61-8. [PMID: 2152834 PMCID: PMC249044 DOI: 10.1128/jvi.64.1.61-68.1990] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High yields of soluble, biologically active pp60c-src and middle t antigen (MTAg) of polyomavirus were produced in insect cells, using a baculovirus expression system. In mammalian cells, pp60c-src undergoes a regulatory phosphorylation on Tyr-527 in vivo and is autophosphorylated on Tyr-416 in vitro. In insect cells, pp60c-src was phosphorylated primarily on Tyr-416, although Tyr-527 was detectable at a low level. A kinase-negative mutant of pp60c-src was not phosphorylated on either Tyr-527 or Tyr-416 in insect cells and thus is an excellent biochemical reagent to search for the regulatory kinase that usually phosphorylates Tyr-527 in mammalian cells. MTAg synthesized in insect cells was not phosphorylated on tyrosine residues in vivo or in vitro, suggesting that it did not associate with any endogenous tyrosine kinases. However, MTAg isolated from cells coinfected with viruses encoding both MTAg and pp60c-src was phosphorylated on tyrosine residues both in vivo and in vitro.
Collapse
Affiliation(s)
- H Piwnica-Worms
- Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
46
|
pp60c-src variants containing lesions that affect phosphorylation at tyrosines 416 and 527. Mol Cell Biol 1989. [PMID: 2476663 DOI: 10.1128/mcb.9.9.3647] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The biological and biochemical properties of pp60c-src are regulated, in part, by phosphorylation at Tyr-416 and Tyr-527. The tyrosine kinase and transforming activities of pp60c-src are suppressed by phosphorylation at Tyr-527, whereas full activation of pp60c-src requires phosphorylation at Tyr-416. To test specifically the significance of the negatively charged phosphate moieties on these tyrosine residues, we have substituted the codons for both residues with codons for either Glu or Gln. A negatively charged Glu at position 527 was unable to mimic a phosphorylated Tyr at this position, and, in consequence, the mutated pp60c-src was activated and transforming. Similarly, substitution of Tyr-416 with Glu was unable to stimulate the activities of the enzyme. However, mutagenesis of Tyr-416 to Gln (to form the mutant 416Q) activated the kinase activity approximately twofold over that observed for wild-type pp60c-src. When introduced into the mutant 527F (containing Phe-527 instead of Tyr), the double mutant 416Q-527F exhibited weak transforming activity. This is in contrast to the other double mutants 416E-527F and 416F-527F, which were nontransforming. The biochemical basis by which 416Q activates pp60c-src is not understood but probably involves some local conformational perturbation. Deletion of residues 519 to 524 (RH5), a region previously shown to be necessary for association with middle-T antigen, led to loss of phosphorylation at Tyr-527 and activation of the enzymatic and focus-forming activities of pp60c-src. Hence, the sequences necessary for complex formation with middle-T antigen may also be required by the kinase(s) which phosphorylates Tyr-527 in vivo. This suggests that normal cells contain cellular proteins which are analogous to middle-T antigen and whose action regulates the activity of pp60c-src by controlling phosphorylation or dephosphorylation at residue 527.
Collapse
|
47
|
Mutation of amino acids in pp60c-src that are phosphorylated by protein kinases C and A. Mol Cell Biol 1989. [PMID: 2474754 DOI: 10.1128/mcb.9.6.2453] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The product of the c-src proto-oncogene, pp60c-src, is phosphorylated at Ser-17 by cyclic AMP-dependent protein kinase A and at Ser-12 by calcium-phospholipid-dependent protein kinase C (when stimulated by 12-O-tetradecanoyl phorbol acetate). We tested the effects of Ser----Ala and Ser----Glu mutations at these sites in pp60c-src and in pp60c-src(F527) (a mutant whose transforming activities are enhanced by Tyr-527----Phe mutation) by transfecting single-, double-, and triple-mutant src expression plasmids into NIH 3T3 cells. Tryptic phosphopeptide analyses of the mutant proteins confirmed prior biochemical identifications of the phosphorylation sites and showed that neither separate nor coordinate mutations at Ser-12 and Ser-17 affected Tyr-416, Tyr-527, or Ser-48 phosphorylation or prevented mitosis-specific phosphorylations of either pp60c-src or pp60c-src(F527). Ser-12 mutation did not affect phosphorylation of the Ser-17-containing peptide, but mutation of Ser-17 significantly increased phosphorylation at Ser-12. Specific kinase activities (both with and without in vivo 12-O-tetradecanoyl phorbol acetate treatment) and the abilities of pp60c-src and pp60c-src(F527) to induce foci, transformed morphologies, and anchorage-independent growth were unaffected by any of the serine mutations. Thus, pp60c-src transforming activity in NIH 3T3 cells is relatively insensitive to phosphorylation at these sites, but there is a suggestion that Ser-17 phosphorylation may have a subtle regulatory effect.
Collapse
|
48
|
Abstract
The kinase activity of p60c-src is derepressed by removal of phosphate from Tyr-527, mutation of this residue to Phe, or binding of a carboxy-terminal antibody. We have compared the structures of repressed and active p60c-src, using proteases. All forms of p60c-src are susceptible to proteolysis at the boundary between the amino-terminal region and the kinase domain, but there are several sites elsewhere that are more sensitive to trypsin digestion in repressed than in derepressed forms of p60c-src. The carboxy-terminal tail (containing Tyr-527) is more sensitive to digestion by pronase E and thermolysin when Tyr-527 is not phosphorylated. The kinase domain fragment released with trypsin has kinase activity. Relative to intact p60c-src, the kinase domain fragment shows altered substrate specificity, diminished regulation by the phosphorylated carboxy terminus, and novel phosphorylation sites. The results identify parts of p60c-src that change conformation upon kinase activation and suggest functions for the amino-terminal region.
Collapse
|
49
|
Harvey R, Hehir KM, Smith AE, Cheng SH. pp60c-src variants containing lesions that affect phosphorylation at tyrosines 416 and 527. Mol Cell Biol 1989; 9:3647-56. [PMID: 2476663 PMCID: PMC362425 DOI: 10.1128/mcb.9.9.3647-3656.1989] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The biological and biochemical properties of pp60c-src are regulated, in part, by phosphorylation at Tyr-416 and Tyr-527. The tyrosine kinase and transforming activities of pp60c-src are suppressed by phosphorylation at Tyr-527, whereas full activation of pp60c-src requires phosphorylation at Tyr-416. To test specifically the significance of the negatively charged phosphate moieties on these tyrosine residues, we have substituted the codons for both residues with codons for either Glu or Gln. A negatively charged Glu at position 527 was unable to mimic a phosphorylated Tyr at this position, and, in consequence, the mutated pp60c-src was activated and transforming. Similarly, substitution of Tyr-416 with Glu was unable to stimulate the activities of the enzyme. However, mutagenesis of Tyr-416 to Gln (to form the mutant 416Q) activated the kinase activity approximately twofold over that observed for wild-type pp60c-src. When introduced into the mutant 527F (containing Phe-527 instead of Tyr), the double mutant 416Q-527F exhibited weak transforming activity. This is in contrast to the other double mutants 416E-527F and 416F-527F, which were nontransforming. The biochemical basis by which 416Q activates pp60c-src is not understood but probably involves some local conformational perturbation. Deletion of residues 519 to 524 (RH5), a region previously shown to be necessary for association with middle-T antigen, led to loss of phosphorylation at Tyr-527 and activation of the enzymatic and focus-forming activities of pp60c-src. Hence, the sequences necessary for complex formation with middle-T antigen may also be required by the kinase(s) which phosphorylates Tyr-527 in vivo. This suggests that normal cells contain cellular proteins which are analogous to middle-T antigen and whose action regulates the activity of pp60c-src by controlling phosphorylation or dephosphorylation at residue 527.
Collapse
Affiliation(s)
- R Harvey
- Laboratory of Cellular Regulation, Integrated Genetics Inc., Framingham, Massachusetts 01701
| | | | | | | |
Collapse
|
50
|
Shenoy S, Choi JK, Bagrodia S, Copeland TD, Maller JL, Shalloway D. Purified maturation promoting factor phosphorylates pp60c-src at the sites phosphorylated during fibroblast mitosis. Cell 1989; 57:763-74. [PMID: 2470512 DOI: 10.1016/0092-8674(89)90791-5] [Citation(s) in RCA: 272] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously shown that overexpressed chicken pp60c-src has retarded mobility, novel serine/threonine phosphorylation, and enhanced kinase activity during NIH 3T3 cell mitosis. Here we show that novel mitotic phosphorylations occur at Thr 34, Thr 46, and Ser 72. The possibility, previously raised, that Ser 17 is dephosphorylated during mitosis is excluded. The phosphorylated sites lie in consensus sequences for phosphorylation by p34cdc2, the catalytic component of maturation promoting factor (MPF). Furthermore, highly purified MPF from metaphase-arrested Xenopus eggs phosphorylated both wild-type and kinase-defective pp60c-src at these sites. Altered phosphorylation alone is sufficient to account for the large retardation in mitotic pp60c-src electrophoretic mobility: phosphorylation of normal pp60c-src by MPF retarded mobility and dephosphorylation of mitotic pp60c-src restored normal mobility. These results suggest that pp60c-src is one of the targets for MPF action, which may account in part for the pleiotropic changes in protein phosphorylation and cellular architecture that occur during mitosis.
Collapse
Affiliation(s)
- S Shenoy
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | | | | | |
Collapse
|