1
|
Bamunusinghe D, Liu Q, Plishka R, Dolan MA, Skorski M, Oler AJ, Yedavalli VRK, Buckler-White A, Hartley JW, Kozak CA. Recombinant Origins of Pathogenic and Nonpathogenic Mouse Gammaretroviruses with Polytropic Host Range. J Virol 2017; 91:e00855-17. [PMID: 28794032 PMCID: PMC5640873 DOI: 10.1128/jvi.00855-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2017] [Accepted: 07/26/2017] [Indexed: 01/06/2023] Open
Abstract
Ecotropic, xenotropic, and polytropic mouse leukemia viruses (E-, X-, and P-MLVs) exist in mice as infectious viruses and endogenous retroviruses (ERVs) inserted into mouse chromosomes. All three MLV subgroups are linked to leukemogenesis, which involves generation of recombinants with polytropic host range. Although P-MLVs are deemed to be the proximal agents of disease induction, few biologically characterized infectious P-MLVs have been sequenced for comparative analysis. We analyzed the complete genomes of 16 naturally occurring infectious P-MLVs, 12 of which were typed for pathogenic potential. We sought to identify ERV progenitors, recombinational hot spots, and segments that are always replaced, never replaced, or linked to pathogenesis or host range. Each P-MLV has an E-MLV backbone with P- or X-ERV replacements that together cover 100% of the recombinant genomes, with different substitution patterns for X- and P-ERVs. Two segments are always replaced, both coding for envelope (Env) protein segments: the N terminus of the surface subunit and the cytoplasmic tail R peptide. Viral gag gene replacements are influenced by host restriction genes Fv1 and Apobec3 Pathogenic potential maps to the env transmembrane subunit segment encoding the N-heptad repeat (HR1). Molecular dynamics simulations identified three novel interdomain salt bridges in the lymphomagenic virus HR1 that could affect structural stability, entry or sensitivity to host immune responses. The long terminal repeats of lymphomagenic P-MLVs are differentially altered by recombinations, duplications, or mutations. This analysis of the naturally occurring, sometimes pathogenic P-MLV recombinants defines the limits and extent of intersubgroup recombination and identifies specific sequence changes linked to pathogenesis and host interactions.IMPORTANCE During virus-induced leukemogenesis, ecotropic mouse leukemia viruses (MLVs) recombine with nonecotropic endogenous retroviruses (ERVs) to produce polytropic MLVs (P-MLVs). Analysis of 16 P-MLV genomes identified two segments consistently replaced: one at the envelope N terminus that alters receptor choice and one in the R peptide at the envelope C terminus, which is removed during virus assembly. Genome-wide analysis shows that nonecotropic replacements in the progenitor ecotropic MLV genome are more extensive than previously appreciated, covering 100% of the genome; contributions from xenotropic and polytropic ERVs differentially alter the regions responsible for receptor determination or subject to APOBEC3 and Fv1 restriction. All pathogenic viruses had modifications in the regulatory elements in their long terminal repeats and differed in a helical segment of envelope involved in entry and targeted by the host immune system. Virus-induced leukemogenesis thus involves generation of complex recombinants, and specific replacements are linked to pathogenesis and host restrictions.
Collapse
Affiliation(s)
- Devinka Bamunusinghe
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Qingping Liu
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Ronald Plishka
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Matthew Skorski
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Venkat R K Yedavalli
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Janet W Hartley
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Huser CA, Gilroy KL, de Ridder J, Kilbey A, Borland G, Mackay N, Jenkins A, Bell M, Herzyk P, van der Weyden L, Adams DJ, Rust AG, Cameron E, Neil JC. Insertional mutagenesis and deep profiling reveals gene hierarchies and a Myc/p53-dependent bottleneck in lymphomagenesis. PLoS Genet 2014; 10:e1004167. [PMID: 24586197 PMCID: PMC3937229 DOI: 10.1371/journal.pgen.1004167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2013] [Accepted: 12/23/2013] [Indexed: 01/22/2023] Open
Abstract
Retroviral insertional mutagenesis (RIM) is a powerful tool for cancer genomics that was combined in this study with deep sequencing (RIM/DS) to facilitate a comprehensive analysis of lymphoma progression. Transgenic mice expressing two potent collaborating oncogenes in the germ line (CD2-MYC, -Runx2) develop rapid onset tumours that can be accelerated and rendered polyclonal by neonatal Moloney murine leukaemia virus (MoMLV) infection. RIM/DS analysis of 28 polyclonal lymphomas identified 771 common insertion sites (CISs) defining a 'progression network' that encompassed a remarkably large fraction of known MoMLV target genes, with further strong indications of oncogenic selection above the background of MoMLV integration preference. Progression driven by RIM was characterised as a Darwinian process of clonal competition engaging proliferation control networks downstream of cytokine and T-cell receptor signalling. Enhancer mode activation accounted for the most efficiently selected CIS target genes, including Ccr7 as the most prominent of a set of chemokine receptors driving paracrine growth stimulation and lymphoma dissemination. Another large target gene subset including candidate tumour suppressors was disrupted by intragenic insertions. A second RIM/DS screen comparing lymphomas of wild-type and parental transgenics showed that CD2-MYC tumours are virtually dependent on activation of Runx family genes in strong preference to other potent Myc collaborating genes (Gfi1, Notch1). Ikzf1 was identified as a novel collaborating gene for Runx2 and illustrated the interface between integration preference and oncogenic selection. Lymphoma target genes for MoMLV can be classified into (a) a small set of master regulators that confer self-renewal; overcoming p53 and other failsafe pathways and (b) a large group of progression genes that control autonomous proliferation in transformed cells. These findings provide insights into retroviral biology, human cancer genetics and the safety of vector-mediated gene therapy.
Collapse
Affiliation(s)
- Camille A. Huser
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn L. Gilroy
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jeroen de Ridder
- Delft Bioinformatics Lab, Faculty of EEMCS, TU Delft, Delft, The Netherlands
| | - Anna Kilbey
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Borland
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nancy Mackay
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alma Jenkins
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret Bell
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Pawel Herzyk
- Glasgow Polyomics, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - David J. Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Alistair G. Rust
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Ewan Cameron
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James C. Neil
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Seidel S, Bruce J, Leblanc M, Lee KF, Fan H, Ahlquist P, Young JAT. ZASC1 knockout mice exhibit an early bone marrow-specific defect in murine leukemia virus replication. Virol J 2013; 10:130. [PMID: 23617998 PMCID: PMC3654992 DOI: 10.1186/1743-422x-10-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2013] [Accepted: 04/12/2013] [Indexed: 11/28/2022] Open
Abstract
Background ZASC1 is a zinc finger-containing transcription factor that was previously shown to bind to specific DNA binding sites in the Moloney murine leukemia virus (Mo-MuLV) promoter and is required for efficient viral mRNA transcription (J. Virol. 84:7473-7483, 2010). Methods To determine whether this cellular factor influences Mo-MuLV replication and viral disease pathogenesis in vivo, we generated a ZASC1 knockout mouse model and completed both early infection and long term disease pathogenesis studies. Results Mice lacking ZASC1 were born at the expected Mendelian ratio and showed no obvious physical or behavioral defects. Analysis of bone marrow samples revealed a specific increase in a common myeloid progenitor cell population in ZASC1-deficient mice, a result that is of considerable interest because osteoclasts derived from the myeloid lineage are among the first bone marrow cells infected by Mo-MuLV (J. Virol. 73: 1617-1623, 1999). Indeed, Mo-MuLV infection of neonatal mice revealed that ZASC1 is required for efficient early virus replication in the bone marrow, but not in the thymus or spleen. However, the absence of ZASC1 did not influence the timing of subsequent tumor progression or the types of tumors resulting from virus infection. Conclusions These studies have revealed that ZASC1 is important for myeloid cell differentiation in the bone marrow compartment and that this cellular factor is required for efficient Mo-MuLV replication in this tissue at an early time point post-infection.
Collapse
Affiliation(s)
- Shannon Seidel
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Insertional oncogenesis by non-acute retroviruses: implications for gene therapy. Viruses 2011; 3:398-422. [PMID: 21994739 PMCID: PMC3186009 DOI: 10.3390/v3040398] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2011] [Accepted: 03/31/2011] [Indexed: 01/10/2023] Open
Abstract
Retroviruses cause cancers in a variety of animals and humans. Research on retroviruses has provided important insights into mechanisms of oncogenesis in humans, including the discovery of viral oncogenes and cellular proto-oncogenes. The subject of this review is the mechanisms by which retroviruses that do not carry oncogenes (non-acute retroviruses) cause cancers. The common theme is that these tumors result from insertional activation of cellular proto-oncogenes by integration of viral DNA. Early research on insertional activation of proto-oncogenes in virus-induced tumors is reviewed. Research on non-acute retroviruses has led to the discovery of new proto-oncogenes through searches for common insertion sites (CISs) in virus-induced tumors. Cooperation between different proto-oncogenes in development of tumors has been elucidated through the study of retrovirus-induced tumors, and retroviral infection of genetically susceptible mice (retroviral tagging) has been used to identify cellular proto-oncogenes active in specific oncogenic pathways. The pace of proto-oncogene discovery has been accelerated by technical advances including PCR cloning of viral integration sites, the availability of the mouse genome sequence, and high throughput DNA sequencing. Insertional activation has proven to be a significant risk in gene therapy trials to correct genetic defects with retroviral vectors. Studies on non-acute retroviral oncogenesis provide insight into the potential risks, and the mechanisms of oncogenesis.
Collapse
|
5
|
Dakessian RM, Fan H. Specific in vivo expression in type II pneumocytes of the Jaagsiekte sheep retrovirus long terminal repeat in transgenic mice. Virology 2007; 372:398-408. [PMID: 18054063 DOI: 10.1016/j.virol.2007.10.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2007] [Revised: 10/01/2007] [Accepted: 10/30/2007] [Indexed: 12/12/2022]
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma, a transmissible lung cancer in sheep. Previous experiments in differentiated murine tissue culture cell lines suggested that the disease specificity of JSRV for secretory lung epithelial cells (type II pneumocytes an Clara cells) reflects transcriptional specificity of the viral long terminal repeat (LTR) for these cells. To test this in vivo, transgenic mice carrying the bacterial beta-galactosidase (beta-Gal) gene driven by the JSRV LTR were generated. Two transgenic lines showed beta-Gal expression in the lungs but not other tissues of F1 animals, although transgene silencing in subsequent generations was a major problem. The cells expressing the transgene were identified by two- and three-color immunofluorescence for marker proteins of type II pneumocytes (surfactant protein C [SPC]) and Clara cells (CC10) as well as for a T7 gene 10 epitope present in the beta-Gal reporter. F1 animals from both lines showed transgene expression in type II pneumocytes, but somewhat surprisingly not in Clara cells. Expression was not detected in bronchiolo-alveolar stem cells (BASCs) either. These results indicate that the JSRV LTR is specifically active in type II pneumocytes in the mouse lung, which is consistent with the fact that JSRV-induced OPA tumors in sheep largely have phenotypic markers of type II pneumocytes.
Collapse
Affiliation(s)
- Raffy M Dakessian
- Department of Molecular Biology and Biochemistry, and Cancer Research Institute, University of California, Irvine, CA 92651, USA
| | | |
Collapse
|
6
|
Weber EL, Cannon PM. Promoter Choice for Retroviral Vectors: Transcriptional Strength Versus Trans-Activation Potential. Hum Gene Ther 2007; 18:849-60. [PMID: 17767401 DOI: 10.1089/hum.2007.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
Gene expression from retroviral vectors can be driven by either the retroviral long terminal repeat (LTR) promoter or by cellular or viral promoters located internally in an LTR-deleted self-inactivating vector design. Adverse events in a gene therapy clinical trial for X-linked severe combined immune deficiency have led to the realization that the enhancer/promoter elements contained within integrated vectors may also act outside the vector genome to trans-activate host genes. Ideally, the gene expression system chosen for a vector should possess a low probability of trans-activation while still being able to support adequate levels of transgene expression. However, the parameters that define these specific characteristics are unknown. To gain insight into the mechanism of trans-activation, we compared a panel of commonly used retroviral LTRs and cellular and viral promoters for their ability to drive gene expression and to trans-activate a nearby minimal promoter in three different cell lines. These studies identified two elements, the cytomegalovirus enhancer/chicken beta-actin (CAG) and elongation factor (EF)-1alpha promoters, as being of potential value for use in vectors targeting lymphoid cells, as these elements exhibited both high levels of reporter gene expression and relatively low levels of trans-activation in T cells.
Collapse
Affiliation(s)
- Erin L Weber
- Saban Research Institute of Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | |
Collapse
|
7
|
Mertz JA, Kobayashi R, Dudley JP. ALY is a common coactivator of RUNX1 and c-Myb on the type B leukemogenic virus enhancer. J Virol 2007; 81:3503-13. [PMID: 17229714 PMCID: PMC1866045 DOI: 10.1128/jvi.02253-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Type B leukemogenic virus (TBLV), a mouse mammary tumor virus (MMTV) variant, often induces T-cell leukemias and lymphomas by c-myc activation following viral DNA integration. Transfection assays using a c-myc reporter plasmid indicated that the TBLV long terminal repeat (LTR) enhancer is necessary for T-cell-specific increases in basal reporter activity. The sequence requirements for this effect were studied using mutations of the 62-bp enhancer region in an MMTV LTR reporter vector. Deletion of a nuclear factor A-binding site dramatically reduced reporter activity in Jurkat T cells. However, a 41-bp enhancer missing the RUNX1 site still retained minimal enhancer function. DNA affinity purification using a TBLV enhancer oligomer containing the RUNX1 binding site followed by mass spectrometry resulted in the identification of ALY. Subsequent experiments focused on the reconstitution of enhancer activity in epithelial cells. ALY overexpression synergized with RUNX1B on TBLV enhancer activity, and synergism required the RUNX1B-binding site. A predicted c-Myb binding site in the enhancer was confirmed after c-myb overexpression elevated TBLV LTR reporter activity, and overexpression of c-Myb and RUNX1B together showed additive effects on reporter gene levels. ALY also synergized with c-Myb, and coimmunoprecipitation experiments demonstrated an interaction between ALY and c-Myb. These experiments suggest a central role for ALY in T-cell enhancer function and oncogene activation.
Collapse
Affiliation(s)
- Jennifer A Mertz
- Section of Molecular Genetics and Microbiology, University of Texas at Austin, One University Station, A5000 24th Street and Speedway, ESB 226, Austin, TX 78712-0162, USA
| | | | | |
Collapse
|
8
|
Nienhuis AW, Dunbar CE, Sorrentino BP. Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther 2006; 13:1031-49. [PMID: 16624621 DOI: 10.1016/j.ymthe.2006.03.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2005] [Revised: 03/06/2006] [Accepted: 03/06/2006] [Indexed: 12/20/2022] Open
Abstract
The experience of the past 3 years, since the first case of leukemia was reported in a child cured of X-linked severe combined immunodeficiency (X-SCID) by gene therapy, indicates that the potential genotoxicity of retroviral integration in hematopoietic cells will remain a consideration in evaluating the relative risks versus benefits of gene therapy for specific blood disorders. Although many unique variables may have contributed to an increased risk in X-SCID patients, clonal dominance or frank neoplasia in animal models, clonal dominance in humans with chronic granulomatous disease, and the ability of retroviral integration to immortalize normal bone marrow cells or convert factor-dependent cells to factor independence suggest that transduction of cells with an integrating retrovirus has the potential for altering their subsequent biologic behavior. The selective pressure imposed during in vitro culture or after engraftment may uncover a growth or survival advantage for cells in which an integration event has affected gene expression. Such cells then carry the risk that subsequent mutations may lead to neoplastic evolution of individual clones. Balancing that risk is that the vast majority of integration events seem to be neutral and that optimizing vector design may diminish the probability of altering gene expression by an integrated vector genome. Several cell culture systems and animal models designed to empirically evaluate the safety of vector systems are being developed and should provide useful data for weighing the relative risks and benefits for specific diseases and patient populations. Gene therapy interventions continue to have enormous potential for the treatment of disorders of the hematopoietic system. The future of such efforts seems bright as we continue to evolve and improve various strategies to make such interventions both effective and as safe as possible.
Collapse
Affiliation(s)
- Arthur W Nienhuis
- Division of Experimental Hematology, Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, TN 38103, USA.
| | | | | |
Collapse
|
9
|
Jahid S, Bundy LM, Granger SW, Fan H. Chimeras between SRS and Moloney murine leukemia viruses reveal novel determinants in disease specificity and MCF recombinant formation. Virology 2006; 351:7-17. [PMID: 16616947 DOI: 10.1016/j.virol.2006.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2005] [Revised: 01/19/2006] [Accepted: 03/06/2006] [Indexed: 11/20/2022]
Abstract
SRS 19-6 MuLV is a murine retrovirus originally isolated in mainland China. A noteworthy feature of this virus (referred to as SRS MuLV here) induces tumors of multiple hematopoietic lineages, including myeloid, erythroid, T-lymphoid and B-lymphoid. To identify the determinants of disease specificity, chimeras between SRS and Moloney MuLV (M-MuLV) were generated by molecular cloning, and the pathogenic properties of the chimeras were investigated. The results indicated that, while the M-MuLV LTR can confer lymphoid specificity to SRS MuLV, the SRS LTR by itself was not sufficient to confer multiple lineage tumorigenesis to M-MuLV; additional sequences in gag or pol were also required. Thus, a secondary determinant for myeloid/erythroid leukemia in SRS MuLV is located in gag-pol. In these chimeras, an independent determinant for T-lymphoma was found in M-MuLV gag-pol. It was also interesting that insertion of M-MuLV env into SRS MuLV decreased the rate of leukemogenicity, while insertion of SRS env into M-MuLV (SEM) accelerated leukemogenesis. The enhanced pathogenicity of SEM was found to correlate with earlier formation of MCF recombinants. The basis for the accelerated MCF recombinant formation was investigated. The endogenous polytropic MuLV env sequences contributing to several SEM MCF recombinants were identified, and the cross-over points were identified. While no obvious differences in the relative homologies between SRS MuLV env and polytropic env vs. M-MuLV and polytropic envs suggested a reason for the more rapid MCF recombinant formation, an overlapping but different set of polytropic env proviruses were found to participate in MCF formation for M-MuLV vs. SEM. Thus, the mechanisms for MCF formation appear to differ for M-MuLV and SEM.
Collapse
Affiliation(s)
- Sohail Jahid
- Cancer Research Institute, Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
10
|
Voisin V, Barat C, Hoang T, Rassart E. Novel insights into the pathogenesis of the Graffi murine leukemia retrovirus. J Virol 2006; 80:4026-37. [PMID: 16571819 PMCID: PMC1440465 DOI: 10.1128/jvi.80.8.4026-4037.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2005] [Accepted: 01/25/2006] [Indexed: 11/20/2022] Open
Abstract
The Graffi murine leukemia virus (MuLV) was isolated in 1954 by Arnold Graffi, who characterized it as a myeloid leukemia-inducing retrovirus. He and his team, however, soon observed the intriguing phenomenon of hematological diversification, which corresponded to a decrease of myeloid leukemias and an increase of other types of leukemias. Recently, we derived two different molecular clones corresponding to ecotropic nondefective genomes that were named GV-1.2 and GV-1.4. The induced leukemias were classified as myeloid based on morphological analysis of blood smears. In this study, we further characterized the two variants of the Graffi murine retrovirus, GV-1.2 and GV-1.4, in three different strains of mice. We show that the Graffi MuLV is a multipotent retrovirus capable of inducing both lymphoid (T- and B-cell) and nonlymphoid (myeloid, erythroid, megakaryocytic) leukemia. Many of these are very complex with concomitant expression of different hematopoietic lineages. Interestingly, a high percentage of megakaryocytic leukemias, a type of leukemia rarely observed with MuLVs, arise in the FVB/n strain of mice. The genetic backgrounds of the different strains of mice influence greatly the results. Furthermore, the enhancer region, different for GV-1.2 and GV-1.4, plays a pivotal role in the disease specificity: GV-1.2 induces more lymphoid leukemias, and GV-1.4 induces more nonlymphoid ones.
Collapse
MESH Headings
- Animals
- Enhancer Elements, Genetic
- Flow Cytometry
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia, B-Cell/immunology
- Leukemia, B-Cell/pathology
- Leukemia, Experimental/pathology
- Leukemia, Megakaryoblastic, Acute/immunology
- Leukemia, Megakaryoblastic, Acute/pathology
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/pathology
- Leukemia, T-Cell/immunology
- Leukemia, T-Cell/pathology
- Mice
- Mice, Inbred BALB C
- Retroviridae Infections/pathology
- Terminal Repeat Sequences
- Tumor Virus Infections/pathology
- Virus Latency
Collapse
Affiliation(s)
- Véronique Voisin
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal, Case Postale 8888 Succ. Centre-ville, Montréal, Canada H3C-3P8
| | | | | | | |
Collapse
|
11
|
Xie L, Green PL. Envelope is a major viral determinant of the distinct in vitro cellular transformation tropism of human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2. J Virol 2006; 79:14536-45. [PMID: 16282453 PMCID: PMC1287554 DOI: 10.1128/jvi.79.23.14536-14545.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are related deltaretroviruses but are distinct in their disease-inducing capacity. These viruses can infect a variety of cell types, but only T lymphocytes become transformed, which is defined in vitro as showing indefinite interleukin-2-independent growth. Studies have indicated that HTLV-1 has a preferential tropism for CD4+ T cells in vivo and is associated with the development of leukemia and neurological disease. Conversely, the in vivo T-cell tropism of HTLV-2 is less clear, although it appears that CD8+ T cells preferentially harbor the provirus, with only a few cases of disease association. The difference in T-cell transformation tropism has been confirmed in vitro as shown by the preferential transformation of CD4+ T cells by HTLV-1 versus the transformation of CD8+ T cells by HTLV-2. Our previous studies showed that Tax and overlapping Rex do not confer the distinct T-cell transformation tropisms between HTLV-1 and HTLV-2. Therefore, for this study HTLV-1 and HTLV-2 recombinants were generated to assess the contribution of LTR and env sequences in T-cell transformation tropism. Both sets of proviral recombinants expressed p19 Gag following transfection into cells. Furthermore, recombinant viruses were replication competent and had the capacity to transform T lymphocytes. Our data showed that exchange of the env gene resulted in altered T-cell transformation tropism compared to wild-type virus, while exchange of long terminal repeat sequences had no significant effect. HTLV-2/Env1 preferentially transformed CD4+ T cells similarly to wild-type HTLV-1 (wtHTLV-1), whereas HTLV-1/Env2 had a transformation tropism similar to that of wtHTLV-2 (CD8+ T cells). These results indicate that env is a major viral determinant for HTLV T-cell transformation tropism in vitro and provides strong evidence implicating its contribution to the distinct pathogenesis resulting from HTLV-1 versus HTLV-2 infections.
Collapse
Affiliation(s)
- Li Xie
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
12
|
Ma SL, Lovmand J, Sørensen AB, Luz A, Schmidt J, Pedersen FS. Triple basepair changes within and adjacent to the conserved YY1 motif upstream of the U3 enhancer repeats of SL3-3 murine leukemia virus cause a small but significant shortening of latency of T-lymphoma induction. Virology 2003; 313:638-44. [PMID: 12954229 DOI: 10.1016/s0042-6822(03)00379-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
A highly conserved sequence upstream of the transcriptional enhancer in the U3 of murine leukemia viruses (MLVs) was reported to mediate negative regulation of their expression. In transient expression studies, negative regulation was reported to be conferred by coexpression of the transcription factor YY1, which binds to a motif in the upstream conserved region (UCR). To address the function of the UCR and its YY1-motif in an in vivo model of MLV-host interactions we introduced six consecutive triple basepair mutations into this region of the potent T-lymphomagenic SL3-3 MLV. We report that all mutants have retained their replication competence and that they all, like the SL3-3 wild type (wt), induce T-cell lymphomas when injected into newborn mice of the SWR strain. However, all mutants induced disease with slightly shorter latency periods than the wt SL3-3, suggesting that the YY1 motif as well as its immediate context in the UCR have a negative effect on the pathogenicity of the virus. This result may have implications for the design of retroviral vectors.
Collapse
Affiliation(s)
- Shi Liang Ma
- Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Jaagsiekte sheep retrovirus (JSRV) is an exogenous retrovirus of sheep that induces a contagious lung cancer, ovine pulmonary adenocarcinoma (OPA). JSRV is a potent carcinogen in the experimental setting, inducing end-stage tumors at around 6 weeks of age when newborn lambs are inoculated intratracheally. Despite this rapid oncogenesis, inspection of the JSRV genome sequence does not reveal any obvious viral oncogenes. In this review, recent advances in studies of JSRV oncogenic transformation are described. Molecular cloning of an infectious and oncogenic JSRV provirus was instrumental in the studies. DNA transfection of JSRV proviral DNA into mouse NIH3T3 cells results in morphological transformation, indicating that the JSRV genome carries an oncogene. Further experiments identified the JSRV envelope protein as the transforming gene, and a PI3 kinase docking site in the cytoplasmic tail of the transmembrane (TM) protein was shown to be necessary for transformation. Avian DF-1 cells infected with an avian retroviral vector (RCAS) expressing the JSRV envelope protein also undergo tumorigenic transformation. Possible mechanisms of transformation are discussed, and a cooperating role for insertional activation of proto-oncogenes in tumorigenesis is also considered. The transforming potential of the JSRV envelope protein may be necessary for JSRV infection and replication in vivo.
Collapse
Affiliation(s)
- H Fan
- Department of Molecular Biology and Biochemistry, Cancer Research Institute, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
14
|
Takase-Yoden S, Watanabe R. Identification of genetic determinants that regulate tumorigenicity of Friend murine leukemia virus in rats. Microbiol Immunol 2003; 46:885-90. [PMID: 12597364 DOI: 10.1111/j.1348-0421.2002.tb02777.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
A neuropathogenic variant of Friend murine leukemia virus (FrMLV), clone A8, has been shown to cause thymoma and infiltration of leukemic cells to organs at 7-8 weeks post-infection in rats with a more rapid progression than clone 57. We have previously reported that the determinant for induction of aggressive leukemia in rats is located in the ClaI-AatII fragment containing the long terminal repeat (LTR) and the 5' half of the 5' leader sequence of A8 virus. Further studies of chimeric viruses restricted the determinant for the induction of thymoma to only the 0.6-kb ClaI-KpnI fragment of A8. This fragment contains a 0.1 kb region of the 3' terminus of the env gene, the intergenic region, the U3, and the 5' half of the R region in the LTR. Major differences in the fragment between A8 and 57 viruses were found in the U3 region, especially in the enhancer motifs. These results indicate that the enhancer region of A8-LTR contributes to the manifestation of thymoma with rapid progression in rats.
Collapse
Affiliation(s)
- Sayaka Takase-Yoden
- Institute of Life Science, Soka University, Hachioji, Tokyo 192-8577, Japan.
| | | |
Collapse
|
15
|
Chao SH, Walker JR, Chanda SK, Gray NS, Caldwell JS. Identification of homeodomain proteins, PBX1 and PREP1, involved in the transcription of murine leukemia virus. Mol Cell Biol 2003; 23:831-41. [PMID: 12529389 PMCID: PMC140703 DOI: 10.1128/mcb.23.3.831-841.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2002] [Revised: 08/01/2002] [Accepted: 10/10/2002] [Indexed: 12/31/2022] Open
Abstract
Cyclin-dependent kinase inhibitors (CDKIs) have been shown to block human immunodeficiency virus and herpes simplex virus. It is hypothesized that CDKIs block viral replication by inhibiting transcription of specific cellular genes. Here we find that three CDKIs, flavopiridol, purvalanol A, and methoxy-roscovitine, block Moloney murine leukemia virus (MLV) transcription events. Using gene expression microarray technology to examine the inhibitory effects of CDKIs, we observed a cellular gene, the pre-B-cell leukemia transcription factor 1 (Pbx1) gene, down-regulated by CDKI treatment. The PBX consensus element (PCE), TGATTGAC, is conserved in the long terminal repeats of several murine retroviruses, including Moloney MLV. Mutations in the PCE completely inhibited viral transcription whereas overexpression of PBX1 and a PBX1-associated protein, PREP1, enhanced viral transcription. The interaction between the PCE and PBX1-PREP1 proteins was confirmed by gel shift experiments. Blocking PBX1 protein synthesis resulted in a significant decrease in viral transcription. Collectively, our results represent the first work demonstrating that the homeodomain proteins PBX1 and PREP1 are cellular factors involved in Moloney MLV transcription regulation.
Collapse
Affiliation(s)
- Sheng-Hao Chao
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | | | | | | |
Collapse
|
16
|
Wilson CA, Laeeq S, Ritzhaupt A, Colon-Moran W, Yoshimura FK. Sequence analysis of porcine endogenous retrovirus long terminal repeats and identification of transcriptional regulatory regions. J Virol 2003; 77:142-9. [PMID: 12477819 PMCID: PMC140639 DOI: 10.1128/jvi.77.1.142-149.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023] Open
Abstract
Porcine cells express endogenous retroviruses, some of which are infectious for human cells. To better understand the replication of these porcine endogenous retroviruses (PERVs) in cells of different types and animal species, we have performed studies of the long terminal repeat (LTR) region of known gammaretroviral isolates of PERV. Nucleotide sequence determination of the LTRs of PERV-NIH, PERV-C, PERV-A, and PERV-B revealed that the PERV-A and PERV-B LTRs are identical, whereas the PERV-NIH and PERV-C LTRs have significant sequence differences in the U3 region between each other and with the LTRs of PERV-A and PERV-B. Sequence analysis revealed a similar organization of basal promoter elements compared with other gammaretroviruses, including the presence of enhancer-like repeat elements. The sequences of the PERV-NIH and PERV-C repeat element are similar to that of the PERV-A and PERV-B element with some differences in the organization of these repeats. The sequence of the PERV enhancer-like repeat elements differs significantly from those of other known gammaretroviral enhancers. The transcriptional activities of the PERV-A, PERV-B, and PERV-C LTRs relative to each other were similar in different cell types of different animal species as determined by transient expression assays. On the other hand, the PERV-NIH LTR was considerably weaker in these cell types. The transcriptional activity of all PERV LTRs was considerably lower in porcine ST-IOWA cells than in cell lines from other species. Deletion mutant analysis of the LTR of a PERV-NIH isolate identified regions that transactivate or repress transcription depending on the cell type.
Collapse
Affiliation(s)
- Carolyn A Wilson
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Type B leukemogenic virus (TBLV) is highly related to mouse mammary tumor virus but induces rapidly appearing T-cell lymphomas in mice. Unlike other T-cell tumors induced by retroviruses, only 5 to 10% of TBLV-induced lymphomas have detectable viral integrations near c-myc by Southern blotting, whereas Northern blotting has shown that most tumors have two- to sixfold overexpression of c-myc RNA. In this report, PCR was used to demonstrate that at least 30% of these lymphomas have TBLV insertions near c-myc. Some tumors contained multiple TBLV proviruses in different locations and orientations, suggesting that the tumors are polyclonal. The integrated proviruses near c-myc had different numbers (two to four) of long terminal repeat (LTR) enhancer repeats, although LTRs with three-repeat enhancers dominated the proviral population. Passage of polyclonal tumors in immunocompetent mice and semiquantitative PCR revealed that only cells with particular integrations were selected for growth. In three of six tumors tested, proviruses containing four-repeat enhancers near c-myc were selected during tumor passage. Since tumor cell selection may be accomplished by overexpression of c-myc RNA due to proximity to the unique TBLV LTR enhancer, we inserted LTRs at various locations within a plasmid containing the entire c-myc locus and cellular flanking sequences. To quantitatively measure effects on transcription, the Renilla luciferase gene was substituted for most of c-myc exon 2, and transient transfections were performed with c-myc reporter constructs in two different T-cell lines. As expected, insertion of a TBLV LTR with three-repeat enhancers in either orientation, 5" and 3", of the myc gene elevated reporter activity from 2- to 160-fold, consistent with enhancer function, but four-repeat LTRs had lower levels of expression compared to three-repeat LTRs. Surprisingly, LTR insertions that gave maximal c-myc expression in transient-transfection assays declined in tumor cells selected for growth in vivo. Selection for clonal growth may occur in tumor cells that have modest c-myc overexpression after proviral insertion to prevent apoptosis.
Collapse
Affiliation(s)
- Dana R Broussard
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 100 W. 24th Street, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
18
|
Nishigaki K, Hanson C, Thompson D, Yugawa T, Hisasue M, Tsujimoto H, Ruscetti S. Analysis of the disease potential of a recombinant retrovirus containing Friend murine leukemia virus sequences and a unique long terminal repeat from feline leukemia virus. J Virol 2002; 76:1527-32. [PMID: 11773427 PMCID: PMC135779 DOI: 10.1128/jvi.76.3.1527-1532.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
We have molecularly cloned a feline leukemia virus (FeLV) (clone 33) from a domestic cat with acute myeloid leukemia (AML). The long terminal repeat (LTR) of this virus, like the LTRs present in FeLV proviruses from other cats with AML, contains an unusual structure in its U3 region upstream of the enhancer (URE) consisting of three tandem direct repeats of 47 bp. To test the disease potential and specificity of this unique FeLV LTR, we replaced the U3 region of the LTR of the erythroleukemia-inducing Friend murine leukemia virus (F-MuLV) with that of FeLV clone 33. When the resulting virus, F33V, was injected into newborn mice, almost all of the mice eventually developed hematopoietic malignancies, with a significant percentage being in the myeloid lineage. This is in contrast to mice injected with an F-MuLV recombinant containing the U3 region of another FeLV that lacks repetitive URE sequences, none of which developed myeloid malignancies. Examination of tumor proviruses from F33V-infected mice failed to detect any changes in FeLV U3 sequences other than that in the URE. Like F-MuLV-infected mice, those infected with the F-MuLV/FeLV recombinants were able to generate and replicate mink cell focus-inducing viruses. Our studies are consistent with the idea that the presence of repetitive sequences upstream of the enhancer in the LTR of FeLV may favor the activation of this promoter in myeloid cells and contribute to the development of malignancies in this hematopoietic lineage.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cats
- Cell Line
- Cloning, Molecular
- DNA, Viral
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/physiology
- Leukemia Virus, Feline/genetics
- Leukemia, Erythroblastic, Acute/virology
- Leukemia, Experimental/virology
- Leukemia, Myeloid/virology
- Lymphoma/virology
- Mice
- Mink Cell Focus-Inducing Viruses/genetics
- Molecular Sequence Data
- Recombination, Genetic
- Retroviridae
- Retroviridae Infections/virology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Terminal Repeat Sequences
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- Kazuo Nishigaki
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Baxter EW, Blyth K, Cameron ER, Neil JC. Selection for loss of p53 function in T-cell lymphomagenesis is alleviated by Moloney murine leukemia virus infection in myc transgenic mice. J Virol 2001; 75:9790-8. [PMID: 11559812 PMCID: PMC114551 DOI: 10.1128/jvi.75.20.9790-9798.2001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Thymic lymphomas induced by Moloney murine leukemia virus (MMLV) have provided many examples of oncogene activation, but the role of tumor suppressor pathways in these tumors is less clear. These tumors display little evidence of loss of heterozygosity, and MMLV is only weakly synergistic with the Trp53 null genotype, suggesting that viral lymphomagenesis involves mechanisms which do not require mutational loss of Trp53 function. To explore this relationship in greater depth, we infected CD2-myc transgenic mice with MMLV and examined the role of Trp53 in the genesis of these tumors. Most (19 of 27) of the tumors from MMLV-infected, CD2-myc Trp53(+/-) mice retained the wild-type Trp53 allele in vivo while tumors of uninfected CD2-myc Trp53(+/-) mice invariably showed allele loss from a significant fraction of primary tumor cells. The functional integrity of the Trp53 gene in these tumors was indicated by ongoing allele loss or selection for mutational stabilization during in vitro propagation and by the radiosensitivity of selected Trp53(+/-) tumor cell lines. An inverse correlation was noted between retention of the wild-type Trp53 allele and expression of p19(ARF), providing further evidence of negative-feedback control of the latter by p53. However, expression of p19(ARF) does not appear to be counterselected in the absence of p53, and its integrity in Trp53(+/-) tumors was indicated by its transcriptional upregulation on Trp53 wild-type allele loss in vitro in selected tumor cell lines. The role of MMLV was investigated further by analysis of proviral insertion sites in tumors of CD2-myc transgenic mice sorted for Trp53 genotype. A proportion of tumors showed insertions at Runx2, an oncogene which has been shown to collaborate independently with CD2-myc and with the Trp53 null genotype, and at a novel common integration site (ptl-1) on chromosome 8. Genotypic analysis of the panel of tumors suggested that neither of these integrations is functionally redundant with loss of p53, but it appears that the combination of the MMLV oncogenic program with the CD2-myc oncogene relegates p53 loss to a late step in tumor progression or in vitro culture. While the means by which these tumors preempt the p53 tumor suppressor response remains to be established, this study provides further evidence that irreversible inactivation of this pathway is not a prerequisite for tumor development in vivo.
Collapse
Affiliation(s)
- E W Baxter
- Molecular Oncology Laboratory, Department of Veterinary Pathology, University of Glasgow Veterinary School, Glasgow G61 1QH, United Kingdom
| | | | | | | |
Collapse
|
20
|
Abstract
Human T cell lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis is a chronic progressive inflammatory neurological disease. Aspects of human T cell lymphotropic virus type I biology, host genetic susceptibility, and immune responses to this agent are important factors that are associated with disease progression. The use of novel immunological and molecular methods has improved our understanding of the pathophysiological mechanisms that are operative in human T cell lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. Co-existing high proviral loads and virus-specific CD8 T cells are important features of this disorder, in which a high cellular immune response continuously driven by this virus may contribute to the inflammatory process within central nervous system lesions in patients with this disease.
Collapse
Affiliation(s)
- M Nagai
- Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
21
|
Yoshimura FK, Wang T. Role of the LTR region between the enhancer and promoter in mink cell focus-forming murine leukemia virus pathogenesis. Virology 2001; 283:121-31. [PMID: 11312668 DOI: 10.1006/viro.2001.0879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Long terminal repeat (LTR) sequences are important determinants of mink cell focus-forming (MCF) murine leukemia virus pathogenesis. These sequences include the enhancer and sequences between the enhancer and promoter (DEN). In a previous study we showed that a virus missing the DEN region in its LTR was severely attenuated in its ability to induce thymic lymphoma. In this study we observed that a virus with an LTR consisting of DEN but no enhancer sequences was pathogenic. We compared the pathogenicity of this DEN virus with other LTR mutant MCF13 viruses that contained a single enhancer (1R) or a single enhancer plus DEN (1R + DEN). All LTR mutant viruses generated thymic lymphoma, however, at a much lower incidence and with a longer latency compared with wild-type (WT) MCF13 virus. DEN virus replication in the thymus was the lowest compared with the 1R and 1R + DEN viruses. Viral replication in a different thymic subpopulation could not explain the decreased pathogenicity of the LTR mutant viruses compared with WT virus. However, lower levels of mutant virus replication in the thymus compared with WT during the preleukemic period may contribute to the attenuation of pathogenicity. The phenotype of tumors induced by the mutant viruses was similar and differed from tumors induced by WT virus by the presence of CD3(-)CD4(-)CD8(-) cells. Analysis of LTR sequences of infectious virus rescued from tumors induced by the 1R and 1R + DEN viruses showed that amplification of enhancer sequences had occurred during tumor development. The lack of DEN virus expression by tumor cells led us to propose that DEN sequences may play a role at an early step in tumorigenesis.
Collapse
Affiliation(s)
- F K Yoshimura
- Department of Immunology and Microbiology, Wayne State University, 540 E. Canfield Ave., Detroit, MI 48201, USA.
| | | |
Collapse
|
22
|
Abstract
Equine infectious anemia virus (EIAV) is an ungulate lentivirus that is related to human immunodeficiency virus (HIV). Much of the understanding of lentiviral gene regulation comes from studies using HIV. HIV studies have provided insights into molecular regulation of EIAV expression; however, much of the regulation of EIAV expression stands in stark contrast to that of HIV. This review provides an overview of the current state of knowledge of EIAV regulation by comparing and contrasting EIAV gene regulation to HIV. The role of EIAV gene regulation is discussed in relation to EIAV pathogenesis.
Collapse
Affiliation(s)
- W Maury
- Department of Microbiology, University of South Dakota School of Medicine, Vermillion 57069, USA.
| |
Collapse
|
23
|
Tsuji T, Itoh K, Baum C, Ohnishi N, Tomiwa K, Hirano D, Nishimura-Morita Y, Ostertag W, Fujita J. Retroviral vector-mediated gene expression in human CD34+CD38- cells expanded in vitro: cis elements of FMEV are superior to those of Mo-MuLV. Hum Gene Ther 2000; 11:271-84. [PMID: 10680841 DOI: 10.1089/10430340050016012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
A novel murine stromal cell line, HESS-M28, was established, which supports the expansion of human CD34+CD38- cells more than 300-fold in vitro in the presence of human IL-3 and SCF. These cells were used in an attempt to evaluate cis-acting elements of retroviral vectors in human primitive hematopoietic cells. Cord blood cells were cultured on top of the mixed cell layers of the stromal cell line, HESS-M28, and retroviral vector-producing cells. The FMEV-type vector SF/Lyt contained the spleen focus-forming virus U3 and the MESV primer-binding site (PBS), while MO3/Lyt contained the U3 region and PBS from Mo-MuLV. After transduction by the FMEV-type and Mo-MuLV-based vectors, expression of the marker gene murine CD8 (mCD8) was examined in CD34-, CD34+, and CD34+CD38- cells. In CD34+ and CD34+CD38- cells, expression of mCD8 was higher with the FMEV-type vector, SF/Lyt, compared with the cells transduced by the Mo-MuLV-based vector MO3/Lyt, although the expression was comparable in CD34- cells. Expression of marker genes was also confirmed in long-term culture-initiating cells (LTC-ICs) and SCID-repopulating cells (SRCs).
Collapse
Affiliation(s)
- T Tsuji
- Department of Clinical Molecular Biology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Omori F, Juopperi T, Chan CK, Chang YN, Phipps S, Nanji S, Zhao Y, Stewart AK, Dubé ID. Retroviral-mediated transfer and expression of the multidrug resistance protein 1 gene (MRP1) protect human hematopoietic cells from antineoplastic drugs. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 1999; 8:503-14. [PMID: 10791901 DOI: 10.1089/152581699319957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
Multidrug resistance protein (MRP1) is a member of the ATP-binding cassette (ABC) transmembrane transporter superfamily that confers multidrug resistance. The transfer and expression of the MRP1 gene in human hematopoietic stem cells may be a useful alternative to multidrug resistance (MDR1) gene transfer for protection from the myelosuppressive effects of chemotherapy in cancer patients. We constructed a gibbon ape leukemia virus packaging cell line (PG13) using the human MRP1 cDNA in a Moloney murine leukemia virus (MoMuLV) backbone containing a modified LTR. This PG13-based cell line, designated MRP1-PG13, produces retroviral vectors bearing the MRP1 gene at a titer of 1.7x10(5) viral particles/ml. Transduction of the human leukemic cell line K562 showed that viral MRP1-PG13 supernatants routinely transfer the MRP1 gene to approximately 35% of target K562 cells, of which at least one third are capable of proliferating in the presence of otherwise toxic concentrations of etoposide. Southern blot analyses indicated that most clones had only one proviral integration. Northern blot analysis of expanded K562 clones showed the presence of a major full-length approximately 8-kb MRP1 transcript as well as a minor approximately 6-kb transcript in all clones. Flow cytometric analysis of the producer cells and clones of transduced K562 cells demonstrated significantly increased MRP1 expression in these cells (approximately 30-fold increase). Human bone marrow mononuclear cells and CD34+ cells were also transduced with MRP1-PG13 supernatants on fibronectin-coated culture flasks in the presence of SCF, IL-3, and IL-6. PCR analysis of individual hematopoietic colonies in methylcellulose cultures demonstrated proviral DNA in approximately 10% of unselected human hematopoietic progenitor cells cultured from nonsorted mononuclear cell samples and in up to approximately 75% of progenitors when CD34-enriched cell populations were targeted. To assess functional MRP1 gene expression, normal human hematopoietic progenitors and K562 cells were cultured in methylcellulose assays containing vincristine or etoposide. All transduced samples gave rise to approximately 10% drug-resistant colonies, which were shown to be provirus-positive by PCR. Our studies document the development of an amphotropic MRP1 retroviral vector producer cell line and pave the way for large animal and preclinical studies of chemoprotection by MRP1 gene transfer.
Collapse
Affiliation(s)
- F Omori
- Department of Laboratory Medicine, Sunnybrook and Women's College Health Science Centre, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Granger SW, Bundy LM, Fan H. Tandemization of a subregion of the enhancer sequences from SRS 19-6 murine leukemia virus associated with T-lymphoid but not other leukemias. J Virol 1999; 73:7175-84. [PMID: 10438804 PMCID: PMC104241 DOI: 10.1128/jvi.73.9.7175-7184.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Most simple retroviruses induce tumors of a single cell type when infected into susceptible hosts. The SRS 19-6 murine leukemia virus (MuLV), which originated in mainland China, induces leukemias of multiple cellular origins. Indeed, infected mice often harbor more than one tumor type. Since the enhancers of many MuLVs are major determinants of tumor specificity, we tested the role of the SRS 19-6 MuLV enhancers in its broad disease specificity. The enhancer elements of the Moloney MuLV (M-MuLV) were replaced by the 170-bp enhancers of SRS 19-6 MuLV, yielding the recombinants DeltaMo+SRS(+) and DeltaMo+SRS(-) M-MuLV. M-MuLV normally induces T-lymphoid tumors in all infected mice. Surprisingly, when neonatal mice were inoculated with DeltaMo+SRS(+) or DeltaMo+SRS(-) M-MuLV, all tumors were of T-lymphoid origin, typical of M-MuLV rather than SRS 19-6 MuLV. Thus, the SRS 19-6 MuLV enhancers did not confer the broad disease specificity of SRS 19-6 MuLV to M-MuLV. However, all tumors contained DeltaMo+SRS M-MuLV proviruses with common enhancer alterations. These alterations consisted of tandem multimerization of a subregion of the SRS 19-6 enhancers, encompassing the conserved LVb and core sites and adjacent sequences. Moreover, when tumors induced by the parental SRS 19-6 MuLV were analyzed, most of the T-lymphoid tumors had similar enhancer alterations in the same region whereas tumors of other lineages retained the parental SRS 19-6 MuLV enhancers. These results emphasize the importance of a subregion of the SRS 19-6 MuLV enhancer in induction of T-cell lymphoma. The relevant sequences were consistent with crucial sequences for T-cell lymphomagenesis identified for other MuLVs such as M-MuLV and SL3-3 MuLV. These results also suggest that other regions of the SRS 19-6 MuLV genome contribute to its broad leukemogenic spectrum.
Collapse
Affiliation(s)
- S W Granger
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, California 92697-3900, USA
| | | | | |
Collapse
|
26
|
Danno S, Itoh K, Baum C, Ostertag W, Ohnishi N, Kido T, Tomiwa K, Matsuda T, Fujita J. Efficient gene transfer by hybrid retroviral vectors to murine spermatogenic cells. Hum Gene Ther 1999; 10:1819-31. [PMID: 10446922 DOI: 10.1089/10430349950017509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023] Open
Abstract
Using murine spermatogenic cell lines GC-1 spg and GC-2 spd(ts) as target cells, an attempt was made to design a retroviral vector that would transduce genes efficiently. Promoter activities of various retroviral long terminal repeats (LTRs) were examined by using chloramphenicol acetyltransferase (CAT) as a reporter. The U3 region of spleen focus-forming virus (SFFVp) showed higher enhancer activity than that of Moloney murine leukemia virus (Mo-MuLV) in both cell lines. The U3 region of myeloproliferative sarcoma virus (MPSV) showed higher activity only in GC-1 spg cells. Expression was suppressed by the repressor element of the primer-binding site (PBS) of the Moloney-related virus. The efficiency of transduction of the multidrug-resistance gene (mdr-1) by an Mo-MuLV-based vector was compared with hybrid vectors consisting of the murine embryonic stem cell virus (MESV) PBS and the LTR of either SFFVp or MPSV. Rhodamine efflux assays and colchicine-resistant colony-forming assays demonstrated higher gene expression by the hybrid vectors. Amphotropic and ecotropic receptors were found to be expressed and functional in both cell lines. Thus, these hybrid vectors represent a powerful tool by which to transfer genes into spermatogenic cells.
Collapse
Affiliation(s)
- S Danno
- Department of Clinical Molecular Biology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Laassri M, Gul'ko L, Vinokurova S, Kisseljova N, Veiko V, Kisseljov F. Cloning of E6 and E7 genes of human papilloma virus type 18 and transformation potential of E7 gene and its mutants. Virus Genes 1999; 18:139-49. [PMID: 10403700 DOI: 10.1023/a:1008020719309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Abstract
E6 and E7 genes of human papilloma virus type 18 have been subcloned from plasmid pC7, carrying an insert of DNA from squamous cell carcinoma of cervix. Both genes in comparison to prototype variant contain one mutation that changes asparagine to leucine. In the case of E6 gene this mutation is mapped in codon 129, in the case of E7 the same change AAC to AAA mapped in codon 92. In addition both genes contain few point mutations that do not change the aminoacid sequences of the protein. Two mutants of E7 gene have been constructed by site directed mutagenesis based on PCR technology-one in codon 10 (change Asp to Asn) and one in codon 24 (change Asp to Gly). The first type of mutation did not influence the transformation potential of the E7 gene in comparison to the parental one with mutation in codon 92. The mutation in codon 24 (region responsible for the interaction with Rb protein) eliminate the transformation potential of the gene. The cells transformed with E7 mutants in codons 10 and 92 were tumorigenic for syngenic rats.
Collapse
Affiliation(s)
- M Laassri
- Institute of Carcinogenesis, Cancer Research Center, Moscow State Research Institute of Genetics and Selection of Microorganisms
| | | | | | | | | | | |
Collapse
|
28
|
Lewis AF, Stacy T, Green WR, Taddesse-Heath L, Hartley JW, Speck NA. Core-binding factor influences the disease specificity of Moloney murine leukemia virus. J Virol 1999; 73:5535-47. [PMID: 10364302 PMCID: PMC112611 DOI: 10.1128/jvi.73.7.5535-5547.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
The core site in the Moloney murine leukemia virus (Moloney MLV) enhancer was previously shown to be an important determinant of the T-cell disease specificity of the virus. Mutation of the core site resulted in a significant shift in disease specificity of the Moloney virus from T-cell leukemia to erythroleukemia. We and others have since determined that a protein that binds the core site, one of the core-binding factors (CBF) is highly expressed in thymus and is essential for hematopoiesis. Here we test the hypothesis that CBF plays a critical role in mediating pathogenesis of Moloney MLV in vivo. We measured the affinity of CBF for most core sites found in MLV enhancers, introduced sites with different affinities for CBF into the Moloney MLV genome, and determined the effects of these sites on viral pathogenesis. We found a correlation between CBF affinity and the latent period of disease onset, in that Moloney MLVs with high-affinity CBF binding sites induced leukemia following a shorter latent period than viruses with lower-affinity sites. The T-cell disease specificity of Moloney MLV also appeared to correlate with the affinity of CBF for its binding site. The data support a role for CBF in determining the pathogenic properties of Moloney MLV.
Collapse
Affiliation(s)
- A F Lewis
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
29
|
Ghosh SK, Faller DV. Feline leukemia virus long terminal repeat activates collagenase IV gene expression through AP-1. J Virol 1999; 73:4931-40. [PMID: 10233955 PMCID: PMC112537 DOI: 10.1128/jvi.73.6.4931-4940.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/1998] [Accepted: 03/15/1999] [Indexed: 11/20/2022] Open
Abstract
Leukemia and lymphoma induced by feline leukemia viruses (FeLVs) are the commonest forms of illness in domestic cats. These viruses do not contain oncogenes, and the source of their pathogenic activity is not clearly understood. Mechanisms involving proto-oncogene activation subsequent to proviral integration and/or development of recombinant viruses with enhanced replication properties are thought to play an important role in their disease pathogenesis. In addition, the long terminal repeat (LTR) regions of these viruses have been shown to be important determinants for pathogenicity and tissue specificity, by virtue of their ability to interact with various transcription factors. Previously, we have shown that, in the case of Moloney murine leukemia virus, the U3 region of the LTR independently induces transcriptional activation of specific cellular genes through an LTR-generated RNA transcript (S. Y. Choi and D. V. Faller, J. Biol. Chem. 269:19691-19694, 1994; S.-Y. Choi and D. V. Faller, J. Virol. 69:7054-7060, 1995). In this report, we show that the U3 region of exogenous FeLV LTRs can induce transcription from collagenase IV (matrix metalloproteinase 9) and monocyte chemotactic protein 1 (MCP-1) promoters up to 12-fold. We also show that AP-1 DNA-binding activity and transcriptional activity are strongly induced in cells expressing FeLV LTRs and that LTR-specific RNA transcripts are generated in those cells. Activation of mitogen-activated protein kinase kinases 1 and 2 (MEK1 and -2) by the LTR is an intermediate step in the FeLV LTR-mediated induction of AP-1 activity. These findings thus suggest that the LTRs of FeLVs can independently activate transcription of specific cellular genes. This LTR-mediated cellular gene transactivation may play an important role in tumorigenesis or preleukemic states and may be a generalizable activity of leukemia-inducing retroviruses.
Collapse
Affiliation(s)
- S K Ghosh
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
30
|
Yoshimura FK, Wang T, Cankovic M. Sequences between the enhancer and promoter in the long terminal repeat affect murine leukemia virus pathogenicity and replication in the thymus. J Virol 1999; 73:4890-8. [PMID: 10233950 PMCID: PMC112532 DOI: 10.1128/jvi.73.6.4890-4898.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023] Open
Abstract
We previously showed that the 93-bp region between the enhancer and promoter (named DEN for downstream of enhancer) of the long terminal repeat (LTR) of the MCF13 murine leukemia virus is an important determinant of the ability of this virus to induce thymic lymphoma. In this study we observed that DEN plays a role in the regulation of virus replication in the thymus during the preleukemic period. A NF-kappaB site in the DEN region partially contributes to the effect of DEN on both lymphomagenicity and virus replication. To further study the effects of DEN and the NF-kappaB site on viral pathogenicity during the preleukemic period, we examined replication of wild-type and mutant viruses with a deletion of the NF-kappaB site or the entire DEN region in the thymus. Thymic lymphocytes which were infected with wild-type and mutant viruses were predominantly the CD3(-) CD4(+) CD8(+) and CD3(+) CD4(+) CD8(+) cells. The increase in infection by wild-type virus and both mutant viruses of these two subpopulations during the preleukemic period ranged from 9- to 84-fold, depending upon the time point and virus. The major difference between the wild-type and both mutant viruses was the lower rate and lower level of mutant virus replication in these thymic subpopulations. Significant differences in replication between wild-type and both mutant viruses were seen in the CD3(-) CD4(+) CD8(+) and CD3(-) CD4(-) CD8(-) subpopulations, suggesting that these thymic cell types are important targets for viral transformation.
Collapse
Affiliation(s)
- F K Yoshimura
- Department of Immunology and Microbiology and Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
31
|
Abstract
The complete nucleotide sequence of the genome of Solid-type Reticulum cell Sarcoma 19-6 murine leukemia virus (SRS 19-6 MuLV) was determined. This virus was isolated in mainland China from laboratory mice that had been separated from western mice since the 1930s. The genome is 8,256 nucleotides in length and exhibits a genetic organization characteristic of replication competent MuLVs. Phylogenies constructed from reverse transcriptase (RT) domains showed that SRS 19-6 MuLV is closely related to other MuLV-related retroviruses; however, it has clearly diverged from previously isolated MuLVs. Comparative sequence analysis of the env sequences indicated that SRS 19-6 MuLV encodes a surface (SU) glycoprotein that is related to other ecotropic MuLVs in the VR-A and VR-B variable regions. However, SRS 19-6 MuLV env glycoprotein was distinct from all other MuLVs (ecotropic and non-ecotropic) in the proline-rich hypervariable region. No evidence for recombination with endogenous MuLV env sequences in generation of SRS 19-6 MuLV was observed. Comparisons of long terminal repeat (LTR) sequences revealed that the GV 1.4 molecular clone of Graffi MuLV contained 96% sequence identity to SRS 19-6 MuLV's LTR with 99% identity when comparisons were restricted to the U3 regions of the two viruses. The consensus enhancer binding motifs contained in the U3 regions of the two viruses were nearly identical. Nevertheless the two viruses have previously been shown to induce distinct patterns of disease. Comparisons between 196 and Graffi GV1.4 MuLVs may provide insights into the mechanisms of disease specificity induced by MuLVs.
Collapse
Affiliation(s)
- L M Bundy
- Department of Molecular Biology and Biochemistry, University of California at Irvine 92697, USA
| | | |
Collapse
|
32
|
DiFronzo NL, Holland CA. Sequence-specific and/or stereospecific constraints of the U3 enhancer elements of MCF 247-W are important for pathogenicity. J Virol 1999; 73:234-41. [PMID: 9847326 PMCID: PMC103827 DOI: 10.1128/jvi.73.1.234-241.1999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The oncogenic potential of many nonacute retroviruses is dependent on the duplication of the enhancer sequences present in the unique 3' (U3) region of the long terminal repeat (LTR). In a molecular clone (MCF 247-W) of the murine leukemia virus MCF 247, a leukemogenic mink cell focus-inducing (MCF) virus, the U3 enhancer sequences are tandemly repeated in the LTR. We mutated the enhancer region of MCF 247-W to test the hypothesis that the duplicated enhancer sequences of this virus have a sequence-specific and/or a stereospecific role in enhancer function required for transformation. In one virus, we inserted 14 nucleotide bp into the novel sequence generated at the junction of the two enhancers to generate an MCF virus with an interrupted enhancer region. In the second virus, only one copy of the enhancer sequences was present. This second virus also lacked the junction sequence present between the two enhancers of MCF 247-W. Both viruses were less leukemogenic and had a longer mean latency period than MCF 247-W. These data indicate that the sequence generated at the junction of the two enhancers and/or the stereospecific arrangement of the two enhancer elements are required for the full oncogenic potential of MCF 247-W. We analyzed proviral LTRs within the c-myc locus in tumor DNAs from mice injected with the MCF virus with the interrupted enhancer region. Some of the proviral LTRs integrated upstream of c-myc contain enhancer regions that are larger than those of the injected virus. These results are consistent with the suggestion that the virus with an interrupted enhancer changes in vivo to perform its role in the transformation of T cells.
Collapse
Affiliation(s)
- N L DiFronzo
- Center for Virology, Immunology, and Infectious Disease Research, Children's National Medical Center, Washington, D.C. 20010, USA
| | | |
Collapse
|
33
|
Granger SW, Fan H. In vivo footprinting of the enhancer sequences in the upstream long terminal repeat of Moloney murine leukemia virus: differential binding of nuclear factors in different cell types. J Virol 1998; 72:8961-70. [PMID: 9765441 PMCID: PMC110313 DOI: 10.1128/jvi.72.11.8961-8970.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The enhancer sequences in the Moloney murine leukemia virus (M-MuLV) long terminal repeat (LTR) are of considerable interest since they are crucial for virus replication and the ability of the virus to induce T lymphomas. While extensive studies have identified numerous nuclear factors that can potentially bind to M-MuLV enhancer DNA in vitro, it has not been made clear which of these factors are bound in vivo. To address this problem, we carried out in vivo footprinting of the M-MuLV enhancer in infected cells by in vivo treatment with dimethyl sulfate (DMS) followed by visualization through ligation-mediated PCR (LMPCR) and gel electrophoresis. In vivo DMS-LMPCR footprinting of the upstream LTR revealed evidence for factor binding at several previously characterized motifs. In particular, protection of guanines in the central LVb/Ets and Core sites within the 75-bp repeats was detected in infected NIH 3T3 fibroblasts, Ti-6 lymphoid cells, and thymic tumor cells. In contrast, factor binding at the NF-1 sites was found in infected fibroblasts but not in T-lymphoid cells. These results are consistent with the results of previous experiments indicating the importance of the LVb/Ets and Core sequences for many retroviruses and the biological importance especially of the NF-1 sites in fibroblasts and T-lymphoid cells. No evidence for factor binding to the glucocorticoid responsive element and LVa sites was found. Additional sites of protein binding included a region in the GC-rich sequences downstream of the 75-bp repeats (only in fibroblasts), a hypersensitive guanine on the minus strand in the LVc site (only in T-lymphoid cells), and a region upstream of the 75-bp repeats. These experiments provide concrete evidence for the differential in vivo binding of nuclear factors to the M-MuLV enhancers in different cell types.
Collapse
Affiliation(s)
- S W Granger
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|
34
|
Lovmand J, Sorensen AB, Schmidt J, Ostergaard M, Luz A, Pedersen FS. B-Cell lymphoma induction by akv murine leukemia viruses harboring one or both copies of the tandem repeat in the U3 enhancer. J Virol 1998; 72:5745-56. [PMID: 9621033 PMCID: PMC110375 DOI: 10.1128/jvi.72.7.5745-5756.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
Akv is an endogenous, ecotropic murine leukemia virus (MuLV) of the AKR strain. It has served as a prototype nonpathogenic or weakly pathogenic reference virus for studies of closely related potent lymphomagenic viruses such as the T-lymphomagenic SL3-3. We here report that Akv and an Akv mutant (Akv1-99) with only one copy of the 99-bp transcriptional enhancer induce malignant lymphomas with nearly 100% incidence and mean latency periods of 12 months after injection into newborn NMRI mice. Molecular analysis of tumor DNA showed that the majority of the tumors were of the B-cell type. Sequence analysis of proviral transcriptional enhancers in DNA of B-cell lymphomas revealed conservation of the enhancer sequence, as well as a lack of sequence duplications of the Akv1-99 variant, while the repeat copy number in Akv was subject to fluctuations. In support of a B-cell specificity of the Akv enhancer, a murine plasmacytoma cell line was found to sustain three- to fivefold-higher transient transcriptional activity upon the Akv and Akv1-99 enhancers than upon the enhancer of the T-lymphomagenic SL3-3 MuLV. Thus, the overall picture is that Akv MuLV possesses a B- lymphomagenic potential and that the second copy of the 99-bp sequence seems to be of minor importance for this potential. However, in one animal the lymphomas induced by Akv1-99 were of the T-cell type. Among the 24 tumors analyzed only this one harbored a clonal proviral integration in the c-myc locus. This provirus had undergone a duplication of a 113-bp sequence of the enhancer region, partly overlapping with the 99-bp repeat of Akv, as well as a few single nucleotide alterations within and outside the repeats. Taken together with previous studies, our results suggest that T- versus B-lymphomagenic specificity of the enhancer is governed by more than one nucleotide difference and that alterations in binding sites for transcription factors of the AML1 and nuclear-factor-1 families may contribute to this specificity.
Collapse
Affiliation(s)
- J Lovmand
- Department of Molecular and Structural Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
35
|
Zaiman AL, Nieves A, Lenz J. CBF, Myb, and Ets binding sites are important for activity of the core I element of the murine retrovirus SL3-3 in T lymphocytes. J Virol 1998; 72:3129-37. [PMID: 9525638 PMCID: PMC109765 DOI: 10.1128/jvi.72.4.3129-3137.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
Transcriptional enhancers within the long terminal repeats of murine leukemia viruses are major determinants of the pathogenic properties of these viruses. Mutations were introduced into the adjacent binding sites for three transcription factors within the enhancer of the T-cell-lymphomagenic virus SL3-3. The sites that were tested were, in 5'-to-3' order, a binding site for core binding factor (CBF) called core II, a binding site for c-Myb, a site that binds members of the Ets family of factors, and a second CBF binding site called core I. Mutation of each site individually reduced transcriptional activity in T lymphocytes. However, mutation of the Myb and core I binding sites had larger effects than mutation of the Ets or core II site. The relative effects on transcription in T cells paralleled the effects of the same mutations on viral lymphomagenicity, consistent with the idea that the role of these sequences in viral lymphomagenicity is indeed to regulate transcription in T cells. Mutations were also introduced simultaneously into multiple sites in the SL3-3 enhancer. The inhibitory effects of these mutations indicated that the transcription factor in T cells that recognizes the core I element of SL3-3, presumably CBF, needed to synergize with one or more factors bound at the upstream sites to function. This was tested further by generating a multimer construct that contained five tandem core I elements linked to a basal long terminal repeat promoter. This construct was inactive in T cells. However, transcriptional activity was detected with a multimer construct in which the transcription factor binding sites upstream of the core were also present. These results are consistent with the hypothesis that CBF requires heterologous transcription factors bound at nearby sites to function in T cells.
Collapse
Affiliation(s)
- A L Zaiman
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
36
|
Starkey CR, Lobelle-Rich PA, Granger SW, Granger S, Brightman BK, Fan H, Levy LS. Tumorigenic potential of a recombinant retrovirus containing sequences from Moloney murine leukemia virus and feline leukemia virus. J Virol 1998; 72:1078-84. [PMID: 9445002 PMCID: PMC124580 DOI: 10.1128/jvi.72.2.1078-1084.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
A recombinant retrovirus, termed MoFe2-MuLV, was constructed in which the U3 region of T-lymphomagenic Moloney murine leukemia virus (Mo-MuLV) was replaced by that of FeLV-945, a provirus of unique long terminal repeat (LTR) structure identified only in non-T-cell, non-B-cell lymphomas of the domestic cat. The LTR of FeLV-945 is unusual in that it contains only a single copy of the transcriptional enhancer followed 25 bp downstream by a 21-bp sequence in triplicate in tandem. Infectivity of MoFe2-MuLV was demonstrated in vitro in SC-1 cells and in vivo in neonatal NIH-Swiss mice. Tumors occurred in MoFe2-MuLV-infected animals following a latency period of 4 to 10 months (average, 6 months). The results of Southern blot analysis of the T-cell receptor beta locus demonstrated that all tumors were lymphomas of T-cell origin. MoFe2-MuLV LTRs were amplified by PCR from tumor DNA and were characterized by nucleotide sequence analysis. LTRs from the tumors that occurred with relatively shorter latency predominantly retained the original MoFe2-MuLV sequence intact and unaltered. Tumors that occurred with relatively longer latency contained LTRs that also retained the 21-bp sequence triplication characteristic of the original virus but had acquired various duplications of enhancer sequences. The repeated identification of enhancer duplications in late-appearing tumors suggests that the duplication affords a selective advantage, although apparently not in the efficient induction of T-cell lymphoma. Proto-oncogenes known to be targets of insertional mutagenesis in the majority of Mo-MuLV-induced tumors or in feline non-T-cell, non-B-cell lymphomas were shown not to be rearranged in any tumor examined. Mink cell focus-inducing (MCF) proviral DNA was readily detectable in some, but not all, tumors. The presence or absence of MCF did not correlate with the kinetics of tumor induction. These studies indicate that the single-enhancer, triplication-containing FeLV LTR, typical of non-T-cell, non-B-cell lymphomas in cats, is competent in the induction of T-cell lymphoma in mice. The findings suggest that the mechanism of MoFe2-MuLV-mediated lymphomagenesis may differ from that of Mo-MuLV-mediated disease, considering the possible involvement of novel oncogenes and the variable presence of MCF recombinants.
Collapse
Affiliation(s)
- C R Starkey
- Department of Microbiology and Immunology and Tulane Cancer Center, Tulane Medical School, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Dai HY, Troseth GI, Gunleksrud M, Bruland T, Solberg LA, Aarset H, Kristiansen LI, Dalen A. Identification of genetic determinants responsible for the rapid immunosuppressive activity and the low leukemogenic potential of a variant of Friend leukemia virus, FIS-2. J Virol 1998; 72:1244-51. [PMID: 9445024 PMCID: PMC124602 DOI: 10.1128/jvi.72.2.1244-1251.1998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
An immunosuppressive variant of Friend murine leukemia virus (F-MuLV), FIS-2, induces suppression of the primary antibody response against sheep erythrocytes (SRBC) in adult NMRI mice more efficiently than the prototype F-MuLV clone 57 (cl.57). It is, however, less potent than F-MuLV cl.57 in inducing erythroleukemia upon inoculation into newborn NMRI mice. Nucleotide sequence analysis shows a high degree of homology between the two viruses. Single point mutations are scattered over both the gag and the env encoding regions. The most notable mutations are the deletion of one direct repeat and a few single point mutations occurring in the binding sites for cellular transcriptional factors in the FIS-2 long terminal repeat region (LTR). To define the genetic determinants responsible for the pathogenic properties of FIS-2, we constructed six chimeras between FIS-2 and F-MuLV cl.57. Adult mice were infected with the chimeras, and their primary antibody responses against SRBC were investigated. The results showed that the fragment encompassing the FIS-2 env encoding region SU is responsible for the increased immunosuppressive activity in adult mice. A leukemogenicity assay was also performed by infecting newborn mice with the chimeras. Consistent with the previous studies, it showed that the deletion of one direct repeat in the FIS-2 LTR is responsible for the long latent period of erythroleukemia induced by FIS-2 in newborn-inoculated mice. However, studies of cell type-specific transcriptional activities of FIS-2 and F-MuLV cl.57 LTRs using LTR-chloramphenicol acetyltransferase constructs showed that the deletion of one direct repeat does not reduce the transcriptional activity of the FIS-2 LTR. The activity is either comparable to or higher than the transcriptional activity of the F-MuLV cl.57 LTR in the different cell lines that we used, even in an erythroleukemia cell line. It seems that the high transcriptional strength of the FIS-2 LTR is not sufficient to give FIS-2 a high leukemogenic effect. This suggestion is inconsistent with the previous suggestion that the transcriptional strength of an LTR in a given cell type is correlated with the leukemogenic potential in the corresponding tissue. In other words, these data indicate that the direct repeats in the F-MuLV LTR may play other roles besides transcriptional enhancer in the leukemogenesis of F-MuLV.
Collapse
Affiliation(s)
- H Y Dai
- Unigen Center for Molecular Biology, Norwegian University of Science and Technology, Trondheim.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pantginis J, Beaty RM, Levy LS, Lenz J. The feline leukemia virus long terminal repeat contains a potent genetic determinant of T-cell lymphomagenicity. J Virol 1997; 71:9786-91. [PMID: 9371646 PMCID: PMC230290 DOI: 10.1128/jvi.71.12.9786-9791.1997] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
Feline leukemia virus (FeLV) is an important pathogen of domestic cats. The most common type of malignancy associated with FeLV is T-cell lymphoma. SL3-3 (SL3) is a potent T-cell lymphomagenic murine leukemia virus. Transcriptional enhancer sequences within the long terminal repeats (LTRs) of SL3 and other murine retroviruses are crucial genetic determinants of the pathogenicities of these viruses. The LTR enhancer sequences of FeLV contain identical binding sites for some of the transcription factors that are known to affect the lymphomagenicity of SL3. To test whether the FeLV LTR contains a genetic determinant of lymphomagenicity, a recombinant virus that contained the U3 region of a naturally occurring FeLV isolate, LC-FeLV, linked to the remainder of the genome of SL3 was generated. When inoculated into mice, the recombinant virus induced T-cell lymphomas nearly as quickly as SL3. Moreover, the U3 sequences of LC-FeLV were found to have about half as much transcriptional activity in T lymphocytes as the corresponding sequences of SL3. This level of activity was severalfold higher than that of the LTR of weakly leukemogenic Akv virus. Thus, the FeLV LTR contains a potent genetic determinant of T-cell lymphomagenicity. Presumably, it is adapted to be recognized by transcription factors present in T cells of cats, and this yields a relatively high level of transcription that allows the enhancer to drive the requisite steps in the process of lymphomagenesis.
Collapse
Affiliation(s)
- J Pantginis
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
39
|
Ethelberg S, Lovmand J, Schmidt J, Luz A, Pedersen FS. Increased lymphomagenicity and restored disease specificity of AML1 site (core) mutant SL3-3 murine leukemia virus by a second-site enhancer variant evolved in vivo. J Virol 1997; 71:7273-80. [PMID: 9311802 PMCID: PMC192069 DOI: 10.1128/jvi.71.10.7273-7280.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
SL3-3 is a highly T-lymphomagenic murine retrovirus. The major genetic determinant of disease is the transcriptional enhancer, which consists of a repeated region with densely packed binding sites for several transcription factors, including AML1 (also known as core binding factor and polyoma enhancer-binding protein 2) and nuclear factor 1 (NF1). Previously, we examined the enhancer structure of proviruses from murine tumors induced by SL3-3 with mutated AML1 (core) sites and found a few cases of second-site alterations. These consisted of deletions involving the NF1 sites and alterations in overall number of repeat elements, and they conferred increased enhancer strength in transient transcription assays. We have now tested the pathogenicity of a virus harboring one such second-site variant enhancer in inbred NMRI mice. It induced lymphomas with a 100% incidence and a significantly shorter latency than the AML1 mutant it evolved from. The enhancer structure thus represents the selection for a more tumorigenic virus variant during the pathogenic process. Sequencing of provirus from the induced tumors showed the new enhancer variant to be genetically stable. Also, Southern blotting showed that the tumors induced by the variant were T-cell lymphomas, as were the wild-type-induced lymphomas. In contrast, tumors induced by the original core/AML1 site I-II mutant appeared to be of non-T-cell origin and several proviral genomes with altered enhancer regions could be found in the tumors. Moreover, reporter constructs with the new tumor-derived variant could not be transactivated by AML1 in cotransfection experiments as could the wild type. These results emphasize the importance of both core/AML1 site I and site II for the pathogenic potential of SL3-3 and at the same time show that second-site alterations can form a viral variant with a substantial pathogenic potential although both AML1 sites I and II are nonfunctional.
Collapse
Affiliation(s)
- S Ethelberg
- Department of Molecular and Structural Biology, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
40
|
Baum C, Itoh K, Meyer J, Laker C, Ito Y, Ostertag W. The potent enhancer activity of the polycythemic strain of spleen focus-forming virus in hematopoietic cells is governed by a binding site for Sp1 in the upstream control region and by a unique enhancer core motif, creating an exclusive target for PEBP/CBF. J Virol 1997; 71:6323-31. [PMID: 9261349 PMCID: PMC191905 DOI: 10.1128/jvi.71.9.6323-6331.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
The polycythemic strain of the spleen focus-forming virus (SFFVp) contains the most potent murine retroviral enhancer configuration known so far for gene expression in myeloerythroid hematopoietic cells. In the present study, we mapped two crucial elements responsible for the high activity of the SFFVp enhancer to an altered upstream control region (UCR) containing a GC-rich motif (5'-GGGCGGG-3') and to a unique enhancer core (5'-TGCGGTC-3'). Acquisition of these motifs accounts for half of the activity of the complete retroviral enhancer in hematopoietic cells, irrespective of the developmental stage or lineage. Furthermore, the UCR motif contains the major determinant for the enhancer activity of SFFVp in embryonic stem (ES) cells. Using electrophoretic mobility shift assays, we show that the UCR of SFFVp, but not of Friend murine leukemia virus, is targeted by the ubiquitous transcriptional activator, Sp1. The core motif of SFFVp creates a specific and high-affinity target for polyomavirus enhancer binding protein/core binding factor (PEBP/CBF) and excludes access of CAAT/enhancer binding protein. Cotransfection experiments with ES cells imply that PEBP/CBF cooperates with the neighboring element, LVb (the only conserved Ets consensus in the SFFVp enhancer), and that the Sp1 motif in the UCR stimulates transactivation through the Ets-PEBP interaction. Putative secondary structures of the retroviral enhancers are proposed based on these data.
Collapse
Affiliation(s)
- C Baum
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Department of Cell & Virus Genetics, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Amtoft HW, Sørensen AB, Bareil C, Schmidt J, Luz A, Pedersen FS. Stability of AML1 (core) site enhancer mutations in T lymphomas induced by attenuated SL3-3 murine leukemia virus mutants. J Virol 1997; 71:5080-7. [PMID: 9188573 PMCID: PMC191741 DOI: 10.1128/jvi.71.7.5080-5087.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023] Open
Abstract
Murine retrovirus SL3-3 is highly T lymphomagenic. Its pathogenic properties are determined by the transcriptional enhancer of the U3 repeat region which shows preferential activity in T cells. Within the U3 repeats, the major determinant of T-cell specificity has been mapped to binding sites for the AML1 transcription factor family (also known as the core binding factor [CBF], polyomavirus enhancer binding protein 2 [PEBP2], and SL3-3 enhancer factor 1 [SEF-1]). SL3-3 viruses with AML1 site mutations have lost a major determinant of T-cell-specific enhancer function but have been found to retain a lymphomagenic potential, although disease induction is slower than for the SL3-3 wild type. To compare the specificities and mechanisms of disease induction of wild-type and mutant viruses, we have examined lymphomas induced by mutant viruses harboring transversions of three consecutive base pairs critical to AML1 site function (B. Hallberg, J. Schmidt, A. Luz, F. S. Pedersen, and T. Grundström. J. Virol. 65:4177-4181, 1991). Our results show that the mutated AML1 sites are genetically stable during lymphomagenesis and that ecotropic provirus numbers in DNA of tumors induced by wild-type and mutant viruses fall within the same range. Moreover, proviruses were found to be integrated at the c-myc locus in similar proportions of wild-type and mutant SL3-3-induced tumors, and the mutated AML1 sites of proviruses at c-myc are unaltered. In some cases, however, including one c-myc-integrated provirus, a single-base pair change was detected in a second, weaker AML1 binding site. By DNA rearrangement analysis of the T-cell receptor beta-locus, tumors induced by the AML1 site mutants are found to be of the T-cell type. Thus, although the AML1 site mutants have weakened T-cell-specific enhancers they are T-lymphomagenic, and wild-type- and mutant-virus-induced tumor DNAs are similar with respect to the number of overall ecotropic and c-myc-integrated clonal proviruses. The SL3-3 wild-type and AML1 site mutant viruses may therefore induce disease by similar mechanisms.
Collapse
Affiliation(s)
- H W Amtoft
- Department of Molecular and Structural Biology, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
42
|
Maury W, Perryman S, Oaks JL, Seid BK, Crawford T, McGuire T, Carpenter S. Localized sequence heterogeneity in the long terminal repeats of in vivo isolates of equine infectious anemia virus. J Virol 1997; 71:4929-37. [PMID: 9188555 PMCID: PMC191723 DOI: 10.1128/jvi.71.7.4929-4937.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023] Open
Abstract
The role of in vivo long terminal repeat (LTR) sequence variation of the lentivirus equine infectious anemia virus (EIAV) has not been explored. In this study, we investigated the heterogeneity found in the LTR sequences from seven EIAV-seropositive horses: three horses with clinical disease and four horses without any detectable signs of disease. LTR sequences were targeted in this study because the LTR U3 enhancer region of tissue culture-derived isolates has been identified as one of the few hypervariable regions of the EIAV genome. Furthermore, LTR variation may regulate EIAV expression in vivo. Both intra- and interanimal sequence variations were investigated. The intra-animal variation was low in seropositive, healthy horses (on average 0.44%). Intra-animal variation was consistently higher in clinically ill horses (0.99%), suggesting that greater numbers of quasispecies of EIAV are present when active virus replication is ongoing. Interanimal comparisons of consensus sequences generated from each horse demonstrated that the enhancer region is a hotspot of sequence variation in vivo. Thirty-seven of the 83 nucleotides that compose the U3 enhancer region were variable between the different in vivo-derived LTRs. The remainder of the LTR that was analyzed was more conserved, 8 of 195 nucleotide positions being variable. Results of electrophoretic mobility shift assays demonstrated that some nucleotide substitutions that occurred in the enhancer region eliminated or altered transcription factor binding motifs that are known to be important for EIAV LTR expression. These data suggested that the selective pressures exerted on the EIAV LTR enhancer sequences are different from those exerted on the remainder of the LTR. Our findings are consistent with the possibility that enhancer sequence hypervariability can alter expression of the virus in tissue macrophages and therefore contribute to clinical disease in infected horses.
Collapse
Affiliation(s)
- W Maury
- Department of Microbiology, University of South Dakota, Vermillion 57069, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
All murine leukemia viruses (MuLVs) and related type C retroviruses contain a highly conserved binding site for the Ets family of transcription factors within the enhancer sequences in the viral long terminal repeats (LTRs). The T-cell lymphomagenic MuLV SL3-3 (SL3-3) also contains a c-Myb binding site adjacent to the Ets site. The presence of this Myb site distinguishes SL3 from most other MuLVs. We tested the importance of these two sites for the lymphomagenicity of SL3-3. Mutation of the Ets site had little effect on viral pathogenicity, as it only slightly extended the latency period to disease onset. In contrast, mutation of the Myb site strongly inhibited pathogenicity, as only a minority of the inoculated mice developed tumors in the two mouse strains that were tested. All tumors that were induced by either mutant appeared to be lymphomas, and no evidence for reversion of either mutation was detected. The effects of the Ets and Myb site mutations on transcriptional activity of the SL3 LTR were tested by inserting the viral enhancer sequences into a plasmid containing the promoter region of the c-myc gene linked to a reporter gene. Mutation the Myb site almost eliminated enhancer activity in T lymphocytes, while mutation of the Ets site had smaller effects. Thus, the effects of the enhancer mutations on transcriptional activity in T cells paralleled their effects on viral lymphomagenicity. The absence of the c-Myb site in the LTR enhancer of the weakly lymphomagenic MuLV, Akv, likely contributes to the low pathogenicity of this virus relative to SL3-3. However, Moloney MuLV also lacks the Myb site in its LTR, although it induces T-cell lymphomas with a potency similar to that of SL3-3. Thus, it appears that SL3-3 and Moloney MuLV evolved genetic determinants of T-cell lymphomagenicity that are, at least in part, distinct.
Collapse
Affiliation(s)
- A Nieves
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
44
|
Ethelberg S, Hallberg B, Lovmand J, Schmidt J, Luz A, Grundström T, Pedersen FS. Second-site proviral enhancer alterations in lymphomas induced by enhancer mutants of SL3-3 murine leukemia virus: negative effect of nuclear factor 1 binding site. J Virol 1997; 71:1196-206. [PMID: 8995642 PMCID: PMC191173 DOI: 10.1128/jvi.71.2.1196-1206.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023] Open
Abstract
SL3-3 is a highly T-lymphomagenic murine retrovirus. Previously, mutation of binding sites in the U3 repeat region for the AML1 transcription factor family (also known as core binding factor [CBF], polyomavirus enhancer binding protein 2 [PEBP2], and SL3-3 enhancer factor 1 [SEF1]) were found to strongly reduce the pathogenicity of SL3-3 (B. Hallberg, J. Schmidt, A. Luz, F. S. Pedersen, and T. Grundström, J. Virol. 65:4177-4181, 1991). We have now examined the few cases in which tumors developed harboring proviruses that besides the AML1 (core) site mutations carried second-site alterations in their U3 repeat structures. In three distinct cases we observed the same type of alteration which involved deletions of regions known to contain binding sites for nuclear factor 1 (NF1) and the addition of extra enhancer repeat elements. In transient-expression experiments in T-lymphoid cells, these new U3 regions acted as stronger enhancers than the U3 regions of the original viruses. This suggests that the altered proviruses represent more-pathogenic variants selected for in the process of tumor formation. To analyze the proviral alterations, we generated a series of different enhancer-promoter reporter constructs. These constructs showed that the additional repeat elements are not critical for enhancer strength, whereas the NF1 sites down-regulate the level of transcription in T-lymphoid cells whether or not the AML1 (core) sites are functional. We therefore also tested SL3-3 viruses with mutated NF1 sites. These viruses have unimpaired pathogenic properties and thereby distinguish SL3-3 from Moloney murine leukemia virus.
Collapse
Affiliation(s)
- S Ethelberg
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
Zaiman AL, Lenz J. Transcriptional activation of a retrovirus enhancer by CBF (AML1) requires a second factor: evidence for cooperativity with c-Myb. J Virol 1996; 70:5618-29. [PMID: 8764076 PMCID: PMC190522 DOI: 10.1128/jvi.70.8.5618-5629.1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023] Open
Abstract
Transcriptional enhancer sequences within the long terminal repeats (LTRs) of murine leukemia viruses are the primary genetic determinants of the tissue specificity and potency of the oncogenic potential of these retroviruses. SL3-3 (SL3) is a murine leukemia virus that induces T-cell lymphomas. The LTR enhancer of this virus contains two binding sites for the transcription factor CBF (also called AML1 and PEBP2) that flank binding sites for c-Myb and the Ets family of factors. Using cotransfection assays in P19 cells, we report here that CBF and c-Myb cooperatively stimulate transcription from the SL3 LTR. By itself, c-Myb had no stimulatory effect on transcription. However, when cotransfected with a cDNA encoding one form of the alpha subunit of CBF called CBFalpha2-451, a level of transactivation higher than that seen with CBFalpha2-451 alone was detected. The negative regulatory domain near the carboxyl terminus of c-Myb did not affect this activity. Electrophoretic mobility shift assays indicated that CBF and c-Myb bind to DNA independently. Therefore, it appears that the cooperative stimulation of transcription by these factors occurs at a step in the process of transcription after the two factors are bound to the enhancer. Sequences near the carboxyl terminus of CBFalpha2-451 were important for cooperativity with c-Myb, consistent with previous reports that this region contains an activation domain. However, CBFalpha2-451 failed to activate transcription from a version of the SL3 LTR in which the enhancer was replaced with five tandem CBF-binding sites. Thus, it appears that transcriptional activation of the SL3 enhancer by CBF requires that an appropriate heterologous transcription factor be bound to a neighboring site in the regulatory sequences.
Collapse
Affiliation(s)
- A L Zaiman
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
46
|
Baum C, Eckert HG, Stockschläder M, Just U, Hegewisch-Becker S, Hildinger M, Uhde A, John J, Ostertag W. Improved retroviral vectors for hematopoietic stem cell protection and in vivo selection. JOURNAL OF HEMATOTHERAPY 1996; 5:323-9. [PMID: 8877707 DOI: 10.1089/scd.1.1996.5.323] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
Therapeutic gene transfer into hematopoietic cells is critically dependent on the evolution of methods that allow ex vivo expansion, high-frequency transduction, and selection of gene-modified long-term repopulating cells. Progress in this area needs elaboration of defined culture and transduction conditions for long-term repopulating cells and improvement of gene transfer systems. We have optimized retroviral vector constructions based on murine leukemia viruses (MuLV) to overcome the transcriptional repression encountered with the use of conventional Moloney MuLV (MoMuLV) vectors in early hematopoietic progenitor cells (HPC). Novel retroviral vectors, termed FMEV (for Friend-MCF/MESV hybrid vectors), were cloned that mediate greatly improved gene expression in the myeloerythroid compartment. Transfer of the selectable marker multidrug resistance 1 (mdr1), FMEV, in contrast to conventional MoMuLV-related vectors currently in use for clinical protocols, mediated background-free selectability of transduced human HPC in the presence of myeloablative doses of the cytostatic agent paclitaxel in vitro. Furthermore, FMEV also greatly improved chemo-protection of hematopoietic progenitor cells in a murine model system in vivo. Finally, when a second gene was transferred along with mdr1 in an FMEV-backbone, close to 100% coexpression was observed in multidrug-resistant colonies. These observations have significant consequences for a number of ongoing and planned gene therapy trials, for example, stem cell protection to reduce the myelotoxic side effects of anticancer chemotherapy, correction of inherited disorders involving hematopoietic cells, and antagonism of HIV infection.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Animals
- Antineoplastic Agents/pharmacology
- Bone Marrow/drug effects
- Cells, Cultured
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Friend murine leukemia virus/genetics
- Gammaretrovirus/genetics
- Gene Expression Regulation, Viral
- Gene Transfer Techniques
- Genes, MDR
- Genetic Vectors
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/drug effects
- Humans
- Methyltransferases/genetics
- Mice
- Mice, Inbred C57BL
- Mink Cell Focus-Inducing Viruses/genetics
- Moloney murine leukemia virus/genetics
- O(6)-Methylguanine-DNA Methyltransferase
- Paclitaxel/pharmacology
- Safety
- Selection, Genetic
- Transcription, Genetic
- Transplantation Conditioning
Collapse
Affiliation(s)
- C Baum
- Abteilung Zell- und Virusgenetik, Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie an der Universität Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Newbound GC, Andrews JM, O'Rourke JP, Brady JN, Lairmore MD. Human T-cell lymphotropic virus type 1 Tax mediates enhanced transcription in CD4+ T lymphocytes. J Virol 1996; 70:2101-6. [PMID: 8642630 PMCID: PMC190046 DOI: 10.1128/jvi.70.4.2101-2106.1996] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma and is associated with a variety of immunoregulatory disorders. HTLV-1 has been shown to bind to and infect a variety of hematopoietic and nonhematopoietic cells. However, both in vivo and in vitro, the provirus is mostly detected in and preferentially transforms CD4+ T cells. The molecular mechanism that determines the CD4+ T-cell tropism of HTLV-1 has not been determined. Using cocultures of purified CD4+ and CD8+ T cells with an HTLV-1 producing cell line, we measured viral transcription by using Northern (RNA) blot analysis, protein production by using a p24 antigen capture assay and flow cytometric analysis for viral envelope, and proviral integration by using DNA slot blot analysis. We further measured HTLV-1 long terminal repeat-directed transcription in purified CD4+ and CD8+ T cells by using transient transfection assays and in vitro transcription. We demonstrate a higher rate of viral transcription in primary CD4+ T cells than in CD8+ T cells. HTLV-1 protein production was 5- to 25-fold greater in CD4+ cocultures and mRNA levels were 5-fold greater in these cultures than in the CD8+ cocultures. Transient transfection and in vitro transcription indicated a modest increase in basal transcription in CD4+ T cells, whereas there was a 20-fold increase in reporter gene activity in CD4+ T cells cotransfected with tax. These data suggest that unique or activated transcription factors, particularly Tax-responsive factors in CD4+ T cells, recognize regulatory sequences within the HTLV-1 long terminal repeat, and this mediates the observed enhanced viral transcription and ultimately the cell tropism and leukemogenic potential of the virus.
Collapse
Affiliation(s)
- G C Newbound
- Center for Retrovirus Research, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
48
|
Rassart E, Houde J, Denicourt C, Ru M, Barat C, Edouard E, Poliquin L, Bergeron D. Molecular analysis and characterization of two myeloid leukemia inducing murine retroviruses. Curr Top Microbiol Immunol 1996; 211:201-10. [PMID: 8585951 DOI: 10.1007/978-3-642-85232-9_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Affiliation(s)
- E Rassart
- Département des sciences biologiques, Université du Québec à Montréal, Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Gessain A, de Thé G. Geographic and molecular epidemiology of primate T lymphotropic retroviruses: HTLV-I, HTLV-II, STLV-I, STLV-PP, and PTLV-L. Adv Virus Res 1996; 47:377-426. [PMID: 8895837 DOI: 10.1016/s0065-3527(08)60740-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Affiliation(s)
- A Gessain
- Département du SIDA et des Rétrovirus, Institut Pasteur, Paris, France
| | | |
Collapse
|
50
|
Gessain A, Mahieux R, de Thé G. Genetic variability and molecular epidemiology of human and simian T cell leukemia/lymphoma virus type I. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1996; 13 Suppl 1:S132-45. [PMID: 8797716 DOI: 10.1097/00042560-199600001-00022] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
In the past few years, numerous investigators have demonstrated that human T cell leukemia/lymphoma virus type I (HTLV-I) possesses a great genetic stability, and recent data indicate that viral amplification via clonal expansion of infected cells, rather than by reverse transcription, could explain this remarkable genetic stability. In parallel, the molecular epidemiology of HTLV-I proviruses showed that the few nucleotide changes observed between isolates were specific for the geographical origin of the patients but not for the type of the associated pathologies (adult T cell leukemia/lymphoma, tropical spastic paraparesis/HTLV-I-associated myelopathy). Thus, based on sequence and/or restriction fragment length polymorphism analysis of more than 250 HTLV-I isolates originating from the main viral endemic areas, three major molecular geographical subtypes (or genotypes) emerged, strongly supported by phylogenetic analysis (high bootstrap values). Each of these genotypes (Cosmopolitan, Central African, and Melanesian) appeared to arise from ancient interspecies transmission between monkeys infected with simian T cell leukemia/lymphoma virus type I and humans. Furthermore, careful sequences analyses indicate that, within (or alongside) these three main genotypes, there are molecular subgroups defined clearly by several specific mutations but not always supported by phylogenetic analyses. Thus in Japan, there is evidence for two ancestral HTLV-I lineages: the classical Cosmopolitan genotype, representing approximately 25% of the HTLV-I present in Japan and clustering in the southern islands; and a related subgroup that we called the Japanese group. Similarly, within the Central African cluster, there are molecular subgroups defined by specific substitutions in either the env or the long terminal repeat. Furthermore, recent data from our laboratory indicate the presence of a new molecular phylogenetic group (fourth genotype) found among inhabitants of Central Africa, particularly in Pygmies. While geographical subtypes vary from 2 to 8% between themselves, HTLV-I quasi-species present within an individual appear to be much lower, with a variability of < 0.5%.
Collapse
Affiliation(s)
- A Gessain
- Départment du SIDA et des Rétrovirus, Institut Pasteur, Paris, France
| | | | | |
Collapse
|