1
|
Lee D, Niu L, Ding S, Zhu H, Tolbert WD, Medjahed H, Beaudoin-Bussières G, Abrams C, Finzi A, Pazgier M, Smith AB. Optimization of a Piperidine CD4-Mimetic Scaffold Sensitizing HIV-1 Infected Cells to Antibody-Dependent Cellular Cytotoxicity. ACS Med Chem Lett 2024; 15:1961-1969. [PMID: 39563795 PMCID: PMC11571091 DOI: 10.1021/acsmedchemlett.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
The ability of the HIV-1 accessory proteins Nef and Vpu to decrease CD4 protects infected cells from antibody-dependent cellular cytotoxicity (ADCC) by limiting the exposure of vulnerable epitopes to envelope glycoprotein (Env). Small-molecule CD4 mimetics (CD4mcs) based on piperidine scaffolds represent a new family of agents capable of sensitizing HIV-1-infected cells to ADCC by exposing CD4-induced (CD4i) epitopes on Env that are recognized by non-neutralizing antibodies which are abundant in plasma of people living with HIV. Here, we employed the combined methods of parallel synthesis, structure-based design, and optimization to generate a new line of piperidine-based CD4mcs, which sensitize HIV-1 infected cells to ADCC activity. The X-ray crystallographic study of the CD4mcs within the gp120 residues suggests that the positioning of the CD4mc inside the Phe43 cavity and synergistic contact of the CD4mc with the β20-21 loop and the α1-helix lead to improved antiviral activity.
Collapse
Affiliation(s)
- Daniel Lee
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ling Niu
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Shilei Ding
- Centre de Recherche du CHUM, Montréal, Quebec H2X 0A9, Canada
| | - Huile Zhu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Halima Medjahed
- Centre de Recherche du CHUM, Montréal, Quebec H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Quebec H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Quebec H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Richard J, Sannier G, Zhu L, Prévost J, Marchitto L, Benlarbi M, Beaudoin-Bussières G, Kim H, Sun Y, Chatterjee D, Medjahed H, Bourassa C, Delgado GG, Dubé M, Kirchhoff F, Hahn BH, Kumar P, Kaufmann DE, Finzi A. CD4 downregulation precedes Env expression and protects HIV-1-infected cells from ADCC mediated by non-neutralizing antibodies. mBio 2024; 15:e0182724. [PMID: 39373535 PMCID: PMC11559134 DOI: 10.1128/mbio.01827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024] Open
Abstract
HIV-1 envelope glycoprotein (Env) conformation substantially impacts antibody-dependent cellular cytotoxicity (ADCC). Envs from primary HIV-1 isolates adopt a prefusion "closed" conformation, which is targeted by broadly neutralizing antibodies (bnAbs). CD4 binding drives Env into more "open" conformations, which are recognized by non-neutralizing Abs (nnAbs). To better understand Env-Ab and Env-CD4 interaction in CD4+ T cells infected with HIV-1, we simultaneously measured antibody binding and HIV-1 mRNA expression using multiparametric flow cytometry and RNA flow fluorescent in situ hybridization (FISH) techniques. We observed that env mRNA is almost exclusively expressed by HIV-1 productively infected cells that already downmodulated CD4. This suggests that CD4 downmodulation precedes env mRNA expression. Consequently, productively infected cells express "closed" Envs on their surface, which renders them resistant to nnAbs. Cells recognized by nnAbs were all env mRNA negative, indicating Ab binding through shed gp120 or virions attached to their surface. Consistent with these findings, treatment of HIV-1-infected humanized mice with the ADCC-mediating nnAb A32 failed to lower viral replication or reduce the size of the viral reservoir. These findings confirm the resistance of productively infected CD4+ T cells to nnAbs-mediated ADCC and question the rationale of immunotherapy approaches using this strategy. IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) represents an effective immune response for clearing virally infected cells, making ADCC-mediating antibodies promising therapeutic candidates for HIV-1 cure strategies. Broadly neutralizing antibodies (bNAbs) target epitopes present on the native "closed" envelope glycoprotein (Env), while non-neutralizing antibodies (nnAbs) recognize epitopes exposed upon Env-CD4 interaction. Here, we provide evidence that env mRNA is predominantly expressed by productively infected cells that have already downmodulated cell-surface CD4. This indicates that CD4 downmodulation by HIV-1 precedes Env expression, making productively infected cells resistant to ADCC mediated by nnAbs but sensitive to those mediated by bnAbs. These findings offer critical insights for the development of immunotherapy-based strategies aimed at targeting and eliminating productively infected cells in people living with HIV.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Gérémy Sannier
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Li Zhu
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Hongil Kim
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yaping Sun
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | - Mathieu Dubé
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H. Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel E. Kaufmann
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, California, USA
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Marchitto L, Richard J, Prévost J, Tauzin A, Yang D, Chiu TJ, Chen HC, Díaz-Salinas MA, Nayrac M, Benlarbi M, Beaudoin-Bussières G, Anand SP, Dionne K, Bélanger É, Chatterjee D, Medjahed H, Bourassa C, Tolbert WD, Hahn BH, Munro JB, Pazgier M, Smith AB, Finzi A. The combination of three CD4-induced antibodies targeting highly conserved Env regions with a small CD4-mimetic achieves potent ADCC activity. J Virol 2024; 98:e0101624. [PMID: 39248460 PMCID: PMC11495009 DOI: 10.1128/jvi.01016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
The majority of naturally elicited antibodies against the HIV-1 envelope glycoproteins (Env) are non-neutralizing (nnAbs) because they are unable to recognize the Env trimer in its native "closed" conformation. Nevertheless, it has been shown that nnAbs have the potential to eliminate HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC) provided that Env is present on the cell surface in its "open" conformation. This is because most nnAbs recognize epitopes that become accessible only after Env interaction with CD4 and the exposure of epitopes that are normally occluded in the closed trimer. HIV-1 limits this vulnerability by downregulating CD4 from the surface of infected cells, thus preventing a premature encounter of Env with CD4. Small CD4-mimetics (CD4mc) sensitize HIV-1-infected cells to ADCC by opening the Env glycoprotein and exposing CD4-induced (CD4i) epitopes. There are two families of CD4i nnAbs, termed anti-cluster A and anti-CoRBS Abs, which are known to mediate ADCC in the presence of CD4mc. Here, we performed Fab competition experiments and found that anti-gp41 cluster I antibodies comprise a major fraction of the plasma ADCC activity in people living with HIV (PLWH). Moreover, addition of gp41 cluster I antibodies to cluster A and CoRBS antibodies greatly enhanced ADCC-mediated cell killing in the presence of a potent indoline CD4mc, CJF-III-288. This cocktail outperformed broadly neutralizing antibodies and even showed activity against HIV-1-infected monocyte-derived macrophages. Thus, combining CD4i antibodies with different specificities achieves maximal ADCC activity, which may be of utility in HIV cure strategies.IMPORTANCEThe elimination of HIV-1-infected cells remains an important medical goal. Although current antiretroviral therapy decreases viral loads below detection levels, it does not eliminate latently infected cells that form the viral reservoir. Here, we developed a cocktail of non-neutralizing antibodies targeting highly conserved Env regions and combined it with a potent indoline CD4mc. This combination exhibited potent ADCC activity against HIV-1-infected primary CD4 + T cells as well as monocyte-derived macrophages, suggesting its potential utility in decreasing the size of the viral reservoir.
Collapse
Affiliation(s)
- Lorie Marchitto
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Derek Yang
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ta-Jung Chiu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marco A. Díaz-Salinas
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Manon Nayrac
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Beatrice H. Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| |
Collapse
|
4
|
Snow BJ, Keles NK, Grunst MW, Janaka SK, Behrens RT, Evans DT. Potent broadly neutralizing antibodies mediate efficient antibody-dependent phagocytosis of HIV-infected cells. PLoS Pathog 2024; 20:e1012665. [PMID: 39466835 PMCID: PMC11542898 DOI: 10.1371/journal.ppat.1012665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2024] [Revised: 11/07/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
Antibody-dependent cellular phagocytosis (ADCP) has been implicated in protection against HIV-1. However, methods for measuring ADCP currently rely on the phagocytosis of gp120- or gp41-coated beads that do not reflect physiologically relevant conformations of the viral envelope glycoprotein or the size of a virus-infected cell. We therefore developed a novel approach for measuring ADCP of HIV-infected cells expressing natural conformations of Env. A monocytic cell line (THP-1 cells) or primary human monocytes were incubated with a CD4+ T cell line that expresses eGFP upon HIV-1 infection in the presence of antibodies and ADCP was measured as the accumulation of eGFP+ material by flow cytometry. The internalization of HIV-infected cells by monocytes was confirmed visually by image-capture flow cytometry. Cytoskeletal remodeling, pseudopod formation and phagocytosis were also observed by confocal microscopy. We found that potent broadly neutralizing antibodies (bnAbs), but not non-neutralizing antibodies (nnAbs), mediate efficient phagocytosis of cells infected with either primary or lab-adapted HIV-1. A nnAb to a CD4-inducible epitope of gp120 (A32) failed to enable ADCP of HIV-infected cells but mediated efficient phagocytosis of gp120-coated beads. Conversely, a bnAb specific to intact Env trimers (PGT145) mediated potent ADCP of HIV-infected cells but did not facilitate the uptake of gp120-coated beads. These results underscore the importance of measuring ADCP of HIV-infected cells expressing physiologically relevant conformations of Env and show that most antibodies that are capable of binding to Env trimers on virions to neutralize virus infectivity are also capable of binding to Env on the surface of virus-infected cells to mediate ADCP.
Collapse
Affiliation(s)
- Brian J. Snow
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nida K. Keles
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Fert A, Richard J, Raymond Marchand L, Planas D, Routy JP, Chomont N, Finzi A, Ancuta P. Metformin facilitates viral reservoir reactivation and their recognition by anti-HIV-1 envelope antibodies. iScience 2024; 27:110670. [PMID: 39252967 PMCID: PMC11381840 DOI: 10.1016/j.isci.2024.110670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2024] [Revised: 05/27/2024] [Accepted: 08/01/2024] [Indexed: 09/11/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) positively regulates multiple steps of the HIV-1 replication cycle. We previously reported that a 12-week supplementation of antiretroviral therapy (ART) with metformin, an indirect mTOR inhibitor used in type-2 diabetes treatment, reduced mTOR activation and HIV transcription in colon-infiltrating CD4+ T cells, together with systemic inflammation in nondiabetic people with HIV-1 (PWH). Herein, we investigated the antiviral mechanisms of metformin. In a viral outgrowth assay performed with CD4+ T cells from ART-treated PWH, and upon infection in vitro with replication-competent and VSV-G-pseudotyped HIV-1, metformin decreased virion release, but increased the frequency of productively infected CD4lowHIV-p24+ T cells. These observations coincided with increased BST2/tetherin (HIV release inhibitor) and Bcl-2 (pro-survival factor) expression, and improved recognition of productively infected T cells by HIV-1 envelope antibodies. Thus, metformin exerts pleiotropic effects on post-integration steps of the HIV-1 replication cycle and may be used to accelerate viral reservoir decay in ART-treated PWH.
Collapse
Affiliation(s)
- Augustine Fert
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jonathan Richard
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | - Delphine Planas
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Nicolas Chomont
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Andrés Finzi
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Petronela Ancuta
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
de Taeye SW, Schriek AI, Umotoy JC, Grobben M, Burger JA, Sanders RW, Vidarsson G, Wuhrer M, Falck D, Kootstra NA, van Gils MJ. Afucosylated broadly neutralizing antibodies enhance clearance of HIV-1 infected cells through cell-mediated killing. Commun Biol 2024; 7:964. [PMID: 39122901 PMCID: PMC11316088 DOI: 10.1038/s42003-024-06659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to delay viral rebound when administered to people with HIV-1 (PWH) during anti-retroviral therapy (ART) interruption. To further enhance the performance of bNAbs through their Fc effector functions, in particular NK cell-mediated killing of HIV-1 infected cells, we have produced a panel of glyco-engineered (afucosylated) bNAbs with enhanced affinity for Fc gamma receptor IIIa. These afucosylated anti-HIV-1 bNAbs enhance NK cell activation and degranulation compared to fucosylated counterparts even at low antigen density. NK cells from PWH expressing exhaustion markers PD-1 and TIGIT are activated in a similar fashion by afucosylated bNAbs as NK cell from HIV-1 negative individuals. Killing of HIV-1 infected cells is most effective with afucosylated bNAbs 2G12, N6, PGT151 and PGDM1400, whereas afucosylated PGT121 and non-neutralizing antibody A32 only induce minor NK cell-mediated killing. These data indicate that the approach angle and affinity of Abs influence the capacity to induce antibody-dependent cellular cytotoxicity. Thus, afucosylated bNAbs have the capacity to induce NK cell-mediated killing of infected cells, which warrants further investigation of afucosylated bNAb administration in vivo, aiming for reduction of the viral reservoir and ART free durable control.
Collapse
Affiliation(s)
- Steven W de Taeye
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands.
| | - Angela I Schriek
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands
| | - Jeffrey C Umotoy
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands
| | - Marloes Grobben
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands
| | - Judith A Burger
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands
| | - Rogier W Sanders
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands
- Weill Medical College of Cornell University, Department of Microbiology and Immunology, New York, NY, 10065, USA
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner, Amsterdam UMC location University of Amsterdam, Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, 1066 CX, Amsterdam, The Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marit J van Gils
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Institute for Immunology and Infectious diseases, Infectious diseases, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Marchitto L, Tauzin A, Benlarbi M, Beaudoin-Bussières G, Dionne K, Bélanger É, Chatterjee D, Bourassa C, Medjahed H, Yang D, Chiu TJ, Chen HC, III ABS, Richard J, Finzi A. NTB-A and 2B4 Natural Killer Cell Receptors Modulate the Capacity of a Cocktail of Non-Neutralizing Antibodies and a Small CD4-Mimetic to Eliminate HIV-1-Infected Cells by Antibody-Dependent Cellular Cytotoxicity. Viruses 2024; 16:1167. [PMID: 39066329 PMCID: PMC11281563 DOI: 10.3390/v16071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Natural Killer (NK) cells have the potential to eliminate HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC). NK cell activation is tightly regulated by the engagement of its inhibitory and activating receptors. The activating receptor CD16 drives ADCC upon binding to the Fc portion of antibodies; NK cell activation is further sustained by the co-engagement of activating receptors NTB-A and 2B4. During HIV-1 infection, Nef and Vpu accessory proteins contribute to ADCC escape by downregulating the ligands of NTB-A and 2B4. HIV-1 also evades ADCC by keeping its envelope glycoproteins (Env) in a "closed" conformation which effectively masks epitopes recognized by non-neutralizing antibodies (nnAbs) which are abundant in the plasma of people living with HIV. To achieve this, the virus uses its accessory proteins Nef and Vpu to downregulate the CD4 receptor, which otherwise interacts with Env and exposes the epitopes recognized by nnAbs. Small CD4-mimetic compounds (CD4mc) have the capacity to expose these epitopes, thus sensitizing infected cells to ADCC. Given the central role of NK cell co-activating receptors NTB-A and 2B4 in Fc-effector functions, we studied their contribution to CD4mc-mediated ADCC. Despite the fact that their ligands are partially downregulated by HIV-1, we found that both co-activating receptors significantly contribute to CD4mc sensitization of HIV-1-infected cells to ADCC.
Collapse
Affiliation(s)
- Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Étienne Bélanger
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | - Halima Medjahed
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada (J.R.)
| | - Derek Yang
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ta-Jung Chiu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amos B. Smith III
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| |
Collapse
|
8
|
Burnie J, Fernandes C, Patel A, Persaud AT, Chaphekar D, Wei D, Lee TKH, Tang VA, Cicala C, Arthos J, Guzzo C. Applying Flow Virometry to Study the HIV Envelope Glycoprotein and Differences Across HIV Model Systems. Viruses 2024; 16:935. [PMID: 38932227 PMCID: PMC11209363 DOI: 10.3390/v16060935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The HIV envelope glycoprotein (Env) is a trimeric protein that facilitates viral binding and fusion with target cells. As the sole viral protein on the HIV surface, Env is important both for immune responses to HIV and in vaccine designs. Targeting Env in clinical applications is challenging due to its heavy glycosylation, high genetic variability, conformational camouflage, and its low abundance on virions. Thus, there is a critical need to better understand this protein. Flow virometry (FV) is a useful methodology for phenotyping the virion surface in a high-throughput, single virion manner. To demonstrate the utility of FV to characterize Env, we stained HIV virions with a panel of 85 monoclonal antibodies targeting different regions of Env. A broad range of antibodies yielded robust staining of Env, with V3 antibodies showing the highest quantitative staining. A subset of antibodies tested in parallel on viruses produced in CD4+ T cell lines, HEK293T cells, and primary cells showed that the cellular model of virus production can impact Env detection. Finally, in addition to being able to highlight Env heterogeneity on virions, we show FV can sensitively detect differences in Env conformation when soluble CD4 is added to virions before staining.
Collapse
Affiliation(s)
- Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Claire Fernandes
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Ayushi Patel
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Arvin Tejnarine Persaud
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Deepa Chaphekar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.W.); (C.C.); (J.A.)
| | - Timothy Kit Hin Lee
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
| | - Vera A. Tang
- Flow Cytometry and Virometry Core Facility, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.W.); (C.C.); (J.A.)
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (D.W.); (C.C.); (J.A.)
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; (J.B.); (C.F.); (A.P.); (A.T.P.); (D.C.); (T.K.H.L.)
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
9
|
Benlarbi M, Richard J, Bourassa C, Tolbert WD, Chartrand-Lefebvre C, Gendron-Lepage G, Sylla M, El-Far M, Messier-Peet M, Guertin C, Turcotte I, Fromentin R, Verly MM, Prévost J, Clark A, Mothes W, Kaufmann DE, Maldarelli F, Chomont N, Bégin P, Tremblay C, Baril JG, Trottier B, Trottier S, Duerr R, Pazgier M, Durand M, Finzi A. Plasma Human Immunodeficiency Virus 1 Soluble Glycoprotein 120 Association With Correlates of Immune Dysfunction and Inflammation in Antiretroviral Therapy-Treated Individuals With Undetectable Viremia. J Infect Dis 2024; 229:763-774. [PMID: 38035854 PMCID: PMC10938206 DOI: 10.1093/infdis/jiad503] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Chronic inflammation persists in some people living with human immunodeficiency virus (HIV) during antiretroviral therapy and is associated with premature aging. The glycoprotein 120 (gp120) subunit of HIV-1 envelope sheds and can be detected in plasma, showing immunomodulatory properties even in the absence of detectable viremia. We evaluated whether plasma soluble gp120 (sgp120) and a family of gp120-specific anti-cluster A antibodies, linked to CD4 depletion in vitro, contribute to chronic inflammation, immune dysfunction, and subclinical cardiovascular disease in participants of the Canadian HIV and Aging Cohort Study with undetectable viremia. METHODS Cross-sectional assessment of sgp120 and anti-cluster A antibodies was performed in 386 individuals from the cohort. Their association with proinflammatory cytokines and subclinical coronary artery disease was assessed using linear regression models. RESULTS High levels of sgp120 and anti-cluster A antibodies were inversely correlated with CD4+ T cell count and CD4/CD8 ratio. The presence of sgp120 was associated with increased levels of interleukin 6. In participants with detectable atherosclerotic plaque and detectable sgp120, anti-cluster A antibodies and their combination with sgp120 levels correlated positively with the total volume of atherosclerotic plaques. CONCLUSIONS This study showed that sgp120 may act as a pan toxin causing immune dysfunction and sustained inflammation in a subset of people living with HIV, contributing to the development of premature comorbid conditions.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | - William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Carl Chartrand-Lefebvre
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montreal, Québec, Canada
| | | | - Mohamed Sylla
- Centre de Recherche du CHUM, Montréal, Québec, Canada
| | | | | | - Camille Guertin
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Isabelle Turcotte
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Rémi Fromentin
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | | | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Andrew Clark
- ViiV Healthcare, Global Medical Affairs, Middlesex, United Kingdom
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Philippe Bégin
- Section of Allergy, Immunology and Rheumatology, Department of Pediatrics, CHU Sainte-Justine, Montréal, Québec, Canada
- Department of Medicine, Faculty of Medecine, Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Guy Baril
- Clinique de Médecine Urbaine du Quartier Latin, Montréal, Québec, Canada
- Département de Médecine Familiale, Université de Montréal, Montréal, Québec, Canada
| | - Benoit Trottier
- Clinique de Médecine Urbaine du Quartier Latin, Montréal, Québec, Canada
- Département de Médecine Familiale, Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Trottier
- Département de microbiologie-infectiologie et d'immunologie, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec, Canada
| | - Ralf Duerr
- Vaccine Center, NYU Grossman School of Medicine, NewYork, New York, USA
- Department of Medicine, NYU Grossman School of Medicine, NewYork, New York, USA
- Department of Microbiology, NYU Grossman School of Medicine, NewYork, New York, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Madeleine Durand
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Department of Medicine, Faculty of Medecine, Centre Hospitalier de l’Université de Montréal, Montréal, Québec, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
10
|
Fert A, Richard J, Marchand LR, Planas D, Routy JP, Chomont N, Finzi A, Ancuta P. Metformin Enhances Antibody-Mediated Recognition of HIV-Infected CD4 + T-Cells by Decreasing Viral Release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580166. [PMID: 38464135 PMCID: PMC10925111 DOI: 10.1101/2024.02.15.580166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 03/12/2024]
Abstract
The mechanistic target of rapamycin (mTOR) positively regulates multiple steps of the HIV-1 replication cycle. We previously reported that a 12-weeks supplementation of antiretroviral therapy (ART) with metformin, an indirect mTOR inhibitor used in type-2 diabetes treatment, reduced mTOR activation and HIV transcription in colon-infiltrating CD4+ T-cells, together with systemic inflammation in nondiabetic people with HIV-1 (PWH). Herein, we investigated the antiviral mechanisms of metformin. In a viral outgrowth assay performed with CD4+ T-cells from ART-treated PWH, and upon infection in vitro with replication-competent and VSV-G-pseudotyped HIV-1, metformin decreased virion release, but increased the frequency of productively infected CD4lowHIV-p24+ T-cells. These observations coincided with increased BST2/Tetherin (HIV release inhibitor) and Bcl-2 (pro-survival factor) expression, and improved recognition of productively infected T-cells by HIV-1 Envelope antibodies. Thus, metformin exerts pleiotropic effects on post-transcription/translation steps of the HIV-1 replication cycle and may be used to accelerate viral reservoir decay in ART-treated PWH.
Collapse
Affiliation(s)
- Augustine Fert
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Jonathan Richard
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Laurence Raymond Marchand
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
| | - Delphine Planas
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Nicolas Chomont
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Andrés Finzi
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Petronela Ancuta
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montréal, QC, H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, H3C 3J7, Canada
- Lead Contact
| |
Collapse
|
11
|
Marchitto L, Benlarbi M, Prévost J, Laumaea A, Descôteaux-Dinelle J, Medjahed H, Bourassa C, Gendron-Lepage G, Kirchhoff F, Sauter D, Hahn BH, Finzi A, Richard J. Impact of HIV-1 Vpu-mediated downregulation of CD48 on NK-cell-mediated antibody-dependent cellular cytotoxicity. mBio 2023; 14:e0078923. [PMID: 37404017 PMCID: PMC10470595 DOI: 10.1128/mbio.00789-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2023] [Accepted: 05/18/2023] [Indexed: 07/06/2023] Open
Abstract
HIV-1 evades antibody-dependent cellular cytotoxicity (ADCC) responses not only by controlling Env conformation and quantity at the cell surface but also by altering NK cell activation via the downmodulation of several ligands of activating and co-activating NK cell receptors. The signaling lymphocyte activation molecule (SLAM) family of receptors, which includes NTB-A and 2B4, act as co-activating receptors to sustain NK cell activation and cytotoxic responses. These receptors cooperate with CD16 (FcγRIII) and other activating receptors to trigger NK cell effector functions. In that context, Vpu-mediated downregulation of NTB-A on HIV-1-infected CD4 T cells was shown to prevent NK cell degranulation via an homophilic interaction, thus contributing to ADCC evasion. However, less is known on the capacity of HIV-1 to evade 2B4-mediated NK cell activation and ADCC. Here, we show that HIV-1 downregulates the ligand of 2B4, CD48, from the surface of infected cells in a Vpu-dependent manner. This activity is conserved among Vpu proteins from the HIV-1/SIVcpz lineage and depends on conserved residues located in its transmembrane domain and dual phosphoserine motif. We show that NTB-A and 2B4 stimulate CD16-mediated NK cell degranulation and contribute to ADCC responses directed to HIV-1-infected cells to the same extent. Our results suggest that HIV-1 has evolved to downmodulate the ligands of both SLAM receptors to evade ADCC. IMPORTANCE Antibody-dependent cellular cytotoxicity (ADCC) can contribute to the elimination of HIV-1-infected cells and HIV-1 reservoirs. An in-depth understanding of the mechanisms used by HIV-1 to evade ADCC might help develop novel approaches to reduce the viral reservoirs. Members of the signaling lymphocyte activation molecule (SLAM) family of receptors, such as NTB-A and 2B4, play a key role in stimulating NK cell effector functions, including ADCC. Here, we show that Vpu downmodulates CD48, the ligand of 2B4, and this contributes to protect HIV-1-infected cells from ADCC. Our results highlight the importance of the virus to prevent the triggering of the SLAM receptors to evade ADCC.
Collapse
Affiliation(s)
- Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jade Descôteaux-Dinelle
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Beatrice H. Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Benlarbi M, Richard J, Bourassa C, Tolbert WD, Chartrand-Lefebvre C, Gendron-Lepage G, Sylla M, El-Far M, Messier-Peet M, Guertin C, Turcotte I, Fromentin R, Verly MM, Prévost J, Clark A, Mothes W, Kaufmann DE, Maldarelli F, Chomont N, Bégin P, Tremblay C, Baril JG, Trottier B, Trottier S, Duerr R, Pazgier M, Durand M, Finzi A. Plasmatic HIV-1 soluble gp120 is associated with immune dysfunction and inflammation in ART-treated individuals with undetectable viremia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.15.23294128. [PMID: 37645879 PMCID: PMC10462214 DOI: 10.1101/2023.08.15.23294128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 08/31/2023]
Abstract
Background Chronic inflammation persists in some people living with HIV (PLWH), even during antiretroviral therapy (ART) and is associated with premature aging. The gp120 subunit of the HIV-1 envelope glycoprotein can shed from viral and cellular membranes and can be detected in plasma and tissues, showing immunomodulatory properties even in the absence of detectable viremia. We evaluated whether plasmatic soluble gp120 (sgp120) and a family of gp120-specific anti-cluster A antibodies, which were previously linked to CD4 depletion in vitro , could contribute to chronic inflammation, immune dysfunction, and sub-clinical cardiovascular disease in participants of the Canadian HIV and Aging cohort (CHACS) with undetectable viremia. Methods Cross-sectional assessment of plasmatic sgp120 and anti-cluster A antibodies was performed in 386 individuals from CHACS. Their association with pro-inflammatory cytokines, as well as subclinical coronary artery disease measured by computed tomography coronary angiography was assessed using linear regression models. Results In individuals with high levels of sgp120, anti-cluster A antibodies inversely correlated with CD4 count (p=0.042) and CD4:CD8 ratio (p=0.004). The presence of sgp120 was associated with increased plasma levels of IL-6. In participants with detectable atherosclerotic plaque and detectable sgp120, sgp120 levels, anti-cluster A antibodies and their combination correlated positively with the total volume of atherosclerotic plaques (p=0.01, 0.018 and 0.006, respectively). Conclusion Soluble gp120 may act as a pan toxin causing immune dysfunction and sustained inflammation in a subset of PLWH, contributing to the development of premature comorbidities. Whether drugs targeting sgp120 could mitigate HIV-associated comorbidities in PLWH with suppressed viremia warrants further studies. Key points Soluble gp120 is detected in the plasma of people living with HIV-1 with undetectable viremia. The presence of soluble gp120 and anti-cluster A antibodies is associated with immune dysfunction, chronic inflammation, and sub-clinical cardiovascular disease.
Collapse
|
13
|
Richard J, Prévost J, Bourassa C, Brassard N, Boutin M, Benlarbi M, Goyette G, Medjahed H, Gendron-Lepage G, Gaudette F, Chen HC, Tolbert WD, Smith AB, Pazgier M, Dubé M, Clark A, Mothes W, Kaufmann DE, Finzi A. Temsavir blocks the immunomodulatory activities of HIV-1 soluble gp120. Cell Chem Biol 2023; 30:540-552.e6. [PMID: 36958337 PMCID: PMC10198848 DOI: 10.1016/j.chembiol.2023.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2022] [Revised: 02/03/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
While HIV-1-mediated CD4 downregulation protects infected cells from antibody-dependent cellular cytotoxicity (ADCC), shed gp120 binds to CD4 on uninfected bystander CD4+ T cells, sensitizing them to ADCC mediated by HIV+ plasma. Soluble gp120-CD4 interaction on multiple immune cells also triggers a cytokine burst. The small molecule temsavir acts as an HIV-1 attachment inhibitor by preventing envelope glycoprotein (Env)-CD4 interaction and alters the overall antigenicity of Env by affecting its processing and glycosylation. Here we show that temsavir also blocks the immunomodulatory activities of shed gp120. Temsavir prevents shed gp120 from interacting with uninfected bystander CD4+ cells, protecting them from ADCC responses and preventing a cytokine burst. Mechanistically, this depends on temsavir's capacity to prevent soluble gp120-CD4 interaction, to reduce gp120 shedding, and to alter gp120 antigenicity. This suggests that the clinical benefits provided by temsavir could extend beyond blocking viral entry.
Collapse
Affiliation(s)
- Jonathan Richard
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | | | | | - Marianne Boutin
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | | | | | | | - Fleur Gaudette
- Plateforme de Pharmacocinétique, Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Hung-Ching Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - William D Tolbert
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Andrew Clark
- ViiV Healthcare, Global Medical Affairs, Middlesex TW8 9GS, UK
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada.
| |
Collapse
|
14
|
Ding S, Tolbert WD, Zhu H, Lee D, Marchitto L, Higgins T, Zhao X, Nguyen D, Sherburn R, Richard J, Gendron-Lepage G, Medjahed H, Mohammadi M, Abrams C, Pazgier M, Smith AB, Finzi A. Piperidine CD4-Mimetic Compounds Expose Vulnerable Env Epitopes Sensitizing HIV-1-Infected Cells to ADCC. Viruses 2023; 15:1185. [PMID: 37243271 PMCID: PMC10220648 DOI: 10.3390/v15051185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The ability of the HIV-1 accessory proteins Nef and Vpu to decrease CD4 levels contributes to the protection of infected cells from antibody-dependent cellular cytotoxicity (ADCC) by preventing the exposure of Env vulnerable epitopes. Small-molecule CD4 mimetics (CD4mc) based on the indane and piperidine scaffolds such as (+)-BNM-III-170 and (S)-MCG-IV-210 sensitize HIV-1-infected cells to ADCC by exposing CD4-induced (CD4i) epitopes recognized by non-neutralizing antibodies that are abundantly present in plasma from people living with HIV. Here, we characterize a new family of CD4mc, (S)-MCG-IV-210 derivatives, based on the piperidine scaffold which engages the gp120 within the Phe43 cavity by targeting the highly conserved Asp368 Env residue. We utilized structure-based approaches and developed a series of piperidine analogs with improved activity to inhibit the infection of difficult-to-neutralize tier-2 viruses and sensitize infected cells to ADCC mediated by HIV+ plasma. Moreover, the new analogs formed an H-bond with the α-carboxylic acid group of Asp368, opening a new avenue to enlarge the breadth of this family of anti-Env small molecules. Overall, the new structural and biological attributes of these molecules make them good candidates for strategies aimed at the elimination of HIV-1-infected cells.
Collapse
Affiliation(s)
- Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - William D. Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA (D.N.)
| | - Huile Zhu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Lee
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Tyler Higgins
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xuchen Zhao
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dung Nguyen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA (D.N.)
| | - Rebekah Sherburn
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA (D.N.)
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | | | | | - Mohammadjavad Mohammadi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA (D.N.)
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
15
|
Grunst MW, Ladd RA, Clark NM, Gil HM, Klenchin VA, Mason R, Franchini G, Roederer M, Evans DT. Antibody-dependent cellular cytotoxicity, infected cell binding and neutralization by antibodies to the SIV envelope glycoprotein. PLoS Pathog 2023; 19:e1011407. [PMID: 37253062 PMCID: PMC10256149 DOI: 10.1371/journal.ppat.1011407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2022] [Revised: 06/09/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Antibodies specific for diverse epitopes of the simian immunodeficiency virus envelope glycoprotein (SIV Env) have been isolated from rhesus macaques to provide physiologically relevant reagents for investigating antibody-mediated protection in this species as a nonhuman primate model for HIV/AIDS. With increasing interest in the contribution of Fc-mediated effector functions to protective immunity, we selected thirty antibodies representing different classes of SIV Env epitopes for a comparison of antibody-dependent cellular cytotoxicity (ADCC), binding to Env on the surface of infected cells and neutralization of viral infectivity. These activities were measured against cells infected with neutralization-sensitive (SIVmac316 and SIVsmE660-FL14) and neutralization-resistant (SIVmac239 and SIVsmE543-3) viruses representing genetically distinct isolates. Antibodies to the CD4-binding site and CD4-inducible epitopes were identified with especially potent ADCC against all four viruses. ADCC correlated well with antibody binding to virus-infected cells. ADCC also correlated with neutralization. However, several instances of ADCC without detectable neutralization or neutralization without detectable ADCC were observed. The incomplete correspondence between ADCC and neutralization shows that some antibody-Env interactions can uncouple these antiviral activities. Nevertheless, the overall correlation between neutralization and ADCC implies that most antibodies that are capable of binding to Env on the surface of virions to block infectivity are also capable of binding to Env on the surface of virus-infected cells to direct their elimination by ADCC.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ruby A. Ladd
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
16
|
Ding S, Tolbert WD, Zhu H, Lee D, Higgins T, Zhao X, Nguyen D, Sherburn R, Richard J, Lepage GG, Medjahed H, Mohammadi M, Abrams C, Pazgier M, Smith AB, Finzi A. Piperidine CD4-mimetic compounds expose vulnerable Env epitopes sensitizing HIV-1-infected cells to ADCC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533923. [PMID: 36993184 PMCID: PMC10055368 DOI: 10.1101/2023.03.23.533923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 04/22/2023]
Abstract
The ability of HIV-1 accessory proteins Nef and Vpu to decrease CD4 levels contributes to the protection of infected cells from antibody-dependent cellular cytotoxicity (ADCC) by preventing the exposure of Env vulnerable epitopes. Small-molecule CD4 mimetics (CD4mc) based on the indane and piperidine scaffolds such as (+)-BNM-III-170 and ( S )-MCG-IV-210 sensitize HIV-1 infected cells to ADCC by exposing CD4-induced (CD4i) epitopes recognized by non-neutralizing antibodies abundantly present in plasma from people living with HIV. Here, we characterize a new family of CD4mc, ( S )-MCG-IV-210 derivatives, based on the piperidine scaffold which engage the gp120 within the Phe43 cavity by targeting the highly-conserved Asp 368 Env residue. We utilized structure-based approaches and developed a series of piperidine analogs with improved activity to inhibit infection of difficult-to-neutralize tier-2 viruses and sensitize infected cells to ADCC mediated by HIV+ plasma. Moreover, the new analogs formed an H-bond with the α-carboxylic acid group of Asp 368 , opening a new avenue to enlarge the breadth of this family of anti-Env small molecules. Overall, the new structural and biological attributes of these molecules make them good candidates for strategies aimed at the elimination HIV-1-infected cells.
Collapse
Affiliation(s)
- Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - William D. Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Huile Zhu
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Daniel Lee
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Tyler Higgins
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Xuchen Zhao
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Dung Nguyen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Rebekah Sherburn
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
- Corresponding authors, Andrés Finzi, ; Amos B. Smith III, ; Marzena Pazgier,
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
- Corresponding authors, Andrés Finzi, ; Amos B. Smith III, ; Marzena Pazgier,
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Corresponding authors, Andrés Finzi, ; Amos B. Smith III, ; Marzena Pazgier,
| |
Collapse
|
17
|
Laumaea A, Marchitto L, Ding S, Beaudoin-Bussières G, Prévost J, Gasser R, Chatterjee D, Gendron-Lepage G, Medjahed H, Chen HC, Smith AB, Ding H, Kappes JC, Hahn BH, Kirchhoff F, Richard J, Duerr R, Finzi A. Small CD4 mimetics sensitize HIV-1-infected macrophages to antibody-dependent cellular cytotoxicity. Cell Rep 2023; 42:111983. [PMID: 36640355 PMCID: PMC9941794 DOI: 10.1016/j.celrep.2022.111983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
HIV-1 envelope (Env) conformation determines the susceptibility of infected CD4+ T cells to antibody-dependent cellular cytotoxicity (ADCC). Upon interaction with CD4, Env adopts more "open" conformations, exposing ADCC epitopes. HIV-1 limits Env-CD4 interaction and protects infected cells against ADCC by downregulating CD4 via Nef, Vpu, and Env. Limited data exist, however, of the role of these proteins in downmodulating CD4 on infected macrophages and how this impacts Env conformation. While Nef, Vpu, and Env are all required to efficiently downregulate CD4 on infected CD4+ T cells, we show here that any one of these proteins is sufficient to downmodulate most CD4 from the surface of infected macrophages. Consistent with this finding, Nef and Vpu have a lesser impact on Env conformation and ADCC sensitivity in infected macrophages compared with CD4+ T cells. However, treatment of infected macrophages with small CD4 mimetics exposes vulnerable CD4-induced Env epitopes and sensitizes them to ADCC.
Collapse
Affiliation(s)
- Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
18
|
Bernard NF, Alsulami K, Pavey E, Dupuy FP. NK Cells in Protection from HIV Infection. Viruses 2022; 14:v14061143. [PMID: 35746615 PMCID: PMC9231282 DOI: 10.3390/v14061143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Some people, known as HIV-exposed seronegative (HESN) individuals, remain uninfected despite high levels of exposure to HIV. Understanding the mechanisms underlying their apparent resistance to HIV infection may inform strategies designed to protect against HIV infection. Natural Killer (NK) cells are innate immune cells whose activation state depends on the integration of activating and inhibitory signals arising from cell surface receptors interacting with their ligands on neighboring cells. Inhibitory NK cell receptors use a subset of major histocompatibility (MHC) class I antigens as ligands. This interaction educates NK cells, priming them to respond to cells with reduced MHC class I antigen expression levels as occurs on HIV-infected cells. NK cells can interact with both autologous HIV-infected cells and allogeneic cells bearing MHC antigens seen as non self by educated NK cells. NK cells are rapidly activated upon interacting with HIV-infected or allogenic cells to elicit anti-viral activity that blocks HIV spread to new target cells, suppresses HIV replication, and kills HIV-infected cells before HIV reservoirs can be seeded and infection can be established. In this manuscript, we will review the epidemiological and functional evidence for a role for NK cells in protection from HIV infection.
Collapse
Affiliation(s)
- Nicole F. Bernard
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A3J1, Canada; (K.A.); (E.P.); (F.P.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Division of Clinical Immunology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-(514)-934-1934 (ext. 44584)
| | - Khlood Alsulami
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A3J1, Canada; (K.A.); (E.P.); (F.P.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Erik Pavey
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A3J1, Canada; (K.A.); (E.P.); (F.P.D.)
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Franck P. Dupuy
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, QC H4A3J1, Canada; (K.A.); (E.P.); (F.P.D.)
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
19
|
Bernard NF, Kant S, Kiani Z, Tremblay C, Dupuy FP. Natural Killer Cells in Antibody Independent and Antibody Dependent HIV Control. Front Immunol 2022; 13:879124. [PMID: 35720328 PMCID: PMC9205404 DOI: 10.3389/fimmu.2022.879124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Infection with the human immunodeficiency virus (HIV), when left untreated, typically leads to disease progression towards acquired immunodeficiency syndrome. Some people living with HIV (PLWH) control their virus to levels below the limit of detection of standard viral load assays, without treatment. As such, they represent examples of a functional HIV cure. These individuals, called Elite Controllers (ECs), are rare, making up <1% of PLWH. Genome wide association studies mapped genes in the major histocompatibility complex (MHC) class I region as important in HIV control. ECs have potent virus specific CD8+ T cell responses often restricted by protective MHC class I antigens. Natural Killer (NK) cells are innate immune cells whose activation state depends on the integration of activating and inhibitory signals arising from cell surface receptors interacting with their ligands on neighboring cells. Inhibitory NK cell receptors also use a subset of MHC class I antigens as ligands. This interaction educates NK cells, priming them to respond to HIV infected cell with reduced MHC class I antigen expression levels. NK cells can also be activated through the crosslinking of the activating NK cell receptor, CD16, which binds the fragment crystallizable portion of immunoglobulin G. This mode of activation confers NK cells with specificity to HIV infected cells when the antigen binding portion of CD16 bound immunoglobulin G recognizes HIV Envelope on infected cells. Here, we review the role of NK cells in antibody independent and antibody dependent HIV control.
Collapse
Affiliation(s)
- Nicole F. Bernard
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
- *Correspondence: Nicole F. Bernard,
| | - Sanket Kant
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Zahra Kiani
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Microbiology Infectiology and Immunology, University of Montreal, Montreal, QC, Canada
| | - Franck P. Dupuy
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
20
|
Abstract
With the much-debated exception of the modestly reduced acquisition reported for the RV144 efficacy trial, HIV-1 vaccines have not protected humans against infection, and a vaccine of similar design to that tested in RV144 was not protective in a later trial, HVTN 702. Similar vaccine regimens have also not consistently protected nonhuman primates (NHPs) against viral acquisition. Conversely, experimental vaccines of different designs have protected macaques from viral challenges but then failed to protect humans, while many other HIV-1 vaccine candidates have not protected NHPs. While efficacy varies more in NHPs than humans, vaccines have failed to protect in the most stringent NHP model. Intense investigations have aimed to identify correlates of protection (CoPs), even in the absence of net protection. Unvaccinated animals and humans vary vastly in their susceptibility to infection and in their innate and adaptive responses to the vaccines; hence, merely statistical associations with factors that do not protect are easily found. Systems biological analyses, including artificial intelligence, have identified numerous candidate CoPs but with no clear consistency within or between species. Proposed CoPs sometimes have only tenuous mechanistic connections to immune protection. In contrast, neutralizing antibodies (NAbs) are a central mechanistic CoP for vaccines that succeed against other viruses, including SARS-CoV-2. No HIV-1 vaccine candidate has yet elicited potent and broadly active NAbs in NHPs or humans, but narrow-specificity NAbs against the HIV-1 isolate corresponding to the immunogen do protect against infection by the autologous virus. Here, we analyze why so many HIV-1 vaccines have failed, summarize the outcomes of vaccination in NHPs and humans, and discuss the value and pitfalls of hunting for CoPs other than NAbs. We contrast the failure to find a consistent CoP for HIV-1 vaccines with the identification of NAbs as the principal CoP for SARS-CoV-2.
Collapse
Affiliation(s)
- P. J. Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
21
|
Temsavir Treatment of HIV-1-Infected Cells Decreases Envelope Glycoprotein Recognition by Broadly Neutralizing Antibodies. mBio 2022; 13:e0057722. [PMID: 35475646 PMCID: PMC9239219 DOI: 10.1128/mbio.00577-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The heavily glycosylated HIV-1 envelope glycoprotein (Env) is the sole viral antigen present at the surface of virions and infected cells, representing the main target for antibody responses. The FDA-approved small molecule temsavir acts as an HIV-1 attachment inhibitor by preventing Env-CD4 interaction. This molecule also stabilizes Env in a prefusion "closed" conformation that is preferentially targeted by several broadly neutralizing antibodies (bNAbs). A recent study showed that an analog of temsavir (BMS-377806) affects the cleavage and addition of complex glycans on Env. In this study, we investigated the impact of temsavir on the overall glycosylation, proteolytic cleavage, cell surface expression, and antigenicity of Env. We found that temsavir impacts Env glycosylation and processing at physiological concentrations. This significantly alters the capacity of several bNAbs to recognize Env present on virions and HIV-1-infected cells. Temsavir treatment also reduces the capacity of bNAbs to eliminate HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC). Consequently, the impact of temsavir on Env glycosylation and antigenicity should be considered for the development of new antibody-based approaches in temsavir-treated individuals. IMPORTANCE FDA-approved fostemsavir, the prodrug for the active moiety small molecule temsavir (GSK 2616713 [formally BMS-626529]), acts as an attachment inhibitor by targeting the HIV-1 envelope (Env) and preventing CD4 interaction. Temsavir also stabilizes Env in its "closed," functional state 1 conformation, which represents an ideal target for broadly neutralizing antibodies (bNAbs). Since these antibodies recognize conformation-dependent epitopes composed of or adjacent to glycans, we evaluated the impact of temsavir treatment on overall Env glycosylation and its influence on bNAb recognition. Our results showed an alteration of Env glycosylation and cleavage by temsavir at physiological concentrations. This significantly modifies the overall antigenicity of Env and therefore reduces the capacity of bNAbs to recognize and eliminate HIV-1-infected cells by ADCC. These findings provide important information for the design of immunotherapies aimed at targeting the viral reservoir in temsavir-treated individuals.
Collapse
|
22
|
Prévost J, Richard J, Gasser R, Medjahed H, Kirchhoff F, Hahn BH, Kappes JC, Ochsenbauer C, Duerr R, Finzi A. Detection of the HIV-1 Accessory Proteins Nef and Vpu by Flow Cytometry Represents a New Tool to Study Their Functional Interplay within a Single Infected CD4 + T Cell. J Virol 2022; 96:e0192921. [PMID: 35080425 PMCID: PMC8941894 DOI: 10.1128/jvi.01929-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2021] [Accepted: 01/16/2022] [Indexed: 11/20/2022] Open
Abstract
The HIV-1 Nef and Vpu accessory proteins are known to protect infected cells from antibody-dependent cellular cytotoxicity (ADCC) responses by limiting exposure of CD4-induced (CD4i) envelope (Env) epitopes at the cell surface. Although both proteins target the host receptor CD4 for degradation, the extent of their functional redundancy is unknown. Here, we developed an intracellular staining technique that permits the intracellular detection of both Nef and Vpu in primary CD4+ T cells by flow cytometry. Using this method, we show that the combined expression of Nef and Vpu predicts the susceptibility of HIV-1-infected primary CD4+ T cells to ADCC by HIV+ plasma. We also show that Vpu cannot compensate for the absence of Nef, thus providing an explanation for why some infectious molecular clones that carry a LucR reporter gene upstream of Nef render infected cells more susceptible to ADCC responses. Our method thus represents a new tool to dissect the biological activity of Nef and Vpu in the context of other host and viral proteins within single infected CD4+ T cells. IMPORTANCE HIV-1 Nef and Vpu exert several biological functions that are important for viral immune evasion, release, and replication. Here, we developed a new method allowing simultaneous detection of these accessory proteins in their native form together with some of their cellular substrates. This allowed us to show that Vpu cannot compensate for the lack of a functional Nef, which has implications for studies that use Nef-defective viruses to study ADCC responses.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Beatrice H. Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Dubé M, Kaufmann DE. Single-Cell Multiparametric Analysis of Rare HIV-Infected Cells Identified by Duplexed RNAflow-FISH. Methods Mol Biol 2022; 2407:291-313. [PMID: 34985672 DOI: 10.1007/978-1-0716-1871-4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2023]
Abstract
HIV-infected cells are difficult to characterize in vivo because of their great paucity and their diversity. This chapter describes a duplexed flow cytometry method that enables detection, quantification and phenotyping of these rare cells at single-cell resolution. Primary CD4+ T cells are enriched from PBMCs, stained for surface and intracellular proteins and then subjected to fluorescent in situ hybridization to label viral RNA before acquisition on a flow cytometer. Technical and analytical advices are provided to improve the quality of the data. This flow cytometric RNA fluorescent in situ hybridization (RNAflow-FISH) procedure can be applied to the characterization of both HIV-infected cells from viremic people living with HIV and reactivated viral reservoirs from virally suppressed individuals on therapy.
Collapse
Affiliation(s)
- Mathieu Dubé
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
- Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
24
|
Zhang P, Narayanan E, Liu Q, Tsybovsky Y, Boswell K, Ding S, Hu Z, Follmann D, Lin Y, Miao H, Schmeisser H, Rogers D, Falcone S, Elbashir SM, Presnyak V, Bahl K, Prabhakaran M, Chen X, Sarfo EK, Ambrozak DR, Gautam R, Martin MA, Swerczek J, Herbert R, Weiss D, Misamore J, Ciaramella G, Himansu S, Stewart-Jones G, McDermott A, Koup RA, Mascola JR, Finzi A, Carfi A, Fauci AS, Lusso P. A multiclade env-gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat Med 2021; 27:2234-2245. [PMID: 34887575 DOI: 10.1038/s41591-021-01574-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2021] [Accepted: 10/06/2021] [Indexed: 12/16/2022]
Abstract
The development of a protective vaccine remains a top priority for the control of the HIV/AIDS pandemic. Here, we show that a messenger RNA (mRNA) vaccine co-expressing membrane-anchored HIV-1 envelope (Env) and simian immunodeficiency virus (SIV) Gag proteins to generate virus-like particles (VLPs) induces antibodies capable of broad neutralization and reduces the risk of infection in rhesus macaques. In mice, immunization with co-formulated env and gag mRNAs was superior to env mRNA alone in inducing neutralizing antibodies. Macaques were primed with a transmitted-founder clade-B env mRNA lacking the N276 glycan, followed by multiple booster immunizations with glycan-repaired autologous and subsequently bivalent heterologous envs (clades A and C). This regimen was highly immunogenic and elicited neutralizing antibodies against the most prevalent (tier-2) HIV-1 strains accompanied by robust anti-Env CD4+ T cell responses. Vaccinated animals had a 79% per-exposure risk reduction upon repeated low-dose mucosal challenges with heterologous tier-2 simian-human immunodeficiency virus (SHIV AD8). Thus, the multiclade env-gag VLP mRNA platform represents a promising approach for the development of an HIV-1 vaccine.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | | | - Qingbo Liu
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Shilei Ding
- Université de Montreal, Montreal, Quebec, Canada
| | - Zonghui Hu
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD, USA
| | - Dean Follmann
- Biostatistics Research Branch, NIAID, NIH, Bethesda, MD, USA
| | - Yin Lin
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Hana Schmeisser
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Denise Rogers
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | | | | | | | | | | | - Xuejun Chen
- Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | | | | | - Rajeev Gautam
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Malcom A Martin
- Laboratory of Molecular Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Joanna Swerczek
- Experimental Primate Virology Section, NIAID, Poolesville, MD, USA
| | - Richard Herbert
- Experimental Primate Virology Section, NIAID, Poolesville, MD, USA
| | | | | | | | | | | | | | | | | | - Andrés Finzi
- Université de Montreal, Montreal, Quebec, Canada
| | | | - Anthony S Fauci
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD, USA.
| |
Collapse
|
25
|
Wiche Salinas TR, Gosselin A, Raymond Marchand L, Moreira Gabriel E, Tastet O, Goulet JP, Zhang Y, Vlad D, Touil H, Routy JP, Bego MG, El-Far M, Chomont N, Landay AL, Cohen ÉA, Tremblay C, Ancuta P. IL-17A reprograms intestinal epithelial cells to facilitate HIV-1 replication and outgrowth in CD4+ T cells. iScience 2021; 24:103225. [PMID: 34712922 PMCID: PMC8531570 DOI: 10.1016/j.isci.2021.103225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2020] [Revised: 08/09/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
The crosstalk between intestinal epithelial cells (IECs) and Th17-polarized CD4+ T cells is critical for mucosal homeostasis, with HIV-1 causing significant alterations in people living with HIV (PLWH) despite antiretroviral therapy (ART). In a model of IEC and T cell co-cultures, we investigated the effects of IL-17A, the Th17 hallmark cytokine, on IEC ability to promote de novo HIV infection and viral reservoir reactivation. Our results demonstrate that IL-17A acts in synergy with TNF to boost IEC production of CCL20, a Th17-attractant chemokine, and promote HIV trans-infection of CD4+ T cells and viral outgrowth from reservoir cells of ART-treated PLWH. Importantly, the Illumina RNA-sequencing revealed an IL-17A-mediated pro-inflammatory and pro-viral molecular signature, including a decreased expression of type I interferon (IFN-I)-induced HIV restriction factors. These findings point to the deleterious features of IL-17A and raise awareness for caution when designing therapies aimed at restoring the paucity of mucosal Th17 cells in ART-treated PLWH. IL-17A acts in synergy with TNF to enhance CCL20 production in IEC exposed to HIV IL-17A/TNF-activated IEC efficiently promote HIV trans-infection of CD4+ T cells IL-17A reprograms IEC to boost HIV outgrowth from CD4+ T cells of ART-treated PLWH IL-17A decreases the expression of IFN-I-induced HIV restriction factors in IEC
Collapse
Affiliation(s)
- Tomas Raul Wiche Salinas
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Annie Gosselin
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
| | | | - Etiene Moreira Gabriel
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Olivier Tastet
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
| | | | - Yuwei Zhang
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
| | - Dragos Vlad
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
| | - Hanane Touil
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mariana G. Bego
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Mohamed El-Far
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
| | - Nicolas Chomont
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Alan L. Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Éric A. Cohen
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Cécile Tremblay
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Petronela Ancuta
- CHUM-Research Centre, 900 rue Saint-Denis, Tour Viger R, room R09.416, Montreal, QC H2X 0A9, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
- Corresponding author
| |
Collapse
|
26
|
Gunn BM, Bai S. Building a better antibody through the Fc: advances and challenges in harnessing antibody Fc effector functions for antiviral protection. Hum Vaccin Immunother 2021; 17:4328-4344. [PMID: 34613865 PMCID: PMC8827636 DOI: 10.1080/21645515.2021.1976580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Antibodies can provide antiviral protection through neutralization and recruitment of innate effector functions through the Fc domain. While neutralization has long been appreciated for its role in antibody-mediated protection, a growing body of work indicates that the antibody Fc domain also significantly contributes to antiviral protection. Recruitment of innate immune cells such as natural killer cells, neutrophils, monocytes, macrophages, dendritic cells and the complement system by antibodies can lead to direct restriction of viral infection as well as promoting long-term antiviral immunity. Monoclonal antibody therapeutics against viruses are increasingly incorporating Fc-enhancing features to take advantage of the Fc domain, uncovering a surprising breadth of mechanisms through which antibodies can control viral infection. Here, we review the recent advances in our understanding of antibody-mediated innate immune effector functions in protection from viral infection and review the current approaches and challenges to effectively leverage innate immune cells via antibodies.
Collapse
Affiliation(s)
- Bronwyn M. Gunn
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Shuangyi Bai
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
27
|
Across Functional Boundaries: Making Nonneutralizing Antibodies To Neutralize HIV-1 and Mediate Fc-Mediated Effector Killing of Infected Cells. mBio 2021; 12:e0140521. [PMID: 34579568 PMCID: PMC8546553 DOI: 10.1128/mbio.01405-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
In HIV-1 infection, many antibodies (Abs) are elicited to Envelope (Env) epitopes that are conformationally masked in the native trimer and are only available for antibody recognition after the trimer binds host cell CD4. Among these are epitopes within the Co-Receptor Binding Site (CoRBS) and the constant region 1 and 2 (C1-C2 or cluster A region). In particular, C1-C2 epitopes map to the gp120 face interacting with gp41 in the native, "closed" Env trimer present on HIV-1 virions or expressed on HIV-1-infected cells. Antibodies targeting this region are therefore nonneutralizing and their potential as mediators of antibody-dependent cellular cytotoxicity (ADCC) of HIV-1-infected cells diminished by a lack of available binding targets. Here, we present the design of Ab-CD4 chimeric proteins that consist of the Ab-IgG1 of a CoRBS or cluster A specificity to the extracellular domains 1 and 2 of human CD4. Our Ab-CD4 hybrids induce potent ADCC against infected primary CD4+ T cells and neutralize tier 1 and 2 HIV-1 viruses. Furthermore, competition binding experiments reveal that the observed biological activities rely on both the antibody and CD4 moieties, confirming their cooperativity in triggering conformational rearrangements of Env. Our data indicate the utility of these Ab-CD4 hybrids as antibody therapeutics that are effective in eliminating HIV-1 through the combined mechanisms of neutralization and ADCC. This is also the first report of single-chain-Ab-based molecules capable of opening "closed" Env trimers on HIV-1 particles/infected cells to expose the cluster A region and activate ADCC and neutralization against these nonneutralizing targets. IMPORTANCE Highly conserved epitopes within the coreceptor binding site (CoRBS) and constant region 1 and 2 (C1-C2 or cluster A) are only available for antibody recognition after the HIV-1 Env trimer binds host cell CD4; therefore, they are not accessible on virions and infected cells, where the expression of CD4 is downregulated. Here, we have developed new antibody fusion molecules in which domains 1 and 2 of soluble human CD4 are linked with monoclonal antibodies of either the CoRBS or cluster A specificity. We optimized the conjugation sites and linker lengths to allow each of these novel bispecific fusion molecules to recognize native "closed" Env trimers and induce the structural rearrangements required for exposure of the epitopes for antibody binding. Our in vitro functional testing shows that our Ab-CD4 molecules can efficiently target and eliminate HIV-1-infected cells through antibody-dependent cellular cytotoxicity and inactivate HIV-1 virus through neutralization.
Collapse
|
28
|
Thomas AS, Moreau Y, Jiang W, Isaac JE, Ewing A, White LF, Kourtis AP, Sagar M. Pre-existing infant antibody-dependent cellular cytotoxicity associates with reduced HIV-1 acquisition and lower morbidity. Cell Rep Med 2021; 2:100412. [PMID: 34755132 PMCID: PMC8561235 DOI: 10.1016/j.xcrm.2021.100412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022]
Abstract
In humans, pre-existing anti-HIV-1 neutralizing antibodies (nAbs) have not been associated with decreased HIV-1 acquisition. Here, we evaluate antibody-dependent cellular cytotoxicity (ADCC) present in pre-transmission infant and maternal plasma and breast milk (BM) against the contemporaneous maternal HIV-1 variants. HIV-1-exposed uninfected compared with HIV-1-exposed infected infants have higher ADCC and a combination of ADCC and nAb responses against their corresponding mother's strains. ADCC does not correlate with nAbs, suggesting they are independent activities. The infected infants with high ADCC compared with low ADCC, but not those with higher ADCC plus nAbs, have lower morbidity up to 1 year after birth. A higher IgA to IgG ratio, observed in BM supernatants and in a higher proportion of the infected compared with the uninfected infants, associates with lower ADCC. Against the exposure strains, ADCC, more than nAbs, associates with both lower mother-to-child transmission and decreased post-infection infant morbidity.
Collapse
Affiliation(s)
- Allison S. Thomas
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Yvetane Moreau
- Department of Medicine, Boston Medical Center, Boston, MA, USA
| | - Wenqing Jiang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - John E. Isaac
- Department of Medicine, Boston Medical Center, Boston, MA, USA
| | - Alexander Ewing
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Laura F. White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Athena P. Kourtis
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Manish Sagar
- Department of Medicine, Boston Medical Center, Boston, MA, USA
| |
Collapse
|
29
|
Hvilsom CT, Søgaard OS. TLR-Agonist Mediated Enhancement of Antibody-Dependent Effector Functions as Strategy For an HIV-1 Cure. Front Immunol 2021; 12:704617. [PMID: 34630386 PMCID: PMC8495198 DOI: 10.3389/fimmu.2021.704617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background The current treatment for HIV-1 is based on blocking various stages in the viral replication cycle using combination antiretroviral therapy (ART). Even though ART effectively controls the infection, it is not curative, and patients must therefore continue treatment life-long. Aim Here we review recent literature investigating the single or combined effect of toll-like receptor (TLR) agonists and broadly neutralizing antibodies (bNAbs) with the objective to evaluate the evidence for this combination as a means towards an HIV-1 cure. Results Multiple preclinical studies found significantly enhanced killing of HIV-1 infected cells by TLR agonist-induced innate immune activation or by Fc-mediated effector functions following bNAb administration. However, monotherapy with either agent did not lead to sustained HIV-1 remission in clinical trials among individuals on long-term ART. Notably, findings in non-human primates suggest that a combination of TLR agonists and bNAbs may be able to induce long-term remission after ART cessation and this approach is currently being further investigated in clinical trials. Conclusion Preclinical findings show beneficial effects of either TLR agonist or bNAb administration for enhancing the elimination of HIV-1 infected cells. Further, TLR agonist-mediated stimulation of innate effector functions in combination with bNAbs may enhance antibody-dependent cellular cytotoxicity and non-human primate studies have shown promising results for this combination strategy. Factors such as immune exhaustion, proviral bNAb sensitivity and time of intervention might impact the clinical success.
Collapse
Affiliation(s)
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Disease, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
30
|
Freen-van Heeren JJ. Flow-FISH as a Tool for Studying Bacteria, Fungi and Viruses. BIOTECH 2021; 10:21. [PMID: 35822795 PMCID: PMC9245478 DOI: 10.3390/biotech10040021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Many techniques are currently in use to study microbes. These can be aimed at detecting, identifying, and characterizing bacterial, fungal, and viral species. One technique that is suitable for high-throughput analysis is flow cytometry-based fluorescence in situ hybridization, or Flow-FISH. This technique employs (fluorescently labeled) probes directed against DNA or (m)RNA, for instance targeting a gene or microorganism of interest and provides information on a single-cell level. Furthermore, by combining Flow-FISH with antibody-based protein detection, proteins of interest can be measured simultaneously with genetic material. Additionally, depending on the type of Flow-FISH assay, Flow-FISH can also be multiplexed, allowing for the simultaneous measurement of multiple gene targets and/or microorganisms. Together, this allows for, e.g., single-cell gene expression analysis or identification of (sub)strains in mixed cultures. Flow-FISH has been used in mammalian cells but has also been extensively employed to study diverse microbial species. Here, the use of Flow-FISH for studying microorganisms is reviewed. Specifically, the detection of (intracellular) pathogens, studying microorganism biology and disease pathogenesis, and identification of bacterial, fungal, and viral strains in mixed cultures is discussed, with a particular focus on the viruses EBV, HIV-1, and SARS-CoV-2.
Collapse
|
31
|
Evolution of antibodies to native trimeric envelope and their Fc dependent functions in untreated and treated primary HIV infection. J Virol 2021; 95:e0162521. [PMID: 34586863 DOI: 10.1128/jvi.01625-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022] Open
Abstract
People living with HIV (PLWH) develop both anti-Envelope-specific antibodies, which bind the closed trimeric HIV Envelope present on infected cells and anti-gp120-specific antibodies, which bind gp120 monomers shed by infected cells and taken up by CD4 on uninfected bystander cells. Both antibodies have an Fc portion that binds to Fc Receptors on several types of innate immune cells and stimulates them to develop anti-viral functions. Among these Fc dependent functions (FcDFs) are antibody dependent (AD) cellular cytotoxicity (ADCC), AD cellular trogocytosis (ADCT) and AD phagocytosis (ADCP). Here, we assessed the evolution of total immunoglobulin G (IgG), anti-gp120 and anti-Envelope IgG antibodies and their FcDFs in plasma samples from anti-retroviral therapy (ART) naïve subjects during early HIV infection (28-194 days post infection [DPI]). We found that both the concentrations and FcDFs of anti-gp120 and anti-Envelope antibodies increased with time in ART-naïve PLWH. Although generated concurrently, anti-gp120-specific antibodies were 20.7-fold more abundant than anti-Envelpe-specific antibodies, both specificities being strongly correlated with each other and FcDFs. Among the FcDFs, only ADCP activity was inversely correlated with concurrent viral load. PLWH who started ART >90 DPI showed higher anti-Envelope-specific antibody levels, ADCT and ADCP activities than those starting ART <90 DPI. However, in longitudinally collected samples, ART initiation at >90 DPI was accompanied by a faster decline in anti-Envelope-specific antibody levels, which did not translate to a faster decline in FcDFs compared to those starting ART <90 DPI. IMPORTANCE Closed conformation Envelope is expressed on the surface of HIV-infected cells. Antibodies targeting this conformation and that support FcDFs have the potential to control HIV. This study tracks the timing of the appearance and evolution of antibodies to closed conformation Envelope, whose concentration increases over the first 6 mos of infection. Antiretroviral therapy (ART) initiation blunts further increases in the concentration of these antibodies and their and FcDFs. However, antibodies to open conformation Envelope also increase with DPI until ART initiation. These antibodies target uninfected bystander cells, which may contribute to loss of uninfected CD4 cells and pathogenicity. This manuscript presents, for the first time, the evolution of antibodies to closed conformation Envelope and their fate on-ART. This information may be useful in making decisions on the timing of ART initiation in early HIV infection.
Collapse
|
32
|
Anand SP, Ding S, Tolbert WD, Prévost J, Richard J, Gil HM, Gendron-Lepage G, Cheung WF, Wang H, Pastora R, Saxena H, Wakarchuk W, Medjahed H, Wines BD, Hogarth M, Shaw GM, Martin MA, Burton DR, Hangartner L, Evans DT, Pazgier M, Cossar D, McLean MD, Finzi A. Enhanced Ability of Plant-Derived PGT121 Glycovariants To Eliminate HIV-1-Infected Cells. J Virol 2021; 95:e0079621. [PMID: 34232070 PMCID: PMC8387047 DOI: 10.1128/jvi.00796-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The activity of broadly neutralizing antibodies (bNAbs) targeting HIV-1 depends on pleiotropic functions, including viral neutralization and the elimination of HIV-1-infected cells. Several in vivo studies have suggested that passive administration of bNAbs represents a valuable strategy for the prevention or treatment of HIV-1. In addition, different strategies are currently being tested to scale up the production of bNAbs to obtain the large quantities of antibodies required for clinical trials. Production of antibodies in plants permits low-cost and large-scale production of valuable therapeutics; furthermore, pertinent to this work, it also includes an advanced glycoengineering platform. In this study, we used Nicotiana benthamiana to produce different Fc-glycovariants of a potent bNAb, PGT121, with near-homogeneous profiles and evaluated their antiviral activities. Structural analyses identified a close similarity in overall structure and glycosylation patterns of Fc regions for these plant-derived Abs and mammalian cell-derived Abs. When tested for Fc-effector activities, afucosylated PGT121 showed significantly enhanced FcγRIIIa interaction and antibody dependent cellular cytotoxicity (ADCC) against primary HIV-1-infected cells, both in vitro and ex vivo. However, the overall galactosylation profiles of plant PGT121 did not affect ADCC activities against infected primary CD4+ T cells. Our results suggest that the abrogation of the Fc N-linked glycan fucosylation of PGT121 is a worthwhile strategy to boost its Fc-effector functionality. IMPORTANCE PGT121 is a highly potent bNAb and its antiviral activities for HIV-1 prevention and therapy are currently being evaluated in clinical trials. The importance of its Fc-effector functions in clearing HIV-1-infected cells is also under investigation. Our results highlight enhanced Fc-effector activities of afucosylated PGT121 MAbs that could be important in a therapeutic context to accelerate infected cell clearance and slow disease progression. Future studies to evaluate the potential of plant-produced afucosylated PGT121 in controlling HIV-1 replication in vivo are warranted.
Collapse
Affiliation(s)
- Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - William D. Tolbert
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | | | | | | | - Hirak Saxena
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Warren Wakarchuk
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | | | - Bruce D. Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology Monash University, Melbourne, VIC, Australia
| | - Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology Monash University, Melbourne, VIC, Australia
| | - George M. Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Malcom A. Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard University, Cambridge, Massachusetts, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - David T. Evans
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Doug Cossar
- PlantForm Corporation, Toronto, Ontario, Canada
| | | | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Recent work defining Fc-mediated effector functions for both viral control and protection against infection is summarized and considered along with new strategies to drive robust Fc-mediated responses. RECENT FINDINGS In new human and nonhuman primate (NHP) vaccine trials as well as studies of natural infection, Fc-mediated effector responses have sometimes been observed to correlate with decreased risk of infection or with better clinical outcomes, suggesting a potential role for these responses in HIV-1 prevention and therapy. Recent highlights include use of antibody-dependent cellular cytotoxicity-sensitizing CD4-induced mimetic compounds, novel V1V2 immunogens, passive transfer studies, and vaccine regimens that successfully elicited Fc-mediated responses and were reported to decrease risk of infection in challenge studies in NHPs. Lastly, detailed studies of IgG3 forms of HIV-specific antibodies have reported that both neutralizing and Fc-mediated responses can be increased relative to the more prevalent IgG1 subclass. SUMMARY Successful harmonization of neutralizing and Fc-mediated responses may make key contributions to the goal of reducing HIV-1 infection via active and passive vaccination. New studies continue to highlight the importance of Fc-mediated antibody responses as correlates of decreased risk of infection and suggest enhanced phagocytosis is a potential mechanism of reduced risk of infection associated with human IgG3 responses. Results from recent studies may help guide the rational design of therapies and vaccines that aim to specifically leverage antibody effector function.
Collapse
|
34
|
Roles of fragment crystallizable-mediated effector functions in broadly neutralizing antibody activity against HIV. Curr Opin HIV AIDS 2021; 15:316-323. [PMID: 32732552 DOI: 10.1097/coh.0000000000000644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW 'Broadly neutralizing antibodies' (bNAbs), are rare HIV-specific antibodies which exhibit the atypical ability to potently neutralize diverse viral isolates. While efforts to elicit bNAbs through vaccination have yet to succeed, recent years have seen remarkable preclinical and clinical advancements of passive immunization approaches targeting both HIV prevention and cure. We focus here on the potential to build upon this success by moving beyond neutralization to additionally harness the diverse effector functionalities available to antibodies via fragment crystallizable-effector (Fc) functions. RECENT FINDINGS Recent studies have leveraged the ability to engineer bNAb Fc domains to either enhance or abrogate particular effector functions to demonstrate that activities such as antibody-dependent cell-mediated cytotoxicity contribute substantially to in-vivo antiviral activity. Intriguingly, recent studies in both nonhuman primates and in humans have suggested that passive bNAb infusion can lead to durable immunity by enhancing virus-specific T-cell responses through a 'vaccinal effect'. SUMMARY The combination of antibody engineering strategies designed to enhance effector functions, with the broad and potent antigen recognition profile of bNAbs, has the potential to give rise to powerful new therapeutics for HIV. We aim to provide a timely review of recent advances to catalyze this development.
Collapse
|
35
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
36
|
Enhancement of Antibody-Dependent Cellular Cytotoxicity and Phagocytosis in Anti-HIV-1 Human-Bovine Chimeric Broadly Neutralizing Antibodies. J Virol 2021; 95:e0021921. [PMID: 33853957 DOI: 10.1128/jvi.00219-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
No prophylactic vaccine has provided robust protection against human immunodeficiency virus type 1 (HIV-1). Vaccine-induced broadly neutralizing antibodies (bNAbs) have not been achieved in humans and most animals; however, cows vaccinated with HIV-1 envelope trimers produce bNAbs with unusually long third heavy complementarity-determining regions (CDRH3s). Alongside neutralization, Fc-mediated effector functions, including antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADP), may be critical for in vivo bNAb antiviral activity. Here, we aimed to augment the Fc-dependent effector functions of a chimeric human-bovine bNAb, NC-Cow1, which binds the CD4 binding site (CD4bs) and exhibits broader and more potent neutralization than most human CD4bs bNAbs by using an exceptionally long 60-amino acid (aa) CDRH3. The bovine variable region of NC-Cow1 was paired with a human IgG1 Fc region mutated to create the following three variants: G236R/L328R (GRLR) that abrogates Fc-gamma receptor (FcγR) binding, and two variants that enhance binding, namely, G236A/S239D/I332E (GASDIE) and G236A/S239D/A330L/I332E (GASDALIE). Both GASDIE and GASDALIE improved binding to human FcγRIIA and FcγRIIIA, enhanced human natural killer (NK) cell activation, and mediated higher levels of ADCC and ADP activity than the wild-type human IgG1 Fc. GASDALIE mediated higher phagocytic activity than GASDIE. As expected, GRLR eliminated binding to FcγRs and did not mediate ADCC or ADP. We demonstrated that mutations in the human Fc region of bovine chimeric antibodies with ultralong CDRH3s could enhance antibody effector functions while maintaining envelope binding and neutralization. This study will have significant implications in the development of multifunctional anti-HIV antibodies, which may be important to prevent HIV-1 transmission in an antibody-based topical microbicide. IMPORTANCE Despite successful antiviral chemotherapy, human immunodeficiency virus (HIV) is still a lifelong persistent virus, and no vaccine yet prevents HIV transmission. Topical microbicides offer an important alternative method to prevent sexual transmission of HIV-1. With the production of highly potent anti-HIV-1 broadly neutralizing antibodies (bNAbs) and multifunctional antibodies, monoclonal antibodies are now important prophylactic agents. Recently discovered anti-HIV-1 bovine bNAbs (with higher potency and breadth than most human bNAbs) could be novel candidates as potent topical microbicides. Our study is significant as it demonstrates the compatibility of combining bovine-derived neutralization with human-derived antibody-effector functions. This study is a new approach to antibody engineering that strengthens the feasibility of using high-potency bovine variable region bNAbs with augmented Fc function and promotes them as a strong candidate for antibody-mediated therapies.
Collapse
|
37
|
Rajashekar JK, Richard J, Beloor J, Prévost J, Anand SP, Beaudoin-Bussières G, Shan L, Herndler-Brandstetter D, Gendron-Lepage G, Medjahed H, Bourassa C, Gaudette F, Ullah I, Symmes K, Peric A, Lindemuth E, Bibollet-Ruche F, Park J, Chen HC, Kaufmann DE, Hahn BH, Sodroski J, Pazgier M, Flavell RA, Smith AB, Finzi A, Kumar P. Modulating HIV-1 envelope glycoprotein conformation to decrease the HIV-1 reservoir. Cell Host Microbe 2021; 29:904-916.e6. [PMID: 34019804 PMCID: PMC8214472 DOI: 10.1016/j.chom.2021.04.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2020] [Revised: 02/01/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022]
Abstract
Small CD4-mimetic compounds (CD4mc) sensitize HIV-1-infected cells to antibody-dependent cellular cytotoxicity (ADCC) by facilitating antibody recognition of epitopes that are otherwise occluded on the unliganded viral envelope (Env). Combining CD4mc with two families of CD4-induced (CD4i) antibodies, which are frequently found in plasma of HIV-1-infected individuals, stabilizes Env in a conformation that is vulnerable to ADCC. We employed new-generation SRG-15 humanized mice, supporting natural killer (NK) cell and Fc-effector functions to demonstrate that brief treatment with CD4mc and CD4i-Abs significantly decreases HIV-1 replication, the virus reservoir and viral rebound after ART interruption. These effects required Fc-effector functions and NK cells, highlighting the importance of ADCC. Viral rebound was also suppressed in HIV-1+-donor cell-derived humanized mice supplemented with autologous HIV-1+-donor-derived plasma and CD4mc. These results indicate that CD4mc could have therapeutic utility in infected individuals for decreasing the size of the HIV-1 reservoir and/or achieving a functional cure.
Collapse
Affiliation(s)
- Jyothi K Rajashekar
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Jagadish Beloor
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University Montreal, Montreal, QC, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Liang Shan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | - Irfan Ullah
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly Symmes
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew Peric
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Emily Lindemuth
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic Bibollet-Ruche
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun Park
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, QC, Canada; Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, and Department of Microbiology and Immunobiology, Division of AIDS, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Marzena Pazgier
- Infectious Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada; Department of Microbiology and Immunology, McGill University Montreal, Montreal, QC, Canada.
| | - Priti Kumar
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
38
|
Differential expression of HIV envelope epitopes on the surface of HIV-Infected macrophages and CD4 + T cells. Antiviral Res 2021; 191:105085. [PMID: 33961905 DOI: 10.1016/j.antiviral.2021.105085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 11/23/2022]
Abstract
HIV-infected macrophages contribute to persistence of HIV reservoirs in people living with HIV receiving antiretroviral therapy. A potential strategy to eliminate reservoirs is the use of antibody-dependent cellular cytotoxicity (ADCC) against infected cells expressing the HIV envelope (Env) protein on their surface. Designing ADCC strategies requires knowledge of exposed Env epitopes on the cell surface and identifying antibodies capable of opsonising infected cells, yet little is known regarding the ability of HIV-infected macrophages to be targeted with such strategies. Using a panel of neutralising and poorly-neutralising anti-Env antibodies we compared Env epitopes expressed on infected monocyte-derived macrophages (MDM) and autologous T cells. Our results reveal potential differences in epitope expression on macrophage- and T cell-expressed Env. Notably, HIVBaL-infected macrophages were more susceptible to opsonisation by NIH45-46 (median = 40.4%) compared to infected T cells (13.6%; p = 0.002), which were more susceptible to opsonisation by 17b and 447.52D (88.6% and 45.6% respectively) compared to MDM (30% and 6.7%, p = 0.002 and 0.004 respectively). Furthermore, neutralising antibodies 10E8 and PGT145 were relatively ineffective at opsonising Env expressed on the surface of infected T cells or macrophages, indicating that the context in which Env is presented on infected cells may differ to that of cell-free virions.
Collapse
|
39
|
Rossignol ED, Dugast AS, Compere H, Cottrell CA, Copps J, Lin S, Cizmeci D, Seaman MS, Ackerman ME, Ward AB, Alter G, Julg B. Mining HIV controllers for broad and functional antibodies to recognize and eliminate HIV-infected cells. Cell Rep 2021; 35:109167. [PMID: 34038720 PMCID: PMC8196545 DOI: 10.1016/j.celrep.2021.109167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2020] [Revised: 03/27/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022] Open
Abstract
HIV monoclonal antibodies for viral reservoir eradication strategies will likely need to recognize reactivated infected cells and potently drive Fc-mediated innate effector cell activity. We systematically characterize a library of 185 HIV-envelope-specific antibodies derived from 15 spontaneous HIV controllers (HCs) that selectively exhibit robust serum Fc functionality and compared them to broadly neutralizing antibodies (bNAbs) in clinical development. Within the 10 antibodies with the broadest cell-recognition capability, seven originated from HCs and three were bNAbs. V3-loop-targeting antibodies are enriched among the top cell binders, suggesting the V3-loop may be selectively exposed and accessible on the cell surface. Fc functionality is more variable across antibodies, which is likely influenced by distinct binding topology and corresponding Fc accessibility, highlighting not only the importance of target-cell recognition but also the need to optimize for Fc-mediated elimination. Ultimately, our results demonstrate that this comprehensive selection process can identify monoclonal antibodies poised to eliminate infected cells. Rossignol et al. characterize 185 HIV-envelope-specific antibodies derived from spontaneous HIV controllers, downselecting antibodies based on their ability to broadly recognize infected cells and potently drive Fc-mediated innate effector cell activity. This comprehensive selection process can identify monoclonal antibodies poised to eliminate infected cells for viral reservoir eradication strategies.
Collapse
Affiliation(s)
- Evan D Rossignol
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Anne-Sophie Dugast
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Hacheming Compere
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Christopher A Cottrell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shu Lin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Deniz Cizmeci
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| | - Boris Julg
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
40
|
Rossi A, Pacella I, Piconese S. RNA Flow Cytometry for the Study of T Cell Metabolism. Int J Mol Sci 2021; 22:ijms22083906. [PMID: 33918901 PMCID: PMC8069477 DOI: 10.3390/ijms22083906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
T cells undergo activation and differentiation programs along a continuum of states that can be tracked through flow cytometry using a combination of surface and intracellular markers. Such dynamic behavior is the result of transcriptional and post-transcriptional events, initiated and sustained by the activation of specific transcription factors and by epigenetic remodeling. These signaling pathways are tightly integrated with metabolic routes in a bidirectional manner: on the one hand, T cell receptors and costimulatory molecules activate metabolic reprogramming; on the other hand, metabolites modify T cell transcriptional programs and functions. Flow cytometry represents an invaluable tool to analyze the integration of phenotypical, functional, metabolic and transcriptional features, at the single cell level in heterogeneous T cell populations, and from complex microenvironments, with potential clinical application in monitoring the efficacy of cancer immunotherapy. Here, we review the most recent advances in flow cytometry-based analysis of gene expression, in combination with indicators of mitochondrial activity, with the aim of revealing and characterizing major metabolic pathways in T cells.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Roma, Italy; (A.R.); (I.P.)
| | - Ilenia Pacella
- Department of Internal Clinical Sciences, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Roma, Italy; (A.R.); (I.P.)
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anaesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Roma, Italy; (A.R.); (I.P.)
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Roma, Italy
- Correspondence:
| |
Collapse
|
41
|
Ding Y, Kong D, Li D, Zhang Y, Hong K, Liang H, Ma L. Characterization of antibody-dependent cellular cytotoxicity induced by the plasma from persons living with HIV-1 based on target cells with or without CD4 molecules. Microbes Infect 2021; 23:104805. [PMID: 33711449 DOI: 10.1016/j.micinf.2021.104805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2021] [Revised: 02/13/2021] [Accepted: 03/01/2021] [Indexed: 11/30/2022]
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is essential for reducing the reservoir of latent virus in persons living with HIV-1 (PLWH). This study evaluated the plasma's ADCC activity from treatment-naïve PLWH based on target cells with or without CD4 molecules. We found that the distribution of plasma activities to mediate ADCC is different between 8E5 cells (CD4-) and NL4-3-infected CEM.NKR.CCR5 cells (CD4+). There was no correlation between the IgG-binding ability and ADCC activity. The binding ability of the 8E5 cells (2.2%) to A32 antibody was significantly lower than that of CEM.NKR.CCR5 cells (69.3%). After incubating the 8E5 cells with CD4-mimetic compound, it did not increase the binding ability with the A32 antibody. After incubation with CD4+ T cells, the binding ability of the 8E5 cells for the A32 antibody increased significantly, which implies that the conformation of the Env protein open and expose the CD4-induced epitopes. The effect of the ADCC in plasma directly applied to 8E5 cells was positively correlated with that of the NL4-3-infected CEM.NKR.CCR5 cells. In conclusion, ADCC induction in plasma was general in the treatment-naïve PLWH. The ADCC activity levels differed when target cells with or without CD4 molecules were evaluated; When designing experiments on ADCC, full consideration should be given to this immune phenomenon.
Collapse
Affiliation(s)
- Yibo Ding
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Desheng Kong
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China; Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China
| | - Dan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuanyuan Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kunxue Hong
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hua Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Liying Ma
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
42
|
Relationships between Neutralization, Binding, and ADCC of Broadly Neutralizing Antibodies against Reservoir HIV. J Virol 2020; 95:JVI.01808-20. [PMID: 33115874 DOI: 10.1128/jvi.01808-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
|
43
|
Kant S, Zhang N, Barbé A, Routy JP, Tremblay C, Thomas R, Szabo J, Côté P, Trottier B, LeBlanc R, Rouleau D, Harris M, Dupuy FP, Bernard NF. Polyfunctional Fc Dependent Activity of Antibodies to Native Trimeric Envelope in HIV Elite Controllers. Front Immunol 2020; 11:583820. [PMID: 33101312 PMCID: PMC7555699 DOI: 10.3389/fimmu.2020.583820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Antibody dependent (AD) functions such as AD cellular cytotoxicity (ADCC) were associated with lower viral load (VL) in untreated HIV progressors and protection from HIV infection in the modestly protective RV144 HIV vaccine trial. Target cells used to measure ADCC, AD complement deposition (ADCD), and AD cellular trogocytosis (ADCT) have been either HIV envelope (Env) gp120-coated CEM.NKr.CCR5 cells or HIV infected cell cultures. In HIV infected cell cultures, uninfected bystander cells take up gp120 shed from infected cells. Both gp120-coated and gp120+ bystander cells expose CD4 induced (CD4i) epitopes, which are normally hidden in native trimeric Env expressed by genuinely HIV infected cells since Nef and Vpu downmodulate cell surface CD4. Antibody dependent assays using either of these target cells probe for CD4i Abs that are abundant in HIV+ plasma but that do not recognize HIV-infected cells. Here, we examined ADCC, ADCD, and ADCT functions using a target cell line, sorted HIV-infected cell line cells, whose HIV infection frequency nears 100% and that expresses HIV Env in a native trimeric closed conformation. Using sorted HIV-infected cells (siCEM) as targets, we probed the binding and AD functions of anti-gp120/Env Abs in plasma from HIV-infected untreated progressor (UTP, n = 18) and treated (TP, n = 24) subjects, compared to that in Elite controllers (EC, n = 37) and Viral Controllers (VC, n = 16), which are rare subsets of HIV-infected individuals who maintain undetectable or low VL, respectively, without treatment. Gp120-coated beads were used to measure AD cellular phagocytosis. Equivalent concentrations of input IgG in plasma from UTPs, ECs, and VCs supported higher levels of all AD functions tested than plasma from TPs. When AD activities were normalized to the concentration of anti-gp120/Env-specific Abs, between-group differences largely disappeared. This finding suggests that the anti-gp120/Env Abs concentrations and not their potency determined AD functional levels in these assays. Elite controllers did differ from the other groups by having AD functions that were highly polyfunctional and highly correlated with each other. PCR measurement of HIV reservoir size showed that ADCC activity was higher in ECs and VCs with a reservoir size below the limit of detection compared to those having a measurable HIV reservoir size.
Collapse
Affiliation(s)
- Sanket Kant
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Ningyu Zhang
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Alexandre Barbé
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Faculté de Médecine de l'Université de Lille Henri Warembourg, Lille, France.,Ophthalmology Department, Lille University Hospital, Lille, France
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Départment de Microbiologie Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | | | - Jason Szabo
- Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Clinique Médicale l'Actuel, Montreal, QC, Canada
| | - Pierre Côté
- Clinique de Médecine Urbaine du Quartier Latin, Montreal, QC, Canada
| | - Benoit Trottier
- Clinique de Médecine Urbaine du Quartier Latin, Montreal, QC, Canada
| | | | - Danielle Rouleau
- Départment de Microbiologie Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Marianne Harris
- British Columbia Center for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Franck P Dupuy
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nicole F Bernard
- Research Institute of the McGill University Health Centre Montreal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
44
|
Sherburn R, Tolbert WD, Gottumukkala S, Beaudoin-Bussières G, Finzi A, Pazgier M. Effects of gp120 Inner Domain (ID2) Immunogen Doses on Elicitation of Anti-HIV-1 Functional Fc-Effector Response to C1/C2 (Cluster A) Epitopes in Mice. Microorganisms 2020; 8:microorganisms8101490. [PMID: 32998443 PMCID: PMC7650682 DOI: 10.3390/microorganisms8101490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/13/2023] Open
Abstract
Fc-mediated effector functions of antibodies, including antibody-dependent cytotoxicity (ADCC), have been shown to contribute to vaccine-induced protection from HIV-1 infection, especially those directed against non-neutralizing, CD4 inducible (CD4i) epitopes within the gp120 constant 1 and 2 regions (C1/C2 or Cluster A epitopes). However, recent passive immunization studies have not been able to definitively confirm roles for these antibodies in HIV-1 prevention mostly due to the complications of cross-species Fc–FcR interactions and suboptimal dosing strategies. Here, we use our stabilized gp120 Inner domain (ID2) immunogen that displays the Cluster A epitopes within a minimal structural unit of HIV-1 Env to investigate an immunization protocol that induces a fine-tuned antibody repertoire capable of an effective Fc-effector response. This includes the generation of isotypes and the enhanced antibody specificity known to be vital for maximal Fc-effector activities, while minimizing the induction of isotypes know to be detrimental for these functions. Although our studies were done in in BALB/c mice we conclude that when optimally titrated for the species of interest, ID2 with GLA-SE adjuvant will elicit high titers of antibodies targeting the Cluster A region with potent Fc-mediated effector functions, making it a valuable immunogen candidate for testing an exclusive role of non-neutralizing antibody response in HIV-1 protection in vaccine settings.
Collapse
Affiliation(s)
- Rebekah Sherburn
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | - William D. Tolbert
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | - Suneetha Gottumukkala
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
| | | | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (A.F.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine of Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA; (R.S.); (W.D.T.); (S.G.)
- Correspondence: ; Tel.: +301-295-3291; Fax: +301-295-355
| |
Collapse
|
45
|
Tolbert WD, Sherburn R, Gohain N, Ding S, Flinko R, Orlandi C, Ray K, Finzi A, Lewis GK, Pazgier M. Defining rules governing recognition and Fc-mediated effector functions to the HIV-1 co-receptor binding site. BMC Biol 2020; 18:91. [PMID: 32693837 PMCID: PMC7374964 DOI: 10.1186/s12915-020-00819-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2019] [Accepted: 06/22/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The binding of HIV-1 Envelope glycoproteins (Env) to host receptor CD4 exposes vulnerable conserved epitopes within the co-receptor binding site (CoRBS) which are required for the engagement of either CCR5 or CXCR4 co-receptor to allow HIV-1 entry. Antibodies against this region have been implicated in the protection against HIV acquisition in non-human primate (NHP) challenge studies and found to act synergistically with antibodies of other specificities to deliver effective Fc-mediated effector function against HIV-1-infected cells. Here, we describe the structure and function of N12-i2, an antibody isolated from an HIV-1-infected individual, and show how the unique structural features of this antibody allow for its effective Env recognition and Fc-mediated effector function. RESULTS N12-i2 binds within the CoRBS utilizing two adjacent sulfo-tyrosines (TYS) for binding, one of which binds to a previously unknown TYS binding pocket formed by gp120 residues of high sequence conservation among HIV-1 strains. Structural alignment with gp120 in complex with the co-receptor CCR5 indicates that the new pocket corresponds to TYS at position 15 of CCR5. In addition, structure-function analysis of N12-i2 and other CoRBS-specific antibodies indicates a link between modes of antibody binding within the CoRBS and Fc-mediated effector activities. The efficiency of antibody-dependent cellular cytotoxicity (ADCC) correlated with both the level of antibody binding and the mode of antibody attachment to the epitope region, specifically with the way the Fc region was oriented relative to the target cell surface. Antibodies with poor Fc access mediated the poorest ADCC whereas those with their Fc region readily accessible for interaction with effector cells mediated the most potent ADCC. CONCLUSION Our data identify a previously unknown binding site for TYS within the assembled CoRBS of the HIV-1 virus. In addition, our combined structural-modeling-functional analyses provide new insights into mechanisms of Fc-effector function of antibodies against HIV-1, in particular, how antibody binding to Env antigen affects the efficiency of ADCC response.
Collapse
Affiliation(s)
- William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Rebekah Sherburn
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Neelakshi Gohain
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Shilei Ding
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Robin Flinko
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Chiara Orlandi
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Krishanu Ray
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Université de Montréal, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - George K Lewis
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814-4712, USA.
- Division of Vaccine Research of Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Although the goal of preventive HIV vaccine design is primarily the induction of broadly neutralizing antibodies (bNAbs), recent evidence suggests that a protective response will also benefit from Fc effector functions. Here, we provide an update on the antibody response to HIV infection, including both Fab and Fc-mediated antibody responses. We also highlight recent studies showing the interplay between these functions, focusing primarily on studies published in the last year. RECENT FINDINGS Identification and characterization of bNAb donors continues to provide insights into viral factors that are potentially translatable to vaccine design. Improved and more diverse measures of Fc effector function, and modulators thereof, are enabling a deeper understanding of their role in infection. New data providing mechanistic links between the innate and adaptive humoral immune responses are creating exciting opportunities for vaccine strategies, with the aim of eliciting a polyfunctional protective response. SUMMARY New insights into the overall humoral response to HIV infection are defining diverse and synergistic mechanisms required for antibody protection from HIV through vaccination.
Collapse
|
47
|
Lewis PE, Poteet EC, Liu D, Chen C, LaBranche CC, Stanfield-Oakley SA, Montefiori DC, Ferrari G, Yao Q. CTLA-4 Blockade, during HIV Virus-Like Particles Immunization, Alters HIV-Specific B-Cell Responses. Vaccines (Basel) 2020; 8:E284. [PMID: 32517277 PMCID: PMC7349993 DOI: 10.3390/vaccines8020284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 12/23/2022] Open
Abstract
Studies have shown that blockade of CTLA-4 promoted the expansion of germinal center B-cells in viral infection or immunization with model antigens. Few studies have evaluated the immunological consequences of CTLA-4 blockade during immunization against relevant vaccine candidates. Here, we investigated the effects of CTLA-4 blockade on HIV virus-like particles (VLPs) vaccination in a C57BL/6J mouse model. We found that CTLA-4 blockade during HIV VLP immunization resulted in increased CD4+ T-cell activation, promoted the expansion of HIV envelope (Env)-specific follicular helper T cell (Tfh) cells, and significantly increased HIV Gag- and Env-specific IgG with higher avidity and antibody-dependent cellular cytotoxicity (ADCC) capabilities. Furthermore, after only a single immunization, CTLA-4 blockade accelerated T-cell dependent IgG class switching and the induction of significantly high serum levels of the B-cell survival factor, A proliferation-inducing ligand (APRIL). Although no significant increase in neutralizing antibodies was observed, increased levels of class-switched Env- and Gag-specific IgG are indicative of increased polyclonal B-cell activation, which demonstrated the ability to mediate and enhance ADCC in this study. Altogether, our findings show that CTLA-4 blockade can increase the levels of HIV antigen-specific B-cell and antigen-specific Tfh cell activity and impact humoral immune responses when combined with a clinically relevant HIV VLP-based vaccine.
Collapse
Affiliation(s)
- Phoebe E. Lewis
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (P.E.L.); (E.C.P.); (D.L.); (C.C.)
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ethan C. Poteet
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (P.E.L.); (E.C.P.); (D.L.); (C.C.)
| | - Dongliang Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (P.E.L.); (E.C.P.); (D.L.); (C.C.)
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (P.E.L.); (E.C.P.); (D.L.); (C.C.)
| | - Celia C. LaBranche
- Duke Human Vaccine Institute, Departments of Medicine, Immunology, Surgery, and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA; (C.C.L.); (S.A.S.-O.); (D.C.M.); (G.F.)
| | - Sherry A. Stanfield-Oakley
- Duke Human Vaccine Institute, Departments of Medicine, Immunology, Surgery, and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA; (C.C.L.); (S.A.S.-O.); (D.C.M.); (G.F.)
| | - David C. Montefiori
- Duke Human Vaccine Institute, Departments of Medicine, Immunology, Surgery, and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA; (C.C.L.); (S.A.S.-O.); (D.C.M.); (G.F.)
| | - Guido Ferrari
- Duke Human Vaccine Institute, Departments of Medicine, Immunology, Surgery, and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA; (C.C.L.); (S.A.S.-O.); (D.C.M.); (G.F.)
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (P.E.L.); (E.C.P.); (D.L.); (C.C.)
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
48
|
The Conformational States of the HIV-1 Envelope Glycoproteins. Trends Microbiol 2020; 28:655-667. [PMID: 32418859 DOI: 10.1016/j.tim.2020.03.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
During HIV-1 entry into target cells, binding of the virus to host receptors, CD4 and CCR5/CXCR4, triggers serial conformational changes in the envelope glycoprotein (Env) trimer that result in the fusion of the viral and cell membranes. Recent discoveries have refined our knowledge of Env conformational states, allowing characterization of the targets of small-molecule HIV-1 entry inhibitors and neutralizing antibodies, and identifying a novel off-pathway conformation (State 2A). Here, we provide an overview of the current understanding of these conformational states, focusing on (i) the events during HIV-1 entry; (ii) conformational preferences of HIV-1 Env ligands; (iii) evasion of the host antibody response; and (iv) potential implications for therapy and prevention of HIV-1 infection.
Collapse
|
49
|
Grenier M, Ding S, Vézina D, Chapleau JP, Tolbert WD, Sherburn R, Schön A, Somisetti S, Abrams CF, Pazgier M, Finzi A, Smith AB. Optimization of Small Molecules That Sensitize HIV-1 Infected Cells to Antibody-Dependent Cellular Cytotoxicity. ACS Med Chem Lett 2020; 11:371-378. [PMID: 32184972 PMCID: PMC7074219 DOI: 10.1021/acsmedchemlett.9b00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022] Open
Abstract
With approximately 37 million people living with HIV worldwide and an estimated 2 million new infections reported each year, the need to derive novel strategies aimed at eradicating HIV-1 infection remains a critical worldwide challenge. One potential strategy would involve eliminating infected cells via antibody-dependent cellular cytotoxicity (ADCC). HIV-1 has evolved sophisticated mechanisms to conceal epitopes located in its envelope glycoprotein (Env) that are recognized by ADCC-mediating antibodies present in sera from HIV-1 infected individuals. Our aim is to circumvent this evasion via the development of small molecules that expose relevant anti-Env epitopes and sensitize HIV-1 infected cells to ADCC. Rapid elaboration of an initial screening hit using parallel synthesis and structure-based optimization has led to the development of potent small molecules that elicit this humoral response. Efforts to increase the ADCC activity of this class of small molecules with the aim of increasing their therapeutic potential was based on our recent cocrystal structures with gp120 core.
Collapse
Affiliation(s)
- Melissa
C. Grenier
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et
Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et
Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Philippe Chapleau
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et
Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - William D. Tolbert
- Infections Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Rebekah Sherburn
- Infections Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Arne Schön
- Department of Biology, The Johns Hopkins
University, Baltimore, Maryland 21218, United States
| | - Sambasivarao Somisetti
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Marzena Pazgier
- Infections Diseases Division, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et
Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
50
|
Thomas AS, Ghulam-Smith M, Olson A, Coote C, Gonzales O, Sagar M. A new cell line for assessing HIV-1 antibody dependent cellular cytotoxicity against a broad range of variants. J Immunol Methods 2020; 480:112766. [PMID: 32135162 DOI: 10.1016/j.jim.2020.112766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2019] [Revised: 12/09/2019] [Accepted: 02/25/2020] [Indexed: 01/26/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) studies suggest that antibody-dependent cellular cytotoxicity (ADCC) influences both virus acquisition and subsequent disease outcome. Technical issues with currently available assays, however, have limited the ability to comprehensively assess the impact of ADCC on transmission and disease progression. Commonly used ADCC assays use a target cell line, CEM.NKr-CCR5-Luc, that often does not support replication of relevant HIV-1 variants. Thus, the extent of ADCC responses against a large panel of HIV-1 strains often cannot be assessed using the currently available methods. We developed two new reporter cell-lines (MT4-CCR5-Luc and PM1-CCR5-Luc) to overcome these issues. MT4-CCR5-Luc cells are resistant, whereas PM1-CCR5-Luc cells are susceptible, to killing by a natural killer cell line, CD16+KHYG-1, in the absence of antibody. Polyclonal HIVIG gave similar ADCC estimates against HIV-1 isolate, NL4-3, regardless of which of the three cell lines were used as the targets. In contrast to CEM.NKr-CCR5-Luc and PM1-CCR5-Luc, however, MT4-CCR5-Luc target cells produce significantly higher luciferase after exposure to various HIV-1 strains, including transmitted founder variants and viruses incorporating specific envelopes of interest. This higher luciferase expression does not yield spurious results because ADCC estimates are similar when killing is assessed by both reporter protein expression and flow cytometry. Furthermore, ADCC estimates derived from MT4-CCR5-Luc cells are not skewed by non-antibody contents present in human plasma. In aggregate, the MT4-CCR5-Luc cell line can be used to estimate monoclonal antibody or plasma-induced ADCC responses against a diverse range of HIV-1 envelopes relevant for transmission and disease progression studies.
Collapse
Affiliation(s)
- Allison S Thomas
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | | | - Alex Olson
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Carolyn Coote
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Oscar Gonzales
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Manish Sagar
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|