1
|
Keilhoff G, Lucas B, Pinkernelle J, Steiner M, Fansa H. Effects of cerebrolysin on motor-neuron-like NSC-34 cells. Exp Cell Res 2014; 327:234-55. [PMID: 24997385 DOI: 10.1016/j.yexcr.2014.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/12/2014] [Accepted: 06/26/2014] [Indexed: 01/01/2023]
Abstract
Although the peripheral nervous system is capable of regeneration, this capability is limited. As a potential means of augmenting nerve regeneration, the effects of cerebrolysin (CL)--a proteolytic peptide fraction--were tested in vitro on the motor-neuron-like NSC-34 cell line and organotypic spinal cord cultures. Therefore, NSC-34 cells were subjected to mechanical stress by changing media and metabolic stress by oxygen glucose deprivation. Afterwards, cell survival/proliferation using MTT and BrdU-labeling (FACS) and neurite sprouting using ImageJ analysis were evaluated. Calpain-1, Src and α-spectrin protein expression were analyzed by Western blot. In organotypic cultures, the effect of CL on motor neuron survival and neurite sprouting was tested by immunohistochemistry. CL had a temporary anti-proliferative but initially neuroprotective effect on OGD-stressed NSC-34 cells. High-dosed or repeatedly applied CL was deleterious for cell survival. CL amplified neurite reconstruction to limited extent, affected calpain-1 protein expression and influenced calpain-mediated spectrin cleavage as a function of Src expression. In organotypic spinal cord slice cultures, CL was not able to support motor neuron survival/neurite sprouting. Moreover, it hampered astroglia and microglia activities. The data suggest that CL may have only isolated positive effects on injured spinal motor neurons. High-dosed or accumulated CL seemed to have adverse effects in treatment of spinal cord injury. Further experiments are required to optimize the conditions for a safe clinical administration of CL in spinal cord injuries.
Collapse
Affiliation(s)
- Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | - Benjamin Lucas
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Josephine Pinkernelle
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Michael Steiner
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Hisham Fansa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld, Teutoburger Str. 50, D-33604 Bielefeld, Germany
| |
Collapse
|
2
|
Sonnino S, Aureli M, Grassi S, Mauri L, Prioni S, Prinetti A. Lipid Rafts in Neurodegeneration and Neuroprotection. Mol Neurobiol 2013; 50:130-48. [DOI: 10.1007/s12035-013-8614-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/08/2013] [Indexed: 11/28/2022]
|
3
|
Constitutive activity of the A2A adenosine receptor and compartmentalised cyclic AMP signalling fine-tune noradrenaline release. Purinergic Signal 2012; 8:677-92. [PMID: 22476939 DOI: 10.1007/s11302-012-9298-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022] Open
Abstract
Neuroblastoma SH-SY5Y (SH) cells endogenously express A(2A) adenosine receptors and can be differentiated into a sympathetic neuronal phenotype, capable of depolarisation-dependent noradrenaline release. Using differentiated SH culture, we here explored the link between A(2A)-receptor signalling and neurotransmitter release. In response to the receptor agonist CGS21680, the cells produced cyclic AMP (cAMP), and when depolarised, they released increased amounts of noradrenaline. An A(2A)-receptor antagonist, XAC, as well as an inhibitor of cAMP-dependent protein kinase A (PKA), H89, depressed agonist-dependent release. In the presence of XAC or H89, noradrenaline release was found to be below basal values. This suggested that release facilitation also owes to constitutive receptor activity. We demonstrate that even in the absence of an agonist, the native A(2A)-receptor stimulated cAMP production, leading to the activation of PKA and enhanced noradrenaline release. Ancillary, non-cAMP-dependent effects of the receptor (i.e. phosphorylation of CREB, of Rabphilin3A) were refractory to constitutive activation. PKA-dependent facilitation of noradrenaline release was recapitulated with membrane-permeable 8-Br-cAMP; in addition to facilitation, 8-Br-cAMP caused marked inhibition of release, an effect not observed upon receptor activation. Inhibition by receptor-independent cAMP was likely due to suppression of voltage-dependent calcium current (VDCC) and increased activity of Src-family kinases. Receptor-mediated release facilitation was reproduced in the presence of tetrodotoxin (blocking action potentials); hence, the signalling occurred at the active zone comprising release sites. Our findings thus support (1) presynaptic localisation of the A(2A)-receptor and (2) suggest that compartmentalised pathways transmit cAMP signalling in order to facilitate depolarisation-dependent neurotransmitter release.
Collapse
|
4
|
Src kinase family inhibitor PP2 induces aggregation and detachment of neuroblastoma cells and inhibits cell growth in a PI3 kinase/Akt pathway-independent manner. Pediatr Surg Int 2011; 27:225-30. [PMID: 21046121 DOI: 10.1007/s00383-010-2775-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Neuroblastoma (NB) is one of the most common extracranial solid tumors in children and is known for its clinical and biological heterogeneity. The aim of this study is to reveal the functional role of src family kinases in the biological behavior of NB by inhibiting their kinase activities with a specific inhibitor, PP2 (4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine). METHODS NB cell lines (SH-SY5Y, IMR32, RT-BM-1, CHP134, NLF, and LA-N-5) were treated with 0.1-10 µM of PP2. Morphological changes, cell growth, and cell death were assessed, as well as all-trans retinoic acid (ATRA)-induced neuronal differentiation and epidermal growth factor (EGF)-induced proliferation. RESULTS At 24 h after PP2 treatment, NB cell lines showed drastic cell aggregation. PP2 also inhibited cell growth of NB in a dose-dependent manner. Apoptosis was detected in these cells. ATRA-induced neuronal differentiation of RT-BM-1 was not affected by PP2. PP2 reduced the proliferative effect of EGF. EGF-induced rapid activation of Akt, which was not blocked by PP2 treatment, suggesting that the cellular events triggered by PP2 were independent to PI3 kinase/Akt signaling pathway. CONCLUSION Our data suggests that src family kinases promote cell survival/proliferation and reduces cell aggregation of NBs. Src family kinase inhibitors may be good candidates for a novel molecular target therapy.
Collapse
|
5
|
Beierle EA, Ma X, Trujillo A, Kurenova EV, Cance WG, Golubovskaya VM. Inhibition of focal adhesion kinase and src increases detachment and apoptosis in human neuroblastoma cell lines. Mol Carcinog 2010; 49:224-34. [PMID: 19885861 DOI: 10.1002/mc.20592] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood. Focal adhesion kinase (FAK) is an intracellular kinase that is overexpressed in a number of human tumors including neuroblastoma, and regulates both cellular adhesion and survival. We have studied the effects of FAK inhibition upon neuroblastoma using adenovirus-containing FAK-CD (AdFAK-CD). Utilizing an isogenic MYCN+/MYCN- neuroblastoma cell line, we found that the MYCN+ cells are more sensitive to FAK inhibition with AdFAK-CD than their MYCN negative counterparts. In addition, we have shown that phosphorylation of Src is increased in the untreated isogenic MYCN- neuroblastoma cells, and that the decreased sensitivity of the MYCN- neuroblastoma cells to FAK inhibition with AdFAK-CD is abrogated by the addition of the Src family kinase inhibitor, PP2. The results of the current study suggest that both FAK and Src play a role in protecting neuroblastoma cells from apoptosis, and that dual inhibition of these kinases may be important when designing therapeutic interventions for this tumor.
Collapse
Affiliation(s)
- Elizabeth A Beierle
- Department of Surgery, University of Alabama, Birmingham, Alabama 35233, USA
| | | | | | | | | | | |
Collapse
|
6
|
Sonnino S, Prinetti A. Gangliosides as regulators of cell membrane organization and functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:165-84. [PMID: 20919654 DOI: 10.1007/978-1-4419-6741-1_12] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gangliosides, characteristic complex lipids present in the external layer of plasma membranes, deeply influence the organization of the membrane as a whole and the function of specific membrane associated proteins due to lipid-lipid and lipid-protein lateral interaction. Here we discuss the basis for the membrane-organizing potential of gangliosides, examples of ganglioside-regulated membrane protein complexes and the mechanisms for the regulation of ganglioside membrane composition.
Collapse
Affiliation(s)
- Sandro Sonnino
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, University of Milan, Segrate, Italy
| | | |
Collapse
|
7
|
Duong TTH, Witting PK, Antao ST, Parry SN, Kennerson M, Lai B, Vogt S, Lay PA, Harris HH. Multiple protective activities of neuroglobin in cultured neuronal cells exposed to hypoxia re-oxygenation injury. J Neurochem 2009; 108:1143-54. [PMID: 19154338 DOI: 10.1111/j.1471-4159.2008.05846.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative stress is associated with the pathology of acute and chronic neurodegenerative disease. We have cloned a human neuroglobin (Nb) construct and over-expressed this protein in cultured human neuronal cells to assess whether Nb ameliorates the cellular response to experimental hypoxia-reoxygenation (H/R) injury. Parental cells transfected with a blank (pDEST40) vector responded to H/R injury with a significant decrease in cellular ATP at 5 and 24 h after insult. This was coupled with increases in the cytosolic Ca(2+), and the transition metals iron (Fe), copper (Cu), and zinc (Zn) within the cell body, as monitored simultaneously using X-ray fluorescence microprobe imaging. Parental cell viability decreased over the same time period with a approximately 4 to 5-fold increase in cell death (maximum approximately 25%) matched by an increase in caspase 3/7 activation (peaking at a 15-fold increase after 24 h) and condensation of beta-actin along axonal processes. Over-expression of Nb inhibited ATP loss and except for significant decreases in the sulfur (S), chlorine (Cl), potassium (K) and Ca(2+) contents, maintained cellular ion homeostasis after H/R insult. This resulted in increased cell viability, significantly diminished caspase activation and maintenance of the beta-actin cytoskeletal structure and receptor-mediated endocytosis. These data indicate that bolstering the cellular content of Nb inhibits neuronal cell dysfunction promoted by H/R insult through multiple protective actions including: (i) maintenance of cellular bioenergetics; (ii) inhibition of Ca(2+) influx; (iii) a reduction in cellular uptake of Fe, Cu and Zn at the expense of S, Cl and K; and (iv) an enhancement of cell viability through inhibiting necrosis and apoptosis.
Collapse
|
8
|
Xu X, Harder J, Flynn DC, Lanier LM. AFAP120 regulates actin organization during neuronal differentiation. Differentiation 2009; 77:38-47. [PMID: 19281763 PMCID: PMC2664250 DOI: 10.1016/j.diff.2008.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 01/10/2023]
Abstract
During development, dynamic changes in the actin cytoskeleton determine both cell motility and morphological differentiation. In most mature tissues, cells are generally minimally motile and have morphologies specialized to their functions. In metastatic cancer, cells generally lose their specialized morphology and become motile. Therefore, proteins that regulate the transition between the motile and morphologically differentiated states can play important roles in determining cancer outcomes. AFAP120 is a neuronal-specific protein that binds Src kinase and protein kinase C (PKC) and cross-links actin filaments. Here we report that expression and tyrosine phosphorylation of AFAP120 are developmentally regulated in the cerebellum. In cerebellar cultures, PKC activation induces Src kinase-dependent phosphorylation of AFAP120, indicating that AFAP120 may be a downstream effector of Src. In neuroblastoma cells induced to differentiate by treatment with a PKC activator, tyrosine phosphorylation of AFAP120 appears to regulate the formation of the lamellar actin structures and subsequent neurite initiation. Together, these results indicate that AFAP120 plays a role in organizing dynamic actin structures during neuronal differentiation and suggest that AFAP120 may help regulate the transition from motile precursor to morphologically differentiated neurons.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Jennifer Harder
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| | - Daniel C. Flynn
- Department of Microbiology & Immunology, West Virginia University, Morgantown, WV 26506
| | - Lorene M. Lanier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
9
|
Chang YM, Bai L, Liu S, Yang JC, Kung HJ, Evans CP. Src family kinase oncogenic potential and pathways in prostate cancer as revealed by AZD0530. Oncogene 2008; 27:6365-75. [PMID: 18679417 DOI: 10.1038/onc.2008.250] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is the most frequently diagnosed cancer in American men. We have previously demonstrated that Src mediates androgen-independent proliferation in prostate cancer. We sought to investigate the Src-mediated oncogenic pathways and tumor biology using AZD0530, a novel Src family kinase/Abl dual-kinase inhibitor that is entering phase II clinical trials. We show that while both Src and Abl are expressed in all prostate cancer cell lines, Src but not Abl is activated in the prostate. Furthermore, Src activation is inhibited by AZD0530 in a rapid and dose-dependent manner. We show that Src mediates cell proliferation in DU145 and PC3 cells at the G1 phase of cell cycle. Src inhibition resulted in decreased binding of beta-catenin to the promoters of G1 phase cell cycle regulators cyclin D1 and c-Myc. C-Myc may also be regulated at the protein level by extracellular signal-regulated kinase 1/2 and GSK3beta. Cell motility factors focal adhesion kinase, p130CAS and paxillin activation in DU145 and PC3 cells were also inhibited. Administration of AZD0530 in mice reduced orthotopic DU145 xenograft growth by 45%. We have further delineated the Src-mediated oncogenic growth and migration pathways in prostate cancer and established mechanistic rationale for Src inhibition as novel therapy in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Y-M Chang
- Department of Urology, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
10
|
Toyoshima K, Yamanashi Y, Inoue K, Semba K, Yamamoto T, Akiyama T. Protein tyrosine kinases belonging to the src family. CIBA FOUNDATION SYMPOSIUM 2007; 164:240-8; discussion 248-53. [PMID: 1395934 DOI: 10.1002/9780470514207.ch15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There are nine non-receptor-type protein tyrosine kinases that show a high level of similarity in their primary structures and in the structures of their functional domains. Together, they are called the src family. They seem to have common sites specific for oncogenic activation. Recent findings suggest that the kinases are closely associated with cell surface molecules and that they mediate extracellular signals through the activation of their tyrosine kinase activity. They appear to act more on the differentiated phenotype than in haemopoietic cell proliferation. Possible functions of the products of the lck, fyn, lyn and fgr genes in lymphocytes and monocytes are discussed.
Collapse
Affiliation(s)
- K Toyoshima
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Beaudry H, Gendron L, Guimond MO, Payet MD, Gallo-Payet N. Involvement of protein kinase C alpha (PKC alpha) in the early action of angiotensin II type 2 (AT2) effects on neurite outgrowth in NG108-15 cells: AT2-receptor inhibits PKC alpha and p21ras activity. Endocrinology 2006; 147:4263-72. [PMID: 16740968 DOI: 10.1210/en.2006-0411] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate whether protein kinase C (PKC) isoforms may be among the putative candidates implicated in the primary effects of the Ang II type 2 (AT2) receptor. Western blot analyses revealed the presence of PKC alpha,epsilon, iota, and zeta in NG108-15 cells. After a 3-d treatment with 3 nm Gö6976, a specific inhibitor of classical PKC isoforms, cells were characterized by the presence of one elongated process similar to that observed after treatment with Ang II or with CGP42112, a selective AT2 receptor agonist. Similar findings were observed in cells expressing a dominant-negative mutant of PKC alpha (K368A). Inhibition of PKC alpha in NG108-15 cells also decreased cell number and proliferation. In conditions of acute stimulation, Ang II induced a time-dependent and transient inhibition of PKC alpha activity, as well as a decrease in PKC alpha levels associated with the membrane. Treatment of cells with Gö6976 was also found to inhibit p21(ras) (between 1-10 min) but stimulated Rap1 activity (1-5 min) in a time-course similar to that of Ang II. Incubation of NG108-15 cells with Gö6976 (3 nm) inhibited basal p42/p44(mapk) phosphorylation, but failed to interfere with its activation by the AT(2) receptor, indicating that inhibition of PKC alpha is not directly involved in the Rap1-MEK-p42/p44(mapk) cascade. Taken together, these results indicate that PKC alpha is a primary target of the AT2 receptor. Inhibition of PKC alpha leads to a decrease in both p21(ras) activity and cell proliferation, which may facilitate AT2 receptor signaling through p42/p44(mapk), thereby leading to neurite outgrowth.
Collapse
Affiliation(s)
- Hélène Beaudry
- Service of Endocrinology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
12
|
Chen T, George JA, Taylor CC. Src tyrosine kinase as a chemotherapeutic target: is there a clinical case? Anticancer Drugs 2006; 17:123-31. [PMID: 16428929 DOI: 10.1097/00001813-200602000-00002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Src tyrosine kinase was the first protooncogene described. It has been found to be overexpressed and activated in a large number of different cancers. Cellular Src has been shown to activate a number of different effectors that are involved in different aspects of cancer biology such as metastasis, cell cycle regulation and cell survival. Despite this, Src inhibitors have not entered the regular arsenal of chemotherapeutics. This article reviews some of the biology, rationale, in vitro and in vivo preclinical evidence, and some very early clinical trials demonstrating efficacy of Src inhibitors.
Collapse
Affiliation(s)
- Ting Chen
- Department of Cell Biology, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia 20007, USA
| | | | | |
Collapse
|
13
|
Affiliation(s)
- Victor A Levin
- Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, USA
| |
Collapse
|
14
|
Lee LTO, Tan-Un KC, Lin MCM, Chow BKC. Retinoic acid activates human secretin gene expression by Sp proteins and nuclear factor I in neuronal SH-SY5Y cells. J Neurochem 2005; 93:339-50. [PMID: 15816857 DOI: 10.1111/j.1471-4159.2005.03018.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Secretin is a neuropeptide that is expressed in distinct central neurones. As there is no information on how the secretin gene is regulated in neuronal cells, a well established neuronal differentiation cell model, SH-SY5Y, was used to study transcriptional regulation of the human secretin gene. High secretin transcript and peptide levels were found in this cell, and secretin gene expression and promoter activity were up-regulated upon all-trans retinoic acid (RA) treatment. Within the promoter, a functional GC-box 1 (-131 from ATG, relative to the ATG initiation codon) was found to be regulated by a brain-specific Sp protein, Sp4, and ubiquitous factors Sp1 and Sp3. The human secretin gene in SH-SY5Y cells is controlled by the (Sp1 + Sp4)/Sp3 ratio and the RA-induced activation is a partial result of a decrease in Sp3 levels. In addition to the GC-box 1, an N1 motif in close proximity was also responsible for RA-induced secretin gene activation. Competitive gel mobility shift and southwestern blot studies revealed binding of Nuclear Factor I (NFI) with the N1 motif. Overexpression of NFI-C increased promoter activity upon RA treatment. Consistent with this observation, NFI-C transcript levels were augmented after RA treatment. We conclude that RA induction of the secretin gene in neuronal cells is regulated by the combined actions of reducing Sp3 and increasing NFI-C expression.
Collapse
Affiliation(s)
- Leo Tsz-On Lee
- Department of Zoology, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
15
|
Stockhausen MT, Sjölund J, Manetopoulos C, Axelson H. Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. Br J Cancer 2005; 92:751-9. [PMID: 15685243 PMCID: PMC2361888 DOI: 10.1038/sj.bjc.6602309] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma (NB), a sympathetically derived childhood tumour, shows characteristics of neuronal precursor cells, suggesting a halted differentiation process. We have previously shown that the Notch signalling cascade, a key player during normal neurogenesis, also might be involved in NB differentiation. Valproic acid (VPA), a well-tolerated antiepileptic drug, has been shown to induce differentiation and cell death of NB cells, possibly associated with its recently described HDAC inhibiting activity. Stimulation of NB cells with VPA led to increased cell death and phenotypic changes associated with differentiation, that is, neurite extension and upregulation of neuronal markers. VPA treatment also led to an activated Notch signalling cascade as shown by increased levels of intracellular Notch-1 and Hes-1, mimicking the initial phase of induced differentiation. These results reinforce that VPA potentially could be used in differentiation therapy of NB and that the effects in part could be a consequence of interference with the Notch signalling cascade.
Collapse
Affiliation(s)
- M-T Stockhausen
- Department of Laboratory Medicine, Division of Molecular Medicine, Lund University, University Hospital MAS, S-205 02 Malmö, Sweden
| | - J Sjölund
- Department of Laboratory Medicine, Division of Molecular Medicine, Lund University, University Hospital MAS, S-205 02 Malmö, Sweden
| | - C Manetopoulos
- Department of Laboratory Medicine, Division of Molecular Medicine, Lund University, University Hospital MAS, S-205 02 Malmö, Sweden
| | - H Axelson
- Department of Laboratory Medicine, Division of Molecular Medicine, Lund University, University Hospital MAS, S-205 02 Malmö, Sweden
- Department of Laboratory Medicine, Division of Molecular Medicine, Lund University, University Hospital MAS, S-205 02 Malmö, Sweden. E-mail:
| |
Collapse
|
16
|
Edsjö A, Nilsson H, Vandesompele J, Karlsson J, Pattyn F, Culp LA, Speleman F, Påhlman S. Neuroblastoma cells with overexpressed MYCN retain their capacity to undergo neuronal differentiation. J Transl Med 2004; 84:406-17. [PMID: 14767491 DOI: 10.1038/labinvest.3700061] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Amplification of MYCN in neuroblastoma strongly correlates to unfavorable outcome, but little is known of how the high MYCN expression translates into an aggressive tumor phenotype. More aggressive neuroblastomas are generally immature and overexpression of exogenous MYCN in cultured neuroblastoma cells and other neuronal cell types has been reported to inhibit induced differentiation, suggesting a link between high MYCN expression and an immature phenotype. However, we show here that MYCN is expressed in human neuroblasts of sympathetic chain ganglia at fetal week 8.5, a developmental stage at which these neuroblasts express a number of sympathetic neuronal differentiation marker genes. Analyses of 28 neuroblastoma tumor specimens and 27 cell lines for the expression of MYCN and a panel of neuronal differentiation marker genes did not reveal any correlation between MYCN and marker gene expression levels. Finally, we tested five separate differentiation protocols and show that MYCN overexpressing neuroblastoma cells with a neuronal phenotype, derived from the non-MYCN-amplified human neuroblastoma cell line SK-N-SH, retain their capacity to differentiate despite constitutive MYCN overexpression. Our results show that high MYCN expression and sympathetic differentiation are compatible, and indirectly our findings lend support to previously published MYCN neuroblastoma tumor data, which suggest that in single MYCN copy neuroblastomas there is no direct correlation between a high cellular MYCN protein content and aggressive tumor cell behavior.
Collapse
Affiliation(s)
- Anders Edsjö
- Department of Laboratory Medicine, Molecular Medicine, Lund University, University Hospital MAS, S-20502 Malmö, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Clump DA, Clem R, Qian Y, Guappone-Koay A, Berrebi AS, Flynn DC. Protein expression levels of the Src activating protein AFAP are developmentally regulated in brain. JOURNAL OF NEUROBIOLOGY 2003; 54:473-85. [PMID: 12532398 DOI: 10.1002/neu.10143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Src family of nonreceptor tyrosine kinases plays an important role in modulating signals that affect growth cone extension, neuronal differentiation, and brain development. Recent reports indicate that the Src SH2/SH3 binding partner AFAP-110 has the capacity to modulate actin filament integrity as a cSrc activating protein and as an actin filament bundling protein. Both AFAP-110 and a brain specific isoform called AFAP-120 (collectively referred to as AFAP) exist at high levels in chick embryo brain. We sought to identify the localization of AFAP in mouse brain in order to identify its expression pattern and potential role as a cellular modulator of Src family kinase activity and actin filament integrity in the brain. In E16 mouse embryos, AFAP expression levels were very high and concentrated in the olfactory bulb, cortex, forebrain, cerebellum, and various peripheral sensory structures. In P3 mouse pups, overall expression was reduced compared to E16 embryos, and AFAP was found primarily in olfactory bulb, cortex, and cerebellum. AFAP expression levels were significantly reduced in adult mice, with high expression levels only detected in the olfactory bulb. Western blot analysis indicated that concentrated expression of AFAP correlates well with the AFAP-120 isoform, which appears to be a splice variant of AFAP-110. As the expression pattern of AFAP overlaps with the reported expression patterns of cSrc and Fyn, we hypothesize that AFAP is positioned to modulate signal transduction cascades that direct activation of these nonreceptor tyrosine kinases and concomitant cellular changes that occur in actin filaments during brain development.
Collapse
Affiliation(s)
- David A Clump
- The Mary Babb Randolph Cancer Center and the Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia 26506-9300, USA
| | | | | | | | | | | |
Collapse
|
18
|
Lu H, Shah P, Ennis D, Shinder G, Sap J, Le-Tien H, Fantus IG. The differentiation of skeletal muscle cells involves a protein-tyrosine phosphatase-alpha-mediated C-Src signaling pathway. J Biol Chem 2002; 277:46687-95. [PMID: 12351660 DOI: 10.1074/jbc.m209643200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein-tyrosine phosphatase-alpha (PTPalpha) plays an important role in various cellular signaling events, including proliferation and differentiation. In this study, we established L6 cell lines either underexpressing or overexpressing PTPalpha by stable transfection of cells with antisense PTPalpha or with full-length wild-type human or mouse or double catalytic site Cys --> Ala mutant (DM8) PTPalpha cDNA. Expression of PTPalpha in these cell lines was determined by immunoblotting and immunofluorescence. Cells harboring antisense PTPalpha exhibited a significantly reduced growth rate and thymidine incorporation when compared with the wild-type L6 cells. In contrast, cells overexpressing PTPalpha showed more rapid (2-fold) proliferation. Myoblasts with diminished PTPalpha failed to undergo fusion and did not form myotubes in reduced serum whereas overexpression of PTPalpha promoted myogenesis 2 days earlier than wild-type L6 cells. Overexpression of phosphatase-inactive mutant PTPalpha recapitulated the phenotype of the antisense cells. The different myogenic activities of these cell lines were correlated with the expression of myogenin and creatine kinase activity. Consistent with previous reports, PTPalpha positively regulated the activity of the protein-tyrosine kinase Src. Treatment of L6 cells with PP2 or SU6656, specific inhibitors of Src family kinases, and transient transfection of dominant-inhibitory Src inhibited the formation of myotubes and expression of myogenin. Moreover, enhanced expression of PTPalpha and activation of Src was detected during myogenesis. Together, these data indicate that PTPalpha is involved in the regulation of L6 myoblast growth and skeletal muscle cell differentiation via an Src-mediated signaling pathway.
Collapse
Affiliation(s)
- Huogen Lu
- Department of Medicine, Mount Sinai Hospital and The University Health Network and the Banting and Best Diabetes Center, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Jögi A, Persson P, Grynfeld A, Påhlman S, Axelson H. Modulation of basic helix-loop-helix transcription complex formation by Id proteins during neuronal differentiation. J Biol Chem 2002; 277:9118-26. [PMID: 11756408 DOI: 10.1074/jbc.m107713200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is assumed that the Id helix-loop-helix (HLH) proteins act by associating with ubiquitously expressed basic HLH (bHLH) transcription factors, such as E47 and E2-2, which prevents these factors from forming functional hetero- or homodimeric DNA binding complexes. Several tissue-specific bHLH proteins, including HASH-1, dHAND, and HES-1, are important for development of the nervous system. Neuroblastoma tumors are derived from the sympathetic nervous system and exhibit neural crest features. In differentiating neuroblastoma cells, HASH-1 is down-regulated, and there is coincident up-regulation of the transcriptional repressor HES-1, which is known to bind the HASH-1 promoter. We found that the three Id proteins expressed in neuroblastoma cells (Id1, Id2, and Id3) were down-regulated during induced differentiation, indicating that Id proteins help keep the tumor cells in an undifferentiated state. Studying interactions, we noted that all four Id proteins could dimerize with E47 or E2-2, but not with HASH-1 or dHAND. However, the Id proteins did complex with HES-1, and increased levels of Id2 reduced the DNA binding activity of HES-1. Furthermore, HES-1 interfered with Id2/E2-2 complex formation. The ability of Id proteins to affect HES-1 activity is of particular interest in neuronal cells, where regulation of HES-1 is essential for the timing of neuronal differentiation.
Collapse
Affiliation(s)
- Annika Jögi
- Department of Laboratory Medicine, Division of Molecular Medicine, Lund University, University Hospital MAS, S-205 02 Malmö, Sweden
| | | | | | | | | |
Collapse
|
20
|
Jalava A, Heikkilä J, Lintunen M, Akerman K, Påhlman S. Staurosporine induces a neuronal phenotype in SH-SY5Y human neuroblastoma cells that resembles that induced by the phorbol ester 12-O-tetradecanoyl phorbol-13 acetate TPA). FEBS Lett 2002; 300:114-8. [PMID: 1348695 DOI: 10.1016/0014-5793(92)80176-h] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Treatment of SH-SY5Y human neuroblastoma cells with the protein kinase inhibitor staurosporine, induced both morphological and functional differentiation in these cells. The effects of staurosporine were comparable to those induced by the protein kinase C (PKC) activator, 12-O-tetradecanoyl phorbol 13-acetate (TPA), with respect to induction of neuronal differentiation, i.e. neurite outgrowth, inhibition of DNA synthesis, induction and down-regulation of c-myc protein expression, induction of mRNA for both neuropeptide Y (NPY) and growth associated protein 43 (GAP-43) and stimulation of tyrosine hydroxylase expression. Staurosporine failed to translocate PKC to the membrane fraction or to stimulate phosphorylation of the endogenous PKC substrate M(r) 80,000 (p80). Instead, staurosporine inhibited TPA-induced phosphorylation of p80.
Collapse
Affiliation(s)
- A Jalava
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| | | | | | | | | |
Collapse
|
21
|
Prinetti A, Chigorno V, Prioni S, Loberto N, Marano N, Tettamanti G, Sonnino S. Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 2001; 276:21136-45. [PMID: 11264283 DOI: 10.1074/jbc.m010666200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present paper, we report on the properties of sphingolipid-enriched domains of rat cerebellar granule cells in culture at different stages of neuronal development. The major lipid components of these domains were glycerophospholipids and cholesterol. Glycerophospholipids were 45-75% and cholesterol 15-45% of total lipids of the domains. This corresponded to 5-17% of total cell glycerophospholipids and 15-45% of total cell cholesterol. Phosphatidylcholine, mainly dipalmitoylphosphatidylcholine, was 66-85% of all the glycerophospholipids associated with these domains. Consequently, the palmitoyl residue was significantly enriched in the domains. The surface occupied by these structures increased during development. 40-70% of cell sphingolipids segregated in sphingolipid-enriched membrane domains, with the maximum ganglioside density in fully differentiated neurons. A high content of ceramide was found in the domains of aging neurons. Then, the sphingolipid/glycerophospholipid molar ratio was more than doubled during the initial stage of development, whereas the cholesterol/glycerophospholipid molar ratio gradually decreased during in vitro differentiation. Phosphorylated phosphoinositides, which were scant in the domains of undifferentiated cells, dramatically increased during differentiation and aging in culture. Proteins were minor components of the domains (0.1-2.8% of all domain components). Phosphotyrosine-containing proteins were selectively recovered in the sphingolipid-enriched domain. Among these, Src family protein-tyrosine kinases, known to participate to the process of neuronal differentiation, were associated with the sphingolipid-enriched domains in a way specific for the type of kinase and for the developmental stage of the cell. Proteins belonging to other signaling pathways, such as phosphoinositide 3-kinase and its downstream target, Akt, were not associated with the domains.
Collapse
Affiliation(s)
- A Prinetti
- Study Center for the Functional Biochemistry of Brain Lipids, Department of Medical Chemistry, Medical School, University of Milan, Segrate, Italy 20090
| | | | | | | | | | | | | |
Collapse
|
22
|
Bruce-Staskal PJ, Bouton AH. PKC-dependent activation of FAK and src induces tyrosine phosphorylation of Cas and formation of Cas-Crk complexes. Exp Cell Res 2001; 264:296-306. [PMID: 11262186 DOI: 10.1006/excr.2000.5137] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SH-SY5Y neuroblastoma cells are a well-characterized model for studying the induction of neuronal differentiation. TPA treatment of these cells induces cytoskeletal rearrangements that ultimately result in neurite extension. However, the signaling pathways that precede these changes are poorly understood. Other investigators have shown that TPA treatment of SH-SY5Y cells results in increased tyrosine phosphorylation of cytoskeletal-associated proteins, including the adapter protein Cas. In this report, we examine the events upstream and downstream of Cas phosphorylation. We show that TPA treatment induces the PKC-dependent association of tyrosine-phosphorylated Cas with Crk. The activity of two protein tyrosine kinases, Src and FAK, was shown to be necessary and sufficient for TPA-induced Cas phosphorylation. We propose that the PKC-dependent phosphorylation of Cas by Src and FAK promotes the establishment of Cas-Crk complexes and that these interactions may play an important role in regulating the actin cytoskeleton during neuronal differentiation.
Collapse
Affiliation(s)
- P J Bruce-Staskal
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908-0734, USA
| | | |
Collapse
|
23
|
Persson P, Jögi A, Grynfeld A, Påhlman S, Axelson H. HASH-1 and E2-2 are expressed in human neuroblastoma cells and form a functional complex. Biochem Biophys Res Commun 2000; 274:22-31. [PMID: 10903890 DOI: 10.1006/bbrc.2000.3090] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor mammalian achaete-scute homolog-1 (MASH-1 in mouse and HASH-1 in human) is essential for proper development of olfactory and most peripheral autonomic neurons, and for the formation of distinct neuronal circuits within the central nervous system. We have previously shown that HASH-1 is expressed in neuroblastoma tumors and cell lines, and in this study we have used the yeast two-hybrid system to isolate HASH-1 interacting proteins from a human neuroblastoma cDNA library. Two of the isolated clones contained cDNA from the E2-2 gene (also known as ITF2/SEF2-1). We show that E2-2 interacts with HASH-1 in both yeast and mammalian cells. The HASH-1/E2-2 complex binds an E-box (CACCTG) in vitro, and transactivates an E-box containing reporter construct in vivo. Furthermore, E2-2 seems to be one of the major HASH-1 interacting proteins in extracts from neuroblastoma cells. In conclusion, E2-2 forms a functional complex with HASH-1, and might therefore be involved in the development of specific parts of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- P Persson
- Department of Laboratory Medicine, Lund University, Malmö, University Hospital MAS, S-205 02, Sweden
| | | | | | | | | |
Collapse
|
24
|
Zheng XM, Resnick RJ, Shalloway D. A phosphotyrosine displacement mechanism for activation of Src by PTPalpha. EMBO J 2000; 19:964-78. [PMID: 10698938 PMCID: PMC305636 DOI: 10.1093/emboj/19.5.964] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein tyrosine phosphatase alpha (PTPalpha) is believed to dephosphorylate physiologically the Src proto-oncogene at phosphotyrosine (pTyr)527, a critical negative-regulatory residue. It thereby activates Src, and PTPalpha overexpression neoplastically transforms NIH 3T3 cells. pTyr789 in PTPalpha is constitutively phosphorylated and binds Grb2, an interaction that may inhibit PTPalpha activity. We show here that this phosphorylation also specifically enables PTPalpha to dephosphorylate pTyr527. Tyr789-->Phe mutation abrogates PTPalpha-Src binding, dephosphorylation of pTyr527 (although not of other substrates), and neoplastic transformation by overexpressed PTPalpha in vivo. We suggest that pTyr789 enables pTyr527 dephosphorylation by a pilot binding with the Src SH2 domain that displaces the intramolecular pTyr527-SH2 binding. Consistent with model predictions, we find that excess SH2 domains can disrupt PTPalpha-Src binding and can block PTPalpha-mediated dephosphorylation and activation in proportion to their affinity for pTyr789. Moreover, we show that, as predicted by the model, catalytically defective PTPalpha has reduced Src binding in vivo. The displacement mechanism provides another potential control point for physiological regulation of Src-family signal transduction pathways.
Collapse
Affiliation(s)
- X M Zheng
- Department of Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
25
|
Grynfeld A, Påhlman S, Axelson H. Induced neuroblastoma cell differentiation, associated with transient HES-1 activity and reducedHASH-1 expression, is inhibited by Notch1. Int J Cancer 2000. [DOI: 10.1002/1097-0215(20001101)88:3<401::aid-ijc12>3.0.co;2-v] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Perez-Juste G, Aranda A. Differentiation of neuroblastoma cells by phorbol esters and insulin-like growth factor 1 is associated with induction of retinoic acid receptor beta gene expression. Oncogene 1999; 18:5393-402. [PMID: 10498893 DOI: 10.1038/sj.onc.1202906] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The retinoic acid (RA) receptor beta isoform (RARbeta) plays an important role in RA-induced differentiation of human neuroblastoma. In this study we show that insulin-like growth factor 1 (IGF-1) and tetradecanoyl phorbol acetate (TPA) induce RARbeta gene expression in neuroblastoma SH-SY5Y cells. IGF-1 and TPA caused a marked induction of RARbeta2 promoter activity and had a synergistic effect with RA that also upregulates transcription. The effect of RA is mediated by two RA responsive elements (RAREs), whereas the IGF-1 and TPA actions are independent of the RAREs and map to sequences that overlap the TATA box. These results suggest that the signaling pathways stimulated by TPA and IGF-1 could modify the components assembled at the core RARbeta2 promoter and activate transcription. Expression of RasVal12 mimics the effect of IGF-1 and TPA on the promoter, and a dominant negative Ras mutant abrogates activation. A dominant negative Raf also blocks activation showing that the Ras-Raf pathway mediates stimulation of the RARbeta2 promoter. Our results show that neuronal differentiation induced by non-retinoid agents that activate Ras is accompanied by increased transcription of the RARbeta gene.
Collapse
Affiliation(s)
- G Perez-Juste
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | | |
Collapse
|
27
|
Prinetti A, Iwabuchi K, Hakomori S. Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells. Mechanism of ganglioside-dependent neuritogenesis. J Biol Chem 1999; 274:20916-24. [PMID: 10409636 DOI: 10.1074/jbc.274.30.20916] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differentiation and neuritogenesis of mouse neuroblastoma Neuro2a cells are induced by exogenous ganglioside but are not induced by nerve growth factor because its receptor is absent in these cells. In view of the emerging concept of the "glycosphingolipid-enriched domain" (GEM), we studied the mechanism of the ganglioside effect, focusing on the structure and function of such a domain. GEM in Neuro2a cells, separated as a low density membrane fraction, contains essentially all glycosphingolipids and sphingomyelin, together with five signal transducer molecules (c-Src, Lyn, Csk, Rho A, Ha-Ras). (3)H-Labeled Il(3)NeuAc-LacCer (GM3), Gb4Cer (globoside), and Il(3)NeuAc-Gg4Cer (GM1) added exogenously to cells were incorporated and concentrated in the low density GEM fraction. In contrast, more than 50% of glycerophospholipids and 30% of cholesterol were found in the high density fraction. (3)H-Labeled phosphatidylcholine added exogenously to cells was incorporated exclusively in the high density fraction. c-Src, the predominant signal transducer in the microdomain, was coimmunoprecipitated with anti-GM3 antibody DH2 or with anti-Csk; reciprocally, Csk was coimmunoprecipitated with anti-c-Src, indicating a close association of GM3, c-Src, and Csk. Brief stimulation of an isolated GEM fraction by the exogenous addition of GM3, but not lactosylceramide, caused enhanced c-Src phosphorylation with a concomitant decrease of Csk level in GEM. A decreased Csk/c-Src ratio in GEM may cause activation of c-Src because Csk is a negative regulator of c-Src. The effect of exogenous GM3 on c-Src activity was also observed in intact Neuro2a cells. Activation of c-Src was followed by rapid and prolonged (60 min) enhancement of mitogen-activated protein kinase activity leading to neuritogenesis. Thus, the ganglioside induction of neuritogenesis in Neuro2a cells is mediated by GEM structure and function.
Collapse
Affiliation(s)
- A Prinetti
- Pacific Northwest Research Institute, Seattle, Washington 98122 and the Departments of Pathobiology and Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
28
|
Raguenez G, Desire L, Lantrua V, Courtois Y. BCL-2 is upregulated in human SH-SY5Y neuroblastoma cells differentiated by overexpression of fibroblast growth factor 1. Biochem Biophys Res Commun 1999; 258:745-51. [PMID: 10329457 DOI: 10.1006/bbrc.1999.0613] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor 1 (FGF1) is a multipotent factor in the development and differentiation of the central nervous system. Recent studies in PC12 cells attribute these effects to high endogenous FGF1 expression. To examine the differentiation mechanisms induced by FGF1, we performed studies in SH-SY5Y human neuroblastoma cells. We monitored the impact of FGF1 overexpression in SH-SY5Y either after addition of exogenous FGF1 and heparin or after stable transfection with the FGF1 eukaryotic expression vector. Under both conditions, the FGF1 endogenous rise caused SH-SY5Y cell differentiation with morphological changes (appearance of neuritic extensions), increased GAP-43 gene expression, decreased of N-myc gene expression, and prolonged long-term survival in serum-free media. These modifications were correlated with Bcl-2 upregulation. These results suggest that there is a link between the endogenous FGF1 signaling pathway and Bcl-2 in neuronal survival modulation.
Collapse
Affiliation(s)
- G Raguenez
- Développement, Vieillissement et Pathologie de la Rétine, INSERM U. 450, Affiliée CNRS, Association Claude Bernard - 29 rue Wilhem, Paris, 75016, France.
| | | | | | | |
Collapse
|
29
|
Zeidman R, Pettersson L, Sailaja PR, Truedsson E, Fagerström S, Påhlman S, Larsson C. Novel and classical protein kinase C isoforms have different functions in proliferation, survival and differentiation of neuroblastoma cells. Int J Cancer 1999; 81:494-501. [PMID: 10209967 DOI: 10.1002/(sici)1097-0215(19990505)81:3<494::aid-ijc26>3.0.co;2-l] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To elucidate the possibility of utilizing protein kinase C (PKC) isoforms as target genes in neuroblastoma therapy, 5 neuroblastoma cell lines and neuroblastoma tumor specimens were examined for PKC isoform expression pattern and the cell lines were analyzed for sensitivity to PKC inhibition. All cell lines [IMR-32, LAN-2, LAN-5, SH-SY5Y and SK-N-BE(2)] expressed alpha, betaII, delta and epsilon isoforms of PKC, while no PKCeta or theta protein was detected in any cell line. PKCgamma was found only in LAN-2 cells. PKCalpha, betaII and delta were detected in 5 neuroblastoma tumors and PKCepsilon in 4 out of 5 tumors. Exposure to the PKC inhibitors GF109203X, Gö 6976 or Gö 6983 caused a decrease whereas activation of PKC with 12-O-tetradecanoyl phorbol 13-acetate caused an increase in the number of neuroblastoma cells. The effect of Gö 6976 was due to both inhibited proliferation and to increased apoptosis. While GF109203X suppressed neurite outgrowth induced by a growth factor combination, Gö 6976 potentiated neurite outgrowth. Our data suggest a role for classical PKC isoforms in neuroblastoma growth and survival and for novel isoforms in neurite outgrowth.
Collapse
Affiliation(s)
- R Zeidman
- Lund University, Department of Laboratory Medicine, Molecular Medicine, Malmö University Hospital, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Goldsmith AM, Gnegy ME. Continuous phosphorylation of GAP-43 and MARCKS by long-term TPA treatment in SK-N-SH human neuroblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1449:269-83. [PMID: 10209306 DOI: 10.1016/s0167-4889(99)00020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Long-term treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) down-regulates select protein kinase C (PKC) isozymes and may differentially affect PKC substrates. We investigated the role of PKC down-regulation on phosphorylation of two PKC substrates, the 43 kDa growth-associated protein (GAP-43) and the myristoylated alanine-rich C-kinase substrate (MARCKS) in SK-N-SH human neuroblastoma cells. Cells were treated with 70 nM TPA for 15 min, 17 or 72 h. Phosphorylation of MARCKS and GAP-43 was elevated throughout 72 h of TPA. The magnitude and peptidic sites of phosphorylation in GAP-43 and MARCKS were similar after all TPA treatments. GAP-43, but not MARCKS, content was increased after 17 and 72 h of TPA. The ratio of GAP-43 phosphorylation to content was elevated throughout 17 h but returned to control by 72 h as content increased. PKC epsilon and alpha isozyme content was greatly reduced after 72 h of TPA but membranes retained 23% of PKC activity. Only PKC epsilon translocated to membranes after 15 min TPA. GAP-43 content after 72 h of TPA was increased in subcellular fractions in which significant PKC epsilon isozyme concentration remained. These results demonstrate that continuous TPA differentially affected phosphorylation of PKC substrate proteins and regulation of PKC isozyme content in SK-N-SH cells.
Collapse
Affiliation(s)
- A M Goldsmith
- Department of Pharmacology, University of Michigan Medical School, 2220E MSRB III, Ann Arbor, MI 48109-0632, USA
| | | |
Collapse
|
31
|
Söderholm H, Ortoft E, Johansson I, Ljungberg J, Larsson C, Axelson H, Påhlman S. Human achaete-scute homologue 1 (HASH-1) is downregulated in differentiating neuroblastoma cells. Biochem Biophys Res Commun 1999; 256:557-63. [PMID: 10080936 DOI: 10.1006/bbrc.1999.0314] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian achaete-scute homologue, MASH-1, is crucial for early development of the sympathetic nervous system and is transiently expressed in sympathetic neuroblasts during embryogenesis. Here we report that the human homologue (HASH-1) was expressed in all analyzed cell lines (6/6) derived from the sympathetic nervous system tumor neuroblastoma. The majority of small-cell lung carcinoma (4/5) cell lines tested expressed HASH-1, while other nonneuronal/non-neuroendocrine cell lines were negative. Induced differentiation of neuroblastoma cells resulted in HASH-1 downregulation. This occurred concomitant with induction of neurite outgrowth and expression of the neuronal marker genes GAP-43 and neuropeptide Y. Constitutive expression of exogenous HASH-1 did not alter the capacity of the neuroblastoma cells to differentiate in response to differentiation-inducing agents. It is concluded that moderate HASH-1 expression does not compromise the capacity of these cells to differentiate.
Collapse
Affiliation(s)
- H Söderholm
- Department of Laboratory Medicine, Division of Molecular Medicine, Lund University, University Hospital MAS, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
Matsunaga T, Shirasawa H, Enomoto H, Yoshida H, Iwai J, Tanabe M, Kawamura K, Etoh T, Ohnuma N. Neuronal src and trk a protooncogene expression in neuroblastomas and patient prognosis. Int J Cancer 1998; 79:226-31. [PMID: 9645342 DOI: 10.1002/(sici)1097-0215(19980619)79:3<226::aid-ijc3>3.0.co;2-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroblastomas present a wide variety of clinical and biological behaviors, which are reflected by the heterogeneous expressions of protooncogenes related to the neuronal differentiation and amplification of the N-myc gene. High expression of trk A and Ha-ras in neuroblastomas has been shown to be associated with an excellent patient outcome. We have previously reported that neuron-specific src mRNA was increased in chemically differentiated neuroblastoma cell lines and in clinically observed neuroblastomas without N-myc amplification. In the present study, to clarify both the value of neuronal c-srcN2 expression as a prognostic indicator and the significance of the coexpression of these protooncogenes, we examined the expression of 3 alternatively spliced src, trk A and Ha-ras in neuroblastoma tissues from 60 patients by competitive RNA-polymerase chain reaction (PCR). The results indicate that protooncogene expression in neuroblastomas correlated with a favorable outcome for c-srcN2 and trk A. N-myc gene was amplified exclusively in tumors with low levels of trk A. Low expression of c-srcN2 and trk A might thus characterize different aggressive phenotypes due to different signal transduction pathways of neural differentiation in neuroblastoma. The combined analyses for c-srcN2 and trk A expression by RNA-PCR should provide information about the biological phenotype of a neuroblastoma within a short period of time after obtaining tumor material.
Collapse
Affiliation(s)
- T Matsunaga
- Department of Pediatric Surgery, Chiba University, School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fagerström S, Påhlman S, Nånberg E. Protein kinase C-dependent tyrosine phosphorylation of p130cas in differentiating neuroblastoma cells. J Biol Chem 1998; 273:2336-43. [PMID: 9442079 DOI: 10.1074/jbc.273.4.2336] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cell signaling docking protein p130cas became tyrosine-phosphorylated in SH-SY5Y human neuroblastoma cells during induced differentiation with 12-O-tetradecanoylphorbol-13-acetate (TPA) and serum or a combination of basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I). The differentiating cells develop a neuronal phenotype with neurites and growth cones and sustained activation of protein kinase C (PKC) and pp60c-src. The TPA-induced p130cas phosphorylation increased within 5 min of stimulation and persisted for at least 4 days, whereas bFGF/IGF-I-induced p130cas phosphorylation was biphasic. However, the increase in tyrosine phosphorylation of p130cas was not restricted to differentiation inducing stimuli. The phosphorylation was blocked by the specific PKC inhibitor GF 109203X, and transient transfection with active PKC-epsilon induced p130cas tyrosine phosphorylation. pp60c-src, known to directly phosphorylate p130cas in other cell systems, was not activated after stimulation with TPA or bFGF/IGF-I for up to 30 min, and the initial p130cas phosphorylation was resistant to the Src family kinase inhibitor herbimycin A. However, in long term stimulated cells, herbimycin A blocked the induced phosphorylation of p130cas. Also, overexpression of src induced phosphorylation of p130cas. p130cas protein and phosphorylated p130cas were present in growth cones isolated from differentiated SH-SY5Y cells. Inhibition of PKC activity in differentiating cells with GF 109203X leads to a rapid retraction of growth cone filopodia, and p130cas phosphorylation decreased transiently (within minutes). Growth cones isolated from these cells were virtually devoid of phosphorylated p130cas. These data suggest a function for p130cas as a PKC downstream target in SH-SY5Y cells and possibly also in their growth cones.
Collapse
Affiliation(s)
- S Fagerström
- Department of Laboratory Medicine, Lund University, University Hospital MAS, Malmö, Sweden
| | | | | |
Collapse
|
34
|
Kuo SS, Armanini MP, Phillips HS, Caras IW. Csk and BatK show opposite temporal expression in the rat CNS: consistent with its late expression in development, BatK induces differentiation of PC12 cells. Eur J Neurosci 1997; 9:2383-93. [PMID: 9464932 DOI: 10.1111/j.1460-9568.1997.tb01655.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BatK is a second member of the Csk family of regulatory kinases that phosphorylate a key inhibitory tyrosine on Src family kinases, leading to down-regulation. To investigate the roles of BatK and Csk, both of which are expressed in the brain, we compared their temporal expression patterns during development of the central nervous system (CNS) in rats. BatK mRNA is undetectable at embryonic day 12 (E12), appears in the developing nervous system at approximately E15, and its expression progressively increases up to the time of birth, thereafter remaining high throughout the adult brain. In striking contrast, Csk is highly expressed throughout embryonic development and remains high in the CNS until birth. It is then dramatically down-regulated in the adult brain except in the olfactory bulb. BatK and Csk thus exhibit complementary temporal expression patterns. Since BatK expression correlates with late-stage development and terminal differentiation, we speculated that it might be involved in regulating neuronal differentiation. Using PC12 cells as a model system, we show that overexpression of BatK is sufficient to induce neurite outgrowth in the absence of nerve growth factor. Further, overexpression of BatK activates the mitogen-activated protein kinase cascade. We propose a model suggesting that, despite overlapping in vitro activities, BatK and Csk regulate different targets in vivo and have different functions during and after neuronal development, BatK being the dominant regulator of Src kinases in the fully differentiated adult brain.
Collapse
Affiliation(s)
- S S Kuo
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | |
Collapse
|
35
|
Prince JA, Oreland L. Staurosporine differentiated human SH-SY5Y neuroblastoma cultures exhibit transient apoptosis and trophic factor independence. Brain Res Bull 1997; 43:515-23. [PMID: 9254022 DOI: 10.1016/s0361-9230(97)00328-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of chemically differentiated neuroblastoma cells in the study of neuronal function has become a common alternative to primary neuronal cell cultures in recent years, particularly in the area of cell death. Staurosporine, a nonselective protein kinase inhibitor, has been demonstrated to be a particularly strong inducer of differentiation in the SH-SY5Y human neuroblastoma cell line. However, at present, no data exist on the long-term effects of this compound. We have compared the effects of staurosporine with 12-O-tetradecanoyl phorbol-13 acetate and retinoic acid in terms of long-term cell viability and neuronal function in the SH-SY5Y cell line. In the presence of serum, staurosporine-treated cells underwent apoptosis, which ultimately resulted in total cell loss. In contrast, when cultured in defined serum-free medium, a cessation of apoptosis occurred after approximately 1 week, at which point viability could be maintained in excess of 1 month. The addition of aurintricarboxylic acid, which has been demonstrated to prevent apoptosis in a variety of cell models, completely prevented both apoptosis and differentiation in staurosporine-treated cells both under serum-supplemented and serum-free conditions. Apoptosis was not prevented by the protein synthesis inhibitor, cycloheximide. The removal of staurosporine from the culture medium after 3 weeks had no effect on cellular morphology, function, or proliferation, indicating that the attained neuronal phenotype was terminal. Voltage-gated calcium channel sensitivity, used as a measurement of neuronal function, was highest in staurosporine-treated cells. On the basis that apoptosis and neurotrophin independence are hallmarks of the maturation of dorsal root ganglion neurons, results suggest that staurosporine-differentiated SH-SY5Y cells may bear a similar phenotype to that found in vivo. Furthermore, this model may provide for an excellent means of obtaining a stable and homogenous population of postmitotic monoaminergic neurons for investigating neuronal function and differentiation.
Collapse
Affiliation(s)
- J A Prince
- Department of Medical Pharmacology, Uppsala University, Sweden
| | | |
Collapse
|
36
|
Leventhal PS, Feldman EL. Tyrosine phosphorylation and enhanced expression of paxillin during neuronal differentiation in vitro. J Biol Chem 1996; 271:5957-60. [PMID: 8626373 DOI: 10.1074/jbc.271.11.5957] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tyrosine phosphorylation has been implicated as a means by which neurite outgrowth is regulated. Because paxillin is a tyrosine-phosphorylated protein that may play a role in regulating cell morphology, we examined its expression in neuronal cells and how its tyrosine phosphorylation is related to neurite outgrowth. Paxillin was identified in several neuronal cell lines with an increased level upon differentiation. In SH-SY5Y cells, paxillin was localized along with actin filaments where processes extended from the cell body and in neuritic growth cones. Furthermore, paxillin was tyrosine-phosphorylated in SH-SY5Y cells upon adhesion to laminin. Paxillin tyrosine phosphorylation paralleled that of focal adhesion kinase and occurred as cell spreading, and neurite formation was initiated. Colchicine blocked neurite outgrowth but had no effect on cell spreading or on paxillin or focal adhesion kinase tyrosine phosphorylation. In contrast, cytochalasin D eliminated neurite outgrowth, cell spreading, and the tyrosine phosphorylation of paxillin and focal adhesion kinase. These results show that paxillin is tyrosine-phosphorylated upon integrin ligand binding in neuronal cells. Our findings suggest that paxillin tyrosine phosphorylation is linked to a remodeling of the actin cytoskeleton that leads to cell spreading and neurite formation and thus a differentiated neuronal phenotype.
Collapse
Affiliation(s)
- P S Leventhal
- Department of Neurology, University of Michigan, Ann Arbor 48109-0588, USA
| | | |
Collapse
|
37
|
van Inzen WG, Peppelenbosch MP, van den Brand MW, Tertoolen LG, de Laat S. The role of receptor protein tyrosine phosphatase alpha in neuronal differentiation of embryonic stem cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 91:304-7. [PMID: 8852383 DOI: 10.1016/0165-3806(95)00186-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study, we have investigated the function of the receptor protein tyrosine phosphatase alpha (RPTP alpha) in the neuronal differentiation of E14-embryonic stem (E14-ES) cells. RNAase protection and western blot analysis revealed that E14-ES cells up regulate RPTP alpha expression upon neuronal differentiation with retinoic acid. Overexpression of RPTP alpha, by stable DNA transfection, and subsequent differentiation with retinoic acid, resulted in a temporally enhanced expression of the neuronal markers GAP-43 and NF-164. Electrophysiological experiments demonstrated that RPTP alpha overexpression also enhanced the development of neurotransmitter responses during differentiation. These results indicate that RPTP alpha plays an important role in the cascade of molecular events that lead to the formation of neurons.
Collapse
Affiliation(s)
- W G van Inzen
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht
| | | | | | | | | |
Collapse
|
38
|
Påhlman S, Hoehner JC, Nånberg E, Hedborg F, Fagerström S, Gestblom C, Johansson I, Larsson U, Lavenius E, Ortoft E. Differentiation and survival influences of growth factors in human neuroblastoma. Eur J Cancer 1995; 31A:453-8. [PMID: 7576944 DOI: 10.1016/0959-8049(95)00033-f] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Human neuroblastoma cell lines are established from high-stage, highly malignant tumours. Despite this and the fact that these tumours are arrested at an early, immature stage, many cell lines have the capacity to undergo neuronal differentiation under proper growth conditions. One such cell line is the noradrenergic SH-SY5Y cell line. These cells can be induced to mature by a variety of modalities, resulting in different mature phenotypes. The use of this cell system as a model to study the stem cell character of neuroblastoma is reviewed and discussed. In particular, we focus on growth factor dependencies in the SH-SY5Y system, and compare that to the normal situation, i.e. growth factor control of sympathetic neuronal and neuroendocrine differentiation during human and rat embryogenesis.
Collapse
Affiliation(s)
- S Påhlman
- Department of Pathology, University Hospital, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Matsunaga T, Shirasawa H, Tanabe M, Ohnuma N, Kawamura K, Etoh T, Takahashi H, Simizu B. Expression of neuronal src mRNA as a favorable marker and inverse correlation to N-myc gene amplification in human neuroblastomas. Int J Cancer 1994; 58:793-8. [PMID: 7523310 DOI: 10.1002/ijc.2910580607] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neuron-specific src mRNA, which is expressed in human brain tissue by alternative splicing, is associated with neural differentiation. Neuronal c-srcNI expression may be associated with the ability of neuroblastomas to mature; furthermore, c-srcN2 mRNA is induced in chemically differentiated neuroblastoma cells in vitro. The prognosis of a patient with a neuroblastoma is strongly affected by the ability of the tumor to differentiate in vivo. In order to clarify the relationship between neuronal src mRNA expression and the clinical outcome of a neuroblastoma, we analyzed the expression of src mRNA in neuroblastoma tissues from 28 patients by SI-nuclease-protection assay. N-myc gene amplification was also examined by Southern blot hybridization. The clinical significance of neuronal src mRNA expression and its relevance to N-myc gene amplification was also investigated. A high ratio (more than 10%) of c-srcN2 mRNA expression was observed in all early-stage tumors and in advanced neuroblastomas with a favorable prognosis. In contrast, in advanced neuroblastomas with an aggressive clinical phenotype, c-srcN2 mRNA expression was found at a low ratio (below 10%). Genomic amplification of the N-myc gene and expression of c-srcN2 mRNAs were inversely correlated. When combined with other prognostic markers such as N-myc gene amplification, the expression of c-srcN2 mRNA may be a new biological marker to predict the prognosis of patients with neuroblastomas.
Collapse
Affiliation(s)
- T Matsunaga
- Department of Pediatric Surgery, Chiba University, School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Meyerson G, Parrow V, Gestblom C, Johansson I, Påhlman S. Protein synthesis and mRNA in isolated growth cones from differentiating SH-SY5Y neuroblastoma cells. J Neurosci Res 1994; 37:303-12. [PMID: 8176754 DOI: 10.1002/jnr.490370303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The human neuroblastoma cell line, SH-SY5Y, differentiates into a neuronal, sympathetic phenotype in the presence of phorbol ester and serum. Growth cones prepared from differentiating SH-SY5Y cells have characteristics similar to those of growth cones from embryonic rat brain. In addition, SH-SY5Y growth cones contain ribosomes. In this study we show, by metabolic labeling of isolated growth cones, that local protein synthesis occurred in these structures. The pattern of labeled proteins was very similar to that of the corresponding cell body fraction. RNA was shown to be transported to the growth cone compartment, and by in situ hybridization. beta-actin mRNA could be visualized in intact neuritic growth cones. Comparison by Northern blot hybridizations of RNA prepared from growth cones and cell bodies, respectively, showed that mRNAs coding for growth-associated protein 43, microtubule-associated protein 2, actin, neuropeptide tyrosine, and glyceraldehyde-3-phosphate dehydrogenase were present in both fractions. In contrast, mRNAs coding for the nuclear proteins c-jun and N-myc were virtually absent in the growth cone, but readily detectable in the cell body preparation. The selective distribution of mRNAs to the growth cones was not restricted to stable, abundant mRNA species, since mRNA coding for the insulin-like growth factor I receptor was stable, but not present in growth cones. Thus, differentiating SH-SY5Y cells can sort and transport RNA to the growth cone compartment, suggesting that this system of clonal cells could be useful to unravel mechanisms involved in the compartmentalization of mRNA.
Collapse
Affiliation(s)
- G Meyerson
- Department of Pathology, University of Uppsala, University Hospital, Sweden
| | | | | | | | | |
Collapse
|
41
|
Goodnight J, Mischak H, Mushinski JF. Selective involvement of protein kinase C isozymes in differentiation and neoplastic transformation. Adv Cancer Res 1994; 64:159-209. [PMID: 7879658 DOI: 10.1016/s0065-230x(08)60838-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Goodnight
- Laboratory of Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
42
|
Lavenius E, Parrow V, Nånberg E, Påhlman S. Basic FGF and IGF-I promote differentiation of human SH-SY5Y neuroblastoma cells in culture. Growth Factors 1994; 10:29-39. [PMID: 7514011 DOI: 10.3109/08977199409019601] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Phorbolester-triggered differentiation of SH-SY5Y neuroblastoma cells requires serum and a prolonged activation of protein kinase C (PKC). Under serum-free conditions development of a mature phenotype requires phorbolester in combination with a member of either the insulin-like growth factor (IGF) or the platelet-derived growth factor family. Here we report that basic and acidic fibroblast growth factor (FGF) and epidermal growth factor, but not nerve growth factor, synergistically potentiate phorbolester-induced differentiation. Alone these factors induced a mitogenic response which varied in magnitude, with basic FGF and IGF-I being the two most potent mitogens. However, a combination of basic FGF and IGF-I induced differentiation as judged by morphology and the increase in growth associated protein (GAP-43) and neuropeptide tyrosine mRNA levels. In contrast to the phenotype obtained in the presence of phorbolester, bFGF and IGF-I-treated SH-SY5Y cells retained their capacity to proliferate. Finally, in these cells, the phosphorylation of the endogenous PKC substrate, myristoylated alanine-rich C-kinase substrate (MARCKS), was slightly increased during several days, suggesting an involvement of PKC in the bFGF and IGF-I-induced differentiation.
Collapse
Affiliation(s)
- E Lavenius
- Department of Pathology, University of Uppsala, University Hospital, Sweden
| | | | | | | |
Collapse
|
43
|
Ma ZQ, Bondiolotti GP, Olasmaa M, Violani E, Patrone C, Picotti GB, Maggi A. Estrogen modulation of catecholamine synthesis and monoamine oxidase A activity in the human neuroblastoma cell line SK-ER3. J Steroid Biochem Mol Biol 1993; 47:207-11. [PMID: 7903862 DOI: 10.1016/0960-0760(93)90076-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In order to assess the neuronal-like properties of a human neuroblastoma cell line obtained by stable transfection of the estrogen receptor (SK-ER3) a series of quantitative measurements of the activity of two neurotransmitter-related enzymes: tyrosine hydroxylase (TH) and monamine oxidase (MAO), and of catecholamine concentrations were performed. When compared to the parental SK-N-BE cell line, the stably transfected SK-ER3 cells show a more pronounced dopaminergic phenotype. The immunoreactivity to a TH antibody is in fact increased and the ratio between dopamine and noradrenaline concentrations is elevated. Treatment with estradiol further enhances the expression of this phenotype. Interestingly, in the transfected cell line MAO-A activity is decreased and further reduced by estrogen treatment. This finding substantiated by previous reports indicates that our model system might represent an interesting tool for the study of the pharmacological treatments of estrogen-induced pathological responses of nervous cells.
Collapse
Affiliation(s)
- Z Q Ma
- Milano Molecular Pharmacology Laboratory, Institute of Pharmacological Sciences, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Chakraborty M, Anderson GM, Chakraborty A, Chatterjee D. Accumulation of high level of pp60c-srcN is an early event during GM3-antibody mediated differentiation of neuro-2a neuroblastoma cells. Brain Res 1993; 625:197-202. [PMID: 7506109 DOI: 10.1016/0006-8993(93)91059-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neuro-2a neuroblastoma cells, when differentiated via a cAMP-dependent pathway by treatment with anti-GM3 monoclonal antibody, accumulated a high level of pp60c-src protein and pp60c-src kinase activity just before the onset of neurite formation. The specific kinase activity of the accumulated c-src protein was found to be comparable to that of normal cerebellar neurons, but was about 6- to 8-fold higher than that of normal astrocytes. These results, and migrations of peptide fragments in the SDS-polyacrylamide gels after V8 proteolysis, strongly indicate the accumulation of the neuron-specific isoform of the c-src protein (pp60c-srcN) in the GM3 antibody-treated Neuro-2a cells. Similar high levels of pp60c-src protein and pp60c-src kinase activity were observed in the Neuro-2a cells differentiated via a cAMP-dependent pathway by treatment with dibutyryl cAMP, but not in the same cell line when differentiated via a cAMP-independent pathway with 5-bromo-2'-deoxyuridine. These results demonstrate that the accumulation of high levels of the neuron-specific isoform of the pp60c-src protein (pp60c-srcN) in the Neuro-2a neuroblastoma cells depends on the specific signal transduction pathway involved during the differentiation of these cells.
Collapse
Affiliation(s)
- M Chakraborty
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511
| | | | | | | |
Collapse
|
45
|
Meyerson G, Påhlman S. pp59fyn and pp62c-yes are enriched in SH-SY5Y neuroblastoma growth cones but do not associate to the 38 kDa protein which complexes with pp60c src and pp60c-srcN. FEBS Lett 1993; 332:27-30. [PMID: 7691658 DOI: 10.1016/0014-5793(93)80475-a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The tyrosine-specific kinases pp60c-src and pp60c-srcN (pp60src) are slightly enriched and activated in growth cones isolated from neuronally differentiating SH-SY5Y neuroblastoma cells. In the growth cones the two src isoforms are associated with a 38 kDa protein. In this report, we have compared the subcellular distribution of pp59fyn and pp62c-yes with that of pp60src in differentiating SH-SY5Y cells. Like pp60src, the other two tyrosine kinases were slightly enriched and activated in the growth cones as compared to the levels in the cell bodies. The kinase activities were 3- to 4-times higher in growth cones than in cell bodies. However, only pp60src formed a complex with the 38 kDa protein while immunoprecipitation of pp59fyn brought down an additional protein of 90 kDa. This may suggest that these related tyrosine kinases have different substrates and in part mediate different cellular responses in the growth cones of differentiating SH-SY5Y cells.
Collapse
Affiliation(s)
- G Meyerson
- Department of Pathology, University of Uppsala, University Hospital, Sweden
| | | |
Collapse
|
46
|
Abstract
Targeted disruption of the c-src gene leads to a severe form of osteopetrosis in mice [2]. As the c-src gene is expressed in all tissues and cells tested, we have analyzed fibroblasts from three individuals with malignant, congenital osteopetrosis for the expression of c-src at the protein level. No differences could be detected in c-src protein and c-src kinase activity levels between fibroblasts from healthy controls and affected individuals. Thus, impairment of c-src function as an etiological factor in human osteopetrosis appears unlikely in the individuals investigated.
Collapse
Affiliation(s)
- G Meyerson
- Department of Pathology, University Hospital, Uppsala, Sweden
| | | | | |
Collapse
|
47
|
Jalava A, Akerman K, Heikkilä J. Protein kinase inhibitor, staurosporine, induces a mature neuronal phenotype in SH-SY5Y human neuroblastoma cells through an alpha-, beta-, and zeta-protein kinase C-independent pathway. J Cell Physiol 1993; 155:301-12. [PMID: 8482723 DOI: 10.1002/jcp.1041550211] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have shown that the tumour-promoting phorbol ester 12-O-tetradecanoyl phorbol-13 acetate (TPA) induces both morphological and functional differentiation in SH-SY5Y human neuroblastoma cells (Påhlman et al., 1981). In order to investigate the role of protein kinase C (PKC) in TPA-induced maturation of SH-SY5Y cells, we have used staurosporine, which is a potent inhibitor of protein kinases including PKC. Treatment of SH-SY5Y cells with 25 nM staurosporine for 72 hours caused an appearance of long, neuritelike processes with varicosities, terminated by growth cones. The morphological differentiation was accompanied by a cessation of DNA synthesis, induction of growth associated protein 43 (GAP-43), and neuropeptide Y (NPY) mRNA. These effects of staurosporine were comparable to those elicited by TPA. Staurosporine further induced a time-dependent increase in the expression of tyrosine hydroxylase protein and a 30-fold increase in the concentration of noradrenaline. TPA only induced a marginal increase in tyrosine hydroxylase expression. Both TPA and staurosporine induced an appearance of voltage-gated Ca2+ channels in SH-SY5Y cells detected with single-cell fluorescent measurements using fura-2. The Ca2+ channels were found almost exclusively in growth cones and varicosities. Staurosporine inhibited both basal and a TPA-induced phosphorylation of an endogenous 80kDa PKC substrate (p80), and also blocked c-fos proto-oncogene mRNA expression induced by the phorbol ester. Bryostatin 1, a potent activator of PKC, has failed to induce morphological or functional differentiation in SH-SY5Y cells (Jalava et al., 1990). Incubation of SH-SY5Y cells in the presence of 100 nM bryostatin 1 for 24 hours caused a complete disappearance of all immunoreactive alpha-, beta-, and zeta-PKC. The level of epsilon-PKC decreased by 70%. Staurosporine induced a partial translocation of the epsilon-isoenzyme but it failed to cause down-regulation of epsilon-PKC. Bryostatin 1-treatment did not interfere in the ability of staurosporine to induce morphological differentiation, cessation of DNA synthesis, and GAP-43 and NPY mRNA expression. The ability of staurosporine to stimulate tyrosine hydroxylase expression and to increase cellular content of noradrenaline was also unaffected. Taken together the results of this study show that staurosporine induces a mature neuronal noradrenergic phenotype in SH-SY5Y cells through an alpha-, beta-, and zeta-PKC-independent pathway.
Collapse
Affiliation(s)
- A Jalava
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| | | | | |
Collapse
|
48
|
Leli U, Shea TB, Cataldo A, Hauser G, Grynspan F, Beermann ML, Liepkalns VA, Nixon RA, Parker PJ. Differential expression and subcellular localization of protein kinase C alpha, beta, gamma, delta, and epsilon isoforms in SH-SY5Y neuroblastoma cells: modifications during differentiation. J Neurochem 1993; 60:289-98. [PMID: 8417148 DOI: 10.1111/j.1471-4159.1993.tb05850.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A decrease in protein kinase C activity caused either by treatment with inhibitors, such as staurosporine or H-7, or by prolonged exposure to phorbol diesters has been proposed to be involved in the early events of SH-SY5Y neuroblastoma cell differentiation. Because eight distinct isoforms of protein kinase C with discrete subcellular and tissue distributions have been described, we determined which isoforms are present in SH-SY5Y cells and studied their modifications during differentiation. The alpha, beta 1, delta, and epsilon isoforms were present in SH-SY5Y cells, as well as in rat brain. Protein kinase C-alpha and -beta 1 were the most abundant isoforms in SH-SY5Y cells, and immunoreactive protein kinase C-delta and -epsilon were present in much smaller amounts than in rat brain. Subcellular fractionation and immunocytochemistry demonstrated that all four isoforms are distributed bimodally in the cytoplasm and the membranes. Immunocytochemical analysis showed that the alpha isoform is associated predominantly with the plasma membrane and the processes extended during treatment with 12-tetradecanoyl-13-acetyl-beta-phorbol or staurosporine, and that protein kinase C-epsilon is predominantly membrane-bound. Its localization did not change during differentiation. Western blots of total SH-SY5Y cell extracts and of subcellular fractions probed with isoform-specific polyclonal antibodies showed that when SH-SY5Y cells acquired a morphologically differentiated phenotype, protein kinase C-alpha and -epsilon decreased, and protein kinase C-beta 1 did not change. These data suggest distinct roles for the different protein kinase C isoforms during neuronal differentiation, as well as possible involvement of protein kinase alpha and epsilon in neuritogenesis.
Collapse
Affiliation(s)
- U Leli
- Ralph Lowell Laboratories, McLean Hospital, Belmont, Massachusetts 02178
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nilsson S, Påhlman S, Arnberg H, Letocha H, Westlin JE. Characterization and uptake of radiolabelled meta-iodobenzylguanidine (MIBG) in a human neuroblastoma heterotransplant model in athymic rats. Acta Oncol 1993; 32:887-91. [PMID: 8305241 DOI: 10.3109/02841869309096151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cells from an established human neuroblastoma cell line, SH-SY5Y, were demonstrated to grow and form solid tumours in nude rats. This cell line, which is an adrenergic subclone of the SK-N-SH cell line, has previously been used in differentiation model studies. The tumours retained the neuronal phenotype of the cultured cells, as evidenced by the expression of neuron-specific enolase (NSE) and chromogranin A + B. The transcription factor Isl-1, a protein expressed in subsets of neurons and endocrine cells as well as in neuroblastoma cells, was also expressed in the transplanted tumours, thus further verifying the retained phenotype of the cells under in vivo conditions. At scintigraphy utilizing 123I-MIBG the optimal tumour/background ratio was obtained 20 h after injection. The assessment of tissue/serum ratios showed the highest uptake in the spleen (0.067% per gram of inj. activity), neuroblastoma tumours (0.067% per gram of inj. activity) and in the adrenals (0.065% per gram of inj. activity).
Collapse
Affiliation(s)
- S Nilsson
- Department of Oncology, University Hospital, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
50
|
Parrow V, Nånberg E, Heikkilä J, Hammerling U, Påhlman S. Protein kinase C remains functionally active during TPA induced neuronal differentiation of SH-SY5Y human neuroblastoma cells. J Cell Physiol 1992; 152:536-44. [PMID: 1506412 DOI: 10.1002/jcp.1041520313] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SH-SY5Y human neuroblastoma cells can be induced to differentiate into a neuronal phenotype by treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA). In other cell systems, TPA treatment frequently leads to down-regulation of protein kinase C (PKC). However, we now report that TPA-treated and non-treated SH-SY5Y cells express PKC-alpha, but not PKC-beta and PKC-gamma, mRNA. Furthermore, only a slight down-regulation of the PKC-alpha protein could be seen during prolonged treatment with 16 nM TPA, the concentration giving optimal differentiation. In contrast, a higher concentration of TPA (1.6 microM) results in a poor neuronal differentiation and a complete down-regulation of PKC-alpha. PKC-alpha was rapidly translocated to the particulate fraction and remained membrane bound for at least 4 days during treatment with 16 nM TPA. In such cells a sustained increased level of the phosphorylated form of a 80,000 Dalton PKC-substrate was found. In addition to this sustained augmented phosphorylation, administration of fresh TPA at day 4 caused a small but reproducible further increased level of phosphorylated substrate. When the PKC activity was measured by the histone phosphorylation assay a substantial fraction of the initial enzyme activity could still be detected after 4 days of TPA treatment. Taken together, the data demonstrate that PKC remains functionally active during TPA induced differentiation of SH-SY5Y cells, which may suggest a continuous role for the enzyme during the differentiation process.
Collapse
Affiliation(s)
- V Parrow
- Department of Pathology, University Hospital, Uppsala, Sweden
| | | | | | | | | |
Collapse
|