1
|
Okamoto Y, Saito T, Tani Y, Toki T, Hasebe A, Koido M, Tomida A. The kinase PERK represses translation of the G-protein-coupled receptor LGR5 and receptor tyrosine kinase ERBB3 during ER stress in cancer cells. J Biol Chem 2020; 295:4591-4603. [PMID: 32107308 DOI: 10.1074/jbc.ra119.010655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/21/2020] [Indexed: 01/10/2023] Open
Abstract
As a branch of the unfolded protein response, protein kinase R-like endoplasmic reticulum kinase (PERK) represses global translation in response to endoplasmic reticulum (ER) stress. This pathophysiological condition is associated with the tumor microenvironment in cancer. Previous findings in our lab have suggested that PERK selectively represses translation of some mRNAs, but this possibility awaits additional investigation. In this study, we show that a stem-cell marker protein, leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), is rapidly depleted in colon cancer cells during ER stress, an effect that depended on the PERK-mediated translational repression. Indeed, the PERK inhibition led to the accumulation of premature, underglycosylated forms of LGR5, which were produced only at low levels during proper PERK activation. Unlike the mature LGR5 form, which is constitutively degraded regardless of PERK activation, the underglycosylated LGR5 exhibited a prolonged half-life and accumulated inside the cells without being expressed on the cell surface. We also found that Erb-B2 receptor tyrosine kinase 3 (ERBB3) is subjected to a similarly-regulated depletion by PERK, whereas the epidermal growth factor receptor (EGFR), stress-inducible heat-shock protein family A (Hsp70) member 5 (HSPA5), and anterior gradient 2 protein-disulfide isomerase family member (AGR2) were relatively. insensitive to the PERK-mediated repression of translation. These results indicate that LGR5 and ERBB3 are targets for PERK-mediated translational repression during ER stress.
Collapse
Affiliation(s)
- Yuka Okamoto
- Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Takuya Saito
- Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Yuri Tani
- Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Tamami Toki
- Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Akiko Hasebe
- Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Masaru Koido
- Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Akihiro Tomida
- Genome Research, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
2
|
Han ZW, Chang YC, Zhou Y, Zhang H, Chen L, Zhang Y, Si JQ, Li L. GPER agonist G1 suppresses neuronal apoptosis mediated by endoplasmic reticulum stress after cerebral ischemia/reperfusion injury. Neural Regen Res 2019; 14:1221-1229. [PMID: 30804253 PMCID: PMC6425826 DOI: 10.4103/1673-5374.251571] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Studies have confirmed a strong association between activation of the endoplasmic reticulum stress pathway and cerebral ischemia/reperfusion (I/R) injury. In this study, three key proteins in the endoplasmic reticulum stress pathway (glucose-regulated protein 78, caspase-12, and C/EBP homologous protein) were selected to examine the potential mechanism of endoplasmic reticulum stress in the neuroprotective effect of G protein-coupled estrogen receptor. Female Sprague-Dawley rats received ovariectomy (OVX), and then cerebral I/R rat models (OVX + I/R) were established by middle cerebral artery occlusion. Immediately after I/R, rat models were injected with 100 μg/kg E2 (OVX + I/R + E2), or 100 μg/kg G protein-coupled estrogen receptor agonist G1 (OVX + I/R + G1) in the lateral ventricle. Longa scoring was used to detect neurobehavioral changes in each group. Infarct volumes were measured by 2,3,5-triphenyltetrazolium chloride staining. Morphological changes in neurons were observed by Nissl staining. Terminal dexynucleotidyl transferase-mediated nick end-labeling staining revealed that compared with the OVX + I/R group, neurological function was remarkably improved, infarct volume was reduced, number of normal Nissl bodies was dramatically increased, and number of apoptotic neurons in the hippocampus was decreased after E2 and G1 intervention. To detect the expression and distribution of endoplasmic reticulum stress-related proteins in the endoplasmic reticulum, caspase-12 distribution and expression were detected by immunofluorescence, and mRNA and protein levels of glucose-regulated protein 78, caspase-12, and C/EBP homologous protein were determined by polymerase chain reaction and western blot assay. The results showed that compared with the OVX + I/R group, E2 and G1 treatment obviously decreased mRNA and protein expression levels of glucose-regulated protein 78, C/EBP homologous protein, and caspase-12. However, the G protein-coupled estrogen receptor antagonist G15 (OVX + I/R + E2 + G15) could eliminate the effect of E2 on cerebral I/R injury. These results confirm that E2 and G protein-coupled estrogen receptor can inhibit the expression of endoplasmic reticulum stress-related proteins and neuronal apoptosis in the hippocampus, thereby improving dysfunction caused by cerebral I/R injury. Every experimental protocol was approved by the Institutional Ethics Review Board at the First Affiliated Hospital of Shihezi University School of Medicine, China (approval No. SHZ A2017-171) on February 27, 2017.
Collapse
Affiliation(s)
- Zi-Wei Han
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Yue-Chen Chang
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Ying Zhou
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Hang Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region; Affiliated Teng Zhou Central People's Hospital, Jining Medical University, Jining, Shandong Province, China
| | - Long Chen
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Yang Zhang
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Li Li
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region; Department of Physiology, Jiaxing College of Medicine, Jiaxing, Zhejiang Province, China
| |
Collapse
|
3
|
Serrano-Perez MC, Tilley FC, Nevo F, Arrondel C, Sbissa S, Martin G, Tory K, Antignac C, Mollet G. Endoplasmic reticulum-retained podocin mutants are massively degraded by the proteasome. J Biol Chem 2018; 293:4122-4133. [PMID: 29382718 DOI: 10.1074/jbc.ra117.001159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
Podocin is a key component of the slit diaphragm in the glomerular filtration barrier, and mutations in the podocin-encoding gene NPHS2 are a common cause of hereditary steroid-resistant nephrotic syndrome. A mutant allele encoding podocin with a p.R138Q amino acid substitution is the most frequent pathogenic variant in European and North American children, and the corresponding mutant protein is poorly expressed and retained in the endoplasmic reticulum both in vitro and in vivo To better understand the defective trafficking and degradation of this mutant, we generated human podocyte cell lines stably expressing podocinwt or podocinR138Q Although it has been proposed that podocin has a hairpin topology, we present evidence for podocinR138QN-glycosylation, suggesting that most of the protein has a transmembrane topology. We find that N-glycosylated podocinR138Q has a longer half-life than non-glycosylated podocinR138Q and that the latter is far more rapidly degraded than podocinwt Consistent with its rapid degradation, podocinR138Q is exclusively degraded by the proteasome, whereas podocinwt is degraded by both the proteasomal and the lysosomal proteolytic machineries. In addition, we demonstrate an enhanced interaction of podocinR138Q with calnexin as the mechanism of endoplasmic reticulum retention. Calnexin knockdown enriches the podocinR138Q non-glycosylated fraction, whereas preventing exit from the calnexin cycle increases the glycosylated fraction. Altogether, we propose a model in which hairpin podocinR138Q is rapidly degraded by the proteasome, whereas transmembrane podocinR138Q degradation is delayed due to entry into the calnexin cycle.
Collapse
Affiliation(s)
- Maria-Carmen Serrano-Perez
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Frances C Tilley
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Fabien Nevo
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Christelle Arrondel
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Selim Sbissa
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Gaëlle Martin
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| | - Kalman Tory
- the MTA-SE Lendület Nephrogenetic Laboratory, Hungarian Academy of Sciences and First Department of Pediatrics, Semmelweis University, Budapest 1083, Hungary, and
| | - Corinne Antignac
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France.,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France.,the Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Géraldine Mollet
- From the Laboratory of Hereditary Kidney Diseases, Inserm UMR 1163, Imagine Institute, Paris 75015, France, .,the Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris 75015, France
| |
Collapse
|
4
|
Pereira HABDS, Leite ADL, Charone S, Lobo JGVM, Cestari TM, Peres-Buzalaf C, Buzalaf MAR. Proteomic analysis of liver in rats chronically exposed to fluoride. PLoS One 2013; 8:e75343. [PMID: 24069403 PMCID: PMC3775814 DOI: 10.1371/journal.pone.0075343] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/12/2013] [Indexed: 12/15/2022] Open
Abstract
Fluoride (F) is a potent anti-cariogenic element, but when ingestion is excessive, systemic toxicity may be observed. This can occur as acute or chronic responses, depending on both the amount of F and the time of exposure. The present study identified the profile of protein expression possibly associated with F-induced chronic hepatotoxicity. Weanling male Wistar rats (three-weeks old) were divided into three groups and treated with drinking water containing 0, 5 or 50 mg/L F for 60 days (n=6/group). At this time point, serum and livers were collected for F analysis, which was done using the ion-sensitive electrode, after hexamethyldisiloxane-facilitated diffusion. Livers were also submitted to histological and proteomic analyses (2D-PAGE followed by LC-MS/MS). Western blotting was done for confirmation of the proteomic data A dose-response was observed in serum F levels. In the livers, F levels were significantly increased in the 50 mg/L F group compared to groups treated with 0 and 5 mg/L F. Liver morphometric analysis did not reveal alterations in the cellular structures and lipid droplets were present in all groups. Proteomic quantitative intensity analysis detected 33, 44, and 29 spots differentially expressed in the comparisons between control vs. 5 mg/L F, control vs. 50 mg/L F, and 5 mg/L vs. 50 mg/L F, respectively. From these, 92 proteins were successfully identified. In addition, 18, 1, and 5 protein spots were shown to be exclusive in control, 5, and 50 mg/L F, respectively. Most of proteins were related to metabolic process and pronounced alterations were seen for the high-F level group. In F-treated rats, changes in the apolipoprotein E (ApoE) and GRP-78 expression may account for the F-induced toxicity in the liver. This can contribute to understanding the molecular mechanisms underlying hepatoxicity induced by F, by indicating key-proteins that should be better addressed in future studies.
Collapse
Affiliation(s)
| | - Aline de Lima Leite
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil
| | - Senda Charone
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil
| | | | - Tania Mary Cestari
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil
| | - Camila Peres-Buzalaf
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil
| | | |
Collapse
|
5
|
Protein disulfide isomerase-associated 6 is an ATF6-inducible ER stress response protein that protects cardiac myocytes from ischemia/reperfusion-mediated cell death. J Mol Cell Cardiol 2012; 53:259-67. [PMID: 22609432 DOI: 10.1016/j.yjmcc.2012.05.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 12/30/2022]
Abstract
Proper folding of secreted and transmembrane proteins made in the rough endoplasmic reticulum (ER) requires oxygen for disulfide bond formation. Accordingly, ischemia can impair ER protein folding and initiate the ER stress response, which we previously showed is activated in the ischemic heart and in culture cardiac myocytes subjected to simulated ischemia. ER stress and ischemia activate the transcription factor, activating transcription factor 6 (ATF6), which induces numerous genes, many of which have not been identified, or examined in the heart. Using an ATF6 transgenic mouse model, we previously showed that ATF6 protected the heart from ischemic damage; however, the mechanism of this protection remains to be determined. In this study, we showed that, in the mouse heart, and in cultured cardiac myocytes, ATF6 induced the protein disulfide isomerase associated 6 (PDIA6) gene, which encodes an ER enzyme that catalyzes protein disulfide bond formation. Moreover, in cultured cardiac myocytes, ER stress-mediated PDIA6 promoter activation was ATF6-dependent, and required an ER stress response element (ERSE) and a nearby CCAAT box element. Electromobility shift assays and chromatin immunoprecipitation showed that ATF6 bound to the ERSE in the PDIA6 promoter, in vitro, and in the mouse heart, in vivo. Gain- and loss-of-function studies showed that PDIA6 protected cardiac myocytes against simulated ischemia/reperfusion-induced death in a manner that was dependent on the catalytic activity of PDIA6. Thus, by facilitating disulfide bond formation, and enhanced ER protein folding, PDIA6 may contribute to the protective effects of ATF6 in the ischemic mouse heart.
Collapse
|
6
|
Ellinger-Ziegelbauer H, Fostel JM, Aruga C, Bauer D, Boitier E, Deng S, Dickinson D, Le Fevre AC, Fornace AJ, Grenet O, Gu Y, Hoflack JC, Shiiyama M, Smith R, Snyder RD, Spire C, Tanaka G, Aubrecht J. Characterization and interlaboratory comparison of a gene expression signature for differentiating genotoxic mechanisms. Toxicol Sci 2009; 110:341-52. [PMID: 19465456 DOI: 10.1093/toxsci/kfp103] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The genotoxicity testing battery is highly sensitive for detection of chemical carcinogens. However, it features a low specificity and provides only limited mechanistic information required for risk assessment of positive findings. This is especially important in case of positive findings in the in vitro chromosome damage assays, because chromosome damage may be also induced secondarily to cell death. An increasing body of evidence indicates that toxicogenomic analysis of cellular stress responses provides an insight into mechanisms of action of genotoxicants. To evaluate the utility of such a toxicogenomic analysis we evaluated gene expression profiles of TK6 cells treated with four model genotoxic agents using a targeted high density real-time PCR approach in a multilaboratory project coordinated by the Health and Environmental Sciences Institute Committee on the Application of Genomics in Mechanism-based Risk Assessment. We show that this gene profiling technology produced reproducible data across laboratories allowing us to conclude that expression analysis of a relevant gene set is capable of distinguishing compounds that cause DNA adducts or double strand breaks from those that interfere with mitotic spindle function or that cause chromosome damage as a consequence of cytotoxicity. Furthermore, our data suggest that the gene expression profiles at early time points are most likely to provide information relevant to mechanisms of genotoxic damage and that larger gene expression arrays will likely provide richer information for differentiating molecular mechanisms of action of genotoxicants. Although more compounds need to be tested to identify a robust molecular signature, this study confirms the potential of toxicogenomic analysis for investigation of genotoxic mechanisms.
Collapse
|
7
|
Falahatpisheh H, Nanez A, Montoya-Durango D, Qian Y, Tiffany-Castiglioni E, Ramos KS. Activation profiles of HSPA5 during the glomerular mesangial cell stress response to chemical injury. Cell Stress Chaperones 2007; 12:209-18. [PMID: 17915553 PMCID: PMC1971237 DOI: 10.1379/csc-259.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Environmental injury has been associated with endoplasmic reticulum (ER) stress, a response characterized by activation of the unfolded protein response, proteasomal degradation of proteins, and induction of HSPA5, also known as GRP78 or BiP. Although HSPA5 has been implicated in the stress response to environmental injury in several cell types, its role in the glomerular ER stress response is unknown. In this study, we evaluated HSPA5 activation profiles in rat glomerular mesangial cells (rGMCs) challenged with heavy metals (HgCl2 or Pb2+ acetate) or polycyclic aromatic hydrocarbons (PAHs, ie, benzo(a)pyrene [BaP]). Challenge of rGMCs with 1 or 10 microM HgCl2 or Pb2+ acetate increased HSPA5 mRNA and protein levels. The induction response was sensitive to transcriptional and translational inhibition by actinomycin D (AD) and cyclohexamide, respectively. HSPA5 mRNA was induced by 3 microM BaP in an AD-sensitive manner, but this response was unaffected by the presence of heavy metals. A promoter construct containing sequences that mediate thapsigargin (TH) inducibility of the HSPA5 promoter was refractory to both heavy metals and BaP. The HSPA5 induction response in rGMCs is conserved because it was reproduced with fidelity in immunolocalization experiments of HSPA5 protein in M15 and HEK293 cells in embryonic lines of murine and human origin, respectively. Collectively, these findings identify HSPA5 in the stress response of rGMCs and implicate regulatory mechanisms that are distinct from those involved in TH inducibility.
Collapse
Affiliation(s)
- Hadi Falahatpisheh
- Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
8
|
Hoshino T, Nakaya T, Araki W, Suzuki K, Suzuki T, Mizushima T. Endoplasmic reticulum chaperones inhibit the production of amyloid-beta peptides. Biochem J 2007; 402:581-9. [PMID: 17132139 PMCID: PMC1863563 DOI: 10.1042/bj20061318] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abeta (amyloid-beta peptides) generated by proteolysis of APP (beta-amyloid precursor protein), play an important role in the pathogenesis of AD (Alzheimer's disease). ER (endoplasmic reticulum) chaperones, such as GRP78 (glucose-regulated protein 78), make a major contribution to protein quality control in the ER. In the present study, we examined the effect of overexpression of various ER chaperones on the production of Abeta in cultured cells, which produce a mutant type of APP (APPsw). Overexpression of GRP78 or inhibition of its basal expression, decreased and increased respectively the level of Abeta40 and Abeta42 in conditioned medium. Co-expression of GRP78's co-chaperones ERdj3 or ERdj4 stimulated this inhibitory effect of GRP78. In the case of the other ER chaperones, overexpression of some (150 kDa oxygen-regulated protein and calnexin) but not others (GRP94 and calreticulin) suppressed the production of Abeta. These results indicate that certain ER chaperones are effective suppressors of Abeta production and that non-toxic inducers of ER chaperones may be therapeutically beneficial for AD treatment. GRP78 was co-immunoprecipitated with APP and overexpression of GRP78 inhibited the maturation of APP, suggesting that GRP78 binds directly to APP and inhibits its maturation, resulting in suppression of the proteolysis of APP. On the other hand, overproduction of APPsw or addition of synthetic Abeta42 caused up-regulation of the mRNA of various ER chaperones in cells. Furthermore, in the cortex and hippocampus of transgenic mice expressing APPsw, the mRNA of some ER chaperones was up-regulated in comparison with wild-type mice. We consider that this up-regulation is a cellular protective response against Abeta.
Collapse
Affiliation(s)
- Tatsuya Hoshino
- *Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tadashi Nakaya
- †Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Wataru Araki
- ‡Department of Demyelinating Disease and Ageing, National Institute of Neuroscience, Kodaira 187-8502, Japan
| | - Keitarou Suzuki
- *Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Toshiharu Suzuki
- †Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tohru Mizushima
- *Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
9
|
Wu Y, Termine DJ, Swulius MT, Moremen KW, Sifers RN. Human endoplasmic reticulum mannosidase I is subject to regulated proteolysis. J Biol Chem 2007; 282:4841-4849. [PMID: 17166854 PMCID: PMC3969733 DOI: 10.1074/jbc.m607156200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the early secretory pathway, opportunistic cleavage of asparagine-linked oligosaccharides by endoplasmic reticulum (ER) mannosidase I targets misfolded glycoproteins for dislocation into the cytosol and destruction by 26 S proteasomes. The low basal concentration of the glycosidase is believed to coordinate the glycan cleavage with prolonged conformation-based ER retention, ensuring that terminally misfolded glycoproteins are preferentially targeted for destruction. Herein the intracellular fate of human ER mannosidase I was monitored to determine whether a post-translational process might contribute to the regulation of its intracellular concentration. The transiently expressed recombinant human glycosidase was subject to rapid intracellular turnover in mouse hepatoma cells, as was the endogenous mouse ortholog. Incubation with either chloroquine or leupeptin, but not lactacystin, led to intracellular stabilization, implicating the involvement of lysosomal acid hydrolases. Inhibition of protein synthesis with cycloheximide led to intracellular depletion of the glycosidase and concomitant ablation of asparagine-linked glycoprotein degradation, confirming the physiologic relevance of the destabilization process. Metabolic incorporation of radiolabeled phosphate, detection by anti-phosphoserine antiserum, and the stabilizing effect of general serine kinase inhibition implied that ER mannosidase I is subjected to regulated proteolysis. Stabilization in response to genetically engineered removal of the amino-terminal cytoplasmic tail, a postulated regulatory domain, and colocalization of green fluorescent protein fusion proteins with Lamp1 provided two additional lines of evidence to support the hypothesis. A model is proposed in which proteolytically driven checkpoint control of ER mannosidase I contributes to the establishment of an equitable glycoprotein quality control standard by which the efficiency of asparagine-linked glycoprotein conformational maturation is measured.
Collapse
Affiliation(s)
- Ying Wu
- Departments of Pathology, Molecular and Cellular Biology, Molecular Physiology, and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and the
| | - Daniel J Termine
- Departments of Pathology, Molecular and Cellular Biology, Molecular Physiology, and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and the
| | - Matthew T Swulius
- Departments of Pathology, Molecular and Cellular Biology, Molecular Physiology, and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and the
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Richard N Sifers
- Departments of Pathology, Molecular and Cellular Biology, Molecular Physiology, and Biophysics, Baylor College of Medicine, Houston, Texas 77030 and the.
| |
Collapse
|
10
|
Gal-Yam EN, Jeong S, Tanay A, Egger G, Lee AS, Jones PA. Constitutive nucleosome depletion and ordered factor assembly at the GRP78 promoter revealed by single molecule footprinting. PLoS Genet 2006; 2:e160. [PMID: 17002502 PMCID: PMC1574359 DOI: 10.1371/journal.pgen.0020160] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 08/09/2006] [Indexed: 11/24/2022] Open
Abstract
Chromatin organization and transcriptional regulation are interrelated processes. A shortcoming of current experimental approaches to these complex events is the lack of methods that can capture the activation process on single promoters. We have recently described a method that combines methyltransferase M.SssI treatment of intact nuclei and bisulfite sequencing allowing the representation of replicas of single promoters in terms of protected and unprotected footprint modules. Here we combine this method with computational analysis to study single molecule dynamics of transcriptional activation in the stress inducible GRP78 promoter. We show that a 350–base pair region upstream of the transcription initiation site is constitutively depleted of nucleosomes, regardless of the induction state of the promoter, providing one of the first examples for such a promoter in mammals. The 350–base pair nucleosome-free region can be dissected into modules, identifying transcription factor binding sites and their combinatorial organization during endoplasmic reticulum stress. The interaction of the transcriptional machinery with the GRP78 core promoter is highly organized, represented by six major combinatorial states. We show that the TATA box is frequently occupied in the noninduced state, that stress induction results in sequential loading of the endoplasmic reticulum stress response elements, and that a substantial portion of these elements is no longer occupied following recruitment of factors to the transcription initiation site. Studying the positioning of nucleosomes and transcription factors at the single promoter level provides a powerful tool to gain novel insights into the transcriptional process in eukaryotes. Control of gene expression and transcription are complex and well-coordinated processes. Most current experimental approaches to understanding the underlying mechanisms, which include binding of transcription factors to regulatory regions of genes, and changes in the structure and composition of chromatin, rely on studies of populations of cells and cannot capture the transcription activation process on single promoters. The authors describe the use of a footprinting method which enables analysis of chromatin structure and binding of factors on single DNA molecules. This is applied to study the activation process of GRP78, a protein which is important for the induction of a response to endoplasmic reticulum stress. By combining the footprinting method and computational analyses, the authors define functional modules on the GRP78 promoter and show that it exists in few major combinatorial states, reflecting its high level of organization. These results provide novel insights into the activation of GRP78 which could not be gleaned using conventional methods. They also demonstrate the use of the method as a unique and powerful tool to study the transcriptional process in eukaryotes, which remains a major source of interest and challenge for the scientific community.
Collapse
Affiliation(s)
- Einav Nili Gal-Yam
- Department of Urology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shinwu Jeong
- Department of Urology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amos Tanay
- Center for Studies in Physics and Biology, Rockefeller University, New York, New York, United States of America
| | - Gerda Egger
- Department of Urology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Amy S Lee
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Peter A Jones
- Department of Urology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Tsutsumi S, Namba T, Tanaka KI, Arai Y, Ishihara T, Aburaya M, Mima S, Hoshino T, Mizushima T. Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells. Oncogene 2006; 25:1018-29. [PMID: 16205636 DOI: 10.1038/sj.onc.1209139] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in cancer cells and this effect is involved in their antitumor activity. We recently demonstrated that NSAIDs upregulate GRP78, an endoplasmic reticulum (ER) chaperone, in gastric mucosal cells in primary culture. In the present study, induction of ER chaperones by NSAIDs and the effect of those chaperones on NSAID-induced apoptosis were examined in human gastric carcinoma cells. Celecoxib, an NSAID, upregulated ER chaperones (GRP78 and its cochaperones ERdj3 and ERdj4) but also C/EBP homologous transcription factor (CHOP), a transcription factor involved in apoptosis. Celecoxib also upregulated GRP78 in xenograft tumors, accompanying with the suppression of tumor growth in nude mice. Celecoxib caused phosphorylation of eukaryotic translation initiation factor 2 kinase (PERK) and eukaryotic initiation factor-2alpha (eIF2alpha) and production of activating transcription factor (ATF)4 mRNA. Suppression of ATF4 expression by small interfering RNA (siRNA) partially inhibited the celecoxib-dependent upregulation of GRP78. Celecoxib increased the intracellular Ca2+ concentration, while 1,2-bis(2-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid, an intracellular Ca2+ chelator, inhibited the upregulation of GRP78 and ATF4. These results suggest that the Ca2+-dependent activation of the PERK-eIF2alpha-ATF4 pathway is involved in the upregulation of ER chaperones by celecoxib. Overexpression of GRP78 partially suppressed the apoptosis and induction of CHOP in the presence of celecoxib and this suppression was stimulated by coexpression of either ERdj3 or ERdj4. On the other hand, suppression of GRP78 expression by siRNA drastically stimulated cellular apoptosis and production of CHOP in the presence of celecoxib. These results show that upregulation of ER chaperones by celecoxib protects cancer cells from celecoxib-induced apoptosis, thus may decrease the potential antitumor activity of celecoxib.
Collapse
Affiliation(s)
- S Tsutsumi
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nagano T, Osakada M, Ago Y, Koyama Y, Baba A, Maeda S, Takemura M, Matsuda T. SEA0400, a specific inhibitor of the Na+-Ca2+ exchanger, attenuates sodium nitroprusside-induced apoptosis in cultured rat microglia. Br J Pharmacol 2005; 144:669-79. [PMID: 15678087 PMCID: PMC1576047 DOI: 10.1038/sj.bjp.0706104] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Using SEA0400, a potent and selective inhibitor of the Na+-Ca2+ exchanger (NCX), we examined whether NCX is involved in nitric oxide (NO)-induced disturbance of endoplasmic reticulum (ER) Ca2+ homeostasis followed by apoptosis in cultured rat microglia. 2. Sodium nitroprusside (SNP), an NO donor, decreased cell viability in a dose- and time-dependent manner with apoptotic cell death in cultured microglia. 3. Treatment with SNP decreased the ER Ca2+ levels as evaluated by measuring the increase in cytosolic Ca2+ level induced by exposing cells to thapsigargin, an irreversible inhibitor of ER Ca2+-ATPase. 4. The treatment with SNP also increased mRNA expression of CHOP and GPR78, makers of ER stress. 5. SEA0400 at 0.3-1.0 microM protected microglia against SNP-induced apoptosis. 6. SEA0400 blocked not only the SNP-induced decrease in ER Ca2+ levels but also SNP-induced increase in CHOP and GRP78 mRNAs. 7. SEA0400 did not affect capacitative Ca2+ entry in the presence and absence of SNP. 8. SNP increased Na+-dependent 45Ca2+ uptake and this increase was blocked by SEA0400. 9. These results suggest that SNP induces apoptosis via the ER stress pathway and SEA0400 attenuates SNP-induced apoptosis via suppression of the ER stress in cultured microglia. Our findings imply that NCX plays a role in ER Ca2+ depletion under pathological conditions.
Collapse
Affiliation(s)
- Takayuki Nagano
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
- Department of Pharmacology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Masakazu Osakada
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yutaka Koyama
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Akemichi Baba
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Sadaaki Maeda
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Motohiko Takemura
- Department of Pharmacology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Toshio Matsuda
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
- Author for correspondence:
| |
Collapse
|
13
|
Tchounwou PB, Yedjou CG, Foxx DN, Ishaque AB, Shen E. Lead-induced cytotoxicity and transcriptional activation of stress genes in human liver carcinoma (HepG2) cells. Mol Cell Biochem 2004; 255:161-70. [PMID: 14971657 DOI: 10.1023/b:mcbi.0000007272.46923.12] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lead is a non-essential element that exhibits a high degree of toxicity, especially in children. Most research on lead has focused on its effects on organ systems such as the nervous system, the red blood cells, and the kidneys which are considered to be the primary targets of lead toxicity. However, the molecular mechanisms by which it induces toxicity, and carcinogenesis remain to be elucidated. In this research, we performed the MTT assay to assess the cytotoxicity, and the CAT-Tox assay to assess the transcriptional responses associated with lead exposure to thirteen different recombinant cell lines generated from human liver carcinoma cells (HepG2), by creating stable transfectants of mammalian promoter chloramphenicol (CAT) gene fusions. Study results indicated that lead nitrate is cytotoxic to HepG2 cells, showing LD50 values of 49.0 +/- 18.0 microg/mL, 37.5 +/- 9.2 microg/mL, and 3.5 +/- 0.7 microg/mL for cell mortality upon 24, 48 and 72 h of exposure, respectively; indicating a dose- and time-dependent response with regard to the cytotoxic effect of lead nitrate. A dose-response relationship was also recorded with respect to the induction of stress genes in HepG2 cells exposed to lead nitrate. Overall, six out of the thirteen recombinant cell lines tested showed inductions to statistically significant levels (p < 0.05). At 50 microg/mL of lead nitrate, the average fold inductions were: 2.1 +/- 1.0, 5.4 +/- 0.4, 12.1 +/- 6.2, 5.0 +/- 1.7, 2.5 +/- 1.3, and 4.8 +/- 4.5 for XRE, HSP70, CRE, GADD153, and GRP78, respectively. These results indicate the potential for lead nitrate to undergo biotransformation in the liver (XRE), to cause cell proliferation (c-fos), protein damage (HSP70, GRP78), metabolic perturbation (CRE), and growth arrest and DNA damage (GADD153). Marginal but not significant inductions were also obtained with the GSTYa (1.5 +/- 0.8), and GADD45 (5.7 +/- 8.1) promoters, and the NF-KB (2.0 +/- 1.7) response element, indicating the potential for oxidative stress. No significant inductions (p > 0.05) were recorded for CYP1A1, HMTIIA, p53RE, and RARE.
Collapse
Affiliation(s)
- Paul B Tchounwou
- Molecular Toxicology Research Laboratory, NIH-Center for Environmental Health, School of Science and Technology, Jackson State University, Jackson, MS 39217, USA.
| | | | | | | | | |
Collapse
|
14
|
Sun M, Rothermel TA, Shuman L, Aligo JA, Xu S, Lin Y, Lamb RA, He B. Conserved cysteine-rich domain of paramyxovirus simian virus 5 V protein plays an important role in blocking apoptosis. J Virol 2004; 78:5068-78. [PMID: 15113888 PMCID: PMC400337 DOI: 10.1128/jvi.78.10.5068-5078.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The paramyxovirus family includes many well-known human and animal pathogens as well as emerging viruses such as Hendra virus and Nipah virus. The V protein of simian virus 5 (SV5), a prototype of the paramyxoviruses, contains a cysteine-rich C-terminal domain which is conserved among all paramyxovirus V proteins. The V protein can block both interferon (IFN) signaling by causing degradation of STAT1 and IFN production by blocking IRF-3 nuclear import. Previously, it was reported that recombinant SV5 lacking the C terminus of the V protein (rSV5VDeltaC) induces a severe cytopathic effect (CPE) in tissue culture whereas wild-type (wt) SV5 infection does not induce CPE. In this study, the nature of the CPE and the mechanism of the induction of CPE were investigated. Through the use of DNA fragmentation, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling, and propidium iodide staining assays, it was shown that rSV5VDeltaC induced apoptosis. Expression of wt V protein prevented apoptosis induced by rSV5VDeltaC, suggesting that the V protein has an antiapoptotic function. Interestingly, rSV5VDeltaC induced apoptosis in U3A cells (a STAT1-deficient cell line) and in the presence of neutralizing antibody against IFN, suggesting that the induction of apoptosis by rSV5VDeltaC was independent of IFN and IFN-signaling pathways. Apoptosis induced by rSV5VDeltaC was blocked by a general caspase inhibitor, Z-VAD-FMK, but not by specific inhibitors against caspases 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 13, suggesting that rSV5VDeltaC-induced apoptosis can occur in a caspase 12-dependent manner. Endoplasmic reticulum stress can lead to activation of caspase 12; compared to the results seen with mock and wt SV5 infection, rSV5VDeltaC infection induced ER stress, as demonstrated by increased expression levels of known ER stress indicators GRP 78, GRP 94, and GADD153. These data suggest that rSV5VDeltaC can trigger cell death by inducing ER stress.
Collapse
Affiliation(s)
- Minghao Sun
- Department of Veterinary Science, Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Qian Y, Tiffany-Castiglioni E. Lead-induced endoplasmic reticulum (ER) stress responses in the nervous system. Neurochem Res 2003; 28:153-62. [PMID: 12587673 DOI: 10.1023/a:1021664632393] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Lead (Pb) poisoning continues to be a significant health risk because of its pervasiveness in the environment, its known neurotoxic effects in children, and potential endogenous exposure from Pb deposited in bone. New information about mechanisms by which Pb enters cells and its organelle targets within cells are briefly reviewed. Toxic effects of Pb on the endoplasmic reticulum (ER) are considered in detail, based on recent evidence that Pb induces the expression of the gene for 78-kD glucose-regulated protein (GRP78) and other ER stress genes. GRP78 is a molecular chaperone that binds transiently to proteins traversing through the ER and facilitates their folding, assembly, and transport. Models are presented for the induction of ER stress by Pb in astrocytes, the major cell type of the central nervous system, in which Pb accumulates. A key feature of the models is disruption of GRP78 function by direct Pb binding. Possible pathways by which Pb-bound GRP78 stimulates the unfolded protein response (UPR) in the ER are discussed, specifically transduction by IRE1/ATF6 and/or IRE1/JNK. The effect of Pb binding to GRP78 in the ER is expected to be a key component for understanding mechanisms of Pb-induced ER stress gene expression.
Collapse
Affiliation(s)
- Yongchang Qian
- Department of Veterinary Anatomy and Public Health Texas A&M University, College Station, Texas 77843-4458, USA
| | | |
Collapse
|
16
|
Luo S, Lee AS. Requirement of the p38 mitogen-activated protein kinase signalling pathway for the induction of the 78 kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein by azetidine stress: activating transcription factor 6 as a target for stress-induced phosphorylation. Biochem J 2002; 366:787-95. [PMID: 12076252 PMCID: PMC1222838 DOI: 10.1042/bj20011802] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Revised: 05/31/2002] [Accepted: 06/20/2002] [Indexed: 12/17/2022]
Abstract
Malfolded protein formation and perturbance of calcium homoeostasis results in the induction of the endoplasmic reticulum (ER) chaperone protein, namely the 78 kDa glucose-regulated protein (GRP78)/immunoglobulin heavy-chain binding protein. Various ER stress inducers can activate grp78, but signal transduction mechanisms are not well understood. We report in the present study that the induction of endogenous grp78 mRNA by the amino acid analogue azetidine (AzC) requires the integrity of a signal transduction pathway mediated by p38 mitogen-activated protein kinase (p38 MAPK). In contrast, induction of grp78 by thapsigargin that depletes the ER calcium storage can occur even when the p38 MAPK pathway is blocked. Treatment of cells with AzC results in the sustained activation of p38 MAPK. We identified an ER transmembrane activating transcription factor 6 (ATF6) as a target of p38 MAPK phosphorylation in AzC-treated cells. ATF6 undergoes proteolytic cleavage on AzC treatment, releasing a nuclear form that is an activator of the grp78 promoter. We show here that constitutively active mitogen-activated protein kinase kinase 6, a selective p38 MAPK activator, enhances the ability of the nuclear form of ATF6 to transactivate the grp78 promoter. Our results provide direct evidence that different ER stress inducers use diverse pathways to activate grp78 and that in addition to activation by proteolytic cleavage, ATF6 undergoes specific ER stress-induced phosphorylation. We propose that phosphorylation of ATF6 is a novel mechanism for augmenting its potential as a transcription activator.
Collapse
Affiliation(s)
- Shengzhan Luo
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles 90089-9176, USA
| | | |
Collapse
|
17
|
Foulquier F, Harduin-Lepers A, Duvet S, Marchal I, Mir AM, Delannoy P, Chirat F, Cacan R. The unfolded protein response in a dolichyl phosphate mannose-deficient Chinese hamster ovary cell line points out the key role of a demannosylation step in the quality-control mechanism of N-glycoproteins. Biochem J 2002; 362:491-8. [PMID: 11853559 PMCID: PMC1222411 DOI: 10.1042/0264-6021:3620491] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The CHO (Chinese hamster ovary) glycosylation mutant cell line, B3F7, transfers the truncated glycan Glc(3)Man(5)GlcNAc(2) on to nascent proteins. After deglucosylation, the resulting Man(5)GlcNAc(2) glycan is subjected to two reciprocal enzymic processes: the action of an endoplasmic-reticulum (ER) kifunensine-sensitive alpha1,2-mannosidase activity to yield a Man(4)GlcNAc(2) glycan, and the reglucosylation involved in the quality-control system which ensures that only correctly folded glycoproteins leave the ER. We show that the recombinant secreted alkaline phosphatase (SeAP) produced in stably transfected B3F7 cells, is co-immunoprecipitated with the GRP78 (glucose-regulated protein 78), a protein marker of the unfolded protein response (UPR). The level of GRP78 transcription has been evaluated by reverse transcription-PCR (RT-PCR) and we demonstrate that B3F7 cells present a constitutively higher level of UPR in the absence of inductors, compared with Pro(-5) cells. Interestingly, a decrease was observed in the UPR and an increase in SeAP secretion in the kifunensine-treated B3F7 cells. Altogether, these data highlight the relationships between the glycan structure, the quality control system and the UPR. Moreover, they support the idea that a specific demannosylation step is a key event of the glycoprotein quality control in B3F7 cells.
Collapse
Affiliation(s)
- François Foulquier
- Laboratoire de Chimie Biologique, CNRS-UMR 8576, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq Cédex, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tchounwou PB, Wilson BA, Ishaque AB, Schneider J. Atrazine potentiation of arsenic trioxide-induced cytotoxicity and gene expression in human liver carcinoma cells (HepG2). Mol Cell Biochem 2002. [PMID: 11678611 DOI: 10.1023/a:1017903005541] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent studies in our laboratory indicated that arsenic trioxide has the ability to cause significant cytotoxicity, and induction of a significant number of stress genes in human liver carcinoma cells, HepG2. However, similar investigations with atrazine did not show any significant effects of this chemical on HepG2 cells, even at its maximum solubility of 100 microg/mL in 1% dimethyl sulfoxide (DMSO). Further cytogenetic studies were therefore carried out to investigate the combined effects of arsenic trioxide and atrazine on cell viability and gene expression in immortalized human hepatocytes. Cytotoxicity was evaluated using the MTT-assay for cell viability, while the CAT-Tox (L) assay was performed to measure the induction of stress genes in thirteen different recombinant cell lines generated from human liver carcinoma cells (HepG2), by creating stable transfectants of different mammalian promoter-chloramphenicol acetyltransferase (CAT) gene fusions. Cytotoxicity experiments yielded LC50 values of 11.9 +/- 2.6 microg/mL for arsenic trioxide in de-ionized water, and 3.6 +/- 0.4 microg/mL for arsenic trioxide in 100 microg/mL atrazine; indicating a 3 fold increase in arsenic toxicity associated with the atrazine exposure. Co-exposure of HepG2 cells to atrazine also resulted in a significant increase in the potency of arsenic trioxide to upregulate a number of stress genes including those of the glutathione-S-transferase Ya subunit--GST Ya, metallothioneinIIa--HMTIIA, 70-kDa heat shock protein--HSP70, c-fos, 153-kDa growth arrest and DNA damage (GADD153), 45-kDa growth arrest and DNA damage (GADD45), and 78-kDa glucose regulated protein--GRP78 promoters, as well as the xenobiotic response element--XRE, tumor suppressor protein response element--p53RE, cyclic adenosine monophosphate response element--CRE, and retinoic acid response element--RARE. No significant changes were observed with respect to the influence of atrazine on the modulation of cytochrome P450 1A1-CYP 1A1, and nuclear factor kappa (B site) response element--NFkappaBRE by arsenic trioxide. These results indicate that co-exposure to atrazine strongly potentiates arsenic trioxide-induced cytotoxicity and transcriptional activation of stress genes in transformed human hepatocytes.
Collapse
Affiliation(s)
- P B Tchounwou
- NIH-Center for Environmental Health, School of Science and Technology, Jackson State University, MS 39217, USA
| | | | | | | |
Collapse
|
19
|
Yoshida H, Okada T, Haze K, Yanagi H, Yura T, Negishi M, Mori K. ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 2000; 20:6755-67. [PMID: 10958673 PMCID: PMC86199 DOI: 10.1128/mcb.20.18.6755-6767.2000] [Citation(s) in RCA: 760] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription of genes encoding molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) is induced by accumulation of unfolded proteins in the ER. This intracellular signaling, known as the unfolded protein response (UPR), is mediated by the cis-acting ER stress response element (ERSE) in mammals. In addition to ER chaperones, the mammalian transcription factor CHOP (also called GADD153) is induced by ER stress. We report here that the transcription factor XBP-1 (also called TREB5) is also induced by ER stress and that induction of CHOP and XBP-1 is mediated by ERSE. The ERSE consensus sequence is CCAAT-N(9)-CCACG. As the general transcription factor NF-Y (also known as CBF) binds to CCAAT, CCACG is considered to provide specificity in the mammalian UPR. We recently found that the basic leucine zipper protein ATF6 isolated as a CCACG-binding protein is synthesized as a transmembrane protein in the ER, and ER stress-induced proteolysis produces a soluble form of ATF6 that translocates into the nucleus. We report here that overexpression of soluble ATF6 activates transcription of the CHOP and XBP-1 genes as well as of ER chaperone genes constitutively, whereas overexpression of a dominant negative mutant of ATF6 blocks the induction by ER stress. Furthermore, we demonstrated that soluble ATF6 binds directly to CCACG only when CCAAT exactly 9 bp upstream of CCACG is bound to NF-Y. Based on these and other findings, we concluded that specific and direct interactions between ATF6 and ERSE are critical for transcriptional induction not only of ER chaperones but also of CHOP and XBP-1.
Collapse
Affiliation(s)
- H Yoshida
- HSP Research Institute, Kyoto Research Park, Shimogyo-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Li M, Baumeister P, Roy B, Phan T, Foti D, Luo S, Lee AS. ATF6 as a transcription activator of the endoplasmic reticulum stress element: thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1. Mol Cell Biol 2000; 20:5096-106. [PMID: 10866666 PMCID: PMC85959 DOI: 10.1128/mcb.20.14.5096-5106.2000] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATF6, a member of the leucine zipper protein family, can constitutively induce the promoter of glucose-regulated protein (grp) genes through activation of the endoplasmic reticulum (ER) stress element (ERSE). To understand the mechanism of grp78 induction by ATF6 in cells subjected to ER calcium depletion stress mediated by thapsigargin (Tg) treatment, we discovered that ATF6 itself undergoes Tg stress-induced changes. In nonstressed cells, ATF6, which contains a putative short transmembrane domain, is primarily associated with the perinuclear region. Upon Tg stress, the ATF6 protein level dropped initially but quickly recovered with the additional appearance of a faster-migrating form. This new form of ATF6 was recovered as soluble nuclear protein by biochemical fractionation, correlating with enhanced nuclear localization of ATF6 as revealed by immunofluorescence. Optimal ATF6 stimulation requires at least two copies of the ERSE and the integrity of the tripartite structure of the ERSE. Of primary importance is a functional NF-Y complex and a high-affinity NF-Y binding site that confers selectivity among different ERSEs for ATF6 inducibility. In addition, we showed that YY1 interacts with ATF6 and in Tg-treated cells can enhance ATF6 activity. The ERSE stimulatory activity of ATF6 exhibits properties distinct from those of human Ire1p, an upstream regulator of the mammalian unfolded protein response. The requirement for a high-affinity NF-Y site for ATF6 but not human Ire1p activity suggests that they stimulate the ERSE through diverse pathways.
Collapse
Affiliation(s)
- M Li
- Department of Biochemistry and Molecular Biology, and the USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California 90089-9176, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 1999; 10:3787-99. [PMID: 10564271 PMCID: PMC25679 DOI: 10.1091/mbc.10.11.3787] [Citation(s) in RCA: 1568] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The unfolded protein response (UPR) controls the levels of molecular chaperones and enzymes involved in protein folding in the endoplasmic reticulum (ER). We recently isolated ATF6 as a candidate for mammalian UPR-specific transcription factor. We report here that ATF6 constitutively expressed as a 90-kDa protein (p90ATF6) is directly converted to a 50-kDa protein (p50ATF6) in ER-stressed cells. Furthermore, we showed that the most important consequence of this conversion was altered subcellular localization; p90ATF6 is embedded in the ER, whereas p50ATF6 is a nuclear protein. p90ATF6 is a type II transmembrane glycoprotein with a hydrophobic stretch in the middle of the molecule. Thus, the N-terminal half containing a basic leucine zipper motif is oriented facing the cytoplasm. Full-length ATF6 as well as its C-terminal deletion mutant carrying the transmembrane domain is localized in the ER when transfected. In contrast, mutant ATF6 representing the cytoplasmic region translocates into the nucleus and activates transcription of the endogenous GRP78/BiP gene. We propose that ER stress-induced proteolysis of membrane-bound p90ATF6 releases soluble p50ATF6, leading to induced transcription in the nucleus. Unlike yeast UPR, mammalian UPR appears to use a system similar to that reported for cholesterol homeostasis.
Collapse
Affiliation(s)
- K Haze
- HSP Research Institute, Kyoto Research Park, Shimogyo-ku, Kyoto 600-8813, Japan
| | | | | | | | | |
Collapse
|
22
|
Plee-Gautier E, Grimal H, Aggerbeck M, Barouki R, Forest C. Cytosolic aspartate aminotransferase gene is a member of the glucose-regulated protein gene family in adipocytes. Biochem J 1998; 329 ( Pt 1):37-40. [PMID: 9405272 PMCID: PMC1219010 DOI: 10.1042/bj3290037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stress controls the expression of a cohort of genes. Among these, the glucose-regulated protein (GRP) genes are specifically activated by glucose deprivation, reducing agents, glycosylation block, intracellular calcium or ex vivo incubations of tissues or cells. We demonstrate that these stimuli induce the expression of the cytosolic aspartate aminotransferase gene in adipocytes by a process involving the region of the promoter between -2405 and -26 bp. Therefore this transaminase is a new member of the GRP family.
Collapse
Affiliation(s)
- E Plee-Gautier
- Centre de Recherche sur l'Endocrinologie Moléculaire et le Développement, C.N.R.S., 9, rue Jules Hetzel, 92190 Meudon, France
| | | | | | | | | |
Collapse
|
23
|
Abstract
We have isolated and characterized a 12-kb mouse genomic DNA fragment containing the entire calreticulin gene and 2.14 kb of the promoter region. The mouse calreticulin gene consists of nine exons and eight introns, and it spans 4.2 kb of genomic DNA. A 1.8-kb fragment of the calreticulin promoter was subcloned into a reporter gene plasmid containing chloramphenicol acetyltransferase. This construct was then used in transient and stable transfection of NIH/ 3T3 cells. Treatment of transfected cells either with the Ca2+ ionophore A23187, or with the ER Ca2+-ATPase inhibitor thapsigargin, resulted in a five- to sevenfold increase of the expression of chloramphenicol acetyltransferase protein. Transactivation of the calreticulin promoter was also increased by fourfold in NIH/3T3 cells treated with bradykinin, a hormone that induces Ca2+ release from the intracellular Ca2+ stores. Analysis of the promoter deletion constructs revealed that A23187- and thapsigargin-responsive regions are confined to two regions (-115 to -260 and -685 to -1,763) in the calreticulin promoter that contain the CCAAT nucleotide sequences. Northern blot analysis of cells treated with A23187, or with thapsigargin, revealed a fivefold increase in calreticulin mRNA levels. Thapsigargin also induced a fourfold increase in calreticulun protein levels. Importantly, we show by nuclear run-on transcription analysis that calreticulin gene transcription is increased in NIH/3T3 cells treated with A23187 and thapsigargin in vivo. This increase in gene expression required over 4 h of continuous incubation with the drugs and was also sensitive to treatment with cycloheximide, suggesting that it is dependent on protein synthesis. Changes in the concentration of extracellular and cytoplasmic Ca2+ did not affect the increased expression of the calreticulin gene. These studies suggest that stress response to the depletion of intracellular Ca2+ stores induces expression of the calreticulin gene in vitro and in vivo.
Collapse
Affiliation(s)
- M Waser
- Medical Research Council Group in Molecular Biology of Membranes, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | | | |
Collapse
|
24
|
Li WW, Hsiung Y, Wong V, Galvin K, Zhou Y, Shi Y, Lee AS. Suppression of grp78 core promoter element-mediated stress induction by the dbpA and dbpB (YB-1) cold shock domain proteins. Mol Cell Biol 1997; 17:61-8. [PMID: 8972186 PMCID: PMC231730 DOI: 10.1128/mcb.17.1.61] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The highly conserved grp78 core promoter element plays an important role in the induction of grp78 under diverse stress signals. Previous studies have established a functional region in the 3' half of the core (stress-inducible change region [SICR]) which exhibits stress-inducible changes in stressed nuclei. The human transcription factor YY1 is shown to bind the SICR and transactivate the core element under stress conditions. Here we report that expression library screening with the core element has identified two new core binding proteins, YB-1 and dbpA. Both proteins belong to the Y-box family of proteins characterized by an evolutionarily conserved DNA binding motif, the cold shock domain (CSD). In contrast to YY1, which binds only double-stranded SICR, the Y-box/CSD proteins much prefer the lower strand of the SICR. The Y-box proteins can repress the inducibility of the grp78 core element mediated by treatment of cells with A23187, thapsigargin, and tunicamycin. In gel shift assays, YY1 binding to the core element is inhibited by either YB-1 or dbpA. A yeast interaction trap screen using LexA-YY1 as a bait and a HeLa cell cDNA-acid patch fusion library identified YB-1 as a YY1-interacting protein. In cotransfection experiments, the Y-box proteins antagonize the YY1-mediated enhancement of transcription directed by the grp78 core in stressed cells. Thus, the CSD proteins may be part of the stress signal transduction mechanism in the mammalian system.
Collapse
Affiliation(s)
- W W Li
- Department of Biochemistry and Molecular Biology, Norris Cancer Center, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Li WW, Hsiung Y, Zhou Y, Roy B, Lee AS. Induction of the mammalian GRP78/BiP gene by Ca2+ depletion and formation of aberrant proteins: activation of the conserved stress-inducible grp core promoter element by the human nuclear factor YY1. Mol Cell Biol 1997; 17:54-60. [PMID: 8972185 PMCID: PMC231729 DOI: 10.1128/mcb.17.1.54] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previously, we have identified a constitutive nuclear factor, p70CORE, from HeLa cell nuclear extract which interacts specifically with the stress-inducible change region (SICR) of the grp78 promoter. Here we report that p70CORE is identical to YY1, a member of the GLI zinc finger family, by criteria of biochemical properties including apparent molecular weight, binding site homology, immunoreactivity, and affinity purification. Recombinant YY1 binds the double-stranded SICR with high specificity but has no affinity for its single-stranded form. In cotransfection studies, YY1 specifically enhanced the transcriptional activation of the grp78 promoter under a variety of stress conditions: depletion of the endoplasmic reticulum calcium stores, protein glycosylation block, and formation of aberrant proteins by azetidine treatment. In contrast, YY1 has minimal effect on the stress induction of the hsp70 promoter. YY1 enhancement of the grp78 stress response is dependent on its DNA-binding domain, with little effect on the basal expression of the promoter. The effect of YY1 transactivation may be mediated by the highly conserved grp78 core element. This is the first example of the ubiquitous factor YY1 involved in regulating inducible gene expression and its involvement in mediating stress signals generated from the endoplasmic reticulum to the nucleus.
Collapse
Affiliation(s)
- W W Li
- Department of Biochemistry and Molecular Biology, Norris Cancer Center, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | | | |
Collapse
|
26
|
Zheng Z, Maidji E, Tugizov S, Pereira L. Mutations in the carboxyl-terminal hydrophobic sequence of human cytomegalovirus glycoprotein B alter transport and protein chaperone binding. J Virol 1996; 70:8029-40. [PMID: 8892927 PMCID: PMC190876 DOI: 10.1128/jvi.70.11.8029-8040.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human cytomegalovirus glycoprotein B (gB) plays a role in the fusion of the virion envelope with the host cell membrane and in syncytium formation in infected cells. Hydrophobic sequences at the carboxyl terminus, amino acids (aa) 714 to 771, anchor gB in the lipid bilayer, but the unusual length of this domain suggests that it may serve another role in gB structure. To explore the function(s) of this region, we deleted aa 717 to 747 (gB deltaI mutation), aa 751 to 771 (gB deltaII mutation), and aa 717 to 772 (gB deltaI-II mutation) and constructed a substitution mutation, Lys-748 to Val (Lys748Val)-Asn749Ala-Pro750Ile (gB KNPm). Mutated forms of gB were expressed in U373 glioblastoma cells and subjected to analysis by flow cytometry, confocal microscopy, and immunoprecipitation. Mutations gB deltaI-II and gB deltaII alone caused secretion of gB into the medium, confirming that aa 751 to 771 function as a membrane anchor. In contrast, mutations gB deltaI and gB KNPm blocked cell surface expression and arrested gB transport in the endoplasmic reticulum (ER). Detailed examination of gB deltaI and gB KNPm with a panel of monoclonal antibodies showed that the mutated forms were indistinguishable from wild-type gB in conformation and formed oligomers; however, they remained sensitive to endoglycosidase H and did not undergo endoproteolytic cleavage. Analysis of protein complexes formed by gB and molecular chaperones in the ER showed that calnexin and calreticulin, lectin-like chaperones, bound equal amounts of uncleaved wild-type gB, gB deltaI, and gB KNPm, but the glucose-regulated proteins 78 (BiP) and 94 formed stable complexes only with the mutated forms, causing their retention in the ER. Our studies show that aa 714 to 750 are key residues in the architecture of gB molecules and that the ER chaperones, which facilitate gB folding and monitor the quality of glycoproteins, detect subtle changes in folding intermediates that are conferred by mutations in this region.
Collapse
Affiliation(s)
- Z Zheng
- Department of Stomatology, School of Dentistry, University of California, San Francisco 94143-0512, USA
| | | | | | | |
Collapse
|
27
|
Kitzman HH, McMahon RJ, Aslanian AM, Fadia PM, Frost SC. Differential regulation of GRP78 and GLUT1 expression in 3T3-L1 adipocytes. Mol Cell Biochem 1996; 162:51-8. [PMID: 8905625 DOI: 10.1007/bf00250995] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We tested the hypothesis that the constitutive glucose transporter (GLUT1) in 3T3-L1 adipocytes belongs to the family of glucose-regulated proteins which are transcriptionally regulated by glucose deprivation. Using cDNA probes for both GRP78 (BiP) and GLUT1, we show that the level of GRP78 mRNA increased by 15-fold within 24 h of glucose deprivation with little change in GLUT1 mRNA. The elevated GRP78 mRNA in turn led to a time-dependent increase in GRP78 protein. While glucose deprivation did not alter the expression of the normal glycoform of GLUT1, a lower molecular weight glycoform accumulated with extended deprivation. Mannose and fructose, but not galactose, prevented the induction of GRP78 and accumulation of the abnormal GLUT1. Because GRP78 acts as a chaperone in other cell systems, we also sought evidence to support this activity in 3T3-L1 adipocytes. Using the technique of co-immunoprecipitation, we demonstrate that GRP78 bound several proteins unique to the glucose-deprived state. No deprivation-specific proteins could be detected in association with GLUT1. These data lead us to conclude that GLUT1 does not display characteristics of the glucose-regulated proteins, at least in 3T3-L1 adipocytes, a widely used model for differentiation, hormone action, and nutrient control. However, the mechanisms for activating traditional members of this family appear intact.
Collapse
Affiliation(s)
- H H Kitzman
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville 32610, USA
| | | | | | | | | |
Collapse
|
28
|
Dominguez JH, Song B, Liu-Chen S, Qulali M, Howard R, Lee CH, McAteer J. Studies of renal injury. II. Activation of the glucose transporter 1 (GLUT1) gene and glycolysis in LLC-PK1 cells under Ca2+ stress. J Clin Invest 1996; 98:395-404. [PMID: 8755650 PMCID: PMC507443 DOI: 10.1172/jci118805] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Injury to the renal proximal tubule is common and may be followed by either recovery or cell death. The survival of injured cells is supported by a transient change in cellular metabolism that maintains life even when oxygen tension is reduced. This adaptive process involves the activation of the gene encoding the glucose transporter GLUT1, which is essential to maintain the high rates of glucose influx demanded by glycolysis. We hypothesized that after cell injury increases of cell Ca2+ (Ca2+i) initiate the flow of information that culminates with the upregulation of the stress response gene GLUT1. We found that elevations of Ca2+i caused by the calcium ionophore A23187 activated the expression of the GLUT1 gene in LLC-PK1 cells. The stimulatory effect of Ca2+i on GLUT1 gene expression was, at least in part, transcriptional and resulted in higher levels of GLUT1 mRNA, cognate protein, cellular hexose transport activity, glucose consumption, and lactate production. This response was vital to the renal cells, as its interruption severely increased Ca2+-induced cytotoxicity and cell mortality. We propose that increases of Ca2+i initiate stress responses, represented in part by activation of the GLUT1 gene, and that disruption to the flow of information originating from Ca2+-induced stress, or to the coordinated expression of the stress response, prevents cell recovery after injury and may be an important cause of permanent renal cell injury and cell death.
Collapse
Affiliation(s)
- J H Dominguez
- Department of Medicine, Indiana University Medical Center, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Pahl HL, Baeuerle PA. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J 1995; 14:2580-8. [PMID: 7781611 PMCID: PMC398372 DOI: 10.1002/j.1460-2075.1995.tb07256.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The inducible, higher eukaryotic transcription factor NF-kappa B is activated by a variety of external stimuli including inflammatory cytokines, viral and bacterial infection and UV irradiation. Here we show that internal stress, caused by the accumulation of proteins in the endoplasmic reticulum (ER), also induces NF-kappa B DNA binding as well as kappa B-dependent gene expression. This was observed upon expression of immunoglobulin mu chains in the absence of light chains and by treatment of cells with several agents known to cause ER stress, such as tunicamycin, brefeldin A, 2-deoxyglucose and thapsigsargin. The transcription factor AP-1 was weakly induced under similar conditions. Overexpression of NF-kappa B subunits did not influence expression of the gene encoding grp78/BiP, a protein induced by various forms of ER stress. Likewise, the glucosidase inhibitor castanospermine, which induced grp78/BiP expression, failed to activate NF-kappa B, while the antioxidant dithiothreitol augmented grp78/BiP expression but prevented activation of NF-kappa B. Hence, NF-kappa B participates in a novel ER-nuclear signal transduction pathway distinct from the unfolded-protein-response described previously. We provide evidence that the ER can produce at least two distinct signals in response to a functional impairment. One is emitted by the presence of unfolded proteins, the other in response to overloading of the organelle, for example through the overexpression of secretory proteins.
Collapse
Affiliation(s)
- H L Pahl
- Institute of Biochemistry, Albert Ludwigs University, Freiburg, Germany
| | | |
Collapse
|
30
|
Roy B, Lee AS. Transduction of calcium stress through interaction of the human transcription factor CBF with the proximal CCAAT regulatory element of the grp78/BiP promoter. Mol Cell Biol 1995; 15:2263-74. [PMID: 7891720 PMCID: PMC230454 DOI: 10.1128/mcb.15.4.2263] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mammalian GRP78/BiP is a stress-inducible 78-kDa endoplasmic reticulum (ER) protein with molecular chaperone and calcium-binding properties. The transactivation of grp78 by the calcium ionophore A23187 provides a model system with which to study the signal transduction that allows mammalian cells to sense calcium depletion in intracellular stores and activate transcription of specific genes. Linker-scanning mutation analysis of the grp78 promoter reveals that the single most important regulatory element is C1, which contains a CCAAT motif most proximal to the TATA sequence. The C1 element is crucial for mediating the stimulatory effects by the upstream regulatory elements under normal and stress conditions. In this report, we establish that the heteromeric CCAAT-binding factor CBF is the major component of the C1-binding factor (C1F) in human cells. A GGAGG motif flanking the CCAAT sequence also contributes to high-affinity C1F/CBF binding. We show here that the binding of C1F in vitro is sensitive to the concentration of calcium ions. At high calcium ion concentrations, the C1F-binding activity is lower because of a higher dissociation rate. This binding characteristic correlates with the induction of grp78 transcription in response to the depletion of intracellular calcium stores. The strikingly similar behavior of C1F from nuclear extracts of control and A23187-treated cells further suggests that C1F itself does not undergo any major inherent changes after calium depletion stress. Rather, its binding property could be modulated by the immediate calcium ionic environment in stressed and nonstressed cells. On the basis of the in vitro and in vivo site occupancies of C1F and other stress-inducible changes of upstream regulatory complexes, we present a model to explain how C1F and other upstream factors can synergistically activate grp78 transcription in calcium-depleted cells.
Collapse
Affiliation(s)
- B Roy
- Department of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles 90033-0800
| | | |
Collapse
|
31
|
Stress induction of the mammalian GRP78/BiP protein gene: in vivo genomic footprinting and identification of p70CORE from human nuclear extract as a DNA-binding component specific to the stress regulatory element. Mol Cell Biol 1994. [PMID: 8035828 DOI: 10.1128/mcb.14.8.5533] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GRP78, also known as BiP, is one of the better-characterized molecular chaperones. It has been implicated in protein folding and also calcium sequestration in the endoplasmic reticulum. When the cells are subjected to endoplasmic reticulum stress, in particular the depletion of stored calcium and/or the accumulation of abnormal proteins, the rate of transcription of grp78 is enhanced. Previous studies have shown that the core region of the rat grp78 promoter (-170 to -135), which is 95% conserved with the human grp78 core (-133 to -98), is one of the key regulatory elements. Using ligation-mediated PCR, we have found that there are specific changes in factor occupancy after stress induction and the major changes occur within a cluster of bases located in the 3' half of the grp core, whereas other regulatory elements are constitutively occupied. This inducible binding to the 3' half of the human grp78 core region is observed under diverse stress signals, suggesting a common mechanism for the grp stress response. Nonetheless, the lack of constitutive in vivo protection at this region is not due to the absence of a binding factor in nuclear extracts. Using in vitro gel mobility shift assays, we detected a constitutive binding activity which exhibits specificity and affinity to the stress-inducible region. Through sodium dodecyl sulfate-polyacrylamide gel electrophoresis size fractionation and renaturation analysis, the activity is found in polypeptides with molecular sizes of 65 to 75 kDa. After a three-step purification scheme including core affinity column chromatography, we purified p70CORE, which is about 70 kDa in its monomeric form. The purified p70CORE is sufficient to form a complex specific to the stress-inducible region.
Collapse
|
32
|
Li WW, Sistonen L, Morimoto RI, Lee AS. Stress induction of the mammalian GRP78/BiP protein gene: in vivo genomic footprinting and identification of p70CORE from human nuclear extract as a DNA-binding component specific to the stress regulatory element. Mol Cell Biol 1994; 14:5533-46. [PMID: 8035828 PMCID: PMC359073 DOI: 10.1128/mcb.14.8.5533-5546.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
GRP78, also known as BiP, is one of the better-characterized molecular chaperones. It has been implicated in protein folding and also calcium sequestration in the endoplasmic reticulum. When the cells are subjected to endoplasmic reticulum stress, in particular the depletion of stored calcium and/or the accumulation of abnormal proteins, the rate of transcription of grp78 is enhanced. Previous studies have shown that the core region of the rat grp78 promoter (-170 to -135), which is 95% conserved with the human grp78 core (-133 to -98), is one of the key regulatory elements. Using ligation-mediated PCR, we have found that there are specific changes in factor occupancy after stress induction and the major changes occur within a cluster of bases located in the 3' half of the grp core, whereas other regulatory elements are constitutively occupied. This inducible binding to the 3' half of the human grp78 core region is observed under diverse stress signals, suggesting a common mechanism for the grp stress response. Nonetheless, the lack of constitutive in vivo protection at this region is not due to the absence of a binding factor in nuclear extracts. Using in vitro gel mobility shift assays, we detected a constitutive binding activity which exhibits specificity and affinity to the stress-inducible region. Through sodium dodecyl sulfate-polyacrylamide gel electrophoresis size fractionation and renaturation analysis, the activity is found in polypeptides with molecular sizes of 65 to 75 kDa. After a three-step purification scheme including core affinity column chromatography, we purified p70CORE, which is about 70 kDa in its monomeric form. The purified p70CORE is sufficient to form a complex specific to the stress-inducible region.
Collapse
Affiliation(s)
- W W Li
- Department of Biochemistry, University of Southern California School of Medicine, Los Angeles 90033
| | | | | | | |
Collapse
|
33
|
Zhang Y, Dahms NM. Site-directed removal of N-glycosylation sites in the bovine cation-dependent mannose 6-phosphate receptor: effects on ligand binding, intracellular targetting and association with binding immunoglobulin protein. Biochem J 1993; 295 ( Pt 3):841-8. [PMID: 8240300 PMCID: PMC1134638 DOI: 10.1042/bj2950841] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The bovine cation-dependent mannose 6-phosphate receptor (CD-MPR) contains five potential N-linked glycosylation sites, four of which are utilized. To evaluate the function of these oligosaccharides, site-directed mutagenesis was used to generate glycosylation-deficient CD-MPR mutants lacking various potential glycosylation sites. The mutants were constructed in both a full-length and a soluble truncated (STOP155 construct) form of the receptor and their properties were examined in transfected COS-1 cells. The results showed that the presence of a single oligosaccharide chain, particularly at position 87, on the CD-MPR significantly enhanced its mannose 6-phosphate (Man-6-P)-binding ability when compared with non-glycosylated receptors. In addition, the presence of a single oligosaccharide chain at position 87, and to a lesser degree at position 31 or 81, promoted the secretion of the STOP155 CD-MPR. Pulse-labelling of transfected COS-1 cells followed by immunoprecipitation with binding immunoglobulin protein (BiP)-specific and CD-MPR-specific antibodies indicated that BiP associated with the non-glycosylated forms of the receptor but not with the wild-type CD-MPR. Furthermore, the association of the various glycosylation-deficient forms of the CD-MPR with BiP correlated inversely with their ability to bind Man-6-P. From these results we conclude that N-glycosylation of the bovine CD-MPR facilities the folding of the nascent polypeptide chain into a conformation that is conductive for intracellular transport and ligand binding.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|
34
|
Abstract
gadd153 encodes a CCAAT/enhancer-binding protein (C/EBP)-related protein that lacks a functional DNA-binding domain. Since the gadd153 protein is capable of heterodimerizing with other C/EBPs, gadd153 may function as a negative regulator of these transcription factors. Here we examined the role of glucose in regulating gadd153 expression. We found that glucose deprivation markedly induces gadd153 mRNA levels in both HeLa and 3T3-L1 cells and that addition of D-(+)-glucose resulted in a rapid decrease of gadd153 mRNA. Similar induction and reversal of gadd153 expression were observed at the protein level. Because C/EBP alpha appears to play an important role in regulating genes involved in adipogenesis and energy metabolism, we examined gadd153 expression during the differentiation of 3T3-L1 preadipocytes and as a function of glucose utilization in differentiated adipocytes. Using a standard differentiation protocol that consisted of hormonal stimulation for 2 days followed by medium changes every 2 days thereafter, we observed that both C/EBP alpha and gadd153 mRNAs were elevated. However, C/EBP alpha induction occurred on day 3, while gadd153 expression was not seen until day 4, when the cells were fully differentiated. Frequent addition of fresh medium to the cells during the differentiation process, as well as supplementation of medium with glucose, reduced gadd153 expression without preventing C/EBP alpha expression or interfering with cellular differentiation. Thus, gadd153 expression is not essential for the process of adipocyte differentiation but is significantly influenced by the availability of glucose to the cell.
Collapse
|
35
|
Carlson SG, Fawcett TW, Bartlett JD, Bernier M, Holbrook NJ. Regulation of the C/EBP-related gene gadd153 by glucose deprivation. Mol Cell Biol 1993; 13:4736-44. [PMID: 8336711 PMCID: PMC360099 DOI: 10.1128/mcb.13.8.4736-4744.1993] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
gadd153 encodes a CCAAT/enhancer-binding protein (C/EBP)-related protein that lacks a functional DNA-binding domain. Since the gadd153 protein is capable of heterodimerizing with other C/EBPs, gadd153 may function as a negative regulator of these transcription factors. Here we examined the role of glucose in regulating gadd153 expression. We found that glucose deprivation markedly induces gadd153 mRNA levels in both HeLa and 3T3-L1 cells and that addition of D-(+)-glucose resulted in a rapid decrease of gadd153 mRNA. Similar induction and reversal of gadd153 expression were observed at the protein level. Because C/EBP alpha appears to play an important role in regulating genes involved in adipogenesis and energy metabolism, we examined gadd153 expression during the differentiation of 3T3-L1 preadipocytes and as a function of glucose utilization in differentiated adipocytes. Using a standard differentiation protocol that consisted of hormonal stimulation for 2 days followed by medium changes every 2 days thereafter, we observed that both C/EBP alpha and gadd153 mRNAs were elevated. However, C/EBP alpha induction occurred on day 3, while gadd153 expression was not seen until day 4, when the cells were fully differentiated. Frequent addition of fresh medium to the cells during the differentiation process, as well as supplementation of medium with glucose, reduced gadd153 expression without preventing C/EBP alpha expression or interfering with cellular differentiation. Thus, gadd153 expression is not essential for the process of adipocyte differentiation but is significantly influenced by the availability of glucose to the cell.
Collapse
Affiliation(s)
- S G Carlson
- Laboratory of Molecular Genetics, National Institute on Aging, Baltimore, Maryland 21224
| | | | | | | | | |
Collapse
|
36
|
Monteclaro FS, Vogt PK. A Jun-binding protein related to a putative tumor suppressor. Proc Natl Acad Sci U S A 1993; 90:6726-30. [PMID: 8341691 PMCID: PMC47005 DOI: 10.1073/pnas.90.14.6726] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A lambda gt11 cDNA library of chicken embryo fibroblasts was screened with biotinylated Jun protein to identify Jun-binding clones. Eight such clones were isolated; one contains a gene referred to as jif-1 that is homologous to the putative tumor suppressor gene QM. jif-1 codes for a protein of 25 kDa that binds to the leucine zipper of viral and cellular Jun. The Jif-1 protein also binds to itself. Jif-1 does not contain a leucine zipper, and it does not bind to the 12-O-tetradecanoylphorbol 13-acetate response element DNA sequence. Complex formation of Jif-1 with Jun inhibits DNA binding and reduces transactivation by Jun. Addition of Fos protein to Jun-Jif-1 complexes restores DNA-binding activity. These observations suggest that Jif-1 is a negative regulator of Jun.
Collapse
Affiliation(s)
- F S Monteclaro
- Department of Microbiology, University of Southern California School of Medicine, Los Angeles
| | | |
Collapse
|
37
|
The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol Cell Biol 1993. [PMID: 8423809 DOI: 10.1128/mcb.13.2.877] [Citation(s) in RCA: 216] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endoplasmic reticulum (ER) of eukaryotic cells contains an abundant 78,000-Da protein (BiP) that is involved in the translocation, folding, and assembly of secretory and transmembrane proteins. In the yeast Saccharomyces cerevisiae, as in mammalian cells, BiP mRNA is synthesized at a high basal rate and is further induced by the presence of increased amounts of unfolded proteins in the ER. However, unlike mammalian BiP, yeast BiP is also induced severalfold by heat shock, albeit in a transient fashion. To identify the regulatory sequences that respond to these stimuli in the yeast KAR2 gene that encodes BiP, we have cloned a 1.3-kb segment of DNA from the region upstream of the sequences coding for BiP and fused it to a reporter gene, the Escherichia coli beta-galactosidase gene. Analysis of a series of progressive 5' truncations as well as internal deletions of the upstream sequence showed that the information required for accurate transcriptional regulation of the KAR2 gene in S. cerevisiae is contained within a approximately 230-bp XhoI-DraI fragment (nucleotides -245 to -9) and that this fragment contains at least two cis-acting elements, one (heat shock element [HSE]) responding to heat shock and the other (unfolded protein response element [UPR]) responding to the presence of unfolded proteins in the ER. The HSE and UPR elements are functionally independent of each other but work additively for maximum induction of the yeast KAR2 gene. Lying between these two elements is a GC-rich region that is similar in sequence to the consensus element for binding of the mammalian transcription factor Sp1 and that is involved in the basal expression of the KAR2 gene. Finally, we provide evidence suggesting that yeast cells monitor the concentration of free BiP in the ER and adjust the level of transcription of the KAR2 gene accordingly; this effect is mediated via the UPR element in the KAR2 promoter.
Collapse
|
38
|
Kohno K, Normington K, Sambrook J, Gething MJ, Mori K. The promoter region of the yeast KAR2 (BiP) gene contains a regulatory domain that responds to the presence of unfolded proteins in the endoplasmic reticulum. Mol Cell Biol 1993; 13:877-90. [PMID: 8423809 PMCID: PMC358971 DOI: 10.1128/mcb.13.2.877-890.1993] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The endoplasmic reticulum (ER) of eukaryotic cells contains an abundant 78,000-Da protein (BiP) that is involved in the translocation, folding, and assembly of secretory and transmembrane proteins. In the yeast Saccharomyces cerevisiae, as in mammalian cells, BiP mRNA is synthesized at a high basal rate and is further induced by the presence of increased amounts of unfolded proteins in the ER. However, unlike mammalian BiP, yeast BiP is also induced severalfold by heat shock, albeit in a transient fashion. To identify the regulatory sequences that respond to these stimuli in the yeast KAR2 gene that encodes BiP, we have cloned a 1.3-kb segment of DNA from the region upstream of the sequences coding for BiP and fused it to a reporter gene, the Escherichia coli beta-galactosidase gene. Analysis of a series of progressive 5' truncations as well as internal deletions of the upstream sequence showed that the information required for accurate transcriptional regulation of the KAR2 gene in S. cerevisiae is contained within a approximately 230-bp XhoI-DraI fragment (nucleotides -245 to -9) and that this fragment contains at least two cis-acting elements, one (heat shock element [HSE]) responding to heat shock and the other (unfolded protein response element [UPR]) responding to the presence of unfolded proteins in the ER. The HSE and UPR elements are functionally independent of each other but work additively for maximum induction of the yeast KAR2 gene. Lying between these two elements is a GC-rich region that is similar in sequence to the consensus element for binding of the mammalian transcription factor Sp1 and that is involved in the basal expression of the KAR2 gene. Finally, we provide evidence suggesting that yeast cells monitor the concentration of free BiP in the ER and adjust the level of transcription of the KAR2 gene accordingly; this effect is mediated via the UPR element in the KAR2 promoter.
Collapse
Affiliation(s)
- K Kohno
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235
| | | | | | | | | |
Collapse
|
39
|
Chao CC, Lin-Chao S. A direct-repeat sequence of the human BiP gene is required for A23187-mediated inducibility and an inducible nuclear factor binding. Nucleic Acids Res 1992; 20:6481-5. [PMID: 1480470 PMCID: PMC334561 DOI: 10.1093/nar/20.24.6481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have recently isolated a functional promoter encoding the human polypeptide-binding protein (BiP) gene from Burkitt's lymphoma cells by polymerase chain reaction (The EMBL Data Library accession number X59969, 1991). This promoter DNA segment (termed BiP670) was fused to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene and expressed in NIH3T3 cells. BiP670 retains basal and Ca2+ ionophore A23187-inducible activities. Using 5' deletion assay, we found three basal expression elements (BEE) in the BiP670. Removal of the distal BBE (BBE3), which is contained in a segment spanning -368/-170, caused a 50% loss of the basal activity; removal together with the middle BBE (BBE2), which is contained in a segment spanning -170/-107, resulted in a further 30% loss of the activity. Further removal of the proximal BBE (BBE1), which spans -107/-39, abolished greater than 95% of the basal expression. In addition, an A23187-inducible element (AIE) appeared to be associated with the BBE1. At least a six-fold inducibility remained as long as the BiP promoter retained the sequences -107/-39. Using an in vitro gel mobility shift assay, an A23187-inducible nuclear factor (AINF) was detected from NIH3T3 cells. DNA binding competition experiments indicate that the -107/-39 segment contains a sequence motif which interacts with this cellular factor. Further analysis showed that the two direct repeats, ranging -108/-73 and -72/-40, are the target for AINF binding. A 3-4 fold increase of the AINF binding to both repeated sequences was detected from induced cells. Similar results were also demonstrated in HeLa cells, suggesting that transcriptional control of BiP gene expression in mammalian cells is conserved. These findings also imply that the identified nuclear factor may be important in mediating transcriptional activation of the BiP gene.
Collapse
Affiliation(s)
- C C Chao
- Department of Biochemistry, Chang Gung Medical College, Taoyuan, Taiwan, China
| | | |
Collapse
|
40
|
Chao CC, Yam WC, Chen LK, Lin-Chao S. Cloning of a functional Burkitt's lymphoma polypeptide-binding protein/78 kDa glucose-regulated protein (BiP/GRP78) gene promoter by the polymerase chain reaction, and its interaction with inducible cellular factors. Biochem J 1992; 286 ( Pt 2):555-9. [PMID: 1382410 PMCID: PMC1132933 DOI: 10.1042/bj2860555] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The promoter of the human gene encoding the stress-responsive protein polypeptide-binding protein/78 kDa glucose-regulated protein (BiP/GRP78) was isolated from Burkitt's lymphoma cells by PCR. This promoter DNA segment (termed BiP670) or one of its 5' deletion derivatives was fused to the bacterial chloramphenicol acetyltransferase gene and introduced into HeLa cells for transient expression. BiP670 retained transcriptional activity at both the basal and Ca2+ ionophore A23187-inducible levels. However, there was no significant increase in promoter activity following a 5 h induction with 7 microM-A23187, and less than 5-fold induction at 15 h. In contrast, the steady-state mRNA level was induced by 18-fold at 5 h. The in vivo transactivation assays with BiP670 5' deletion derivatives indicate that the putative A23187-inducible element is located within a 70 bp DNA segment (i.e. spanning -39 to -107 bp upstream of the transcriptional initiation site). Using an in vitro gel mobility shift assay, A23187-inducible nuclear factors were identified from HeLa cell extracts. DNA-binding competition experiments also suggest that the 70 bp DNA segment contains a potential sequence motif for the binding of the A23187-inducible nuclear factors.
Collapse
Affiliation(s)
- C C Chao
- Department of Biochemistry, Chang Gung Medical College, Taoyuan, Taiwan, Republic of China
| | | | | | | |
Collapse
|