1
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Schutt SD, Wu Y, Kharel A, Bastian D, Choi HJ, Hanief Sofi M, Mealer C, McDaniel Mims B, Nguyen H, Liu C, Helke K, Cui W, Zhang X, Ben-David Y, Yu XZ. The druggable transcription factor Fli-1 regulates T cell immunity and tolerance in graft-versus-host disease. J Clin Invest 2022; 132:143950. [PMID: 36074578 PMCID: PMC9621143 DOI: 10.1172/jci143950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2020] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Graft-versus-host disease (GVHD), manifesting as either acute (aGVHD) or chronic (cGVHD), presents significant life-threatening complications following allogeneic hematopoietic cell transplantation. Here, we investigated Friend virus leukemia integration 1 (Fli-1) in GVHD pathogenesis and validated Fli-1 as a therapeutic target. Using genetic approaches, we found that Fli-1 dynamically regulated different T cell subsets in allogeneic responses and pathogenicity in the development of aGVHD and cGVHD. Compared with homozygous Fli1-deficient or WT T cells, heterozygous Fli1-deficient T cells induced the mildest GVHD, as evidenced by the lowest Th1 and Th17 cell differentiation. Single-cell RNA-Seq analysis revealed that Fli-1 differentially regulated CD4+ and CD8+ T cell responses. Fli-1 promoted the transcription of Th1/Th17 pathways and T cell receptor-inducible (TCR-inducible) transcription factors in CD4+ T cells, while suppressing activation- and function-related gene pathways in CD8+ T cells. Importantly, a low dose of camptothecin, topotecan, or etoposide acted as a potent Fli-1 inhibitor and significantly attenuated GVHD severity, while preserving the graft-versus-leukemia (GVL) effect. This observation was extended to a xenograft model, in which GVHD was induced by human T cells. In conclusion, we provide evidence that Fli-1 plays a crucial role in alloreactive CD4+ T cell activation and differentiation and that targeting Fli-1 may be an attractive strategy for treating GVHD without compromising the GVL effect.
Collapse
Affiliation(s)
- Steven D. Schutt
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin, USA
| | - Arjun Kharel
- Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin, USA
| | - David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | - Hee-Jin Choi
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin, USA
| | - Mohammed Hanief Sofi
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | - Corey Mealer
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | - Brianyell McDaniel Mims
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | - Hung Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin, USA
| | - Xian Zhang
- Department of Medicine at MUSC, Charleston, South Carolina, USA
| | - Yaacov Ben-David
- Guizhou Medical University and the Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, China
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina (MUSC), Charleston, South Carolina, USA.,Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, Wisconsin, USA.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA.,The Cancer Center in MCW, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Huisman EJ, Brooimans AR, Mayer S, Joosten M, de Bont L, Dekker M, Rammeloo ELM, Smiers FJ, van Hagen PM, Zwaan CM, de Haas M, Cnossen MH, Dalm VASH. Patients with Chromosome 11q Deletions Are Characterized by Inborn Errors of Immunity Involving both B and T Lymphocytes. J Clin Immunol 2022; 42:1521-1534. [PMID: 35763218 DOI: 10.1007/s10875-022-01303-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2021] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
Disorders of the long arm of chromosome 11 (11q) are rare and involve various chromosomal regions. Patients with 11q disorders, including Jacobsen syndrome, often present with a susceptibility for bacterial and prolonged viral and fungal infections partially explained by hypogammaglobulinemia. Additional T lymphocyte or granular neutrophil dysfunction may also be present. In order to evaluate infectious burden and immunological function in patients with 11q disorders, we studied a cohort of 14 patients with 11q deletions and duplications. Clinically, 12 patients exhibited prolonged and repetitive respiratory tract infections, frequently requiring (prophylactic) antibiotic treatment (n = 7), ear-tube placement (n = 9), or use of inhalers (n = 5). Complicated varicella infections (n = 5), chronic eczema (n = 6), warts (n = 2), and chronic fungal infections (n = 4) were reported. Six patients were on immunoglobulin replacement therapy. We observed a high prevalence of low B lymphocyte counts (n = 8), decreased T lymphocyte counts (n = 5) and abnormal T lymphocyte function (n = 12). Granulocyte function was abnormal in 29% without a clinical phenotype. Immunodeficiency was found in patients with terminal and interstitial 11q deletions and in one patient with terminal 11q duplication. Genetically, FLI1 and ETS1 are seen as causative for the immunodeficiency, but these genes were deleted nor duplicated in 4 of our 14 patients. Alternative candidate genes on 11q may have a role in immune dysregulation. In conclusion, we present evidence that inborn errors of immunity are present in patients with 11q disorders leading to clinically relevant infections. Therefore, broad immunological screening and necessary treatment is of importance in this patient group.
Collapse
Affiliation(s)
- Elise J Huisman
- Department of Pediatric Hematology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands.,Unit of Transfusion Medicine, Sanquin Blood Supply, Amsterdam, the Netherlands
| | - A Rick Brooimans
- Laboratory Medical Immunological, Department of Immunology, Erasmus Medical Center, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Samone Mayer
- Department of Pediatric Hematology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Marieke Joosten
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Louis de Bont
- Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mariëlle Dekker
- Department of Pediatrics, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | | | - Frans J Smiers
- Department of Pediatric Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - P Martin van Hagen
- Laboratory Medical Immunological, Department of Immunology, Erasmus Medical Center, University Medical Centre Rotterdam, Rotterdam, the Netherlands.,Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - C Michel Zwaan
- Department of Pediatric Oncology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands.,Department of Pediatric Oncology, Princess Máxima Center, Utrecht, the Netherlands
| | - Masja de Haas
- Laboratory of Immunohematology Diagnostics, Sanquin Diagnostic Services, Amsterdam, the Netherlands.,Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Clinical Transfusion Research, Sanquin Research, Amsterdam, the Netherlands
| | - Marjon H Cnossen
- Department of Pediatric Hematology, Erasmus Medical Center Sophia Children's Hospital, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Virgil A S H Dalm
- Laboratory Medical Immunological, Department of Immunology, Erasmus Medical Center, University Medical Centre Rotterdam, Rotterdam, the Netherlands. .,Department of Internal Medicine, Division of Allergy & Clinical Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Ben-David Y, Gajendran B, Sample KM, Zacksenhaus E. Current insights into the role of Fli-1 in hematopoiesis and malignant transformation. Cell Mol Life Sci 2022; 79:163. [PMID: 35412146 PMCID: PMC11072361 DOI: 10.1007/s00018-022-04160-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/27/2022]
Abstract
Fli-1, a member of the ETS family of transcription factors, was discovered in 1991 through retroviral insertional mutagenesis as a driver of mouse erythroleukemias. In the past 30 years, nearly 2000 papers have defined its biology and impact on normal development and cancer. In the hematopoietic system, Fli-1 controls self-renewal of stem cells and their differentiation into diverse mature blood cells. Fli-1 also controls endothelial survival and vasculogenesis, and high and low levels of Fli-1 are implicated in the auto-immune diseases systemic lupus erythematosus and systemic sclerosis, respectively. In addition, aberrant Fli-1 expression is observed in, and is essential for, the growth of multiple hematological malignancies and solid cancers. Here, we review the historical context and latest research on Fli-1, focusing on its role in hematopoiesis, immune response, and malignant transformation. The importance of identifying Fli-1 modulators (both agonists and antagonists) and their potential clinical applications is discussed.
Collapse
Affiliation(s)
- Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China.
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China.
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Klarke M Sample
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, Max Bell Research Centre, University Health Network, 101 College Street, Toronto, ON, Canada
| |
Collapse
|
5
|
Zhong Y, Walker SK, Pritykin Y, Leslie CS, Rudensky AY, van der Veeken J. Hierarchical regulation of the resting and activated T cell epigenome by major transcription factor families. Nat Immunol 2021; 23:122-134. [PMID: 34937932 PMCID: PMC8712421 DOI: 10.1038/s41590-021-01086-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
T cell activation, a key early event in the adaptive immune response, is subject to elaborate transcriptional control. Here, we examined how the activities of eight major transcription factor (TF) families are integrated to shape the epigenome of naïve and activated CD4 and CD8 T cells. By leveraging extensive polymorphisms in evolutionarily divergent mice, we identified the “heavy lifters” positively influencing chromatin accessibility. Members of Ets, Runx, and TCF/Lef TF families occupied the vast majority of accessible chromatin regions, acting as “housekeepers”, “universal amplifiers”, and “placeholders”, respectively, at sites that maintained or gained accessibility upon T cell activation. Additionally, a small subset of strongly induced immune response genes displayed a non-canonical TF recruitment pattern. Our study provides a key resource and foundation for the understanding of transcriptional and epigenetic regulation in T cells and offers a new perspective on the hierarchical interactions between critical TFs.
Collapse
|
6
|
Identifying FL11 subtype by characterizing tumor immune microenvironment in prostate adenocarcinoma via Chou's 5-steps rule. Genomics 2020; 112:1500-1515. [DOI: 10.1016/j.ygeno.2019.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2019] [Revised: 08/03/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
|
7
|
Lee DH, Kim TM, Kim JK, Park C. ETV2/ER71 Transcription Factor as a Therapeutic Vehicle for Cardiovascular Disease. Theranostics 2019; 9:5694-5705. [PMID: 31534512 PMCID: PMC6735401 DOI: 10.7150/thno.35300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases have long been the leading cause of mortality and morbidity in the United States as well as worldwide. Despite numerous efforts over the past few decades, the number of the patients with cardiovascular disease still remains high, thereby necessitating the development of novel therapeutic strategies equipped with a better understanding of the biology of the cardiovascular system. Recently, the ETS transcription factor, ETV2 (also known as ER71), has been recognized as a master regulator of the development of the cardiovascular system and plays an important role in pathophysiological angiogenesis and the endothelial cell reprogramming. Here, we discuss the detailed mechanisms underlying ETV2/ER71-regulated cardiovascular lineage development. In addition, recent reports on the novel functions of ETV2/ER71 in neovascularization and direct cell reprogramming are discussed with a focus on its therapeutic potential for cardiovascular diseases.
Collapse
|
8
|
Tsai HP, Tsai TH, Hsieh YJ, Chen YT, Lee CL, Tsai YC, She TC, Lin CL, Chai CY, Kwan AL. Overexpression of Fli-1 in astrocytoma is associated with poor prognosis. Oncotarget 2018; 8:29174-29186. [PMID: 28418872 PMCID: PMC5438722 DOI: 10.18632/oncotarget.16303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2016] [Accepted: 02/20/2017] [Indexed: 02/07/2023] Open
Abstract
Background Astrocytoma, a common and highly malignant type of brain tumor, is associated with poor overall survival despite advances in surgical treatment, radiotherapy, and chemotherapy. The nuclear transcription factor Fli-1 has been shown to increase cellular proliferation and tumorigenesis in many types of cancer; however, previous reports have not described a correlation between clinical outcomes and Fli-1 in astrocytoma patients. The present study aimed to elucidate the clinical role of Fli-1 in astrocytoma. Results High-level of Fli-1 protein expression was significantly association with World Health Organization (WHO) high grade and poor prognosis. A multivariate analysis revealed that the WHO grade and Fli-1 protein expression were independent factor of prognostic factors of patients with astrocytoma. In addition, Fli-1 silencing inhibited proliferation, migration, and invasion and led to the downregulation of Ki-67, VEGF, and cyclin D1 expression in the astrocytoma cells. Materials and methods Fli-1 protein expression in astrocytoma tissue samples were detected via immunohistochemistry, and potential correlations between clinical parameters and Fli-1 expression were assessed in patients with astrocytoma. Additionally, proliferation, invasion, and migration assays of astrocytoma cell lines were conducted to evaluate the effects of short interfering RNA (siRNA) on these processes; in addition, these cells were subjected to western blotting to detect the expression levels of Fli-1, Ki-67, VEGF, and Cyclin D1. Conclusion Fli-1 shows promise as a potential prognostic biomarker and therapeutic molecular target for astrocytoma patients.
Collapse
Affiliation(s)
- Hung-Pei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ju Hsieh
- Department of Medical Imaging and Radiological Sciences, Kaohsiung, Taiwan
| | - Yi-Ting Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Ling Lee
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Cheng Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Chang She
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
9
|
Romero-Sánchez LB, Marí-Beffa M, Carrillo P, Medina MÁ, Díaz-Cuenca A. Copper-containing mesoporous bioactive glass promotes angiogenesis in an in vivo zebrafish model. Acta Biomater 2018; 68:272-285. [PMID: 29288822 DOI: 10.1016/j.actbio.2017.12.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022]
Abstract
The osteogenic and angiogenic responses of organisms to the ionic products of degradation of bioactive glasses (BGs) are being intensively investigated. The promotion of angiogenesis by copper (Cu) has been known for more than three decades. This element can be incorporated to delivery carriers, such as BGs, and the materials used in biological assays. In this work, Cu-containing mesoporous bioactive glass (MBG) in the SiO2-CaO-P2O5 compositional system was prepared incorporating 5% mol Cu (MBG-5Cu) by replacement of the corresponding amount of Ca. The biological effects of the ionic products of MBG biodegradation were evaluated on a well-known endothelial cell line, the bovine aorta endothelial cells (BAEC), as well as in an in vivo zebrafish (Danio rerio) embryo assay. The results suggest that ionic products of both MBG (Cu free) and MBG-5Cu materials promote angiogenesis. In vitro cell cultures show that the ionic dissolution products of these materials are not toxic and promote BAEC viability and migration. In addition, the in vivo assay indicates that both exposition and microinjection of zebrafish embryos with Cu free MBG material increase vessel number and thickness of the subintestinal venous plexus (SIVP), whereas assays using MBG-5Cu enhance this effect. STATEMENT OF SIGNIFICANCE Mesoporous bioactive glasses (MBGs) with high specific surface area, well-ordered pores, large pore volumes and controllable amount of ions are interesting to develop controlled drug delivery systems for bone tissue regeneration. Copper (Cu) incorporation to the basic SiO2-CaO-P2O5 composition has attracted high interest due to its multifunctional biological properties. Promotion of angiogenesis is one of these properties, which can be integrated to the biomaterial with lower cost and higher stability when compared with growth factors. This work reports the synthesis and characterization of Cu-containing MBG evaluating its angiogenic properties in the subintestinal vessel zebrafish assay. This transgenic in vivo assay is merging as an alternative model providing short-time consuming protocols and facilities during pro-angiogenic drug screenings. The report shows that the ionic products of this MBG material delivered to the zebrafish incubation media significantly enhance angiogenesis in comparison with control groups. Besides, results indicate Cu ions may exhibit a synergic effect with Si, Ca, and P ions in angiogenesis stimulation both in vitro and in vivo. To our knowledge, this is the first time that zebrafish in vivo assays are used to evaluate angiogenic activity of ionic dissolution products from MBG materials.
Collapse
|
10
|
Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R, Ichimura Y, Toyama T, Taniguchi T, Akamata K, Noda S, Yoshizaki A, Tsuruta D, Trojanowska M, Sato S. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: Possible roles in scleroderma. J Exp Med 2017; 214:1129-1151. [PMID: 28232470 PMCID: PMC5379967 DOI: 10.1084/jem.20160247] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2016] [Revised: 11/08/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Systemic sclerosis (SSc), or scleroderma, is a multisystem autoimmune disorder characterized by vasculopathy and fibrosis in the skin and internal organs, most frequently in the esophagus and lungs. Hitherto, studies on SSc pathogenesis centered on immune cells, vascular cells, and fibroblasts. Although dysregulated keratinocytes in SSc have been recently reported, the contribution of epithelial cells to pathogenesis remains unexplored. In this study, we demonstrated the induction of SSc-like molecular phenotype in keratinocytes by gene silencing of transcription factor Friend leukemia virus integration 1 (Fli1), the deficiency of which is implicated in SSc pathogenesis. Keratin 14-expressing epithelial cell-specific Fli1 knockout mice spontaneously developed dermal and esophageal fibrosis with epithelial activation. Furthermore, they developed remarkable autoimmunity with interstitial lung disease derived from thymic defects with down-regulation of autoimmune regulator (Aire). Importantly, Fli1 directly regulated Aire expression in epithelial cells. Collectively, epithelial Fli1 deficiency might be involved in the systemic autoimmunity and selective organ fibrosis in SSc. This study uncovers unidentified roles of dysregulated epithelial cells in SSc pathogenesis.
Collapse
Affiliation(s)
- Takehiro Takahashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Koji Sugawara
- Department of Dermatology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kouki Nakamura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryosuke Saigusa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yohei Ichimura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tetsuo Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takashi Taniguchi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kaname Akamata
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shinji Noda
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka 545-8585, Japan
| | - Maria Trojanowska
- Arthritis Center, Rheumatology, Boston University School of Medicine, Boston, MA 02118
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
11
|
Song W, Li W, Li L, Zhang S, Yan X, Wen X, Zhang X, Tian H, Li A, Hu JF, Cui J. Friend leukemia virus integration 1 activates the Rho GTPase pathway and is associated with metastasis in breast cancer. Oncotarget 2016; 6:23764-75. [PMID: 26156017 PMCID: PMC4695150 DOI: 10.18632/oncotarget.4350] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2015] [Accepted: 06/11/2015] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is the most prevalent malignant disease in women worldwide. In patients with breast cancer, metastasis to distant sites directly determines the survival outcome. However, the molecular mechanism underlying metastasis in breast cancer remains to be defined. In this report, we found that Friend leukemia virus integration 1 (FLI1) proto-oncogene was differentially expressed between the aggressive MDA-MB231 and the non-aggressive MCF-7 breast cancer cells. Congruently, immunohistochemical staining of clinical samples revealed that FLI1 was overexpressed in breast cancers as compared with the adjacent tissues. The abundance of FLI1 protein was strongly correlated with the advanced stage, poor differentiation, and lymph node metastasis in breast cancer patients. Knockdown of FLI1 with small interfering RNAs significantly attenuated the potential of migration and invasion in highly metastatic human breast cancer cells. FLI1 oncoprotein activated the Rho GTPase pathway that is known to play a role in tumor metastasis. This study for the first time identifies FLI1 as a clinically and functionally important target gene of metastasis, providing a rationale for developing FLI1 inhibitors in the treatment of breast cancer.
Collapse
Affiliation(s)
- Wei Song
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Lingyu Li
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Shilin Zhang
- Cancer Center, the First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Xu Yan
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Xue Wen
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Xiaoying Zhang
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Huimin Tian
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Ailing Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Ji-Fan Hu
- Cancer Center, the First Hospital of Jilin University, Changchun, China.,Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Carpinelli MR, Kruse EA, Arhatari BD, Debrincat MA, Ogier JM, Bories JC, Kile BT, Burt RA. Mice Haploinsufficient for Ets1 and Fli1 Display Middle Ear Abnormalities and Model Aspects of Jacobsen Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:1867-76. [PMID: 26093983 DOI: 10.1016/j.ajpath.2015.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/05/2014] [Revised: 02/01/2015] [Accepted: 03/02/2015] [Indexed: 12/23/2022]
Abstract
E26 transformation-specific 1 (ETS1) and friend leukemia integration 1 (FLI1) are members of the ETS family of transcription factors, of which there are 28 in humans. Both genes are hemizygous in Jacobsen syndrome, an 11q contiguous gene deletion disorder involving thrombocytopenia, facial dysmorphism, growth and mental retardation, malformation of the heart and other organs, and hearing impairment associated with recurrent ear infections. To determine whether any of these defects are because of hemizygosity for ETS1 and FLI1, we characterized the phenotype of mice heterozygous for mutant alleles of Ets1 and Fli1. Fli1(+/-) mice displayed mild thrombocytopenia, as did Ets1(+/-)Fli1(+/-) animals. Fli1(+/-) and Ets1(+/-)Fli1(+/-) mice also displayed craniofacial abnormalities, including a small middle ear cavity, short nasal bone, and malformed interface between the nasal bone process and cartilaginous nasal septum. They exhibited hearing impairment, otitis media, fusions of ossicles to the middle ear wall, and deformed stapes. Hearing impairment was more penetrant and stapes malformations were more severe in Ets1(+/-)Fli1(+/-) mice than in Fli1(+/-) mice, indicating partial functional redundancy of these transcription factors during auditory development. Our findings indicate that the short nose, otitis media, and hearing impairment in Jacobsen syndrome are likely because of hemizygosity for ETS1 and FLI1.
Collapse
Affiliation(s)
- Marina R Carpinelli
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia; HEARing Cooperative Research Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth A Kruse
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Benedicta D Arhatari
- Department of Physics, ARC Centre of Excellence for Coherent X-Ray Science, La Trobe University, Bundoora, Victoria, Australia
| | - Marlyse A Debrincat
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jacqueline M Ogier
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia; HEARing Cooperative Research Centre, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Benjamin T Kile
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel A Burt
- Murdoch Childrens Research Institute, Parkville, Victoria, Australia; HEARing Cooperative Research Centre, University of Melbourne, Melbourne, Victoria, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Genetics, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Song W, Zhang T, Li W, Mu R, Zhang L, Li Y, Jin B, Wang N, Li A, Cui J. Overexpression of Fli-1 is associated with adverse prognosis of endometrial cancer. Cancer Invest 2015; 33:469-75. [PMID: 26305602 DOI: 10.3109/07357907.2015.1069831] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
This study aimed to investigate the expression of Friend leukemia virus integration 1 (Fli-1) and its correlation with the prognosis of endometrial cancer (EC). Thirty-two EC tissue samples were evaluated for Fli-1 expression using immunohistochemistry. Fli-1 showed significantly high expression in EC cells, followed by hyperplasia cells, and was negative in adjacent normal tissues. The high expression of Fli-1 was significantly associated with a high differentiation grade, mutated P53 expression, and histological subtype (p < .05). Downregulation of Fli-1 in AN3CN cells using RNA interference inhibited cell clone formation and proliferation but did not affect apoptosis and migration of the cells. This study provides the first evidence that Fli-1 expression gradually increases in parallel with disease progression, and its overexpression might predict poor prognosis in EC.
Collapse
Affiliation(s)
- Wei Song
- a Cancer Center, the First Hospital of Jilin University , Changchun , China
| | - Tianyang Zhang
- a Cancer Center, the First Hospital of Jilin University , Changchun , China
| | - Wei Li
- a Cancer Center, the First Hospital of Jilin University , Changchun , China
| | - Rui Mu
- b Institute of Basic Medical Sciences , National Center of Biomedical Analysis , Beijing , China
| | - Lingyi Zhang
- c Obstetrics and Gynecology , the Second Hospital of Jilin University , Changchun , China
| | - Yan Li
- a Cancer Center, the First Hospital of Jilin University , Changchun , China
| | - Baofeng Jin
- b Institute of Basic Medical Sciences , National Center of Biomedical Analysis , Beijing , China
| | - Na Wang
- b Institute of Basic Medical Sciences , National Center of Biomedical Analysis , Beijing , China
| | - Ailing Li
- b Institute of Basic Medical Sciences , National Center of Biomedical Analysis , Beijing , China
| | - Jiuwei Cui
- a Cancer Center, the First Hospital of Jilin University , Changchun , China
| |
Collapse
|
14
|
Liu M, Gao W, van Velkinburgh JC, Wu Y, Ni B, Tian Y. Role of Ets Proteins in Development, Differentiation, and Function of T-Cell Subsets. Med Res Rev 2015; 36:193-220. [PMID: 26301869 DOI: 10.1002/med.21361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2014] [Revised: 07/12/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
Through positive selection, double-positive cells in the thymus differentiate into CD4(+) or CD8(+) T single-positive cells that subsequently develop into different types of effective T cells, such as T-helper and cytotoxic T lymphocyte cells, that play distinctive roles in the immune system. Development, differentiation, and function of thymocytes and CD4(+) and CD8(+) T cells are controlled by a multitude of secreted and intracellular factors, ranging from cytokine signaling modules to transcription factors and epigenetic modifiers. Members of the E26 transformation specific (Ets) family of transcription factors, in particular, are potent regulators of these CD4(+) or CD8(+) T-cell processes. In this review, we summarize and discuss the functions and underlying mechanisms of the Ets family members that have been characterized as involved in these processes. Ongoing research of these factors is expected to identify practical applications for the Ets family members as novel therapeutic targets for inflammation-related diseases.
Collapse
Affiliation(s)
- Mian Liu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China.,Battalion 10 of Cadet Brigade, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Weiwu Gao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | | | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Bing Ni
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| |
Collapse
|
15
|
Song W, Hu L, Li W, Wang G, Li Y, Yan L, Li A, Cui J. Oncogenic Fli-1 is a potential prognostic marker for the progression of epithelial ovarian cancer. BMC Cancer 2014; 14:424. [PMID: 24923303 PMCID: PMC4089852 DOI: 10.1186/1471-2407-14-424] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2013] [Accepted: 05/29/2014] [Indexed: 01/08/2023] Open
Abstract
Background Ovarian cancer is the most lethal gynecologic malignancy, but its etiology remains poorly understood. This study investigated the role of Fli-1 in ovarian carcinogenesis and disease survival. Methods Fli-1 protein expression was evaluated by immunohistochemistry in 104 primary epithelial ovarian cancer (EOC) patients with known follow-up data and 20 controls. Correlation between Fli-1 expression and clinical characteristics was evaluated with the logistic regression. Kaplan Meier analysis was used to assess the impact of Fli-1 expression on overall survival (OS) and disease-free survival (DFS). Cell proliferation and migration assay were used to explore the function of Fli-1 in ovarian cancer cells. Results Fli-1 was expressed in 74% cases and up-regulated in EOC tissues compared with normal control tissues (p< 0.05). The high expression of Fli-1 was significantly associated with advanced tumor stage, positive lymph nodal involvement, and poor OS and DFS (p< 0.05). Further analysis showed Fli-1 is an independent prognostic factor for OS and DFS. Down-regulation of Fli-1 inhibited cell proliferation but did not affect cell migration in SKOV3 cells. Conclusions This study revealed that Fli-1 played an essential role in the development and progression of ovarian cancers. Its overexpression is intimately related to malignant phenotypes and poor clinical outcome, suggesting that Fli-1 is a potential prognostic marker and therapeutic molecular target in ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ailing Li
- Cancer center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China.
| | | |
Collapse
|
16
|
The ets transcription factor Fli-1 in development, cancer and disease. Oncogene 2014; 34:2022-31. [PMID: 24909161 PMCID: PMC5028196 DOI: 10.1038/onc.2014.162] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2014] [Revised: 05/03/2014] [Accepted: 05/04/2014] [Indexed: 12/13/2022]
Abstract
Friend Leukemia Virus Induced erythroleukemia-1 (Fli-1), an ETS transcription factor, was isolated a quarter century ago through a retrovirus mutagenesis screen. Fli-1 has since been recognized to play critical roles in normal development and homeostasis. For example, it transcriptionally regulates genes that drive normal hematopoiesis and vasculogenesis. Indeed, Fli-1 is one of 10 key regulators of hematopoietic stem/progenitor cell maintenance and differentiation. Aberrant expression of Fli-1 also underlies a number of virally induced leukemias, including Friend virus-induced erythroleukemia and various types of human cancers, and it is the target of chromosomal translocations in childhood Ewing’s sarcoma. Abnormal expression of Fli-1 is important in the aetiology of auto-immune diseases such as Systemic Lupus Erythematosus (SLE) and Systemic Sclerosis (SSc). These studies establish Fli-1 as a strong candidate for drug development. Despite difficulties in targeting transcription factors, recent studies identified small molecule inhibitors for Fli-1. Here we review past and ongoing research on Fli-1 with emphasis on its mechanistic function in autoimmune disease and malignant transformation. The significance of identifying Fli-1 inhibitors and their clinical applications for treatment of disease and cancer with deregulated Fli-1 expression are discussed.
Collapse
|
17
|
Delov V, Muth-Köhne E, Schäfers C, Fenske M. Transgenic fluorescent zebrafish Tg(fli1:EGFP)y¹ for the identification of vasotoxicity within the zFET. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:189-200. [PMID: 24685623 DOI: 10.1016/j.aquatox.2014.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/18/2013] [Revised: 02/12/2014] [Accepted: 03/09/2014] [Indexed: 06/03/2023]
Abstract
The fish embryo toxicity test (FET) is currently one of the most advocated animal alternative tests in ecotoxicology. To date, the application of the FET with zebrafish (zFET) has focused on acute toxicity assessment, where only lethal morphological effects are accounted for. An application of the zFET beyond acute toxicity, however, necessitates the establishment of more refined and quantifiable toxicological endpoints. A valuable tool in this context is the use of gene expression-dependent fluorescent markers that can even be measured in vivo. We investigated the application of embryos of Tg(fli1:EGFP)(y1) for the identification of vasotoxic substances within the zFET. Tg(fli1:EGFP)(y1) fish express enhanced GFP in the entire vasculature under the control of the fli1 promoter, and thus enable the visualization of vascular defects in live zebrafish embryos. We assessed the fli1 driven EGFP-expression in the intersegmental blood vessels (ISVs) qualitatively and quantitatively, and found an exposure concentration related increase in vascular damage for chemicals like triclosan, cartap and genistein. The fluorescence endpoint ISV-length allowed an earlier and more sensitive detection of vasotoxins than the bright field assessment method. In combination with the standard bright field morphological effect assessment, an increase in significance and value of the zFET for a mechanism-specific toxicity evaluation was achieved. This study highlights the benefits of using transgenic zebrafish as convenient tools for identifying toxicity in vivo and to increase sensitivity and specificity of the zFET.
Collapse
Affiliation(s)
- Vera Delov
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstr. 6, 52074 Aachen, Germany; Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Elke Muth-Köhne
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Christoph Schäfers
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Martina Fenske
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstr. 6, 52074 Aachen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| |
Collapse
|
18
|
Abedin MJ, Nguyen A, Jiang N, Perry CE, Shelton JM, Watson DK, Ferdous A. Fli1 acts downstream of Etv2 to govern cell survival and vascular homeostasis via positive autoregulation. Circ Res 2014; 114:1690-9. [PMID: 24727028 DOI: 10.1161/circresaha.1134303145] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Cardiovascular health depends on proper development and integrity of blood vessels. Ets variant 2 (Etv2), a member of the E26 transforming-specific family of transcription factors, is essential to initiate a transcriptional program leading to vascular morphogenesis in early mouse embryos. However, endothelial expression of the Etv2 gene ceases at midgestation; therefore, vascular development past this stage must continue independent of Etv2. OBJECTIVE To identify molecular mechanisms underlying transcriptional regulation of vascular morphogenesis and homeostasis in the absence of Etv2. METHODS AND RESULTS Using loss- and gain-of-function strategies and a series of molecular techniques, we identify Friend leukemia integration 1 (Fli1), another E26 transforming-specific family transcription factor, as a downstream target of Etv2. We demonstrate that Etv2 binds to conserved Ets-binding sites within the promoter region of the Fli1 gene and governs Fli1 expression. Importantly, in the absence of Etv2 at midgestation, binding of Etv2 at Ets-binding sites in the Fli1 promoter is replaced by Fli1 protein itself, sustaining expression of Fli1 as well as selective Etv2-regulated endothelial genes to promote endothelial cell survival and vascular integrity. Consistent with this, we report that Fli1 binds to the conserved Ets-binding sites within promoter and enhancer regions of other Etv2-regulated endothelial genes, including Tie2, to control their expression at and beyond midgestation. CONCLUSIONS We have identified a novel positive feed-forward regulatory loop in which Etv2 activates expression of genes involved in vasculogenesis, including Fli1. Once the program is activated in early embryos, Fli1 then takes over to sustain the process in the absence of Etv2.
Collapse
Affiliation(s)
- Md J Abedin
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.)
| | - Annie Nguyen
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.)
| | - Nan Jiang
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.)
| | - Cameron E Perry
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.)
| | - John M Shelton
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.)
| | - Dennis K Watson
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.)
| | - Anwarul Ferdous
- From the Department of Internal Medicine (Cardiology) (M.J.A., A.N., N.J., C.E.P., J.M.S., A.F.), University of Texas Southwestern Medical Center, Dallas; Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston (D.K.W.); and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis (M.J.A.).
| |
Collapse
|
19
|
Richard EM, Thiyagarajan T, Bunni MA, Basher F, Roddy PO, Siskind LJ, Nietert PJ, Nowling TK. Reducing FLI1 levels in the MRL/lpr lupus mouse model impacts T cell function by modulating glycosphingolipid metabolism. PLoS One 2013; 8:e75175. [PMID: 24040398 PMCID: PMC3769295 DOI: 10.1371/journal.pone.0075175] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2013] [Accepted: 08/13/2013] [Indexed: 01/01/2023] Open
Abstract
Systemic Lupus erythematosus (SLE) is an autoimmune disease caused, in part, by abnormalities in cells of the immune system including B and T cells. Genetically reducing globally the expression of the ETS transcription factor FLI1 by 50% in two lupus mouse models significantly improves disease measures and survival through an unknown mechanism. In this study we analyze the effects of reducing FLI1 in the MRL/lpr lupus prone model on T cell function. We demonstrate that adoptive transfer of MRL/lpr Fli1+/+ or Fli1+/- T cells and B cells into Rag1-deficient mice results in significantly decreased serum immunoglobulin levels in animals receiving Fli1+/- lupus T cells compared to animals receiving Fli1+/+ lupus T cells regardless of the genotype of co-transferred lupus B cells. Ex vivo analyses of MRL/lpr T cells demonstrated that Fli1+/- T cells produce significantly less IL-4 during early and late disease and exhibited significantly decreased TCR-specific activation during early disease compared to Fli1+/+ T cells. Moreover, the Fli1+/- T cells expressed significantly less neuraminidase 1 (Neu1) message and decreased NEU activity during early disease and significantly decreased levels of glycosphingolipids during late disease compared to Fli1+/+ T cells. FLI1 dose-dependently activated the Neu1 promoter in mouse and human T cell lines. Together, our results suggest reducing FLI1 in lupus decreases the pathogenicity of T cells by decreasing TCR-specific activation and IL-4 production in part through the modulation of glycosphingolipid metabolism. Reducing the expression of FLI1 or targeting the glycosphingolipid metabolic pathway in lupus may serve as a therapeutic approach to treating lupus.
Collapse
Affiliation(s)
- Erin Morris Richard
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Thirumagal Thiyagarajan
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Marlene A. Bunni
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Fahmin Basher
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Patrick O. Roddy
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Leah J. Siskind
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Paul J. Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Tamara K. Nowling
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Research Service, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
The establishment and maintenance of the vascular system is critical for embryonic development and postnatal life. Defects in endothelial cell development and vessel formation and function lead to embryonic lethality and are important in the pathogenesis of vascular diseases. Here, we review the underlying molecular mechanisms of endothelial cell differentiation, plasticity, and the development of the vasculature. This review focuses on the interplay among transcription factors and signaling molecules that specify the differentiation of vascular endothelial cells. We also discuss recent progress on reprogramming of somatic cells toward distinct endothelial cell lineages and its promise in regenerative vascular medicine.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pharmacology, Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
21
|
Gay L, Miller MR, Ventura PB, Devasthali V, Vue Z, Thompson HL, Temple S, Zong H, Cleary MD, Stankunas K, Doe CQ. Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type-specific nascent RNA. Genes Dev 2013; 27:98-115. [PMID: 23307870 PMCID: PMC3553287 DOI: 10.1101/gad.205278.112] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2012] [Accepted: 11/19/2012] [Indexed: 12/16/2022]
Abstract
Transcriptional profiling is a powerful approach for understanding development and disease. Current cell type-specific RNA purification methods have limitations, including cell dissociation trauma or inability to identify all RNA species. Here, we describe "mouse thiouracil (TU) tagging," a genetic and chemical intersectional method for covalent labeling and purification of cell type-specific RNA in vivo. Cre-induced expression of uracil phosphoribosyltransferase (UPRT) provides spatial specificity; injection of 4-thiouracil (4TU) provides temporal specificity. Only UPRT(+) cells exposed to 4TU produce thio-RNA, which is then purified for RNA sequencing (RNA-seq). This method can purify transcripts from spatially complex and rare (<5%) cells, such as Tie2:Cre(+) brain endothelia/microglia (76% validated by expression pattern), or temporally dynamic transcripts, such as those acutely induced by lipopolysaccharide (LPS) injection. Moreover, generating chimeric mice via UPRT(+) bone marrow transplants identifies immune versus niche spleen RNA. TU tagging provides a novel method for identifying actively transcribed genes in specific cells at specific times within intact mice.
Collapse
Affiliation(s)
- Leslie Gay
- Institute of Neuroscience
- Institute of Molecular Biology
- Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Michael R. Miller
- Institute of Neuroscience
- Institute of Molecular Biology
- Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | - Zer Vue
- School of Natural Sciences, University of California at Merced, Merced, California 95340, USA
| | - Heather L. Thompson
- School of Natural Sciences, University of California at Merced, Merced, California 95340, USA
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York 12144, USA
| | | | - Michael D. Cleary
- School of Natural Sciences, University of California at Merced, Merced, California 95340, USA
| | | | - Chris Q. Doe
- Institute of Neuroscience
- Institute of Molecular Biology
- Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
22
|
Neuwirtova R, Fuchs O, Holicka M, Vostry M, Kostecka A, Hajkova H, Jonasova A, Cermak J, Cmejla R, Pospisilova D, Belickova M, Siskova M, Hochova I, Vondrakova J, Sponerova D, Kadlckova E, Novakova L, Brezinova J, Michalova K. Transcription factors Fli1 and EKLF in the differentiation of megakaryocytic and erythroid progenitor in 5q- syndrome and in Diamond-Blackfan anemia. Ann Hematol 2012; 92:11-8. [PMID: 22965552 DOI: 10.1007/s00277-012-1568-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2012] [Accepted: 08/29/2012] [Indexed: 11/29/2022]
Abstract
Friend leukemia virus integration 1 (Fli1) and erythroid Krüppel-like factor (EKLF) participate under experimental conditions in the differentiation of megakaryocytic and erythroid progenitor in cooperation with other transcription factors, cytokines, cytokine receptors, and microRNAs. Defective erythropoiesis with refractory anemia and effective megakaryopoiesis with normal or increased platelet count is typical for 5q- syndrome. We decided to evaluate the roles of EKLF and Fli1 in the pathogenesis of this syndrome and of another ribosomopathy, Diamond-Blackfan anemia (DBA). Fli1 and EKLF mRNA levels were examined in mononuclear blood and bone marrow cells from patients with 5q- syndrome, low-risk MDS patients with normal chromosome 5, DBA patients, and healthy controls. In 5q- syndrome, high Fli1 mRNA levels in the blood and bone marrow mononuclear cells were found. In DBA, Fli1 expression did not differ from the controls. EKLF mRNA level was significantly decreased in the blood and bone marrow of 5q- syndrome and in all DBA patients. We propose that the elevated Fli1 in 5q- syndrome protects megakaryocytic cells from ribosomal stress contrary to erythroid cells and contributes to effective though dysplastic megakaryopoiesis.
Collapse
Affiliation(s)
- Radana Neuwirtova
- 1st Department of Medicine, Department of Hematology, General University Hospital, U Nemocnice 2, Prague 2, 128 00, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Integration of Elf-4 into stem/progenitor and erythroid regulatory networks through locus-wide chromatin studies coupled with in vivo functional validation. Mol Cell Biol 2011; 32:763-73. [PMID: 22158964 DOI: 10.1128/mcb.05745-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
The ETS transcription factor Elf-4 is an important regulator of hematopoietic stem cell (HSC) and T cell homeostasis. To gain insights into the transcriptional circuitry within which Elf-4 operates, we used comparative sequence analysis coupled with chromatin immunoprecipitation (ChIP) with microarray technology (ChIP-chip) assays for specific chromatin marks to identify three promoters and two enhancers active in hematopoietic and endothelial cell lines. Comprehensive functional validation of each of these regulatory regions in transgenic mouse embryos identified a tissue-specific enhancer (-10E) that displayed activity in fetal liver, dorsal aorta, vitelline vessels, yolk sac, and heart. Integration of a ChIP-sequencing (ChIP-Seq) data set for 10 key stem cell transcription factors showed Pu.1, Fli-1, and Erg were bound to the -10E element, and mutation of three highly conserved ETS sites within the enhancer abolished its activity. Finally, the transcriptional repressor Gfi1b was found to bind to and repress one of the Elf-4 promoters (-30P), and we show that this repression of Elf-4 is important for the maturation of primary fetal liver erythroid cells. Taken together, our results provide a comprehensive overview of the transcriptional control of Elf-4 within the hematopoietic system and, thus, integrate Elf-4 into the wider transcriptional regulatory networks that govern hematopoietic development.
Collapse
|
24
|
Hollenhorst PC, McIntosh LP, Graves BJ. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu Rev Biochem 2011; 80:437-71. [PMID: 21548782 DOI: 10.1146/annurev.biochem.79.081507.103945] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
Abstract
ETS proteins are a group of evolutionarily related, DNA-binding transcriptional factors. These proteins direct gene expression in diverse normal and disease states by binding to specific promoters and enhancers and facilitating assembly of other components of the transcriptional machinery. The highly conserved DNA-binding ETS domain defines the family and is responsible for specific recognition of a common sequence motif, 5'-GGA(A/T)-3'. Attaining specificity for biological regulation in such a family is thus a conundrum. We present the current knowledge of routes to functional diversity and DNA binding specificity, including divergent properties of the conserved ETS and PNT domains, the involvement of flanking structured and unstructured regions appended to these dynamic domains, posttranslational modifications, and protein partnerships with other DNA-binding proteins and coregulators. The review emphasizes recent advances from biochemical and biophysical approaches, as well as insights from genomic studies that detect ETS-factor occupancy in living cells.
Collapse
Affiliation(s)
- Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
25
|
Meadows SM, Myers CT, Krieg PA. Regulation of endothelial cell development by ETS transcription factors. Semin Cell Dev Biol 2011; 22:976-84. [PMID: 21945894 DOI: 10.1016/j.semcdb.2011.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2010] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
The ETS family of transcription factors plays an essential role in controlling endothelial gene expression. Multiple members of the ETS family are expressed in the developing endothelium and evidence suggests that the proteins function, to some extent, redundantly. However, recent studies have demonstrated a crucial non-redundant role for ETV2, as a primary player in specification and differentiation of the endothelial lineage. Here, we review the contribution of ETS factors, and their partner proteins, to the regulation of embryonic vascular development.
Collapse
Affiliation(s)
- Stryder M Meadows
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States
| | | | | |
Collapse
|
26
|
Abstract
Friend leukemia virus integration 1 (FLI1), an Ets transcription factor family member, is linked to acute myelogenous leukemia (AML) by chromosomal events at the FLI1 locus, but the biologic impact of FLI1 expression on AML is unknown. FLI1 protein expression was measured in 511 newly diagnosed AML patients. Expression was similar in peripheral blood (PB) and BM and higher at diagnosis than at relapse (P = .02). Compared with normal CD34(+) cells, expression in AML was above or below normal in 32% and 5% of patients, respectively. Levels were negatively correlated with an antecedent hematologic disorder (P = .002) but not with age or cytogenetics. Mutated NPM1 (P = .0007) or FLT3-ITD (P < .02) had higher expression. FLI1 levels were negatively correlated with 10 of 195 proteins associated with proliferation and stromal interaction, and positively correlated (R > 0.3) with 19 others. The FLI1 level was not predictive of remission attainment, but patients with low or high FLI1 expression had shorter remission duration (22.6 and 40.3 vs 51.1 weeks, respectively; P = .01) and overall survival (45.2 and 35.4 vs 59.4 weeks, respectively; P = .03). High FLI1 levels were adverse in univariate and multivariate analysis. FLI1 expression is frequently abnormal and prognostically adverse in AML. FLI1 and/or its response genes may be therapeutically targetable to interfere with AML cell biology.
Collapse
|
27
|
Sankar S, Lessnick SL. Promiscuous partnerships in Ewing's sarcoma. Cancer Genet 2011; 204:351-65. [PMID: 21872822 PMCID: PMC3164520 DOI: 10.1016/j.cancergen.2011.07.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 12/16/2022]
Abstract
Ewing's sarcoma is a highly aggressive bone and soft tissue tumor of children and young adults. At the molecular genetic level Ewing's sarcoma is characterized by a balanced reciprocal translocation, t(11;22)(q24;q12), which encodes an oncogenic fusion protein and transcription factor EWS/FLI. This tumor-specific chimeric fusion retains the amino terminus of EWS, a member of the TET (TLS/EWS/TAF15) family of RNA-binding proteins, and the carboxy terminus of FLI, a member of the ETS family of transcription factors. In addition to EWS/FLI, variant translocation fusions belonging to the TET/ETS family have been identified in Ewing's sarcoma. These studies solidified the importance of TET/ETS fusions in the pathogenesis of Ewing's sarcoma and have since been used as diagnostic markers for the disease. EWS fusions with non-ETS transcription factor family members have been described in sarcomas that are clearly distinct from Ewing's sarcoma. However, in recent years there have been reports of rare fusions in "Ewing's-like tumors" that harbor the amino-terminus of EWS fused to the carboxy-terminal DNA or chromatin-interacting domains contributed by non-ETS proteins. This review aims to summarize the growing list of fusion oncogenes that characterize Ewing's sarcoma and Ewing's-like tumors and highlights important questions that need to be answered to further support the existing concept that Ewing's sarcoma is strictly a "TET/ETS" fusion-driven malignancy. Understanding the molecular mechanisms of action of the various different fusion oncogenes will provide better insights into the biology underlying this rare but important solid tumor.
Collapse
Affiliation(s)
- Savita Sankar
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
| | - Stephen L. Lessnick
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA 84112
- Center for Children’s Cancer Research at Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA 84112
- Division of Pediatric Hematology/Oncology, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
28
|
France KA, Anderson JL, Park A, Denny CT. Oncogenic fusion protein EWS/FLI1 down-regulates gene expression by both transcriptional and posttranscriptional mechanisms. J Biol Chem 2011; 286:22750-7. [PMID: 21531709 DOI: 10.1074/jbc.m111.225433] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Ewing family tumors are characterized by a translocation between the RNA binding protein EWS and one of five ETS transcription factors, most commonly FLI1. The fusion protein produced by the translocation has been thought to act as an aberrant transcription factor, leading to changes in gene expression and cellular transformation. In this study, we investigated the specific processes EWS/FLI1 utilizes to alter gene expression. Using both heterologous NIH 3T3 and human Ewing Family Tumor cell lines, we have demonstrated by quantitative pre-mRNA analysis that EWS/FLI1 repressed the expression of previously validated direct target genes at the level of transcript synthesis. ChIP experiments showed that EWS/FLI1 decreases the amount of Pol II at the promoter of down-regulated genes in both murine and human model systems. However, in down-regulated target genes, there was a significant disparity between the modulation of cognate mRNA and pre-mRNAs, suggesting that these genes could also be regulated at a posttranscriptional level. Confirming this, we found that EWS/FLI1 decreased the transcript half-life of insulin-like growth factor binding protein 3, a down-regulated direct target gene in human tumor-derived Ewing's sarcoma cell lines. Additionally, we have shown through reexpression experiments that full EWS/FLI1-mediated transcriptional repression requires intact EWS and ETS domains. Together these data demonstrate that EWS/FLI1 can dictate steady-state target gene expression by modulating both transcript synthesis and degradation.
Collapse
Affiliation(s)
- Kelly A France
- Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
29
|
Swiers G, de Bruijn M, Speck NA. Hematopoietic stem cell emergence in the conceptus and the role of Runx1. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2011; 54:1151-63. [PMID: 20711992 DOI: 10.1387/ijdb.103106gs] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
Hematopoietic stem cells (HSCs) are functionally defined as cells that upon transplantation into irradiated or otherwise immunocompromised adult organisms provide long-term reconstitution of the entire hematopoietic system. They emerge in the vertebrate conceptus around midgestation. Genetic studies have identified a number of transcription factors and signaling molecules that act at the onset of hematopoiesis, and have begun to delineate the molecular mechanisms underlying the formation of HSCs. One molecule that has been a particularly useful marker of this developmental event in multiple species is Runx1 (also known as AML1, Pebp2alpha). Runx1 is a sequence-specific DNA-binding protein, that along with its homologues Runx2 and Runx3 and their shared non-DNA binding subunit CBFbeta, constitute a small family of transcription factors called core-binding factors (CBFs). Runx1 is famous for its role in HSC emergence, and notorious for its involvement in leukemia, as chromosomal rearrangements and inactivating mutations in the human RUNX1 gene are some of the most common events in de novo and therapy-related acute myelogenous leukemia, myelodysplastic syndrome and acute lymphocytic leukemia. Here we will review the role of Runx1 in HSC emergence in the mouse conceptus and describe some of the genetic pathways that operate upstream and downstream of this gene. Where relevant, we will include data obtained from other species and embryonic stem (ES) cell differentiation cultures.
Collapse
Affiliation(s)
- Gemma Swiers
- Medical Research Council (MRC) Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
30
|
Abstract
Ewing's sarcoma is a highly aggressive pediatric tumor of bone that usually contains the characteristic chromosomal translocation t(11;22)(q24;q12). This translocation encodes the oncogenic fusion protein EWS/FLI, which acts as an aberrant transcription factor to deregulate target genes necessary for oncogenesis. One key feature of oncogenic transformation is dysregulation of cell cycle control. It is therefore likely that EWS/FLI and other cooperating mutations in Ewing's sarcoma modulate the cell cycle to facilitate tumorigenesis. This paper will summarize current published data associated with deregulation of the cell cycle in Ewing's sarcoma and highlight important questions that remain to be answered.
Collapse
|
31
|
Mohamed AA, Tan SH, Mikhalkevich N, Ponniah S, Vasioukhin V, Bieberich CJ, Sesterhenn IA, Dobi A, Srivastava S, Sreenath TL. Ets family protein, erg expression in developing and adult mouse tissues by a highly specific monoclonal antibody. J Cancer 2010; 1:197-208. [PMID: 21060730 PMCID: PMC2974237 DOI: 10.7150/jca.1.197] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2010] [Accepted: 10/24/2010] [Indexed: 12/03/2022] Open
Abstract
Oncogenic activation of the ETS Related Gene (ERG) in humans was originally identified in subsets of Ewing sarcomas, myeloid leukemias and, recently, in the majority of prostate cancers. Expression of human ERG protein and consequently its functions in normal and disease states needs to be better understood in light of its suggested role in cell differentiation and proliferation. Here, we analyzed temporal and spatial expression of the Erg (mouse protein) by immunohistochemical analysis during mouse embryonic and adult organogenesis using a highly specific ERG monoclonal antibody (ERG MAb). This study establishes widespread immunolocalization of Erg protein in endothelial cells and restricted expression in precartilage and hematopoietic tissues. Intriguingly, Erg is not expressed in any epithelial tissue including prostate epithelium, or in infiltrating lymphocytes that are occasionally seen in the prostate environment, a common site of tumors with ERG rearrangements and unscheduled ERG expression. These findings will further aid in investigations of Erg functions in normal and disease conditions.
Collapse
Affiliation(s)
- Ahmed A Mohamed
- 1. Center For Prostate Disease Research, Department of Surgery, United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda MD 20814, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Ewing's sarcoma/PNET are small round cell tumors showing a varying degree of neuroectodermal differentiation. They are one of the commonest tumors of childhood and occur in bone and within soft tissues. Traditionally, light microscopy with the aid of immunohistochemical stains was suitable for diagnosis. But now translocation analyses are being used not only for the diagnosis and classification of small round cell tumors, but to ascertain their prognostic significance, detect micrometastasis, and monitor minimal residual disease, with potential for targeted therapy. This article analyzes the pathology, biology, and molecular aspects of Ewing's sarcoma/PNET and discusses their clinical and therapeutic implications.
Collapse
Affiliation(s)
- Saral S Desai
- Department of Pathology, Tata Memorial Hospital, Dr. Ernest Borges Road, Parel, Mumbai, Maharashtra, India
| | - Nirmala A Jambhekar
- Department of Pathology, Tata Memorial Hospital, Dr. Ernest Borges Road, Parel, Mumbai, Maharashtra, India,Address for correspondence: Dr. Nirmala Jambhekar, Department of Pathology, Tata Memorial Hospital, Parel, Mumbai-400 012, Maharashtra, India. E-mail:
| |
Collapse
|
33
|
Svenson JL, Chike-Harris K, Amria MY, Nowling TK. The mouse and human Fli1 genes are similarly regulated by Ets factors in T cells. Genes Immun 2009; 11:161-72. [PMID: 19829305 DOI: 10.1038/gene.2009.73] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Fli1 is a member of the Ets family of transcription factors and is preferentially expressed in hematopoietic cell lineages. Its expression level is linked to the pathogenesis of lupus. In this study, we identified mechanisms involved in the transcriptional regulation of the mouse and human Fli1 promoters. We show that the Fli1 promoter is upregulated by Ets factors Ets1, Ets2, Fli1 and Elf1 either alone or in combination with GATA factors, but is inhibited by Tel. In vitro binding studies show that Elf1, Tel and Fli1 in T cells bind the three Ets-binding sites in the murine Fli1 proximal promoter. We identified transcription factor-binding sites in the human Fli1 promoter region that function in T cells in a similar manner to those in the mouse promoter. Furthermore, we show similar binding of Ets factors to the endogenous mouse and human Fli1 promoters in T cells and knocking down Ets1 results in an upregulation of Fli1 expression. Together, these results suggest that the human and mouse genes are regulated similarly and that Ets1 may be important in preventing the overexpression of Fli1 in T cells. This report lays the groundwork for identifying targets for manipulating Fli1 expression as a possible therapeutic approach.
Collapse
Affiliation(s)
- J L Svenson
- Division of Rheumatology, Department of Medicine, Children's Research Institute, Medical University of South Carolina, 96 Jonathon Lucas Street, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
34
|
Kitambi SS, McCulloch KJ, Peterson RT, Malicki JJ. Small molecule screen for compounds that affect vascular development in the zebrafish retina. Mech Dev 2009; 126:464-77. [PMID: 19445054 DOI: 10.1016/j.mod.2009.01.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
Blood vessel formation in the vertebrate eye is a precisely regulated process. In the human retina, both an excess and a deficiency of blood vessels may lead to a loss of vision. To gain insight into the molecular basis of vessel formation in the vertebrate retina and to develop pharmacological means of manipulating this process in a living organism, we further characterized the embryonic zebrafish eye vasculature, and performed a small molecule screen for compounds that affect blood vessel morphogenesis. The screening of approximately 2000 compounds revealed four small molecules that at specific concentrations affect retinal vessel morphology but do not produce obvious changes in trunk vessels, or in the neuronal architecture of the retina. Of these, two induce a pronounced widening of vessel diameter without a substantial loss of vessel number, one compound produces a loss of retinal blood vessels accompanied by a mild increase of their diameter, and finally one other generates a severe loss of retinal vessels. This work demonstrates the utility of zebrafish as a screening tool for small molecules that affect eye vasculature and presents several compounds of potential therapeutic importance.
Collapse
|
35
|
Mariappan D, Niemann R, Gajewski M, Winkler J, Chen S, Choorapoikayil S, Bitzer M, Schulz H, Hescheler J, Sachinidis A. Somitovasculin, a novel endothelial-specific transcript involved in the vasculature development. Arterioscler Thromb Vasc Biol 2009; 29:1823-9. [PMID: 19542019 DOI: 10.1161/atvbaha.109.190751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE We recently isolated and characterized endothelial-like CD31(+) cells derived from mouse embryonic stem (mES) cells and identified their transcriptome. The main objective of this study was to determine the functional relevance of the transcripts of unknown function (TUF) for vasculature development. METHODS AND RESULTS We selected 2 TUFs of more than 27 to study their role for blood vessel development in zebrafish. Morpholino (MO) knockdown of the zebrafish orthologs of the first TUF (TUF1, mouse cDNA BC022623) showed disruption of the intersegmental vessels (ISV) at 2 days postfertilization as observed by live imaging of fli:EGFP-transgenic embryos. The morphants showed abnormal blood circulation, but no effect on hematopoiesis was observed as demonstrated by gata-1 in situ hybridizations. Because knockdown of TUF1 resulted in disruption of the ISV patterning we named the TUF1 somitovasculin. TUF2 has been identified as cDNA clone BC020535. The MO knockdown of TUF2 resulted in a phenotype with an enlarged heart and the embryos lacked circulation completely. CONCLUSIONS We have shown the participation of a novel transcript (named somitovasculin) in circulatory vessel development. The combination of expression profiling in differentiating mES cells and the zebrafish model has the potential for rapid identification and functional characterization of TUFs.
Collapse
Affiliation(s)
- Devi Mariappan
- University of Cologne, Center of Physiology and Pathophysiology, Institute of Neurophysiology, Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
De Val S, Black BL. Transcriptional control of endothelial cell development. Dev Cell 2009; 16:180-95. [PMID: 19217421 DOI: 10.1016/j.devcel.2009.01.014] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2008] [Revised: 01/26/2009] [Accepted: 01/26/2009] [Indexed: 12/14/2022]
Abstract
The transcription factors that regulate endothelial cell development have been a focus of active research for several years, and many players in the endothelial transcriptional program have been identified. This review discusses the function of several major regulators of endothelial transcription, including members of the Sox, Ets, Forkhead, GATA, and Kruppel-like families. This review also highlights recent developments aimed at unraveling the combinatorial mechanisms and transcription factor interactions that regulate endothelial cell specification and differentiation during vasculogenesis and angiogenesis.
Collapse
Affiliation(s)
- Sarah De Val
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, 94158, USA
| | | |
Collapse
|
37
|
Cui JW, Vecchiarelli-Federico LM, Li YJ, Wang GJ, Ben-David Y. Continuous Fli-1 expression plays an essential role in the proliferation and survival of F-MuLV-induced erythroleukemia and human erythroleukemia. Leukemia 2009; 23:1311-9. [PMID: 19282832 DOI: 10.1038/leu.2009.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Erythroleukemia induced by Friend Murine Leukemia Virus (F-MuLV) serves as a powerful tool for the study of multistage carcinogenesis and hematological malignancies in mice. Fli-1, a proto-oncogene and member of the Ets family, is activated through viral integration in F-MuLV-induced erythroleukemia, and is the most critical event in the induction of this disease. Fli-1 aberrant regulation is also observed in human malignancies, including Ewing's sarcoma, which is often linked to expression of the EWS/Fli-1 fusion oncoprotein. Here we examined the effects of Fli-1 inhibition to further elucidate its role in these pathological occurrences. The constitutive suppression of Fli-1, through RNA interference (RNAi), inhibits growth and induces death in F-MuLV-induced erythroleukemia cells. Expression of a dominant negative protein Engrailed (En)/Fli-1 reduces proliferation of EWS/Fli-1-transformed NIH-3T3 cells, and both F-MuLV-induced and human erythroleukemia cells. F-MuLV-induced erythroleukemia cells also display increased apoptosis, associated with reduced expression of bcl-2, a known fli-1 target gene. Introduction of En/Fli-1 into an F-MuLV-infected erythroblastic cell line induces differentiation, as shown by increased alpha-globin expression. These results suggest, for the first time, an essential role for continuous Fli-1 overexpression in the maintenance and survival of the malignant phenotype in murine and human erythroleukemias.
Collapse
Affiliation(s)
- J-W Cui
- Department of Molecular and Cellular Biology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | | | | | | | | |
Collapse
|
38
|
Nowling TK, Fulton JD, Chike-Harris K, Gilkeson GS. Ets factors and a newly identified polymorphism regulate Fli1 promoter activity in lymphocytes. Mol Immunol 2008; 45:1-12. [PMID: 17606295 PMCID: PMC2045641 DOI: 10.1016/j.molimm.2007.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/23/2007] [Revised: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 11/26/2022]
Abstract
Fli1 is an Ets family member that is essential for embryonic development. Increasing evidence suggests modulating Fli1 gene expression impacts lymphocyte development/function and is an important mediator in the autoimmune disease lupus. Fli1 is over-expressed in splenic lymphocytes in lupus prone mouse strains and in PBMCs of lupus patients. Presently, it is unknown how Fli1 gene expression is controlled in lymphocytes or how it becomes over-expressed in lupus. Therefore, we examined Fli1 regulation in a murine B cell line and T cell line and identified several cis-regulatory elements within a 230 bp region that contribute to Fli1 promoter activity. Ets factors Elf1, Tel and Fli1 bind in vitro to this region and increase endogenous Fli1 expression when over-expressed in a T cell line. In addition, we determined that a microsatellite located adjacent to the region containing these cis-regulatory elements is polymorphic in three lupus prone mouse strains and that the length of the microsatellite is inversely correlated with promoter activity in a T cell line. These results suggest that several Ets factors, including Fli1 itself, are involved in the transcriptional regulation of Fli1 in lymphocytes. Furthermore, the presence of a polymorphic microsatellite in the Fli1 promoter may contribute to increased Fli1 expression in T cells during lupus disease progression.
Collapse
Affiliation(s)
- Tamara K Nowling
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, 96 Jonathan Lucas Street, Ste 912 CSB, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
39
|
Riggi N, Cironi L, Suvà ML, Stamenkovic I. Sarcomas: genetics, signalling, and cellular origins. Part 1: The fellowship of TET. J Pathol 2007; 213:4-20. [PMID: 17691072 DOI: 10.1002/path.2209] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
Sarcomas comprise some of the most aggressive solid tumours that, for the most part, respond poorly to chemo- and radiation therapy and are associated with a sombre prognosis when surgical removal cannot be performed or is incomplete. Partly because of their lower frequency, sarcomas have not been studied as intensively as carcinomas and haematopoietic malignancies, and the molecular mechanisms that underlie their pathogenesis are only beginning to be understood. Even more enigmatic is the identity of the primary cells from which these tumours originate. Over the past 25 years, however, several non-random chromosomal translocations have been found to be associated with defined sarcomas. Each of these translocations generates a fusion gene believed to be directly related to the pathogenesis of the sarcoma in which it is expressed. The corresponding fusion proteins provide a unique tool not only to study the process of sarcoma development, but also to identify cells that are permissive for their putative oncogenic properties. This is the first of two reviews that cover the mechanisms whereby specific fusion/mutant gene products participate in sarcoma development and the cellular context that may provide the necessary permissiveness for their expression and oncogenicity. Part 1 of the review focuses on sarcomas that express fusion genes containing TET gene family products, including EWSR1, TLS/FUS, and TAFII68. Part 2 (J Pathol 2007; DOI: 10.1002/path.2008) summarizes our current understanding of the genetic and cellular origins of sarcomas expressing fusion genes exclusive of TET family members; it also covers soft tissue malignancies harbouring specific mutations in RTK-encoding genes, the prototype of which are gastrointestinal stromal tumours (GIST).
Collapse
Affiliation(s)
- N Riggi
- Division of Experimental Pathology, Institute of Pathology, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
40
|
Torchia EC, Boyd K, Rehg JE, Qu C, Baker SJ. EWS/FLI-1 induces rapid onset of myeloid/erythroid leukemia in mice. Mol Cell Biol 2007; 27:7918-34. [PMID: 17875932 PMCID: PMC2169157 DOI: 10.1128/mcb.00099-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
EWS/FLI-1 is a chimeric oncogene generated by chromosomal translocation in Ewing tumors, a family of poorly differentiated pediatric tumors arising predominantly in bone but also in soft tissue. The fusion gene combines sequences encoding a strong transactivating domain from the EWS protein with the DNA binding domain of FLI-1, an ETS transcription factor. A related fusion, TLS/ERG, has been found in myeloid leukemia. To determine EWS/FLI-1 function in vivo, we engineered mice with Cre-inducible expression of EWS/FLI-1 from the ubiquitous Rosa26 locus. When crossed with Mx1-cre mice, Cre-mediated activation of EWS/FLI-1 resulted in the rapid development of myeloid/erythroid leukemia characterized by expansion of primitive mononuclear cells causing hepatomegaly, splenomegaly, severe anemia, and death. The disease could be transplanted serially into naïve recipients. Gene expression profiles of primary and transplanted animals were highly similar, suggesting that activation of EWS/FLI-1 was the primary event leading to disease in this model. The Cre-inducible EWS/FLI-1 mouse provides a novel model system to study the contribution of this oncogene to malignant disease in vivo.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Proliferation
- Chimera
- Chromosome Aberrations
- GATA1 Transcription Factor/metabolism
- Gene Expression Profiling
- Leukemia, Myeloid/etiology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Neoplasm Transplantation
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proteins/genetics
- Proteins/metabolism
- Proto-Oncogene Protein c-fli-1/genetics
- Proto-Oncogene Protein c-fli-1/metabolism
- RNA, Untranslated
- RNA-Binding Protein EWS
- Sarcoma, Ewing
- Stem Cells/physiology
Collapse
Affiliation(s)
- Enrique C Torchia
- Department of Developmental Neurobiology, Hartwell Center, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
41
|
Riggi N, Stamenkovic I. The Biology of Ewing sarcoma. Cancer Lett 2007; 254:1-10. [PMID: 17250957 DOI: 10.1016/j.canlet.2006.12.009] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2006] [Revised: 12/05/2006] [Accepted: 12/12/2006] [Indexed: 12/19/2022]
Abstract
Sarcomas account for less than 10% of all human malignancies that are believed to originate from as yet poorly defined mesenchymal progenitor cells. They constitute some of the most aggressive adult and childhood cancers in that they have a high metastatic proclivity and are typically refractory to conventional chemo- and radiation therapy. Ewing's sarcoma is a member of Ewing's family tumors (ESFT) and the second most common solid bone and soft tissue malignancy of children and young adults. It is associated in 85% of cases with the t(11;22)(q24:q12) chromosomal translocation that generates fusion of the 5' segment of the EWS gene with the 3' segment of the ETS family gene FLI-1. The resulting EWS-FLI-1 fusion protein is believed to behave as an aberrant transcriptional activator that contributes to ESFT development by altering the expression of its target genes in a permissive cellular environment. Although ESFTs are among the best studied sarcomas, the mechanisms involved in EWS-FLI-1-induced transformation require further elucidation and the primary cells from which ESFTs originate need to be identified. This review will highlight some of the most recent discoveries in the field of Ewing sarcoma biology and origins.
Collapse
Affiliation(s)
- Nicolò Riggi
- Division of Experimental Pathology, Institute of Pathology, University of Lausanne, Switzerland
| | | |
Collapse
|
42
|
Nowling TK, Gilkeson GS. Regulation of Fli1 gene expression and lupus. Autoimmun Rev 2005; 5:377-82. [PMID: 16890890 DOI: 10.1016/j.autrev.2005.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2005] [Accepted: 10/06/2005] [Indexed: 11/24/2022]
Abstract
Ets transcription factors function throughout development in such varied processes as cellular proliferation, apoptosis, differentiation and migration. Many have been implicated to play important roles in hematopoiesis, vasculogenesis/angiogenesis and myogenesis. Fli1 is an Ets family member that is essential for development and increasing evidence suggests modulating Fli1 gene expression impacts lymphocyte function and is important in the autoimmune disease lupus. Presently, it is unknown how Fli1 gene expression is controlled in lymphocytes. Identifying upstream regulators of Fli1 in lymphocytes will be critical for understanding lymphocyte development and the consequences of dysregulation and may be of value in developing future treatments for lupus.
Collapse
Affiliation(s)
- Tamara K Nowling
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, 96 Jonathan Lucas Street, Ste 912 CSB, Charleston, SC 29425, United States
| | | |
Collapse
|
43
|
Hollenhorst PC, Jones DA, Graves BJ. Expression profiles frame the promoter specificity dilemma of the ETS family of transcription factors. Nucleic Acids Res 2004; 32:5693-702. [PMID: 15498926 PMCID: PMC524310 DOI: 10.1093/nar/gkh906] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
Sequence-specific DNA binding proteins that function as transcription factors are frequently encoded by gene families. Such proteins display highly conserved DNA binding properties, yet are expected to retain promoter selectivity. In this report we investigate this problem using the ets gene family, a group of metazoan genes whose members regulate cell growth and differentiation and are mutated in human cancers. We tested whether the level of mRNA can serve as a specificity determinant. The mRNA levels of the 27 paralogous human ets genes were measured in 23 tissues and cell lines. Real-time RT-PCR provided accurate measurement of absolute mRNA levels for each gene down to one copy per cell. Surprisingly, at least 16 paralogs were expressed in each cell sample and over half were expressed ubiquitously. Tissues and complementary cell lines showed similar expression patterns, indicating that tissue complexity was not a limitation. There was no unique, highly expressed gene for each cell type. Instead, one of only eight ets genes showed the highest expression in all samples. DNA binding studies illustrate both overlapping and unique specificities for ubiquitous ETS proteins. These findings establish the parameters of the promoter specificity dilemma within the ets family of transcription factors.
Collapse
Affiliation(s)
- Peter C Hollenhorst
- Department of Oncological Sciences, Huntsman Cancer Institute, 2000 Circle of Hope, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW To review the defined syndromes of inherited thrombocytopenia and discuss new genetic data for several disorders that shed light on the process of megakaryopoiesis. RECENT FINDINGS The genes responsible for several inherited thrombocytopenias have been recently discovered, including congenital amegakaryocytic leukemia, amegakaryocytic thrombocytopenia with radio-ulnar synostosis, familial platelet syndrome with predisposition to acute myelogenous leukemia, Paris-Trousseau, Wiskott-Aldrich syndrome, and the May-Hegglin, Sebastian, Epstein, and Fechner syndromes. These clinical syndromes, combined with studies in mouse and in vitro models, reveal the importance of these genes for normal hematopoiesis. SUMMARY Although inherited syndromes of thrombocytopenia are rare, characterization of mutations in these disorders has contributed greatly to our understanding of megakaryocyte and platelet development. A systematic registry of congenitally thrombocytopenic individuals would almost certainly lead to new genetic discoveries.
Collapse
Affiliation(s)
- Amy E Geddis
- Department of Pediatrics, University of California, San Diego, USA.
| | | |
Collapse
|
45
|
Starck J, Cohet N, Gonnet C, Sarrazin S, Doubeikovskaia Z, Doubeikovski A, Verger A, Duterque-Coquillaud M, Morle F. Functional cross-antagonism between transcription factors FLI-1 and EKLF. Mol Cell Biol 2003; 23:1390-402. [PMID: 12556498 PMCID: PMC141137 DOI: 10.1128/mcb.23.4.1390-1402.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
FLI-1 is an ETS family transcription factor which is overexpressed in Friend erythroleukemia and contributes to the blockage of differentiation of erythroleukemic cells. We show here that FLI-1 represses the transcriptional activity of the beta-globin gene promoter in MEL cells and interacts with two of its critical transactivators, GATA-1 and EKLF. Unexpectedly, FLI-1 enhances the stimulating activity of GATA-1 on a GATA-1-responsive promoter but represses that of EKLF on beta-globin and an EKLF-responsive artificial promoters. This repressive effect of FLI-1 requires the ETS DNA binding domain and its association with either the N- or C-terminal domain, which themselves interact with EKLF but not with GATA-1. Furthermore, the FLI-1 ETS domain alone behaves as an autonomous repression domain when linked to the Gal4 DNA binding domain. Taken together, these data indicate that FLI-1 represses EKLF-dependent transcription due to the repression activity of its ETS domain and its indirect recruitment to erythroid promoters by protein-protein interaction with EKLF. Reciprocally, we also show that EKLF itself represses the FLI-1-dependent megakaryocytic GPIX gene promoter, thus further suggesting that functional cross-antagonism between FLI-1 and EKLF might be involved in the control of the erythrocytic versus megakaryocytic differentiation of bipotential progenitors.
Collapse
Affiliation(s)
- Joëlle Starck
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR 5534, 69622 Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In this study we describe a model system that allows continuous in vivo observation of the vertebrate embryonic vasculature. We find that the zebrafish fli1 promoter is able to drive expression of enhanced green fluorescent protein (EGFP) in all blood vessels throughout embryogenesis. We demonstrate the utility of vascular-specific transgenic zebrafish in conjunction with time-lapse multiphoton laser scanning microscopy by directly observing angiogenesis within the brain of developing embryos. Our images reveal that blood vessels undergoing active angiogenic growth display extensive filopodial activity and pathfinding behavior similar to that of neuronal growth cones. We further show, using the zebrafish mindbomb mutant as an example, that the expression of EGFP within developing blood vessels permits detailed analysis of vascular defects associated with genetic mutations. Thus, these transgenic lines allow detailed analysis of both wild type and mutant embryonic vasculature and, together with the ability to perform large scale forward-genetic screens in zebrafish, will facilitate identification of new mutants affecting vascular development.
Collapse
Affiliation(s)
- Nathan D Lawson
- Laboratory of Molecular Genetics, NICHD/NIH, Building 6B, 6 Center Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
47
|
Lelièvre E, Lionneton F, Mattot V, Spruyt N, Soncin F. Ets-1 regulates fli-1 expression in endothelial cells. Identification of ETS binding sites in the fli-1 gene promoter. J Biol Chem 2002; 277:25143-51. [PMID: 11991951 DOI: 10.1074/jbc.m201628200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
To understand the role of the Ets-1 transcription factor during angiogenesis, we have overexpressed it in endothelial cells and analyzed the levels of expression of several candidate target genes involved in angiogenesis. The transcripts levels of the ETS transcription factor fli-1 are specifically up-regulated in endothelial cells, which overexpress Ets-1, but not in fibroblasts. Analysis of the promoter of the mouse fli-1 gene reveals that the 1-kb region that comprises the transcription starts and part of exon 1 is responsible for the response of the promoter to Ets-1. The -270/-41 fragment contains two known Spi-1-responding Ets binding sites (EBS), which are also necessary for the activation by Ets-1. In contrast to Spi-1, a third EBS is necessary for the full response of this promoter fragment to Ets-1. The rest of the promoter activity has been located in the -986/-505 region, where three active EBSs have been identified. Furthermore, endogenous Fli-1 was found to be bound to its own gene promoter and to be able to promote the transactivation of its gene. These results suggest that Ets-1 activates an auto-regulatory loop of expression of fli-1 in endothelial cells, a mechanism that could have significant implications for the endothelial cell fate.
Collapse
Affiliation(s)
- Etienne Lelièvre
- CNRS UMR 8526, Institut de Biologie de Lille, 1 rue Calmette, 59021 Lille Cedex, France
| | | | | | | | | |
Collapse
|
48
|
Göttgens B, Nastos A, Kinston S, Piltz S, Delabesse EC, Stanley M, Sanchez MJ, Ciau-Uitz A, Patient R, Green AR. Establishing the transcriptional programme for blood: the SCL stem cell enhancer is regulated by a multiprotein complex containing Ets and GATA factors. EMBO J 2002; 21:3039-50. [PMID: 12065417 PMCID: PMC126046 DOI: 10.1093/emboj/cdf286] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2002] [Revised: 04/18/2002] [Accepted: 04/18/2002] [Indexed: 12/22/2022] Open
Abstract
Stem cells are a central feature of metazoan biology. Haematopoietic stem cells (HSCs) represent the best-characterized example of this phenomenon, but the molecular mechanisms responsible for their formation remain obscure. The stem cell leukaemia (SCL) gene encodes a basic helix-loop-helix (bHLH) transcription factor with an essential role in specifying HSCs. Here we have addressed the transcriptional hierarchy responsible for HSC formation by characterizing an SCL 3' enhancer that targets expression to HSCs and endothelium and their bipotential precursors, the haemangioblast. We have identified three critical motifs, which are essential for enhancer function and bind GATA-2, Fli-1 and Elf-1 in vivo. Our results suggest that these transcription factors are key components of an enhanceosome responsible for activating SCL transcription and establishing the transcriptional programme required for HSC formation.
Collapse
Affiliation(s)
- Berthold Göttgens
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY and
Institute of Genetics, Nottingham University, Queen’s Medical Centre, Nottingham NG7 2UH, UK Corresponding author e-mail:
| | - Aristotelis Nastos
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY and
Institute of Genetics, Nottingham University, Queen’s Medical Centre, Nottingham NG7 2UH, UK Corresponding author e-mail:
| | | | | | | | | | | | - Aldo Ciau-Uitz
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY and
Institute of Genetics, Nottingham University, Queen’s Medical Centre, Nottingham NG7 2UH, UK Corresponding author e-mail:
| | - Roger Patient
- University of Cambridge Department of Haematology, Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 2XY and
Institute of Genetics, Nottingham University, Queen’s Medical Centre, Nottingham NG7 2UH, UK Corresponding author e-mail:
| | | |
Collapse
|
49
|
Phillips HM, Renforth GL, Spalluto C, Hearn T, Curtis ARJ, Craven L, Havarani B, Clement-Jones M, English C, Stumper O, Salmon T, Hutchinson S, Jackson MS, Wilson DI. Narrowing the critical region within 11q24-qter for hypoplastic left heart and identification of a candidate gene, JAM3, expressed during cardiogenesis. Genomics 2002; 79:475-8. [PMID: 11944976 DOI: 10.1006/geno.2002.6742] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Hypoplastic left heart is a severe human congenital heart defect characterized by left ventricular hypoplasiawith aortic and mitral valve atresia. A genetic etiology is indicated by an association of the hypoplastic left heart phenotype with terminal 11q deletions that span approximately 20 Mb (distal to FRA11B in 11q23). Here we define the breakpoints in four patients with heart defects in association with distal 11q monosomy and refine the critical region to an approximately 9-Mb region distal to D11S1351. Within this critical region we have identified JAM3, a member of the junction adhesion molecule family, as a strong candidate gene for the cardiac phenotype on the basis that it is expressed during human cardiogenesis in the structures principally affected in hypoplastic left heart.
Collapse
Affiliation(s)
- Helen M Phillips
- Institute of Human Genetics, University of Newcastle Upon Tyne, NE1 382, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Van Rompaey L, Holland E, Grosveld G. TEL Induces Aggregation in Transformed Cells and Induces Tube Formation in NIH3T3-UCLA Cells. Biochem Biophys Res Commun 2002; 291:820-8. [PMID: 11866439 DOI: 10.1006/bbrc.2002.6513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
TEL/ETV6 is the frequent target of translocations associated with lymphoid and myeloid leukemias and solid tumors. We show that TEL induces aggregation of immortalized and transformed fibroblasts, endothelial cells and astrocytes. These aggregates form cellular cords in NIH3T3-UCLA by a cell autonomous process, which occurs when the monolayer is made up of over 75% of cells expressing exogenous TEL. Cords with a diameter of 15-25 microm contain a lumen and occur as tube structures. The possible relevance for vasculogenic mimicry is discussed. By contrast TEL did not induce aggregation of regular NIH3T3 cells, an effect that could only be induced by co-expression of oncogenic RAS/Lys12. Also transduction of TEL and RAS retroviral vectors into the endothelial MS1 cell line and TEL alone in the highly transformed glioblastoma cell lines EH-A and EH-B resulted in extensive aggregation. Thus, the induction of cellular aggregation by TEL correlates with transformation.
Collapse
Affiliation(s)
- L Van Rompaey
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | |
Collapse
|