1
|
Qiu W, Gu PR, Chuong CM, Lei M. Skin Cyst: A Pathological Dead-End With a New Twist of Morphogenetic Potentials in Organoid Cultures. Front Cell Dev Biol 2021; 8:628114. [PMID: 33511139 PMCID: PMC7835531 DOI: 10.3389/fcell.2020.628114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
A cyst is a closed sac-like structure in which cyst walls wrap certain contents typically including air, fluid, lipid, mucous, or keratin. Cyst cells can retain multipotency to regenerate complex tissue architectures, or to differentiate. Cysts can form in and outside the skin due to genetic problems, errors in embryonic development, cellular defects, chronic inflammation, infections, blockages of ducts, parasites, and injuries. Multiple types of skin cysts have been identified with different cellular origins, with a common structure including the outside cyst wall engulfs differentiated suprabasal layers and keratins. The skin cyst is usually used as a sign in pathological diagnosis. Large or surfaced skin cysts affect patients' appearance and may cause the dysfunction or accompanying diseases of adjacent tissues. Skin cysts form as a result of the degradation of skin epithelium and appendages, retaining certain characteristics of multipotency. Surprisingly, recent organoid cultures show the formation of cyst configuration as a transient state toward more morphogenetic possibility. These results suggest, if we can learn more about the molecular circuits controlling upstream and downstream cellular events in cyst formation, we may be able to engineer stem cell cultures toward the phenotypes we wish to achieve. For pathological conditions in patients, we speculate it may also be possible to guide the cyst to differentiate or de-differentiate to generate structures more akin to normal architecture and compatible with skin homeostasis.
Collapse
Affiliation(s)
- Weiming Qiu
- Department of Dermatology, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan, China
| | - Pei-Rong Gu
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mingxing Lei
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- “111” Project Laboratory of Biomechanics and Tissue Repair, Key Laboratory of Biorheological Science and Technology of the Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Bresson L, Faraldo MM, Di-Cicco A, Quintanilla M, Glukhova MA, Deugnier MA. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling. Development 2018; 145:dev.160382. [PMID: 29361573 DOI: 10.1242/dev.160382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/15/2018] [Indexed: 12/28/2022]
Abstract
Stem cells (SCs) drive mammary development, giving rise postnatally to an epithelial bilayer composed of luminal and basal myoepithelial cells. Dysregulation of SCs is thought to be at the origin of certain breast cancers; however, the molecular identity of SCs and the factors regulating their function remain poorly defined. We identified the transmembrane protein podoplanin (Pdpn) as a specific marker of the basal compartment, including multipotent SCs, and found Pdpn localized at the basal-luminal interface. Embryonic deletion of Pdpn targeted to basal cells diminished basal and luminal SC activity and affected the expression of several Wnt/β-catenin signaling components in basal cells. Moreover, Pdpn loss attenuated mammary tumor formation in a mouse model of β-catenin-induced breast cancer, limiting tumor-initiating cell expansion and promoting molecular features associated with mesenchymal-to-epithelial cell transition. In line with the loss-of-function data, we demonstrated that mechanistically Pdpn enhances Wnt/β-catenin signaling in mammary basal cells. Overall, this study uncovers a role for Pdpn in mammary SC function and, importantly, identifies Pdpn as a new regulator of Wnt/β-catenin signaling, a key pathway in mammary development and tumorigenesis.
Collapse
Affiliation(s)
- Laura Bresson
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,Université Paris Sud, Université Paris-Saclay, F-91405, Orsay, France.,Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
| | - Marisa M Faraldo
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,INSERM, Paris, F-75013, France
| | - Amandine Di-Cicco
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Marina A Glukhova
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,INSERM, Paris, F-75013, France
| | - Marie-Ange Deugnier
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France .,INSERM, Paris, F-75013, France
| |
Collapse
|
3
|
Kim S, Ahn SH, Yang HY, Lee JS, Choi HG, Park YK, Lee TH. Modification of cysteine 457 in plakoglobin modulates the proliferation and migration of colorectal cancer cells by altering binding to E-cadherin/catenins. Redox Rep 2016; 22:272-281. [PMID: 27571934 DOI: 10.1080/13510002.2016.1215120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES In tissue samples from patients with colorectal cancer (CRC), oxidation of C420 and C457 of plakoglobin (Pg) within tumor tissue was identified by proteomic analysis. The aim of this study was to identify the roles of Pg C420 and C457. METHODS Human CRC tissues, CRC and breast cancer cells, and normal mouse colon were prepared to validate Pg oxidation. MC38 cells were co-transfected with E-cadherin plus wild type (WT) or mutant (C420S or C457S) Pg to evaluate protein interactions and cellular localization, proliferation, and migration. RESULTS Pg was more oxidized in stage III CRC tumor tissue than in non-tumor tissue. Similar oxidation of Pg was elicited by H2O2 treatment in normal colon and cancer cells. C457S Pg exhibited diminished binding to E-cadherin and α-catenin, and reduced the assembly of E-cadherin-α-/β-catenin complexes. Correspondingly, immunofluorescent analysis of Pg cellular localization suggested impaired binding of C457S Pg to membranes. Cell migration and proliferation were also suppressed in C457S-expressing cells. DISCUSSION Pg appears to be redox-sensitive in cancer, and the C457 modification may impair cell migration and proliferation by affecting its interaction with the E-cadherin/catenin axis. Our findings suggest that redox-sensitive cysteines of Pg may be the targets for CRC therapy.
Collapse
Affiliation(s)
- Suhee Kim
- a Department of Oral Biochemistry , Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University , Gwangju , Republic of Korea.,b Department of Molecular Medicine (BK21plus) , Chonnam National University Graduate School , Gwangju , Republic of Korea
| | - Sun Hee Ahn
- a Department of Oral Biochemistry , Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University , Gwangju , Republic of Korea
| | - Hee-Young Yang
- a Department of Oral Biochemistry , Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University , Gwangju , Republic of Korea
| | - Jin-Sil Lee
- a Department of Oral Biochemistry , Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University , Gwangju , Republic of Korea
| | - Hyang-Gi Choi
- a Department of Oral Biochemistry , Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University , Gwangju , Republic of Korea.,b Department of Molecular Medicine (BK21plus) , Chonnam National University Graduate School , Gwangju , Republic of Korea
| | - Young-Kyu Park
- c Department of Surgery , Chonnam National University Hwasun Hospital , Hwasun , Republic of Korea
| | - Tae-Hoon Lee
- a Department of Oral Biochemistry , Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University , Gwangju , Republic of Korea.,b Department of Molecular Medicine (BK21plus) , Chonnam National University Graduate School , Gwangju , Republic of Korea
| |
Collapse
|
4
|
Xu J, Wu W, Shen W, Liu P. The clinical significance of γ-catenin in acute myeloid leukemia. Onco Targets Ther 2016; 9:3861-71. [PMID: 27390526 PMCID: PMC4930232 DOI: 10.2147/ott.s105514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dysregulation of γ-catenin may function as an oncogenic factor in various malignancies. We investigated γ-catenin expression in acute myeloid leukemia (AML) and explored its role in the pathogenesis of AML. γ-Catenin was significantly overexpressed in AML patients compared to healthy donors. The γ-catenin expression in AML patients with lower white blood cells (<30×109/L) was significantly higher than those with higher white blood cells (≥30×109/L). The expression levels of γ-catenin in AML patients with mutated CEBPα were significantly higher than those with unmutated CEBPα. AML patients with lower γ-catenin levels were more likely to achieve complete remission compared with patients who have higher γ-catenin levels. In K562 cells, γ-catenin knockdown suppressed cellular proliferation, while the cellular migration was greatly enhanced. Moreover, knocking down of γ-catenin enhanced the cytotoxicity of decitabine in K562 cells. Our investigation has indicated a potential role of γ-catenin in the pathogenesis of AML.
Collapse
Affiliation(s)
- Jiadai Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing
| | - Wei Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing
| | - Wenyi Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Verstraeten B, van Hengel J, Huysseune A. Beta-Catenin and Plakoglobin Expression during Zebrafish Tooth Development and Replacement. PLoS One 2016; 11:e0148114. [PMID: 26938059 PMCID: PMC4777446 DOI: 10.1371/journal.pone.0148114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
We analyzed the protein distribution of two cadherin-associated molecules, plakoglobin and β-catenin, during the different stages of tooth development and tooth replacement in zebrafish. Plakoglobin was detected at the plasma membrane already at the onset of tooth development in the epithelial cells of the tooth. This pattern remained unaltered during further tooth development. The mesenchymal cells only showed plakoglobin from cytodifferentiation onwards. Plakoglobin 1a morpholino-injected embryos showed normal tooth development with proper initiation and differentiation. Although plakoglobin is clearly present during normal odontogenesis, the loss of plakoglobin 1a does not influence tooth development. β-catenin was found at the cell borders of all cells of the successional lamina but also in the nuclei of surrounding mesenchymal cells. Only membranous, not nuclear, β-catenin, was found during morphogenesis stage. However, during cytodifferentiation stage, both nuclear and membrane-bound β-catenin was detected in the layers of the enamel organ as well as in the differentiating odontoblasts. Nuclear β-catenin is an indication of an activated Wnt pathway, therefore suggesting a possible role for Wnt signalling during zebrafish tooth development and replacement.
Collapse
Affiliation(s)
| | - Jolanda van Hengel
- Molecular Cell Biology Unit, Department for Molecular Biomedical Research, VIB Ghent, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ann Huysseune
- Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
6
|
Kallak TK, Baumgart J, Nilsson K, Åkerud H, Poromaa IS, Stavreus-Evers A. Vaginal Gene Expression During Treatment With Aromatase Inhibitors. Clin Breast Cancer 2015; 15:527-535.e2. [DOI: 10.1016/j.clbc.2015.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
|
7
|
Zappulli V, Caliari D, Rasotto R, Ferro S, Castagnaro M, Goldschmidt M. Proposed Classification of the Feline “Complex” Mammary Tumors as Ductal and Intraductal Papillary Mammary Tumors. Vet Pathol 2013; 50:1070-7. [DOI: 10.1177/0300985813488894] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- V. Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - D. Caliari
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - R. Rasotto
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - S. Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - M. Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - M. Goldschmidt
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
Plakoglobin as a regulator of desmocollin gene expression. J Invest Dermatol 2013; 133:2732-2740. [PMID: 23652796 PMCID: PMC3760975 DOI: 10.1038/jid.2013.220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 11/08/2022]
Abstract
Desmosomes are cell adhesion junctions required for the normal development and maintenance of mammalian tissues and organs such as the skin, skin appendages and the heart. The goal of the present study was to investigate how desmocollins (DSC), transmembrane components of desmosomes, are regulated at the transcriptional level. We hypothesized that differential expression of the Dsc2 and Dsc3 genes is a prerequisite for normal development of skin appendages. We demonstrate that plakoglobin (Pg) in conjunction with Lef-1 differentially regulates the proximal promoters of these two genes. Specifically, we found that Lef-1 acts as a switch activating Dsc2 and repressing Dsc3 in the presence of Pg. Interestingly, we also determined that NFκB pathway components, down-stream effectors of the Eda/EDAR signaling cascade, can activate Dsc2 expression. We hypothesize that Lef-1 and Eda/EDAR/NFκB signaling contribute to a shift in Dsc isoform expression from Dsc3 to Dsc2 in placode keratinocytes. It is tempting to speculate that this shift is required for invasive growth of placode keratinocytes into the dermis, a crucial step in skin appendage formation.
Collapse
|
9
|
Lim X, Nusse R. Wnt signaling in skin development, homeostasis, and disease. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a008029. [PMID: 23209129 DOI: 10.1101/cshperspect.a008029] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The skin and its appendages constitute the largest organ of the body. Its stratified epithelia offer protection from environmental stresses such as dehydration, irradiation, mechanical trauma, and pathogenic infection, whereas its appendages, like hair and sebaceous glands, help regulate body temperature as well as influence animal interaction and social behavior through camouflage and sexual signaling. To respond to and function effectively in a dynamic external environment, the skin and its appendages possess a remarkable ability to regenerate in a carefully controlled fashion. When this finely tuned homeostatic process is disrupted, skin diseases such as cancers may result. At present, the molecular signals that orchestrate cell proliferation, differentiation, and patterning in the skin remain incompletely understood. It is increasingly apparent that many morphogenetic pathways with key roles in development are also important in regulating skin biology. Of these, Wnt signaling has emerged as the dominant pathway controlling the patterning of skin and influencing the decisions of embryonic and adult stem cells to adopt the various cell lineages of the skin and its appendages, as well as subsequently controlling the function of differentiated skin cells. Here we will review established concepts and present recent advances in our understanding of the diverse roles that Wnt signaling plays in skin development, homeostasis, and disease.
Collapse
Affiliation(s)
- Xinhong Lim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
10
|
Voronkov A, Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des 2013; 19:634-64. [PMID: 23016862 PMCID: PMC3529405 DOI: 10.2174/138161213804581837] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/23/2012] [Indexed: 12/27/2022]
Abstract
Wnt/β-catenin signaling is a branch of a functional network that dates back to the first metazoans and it is involved in a broad range of biological systems including stem cells, embryonic development and adult organs. Deregulation of components involved in Wnt/β-catenin signaling has been implicated in a wide spectrum of diseases including a number of cancers and degenerative diseases. The key mediator of Wnt signaling, β-catenin, serves several cellular functions. It functions in a dynamic mode at multiple cellular locations, including the plasma membrane, where β-catenin contributes to the stabilization of intercellular adhesive complexes, the cytoplasm where β-catenin levels are regulated and the nucleus where β-catenin is involved in transcriptional regulation and chromatin interactions. Central effectors of β-catenin levels are a family of cysteine-rich secreted glycoproteins, known as Wnt morphogens. Through the LRP5/6-Frizzled receptor complex, Wnts regulate the location and activity of the destruction complex and consequently intracellular β- catenin levels. However, β-catenin levels and their effects on transcriptional programs are also influenced by multiple other factors including hypoxia, inflammation, hepatocyte growth factor-mediated signaling, and the cell adhesion molecule E-cadherin. The broad implications of Wnt/β-catenin signaling in development, in the adult body and in disease render the pathway a prime target for pharmacological research and development. The intricate regulation of β-catenin at its various locations provides alternative points for therapeutic interventions.
Collapse
Affiliation(s)
- Andrey Voronkov
- SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleén 21, 0349, Oslo, Norway
| | - Stefan Krauss
- SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleén 21, 0349, Oslo, Norway
| |
Collapse
|
11
|
Zappulli V, De Cecco S, Trez D, Caliari D, Aresu L, Castagnaro M. Immunohistochemical Expression of E-Cadherin and β-Catenin in Feline Mammary Tumours. J Comp Pathol 2012; 147:161-70. [DOI: 10.1016/j.jcpa.2012.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/27/2012] [Accepted: 02/12/2012] [Indexed: 11/25/2022]
|
12
|
Plakoglobin: role in tumorigenesis and metastasis. Int J Cell Biol 2012; 2012:189521. [PMID: 22481945 PMCID: PMC3312339 DOI: 10.1155/2012/189521] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/08/2011] [Indexed: 01/23/2023] Open
Abstract
Plakoglobin (γ-catenin) is a member of the Armadillo family of proteins and a homolog of β-catenin. As a component of both the adherens junctions and desmosomes, plakoglobin plays a pivotal role in the regulation of cell-cell adhesion. Furthermore, similar to β-catenin, plakoglobin is capable of participating in cell signaling. However, unlike β-catenin that has well-documented oncogenic potential through its involvement in the Wnt signaling pathway, plakoglobin generally acts as a tumor/metastasis suppressor. The exact roles that plakoglobin plays during tumorigenesis and metastasis are not clear; however, recent evidence suggests that it may regulate gene expression, cell proliferation, apoptosis, invasion, and migration. In this paper, we describe plakoglobin, its discovery and characterization, its role in regulating cell-cell adhesion, and its signaling capabilities in regulation of tumorigenesis and metastasis.
Collapse
|
13
|
Lyashenko N, Winter M, Migliorini D, Biechele T, Moon RT, Hartmann C. Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation. Nat Cell Biol 2011; 13:753-61. [PMID: 21685890 PMCID: PMC3130149 DOI: 10.1038/ncb2260] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 04/13/2011] [Indexed: 02/08/2023]
Abstract
Canonical Wnt-signalling has been implicated in mouse and human embryonic stem cell (ESC) maintenance, however its requirement is controversial. β-catenin is the key component in this highly conserved Wnt pathway, acting as a transcriptional transactivator. Yet, β-catenin has additional roles at the plasma membrane regulating cell-cell adhesion, complicating the analyses of cells/tissues lacking β-catenin. We report here the generation of a β-catenin deficient mouse ESC (mESC) line and show that self-renewal is maintained in absence of β-catenin. Cell-adhesion is partially rescued by plakoglobin up-regulation, but fails to be maintained during differentiation. When differentiated as aggregates, wild-type mESCs form descendents of all three germ layers, while mesendodermal germ layer formation and neuronal differentiation are defective in β-catenin deficient mESCs. A Tcf/Lef-signalling defective β-catenin variant, which re-establishes cadherin-mediated cell-adhesion, rescues definitive endoderm and neuroepithelial formation, suggesting that β-catenin cell-adhesion function is more important than its signalling function for these processes.
Collapse
Affiliation(s)
- Natalia Lyashenko
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Adherens junctions, which are intercellular adhesive complexes that are crucial for maintaining epithelial homeostasis, are downregulated in many cancers to promote tumour progression. However, the role of desmosomes - adhesion complexes that are related to adherens junctions - in carcinogenesis has remained elusive. Recent studies using mouse genetic approaches have uncovered a role for desmosomes in tumour suppression, demonstrating that desmosome downregulation occurs before that of adherens junctions to drive tumour development and early invasion, suggesting a two-step model of adhesion dysfunction in cancer progression.
Collapse
Affiliation(s)
- Rachel L Dusek
- Department of Radiation Oncology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
15
|
Finot L, Marnet PG, Dessauge F. Reference gene selection for quantitative real-time PCR normalization: Application in the caprine mammary gland. Small Rumin Res 2011. [DOI: 10.1016/j.smallrumres.2010.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Asciutti S, Akiri G, Grumolato L, Vijayakumar S, Aaronson SA. Diverse mechanisms of Wnt activation and effects of pathway inhibition on proliferation of human gastric carcinoma cells. Oncogene 2010; 30:956-66. [PMID: 21042278 PMCID: PMC3965355 DOI: 10.1038/onc.2010.475] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human gastric carcinomas are among the most treatment refractory epithelial malignancies. Increased understanding of the underlying molecular aberrations in such tumors could provide insights leading to improved therapeutic approaches. In this study, we characterized diverse genetic aberrations leading to constitutive Wnt signaling activation in a series of human gastric carcinoma cell lines. Downregulation of TCF signaling by stable transduction of dominant negative TCF-4 (DNTCF4) resulted in inhibition of proliferation in Wnt activated AGS tumor cells. c-Myc downregulation and the associated upregulation of its repression target, p21 observed in these tumor cells, as well as the profound growth inhibition induced by c-Myc shRNA implied their c-Myc addiction. In striking contrast, Wnt activated MKN-28 and MKN-74 tumor cells appeared refractory to DNTCF4 inhibition of proliferation despite comparably decreased c-Myc expression levels. The resistance of these same tumor cells to growth inhibition by c-Myc shRNA established that their refractoriness to DNTCF was due to their independence from c-Myc for proliferation. There was no correlation between this resistance phenotype and the presence or absence of constitutive MAPK and/or AKT pathway activation, commonly observed in gastrointestinal tumors. However, in both DNTCF sensitive and resistant tumor cells with MAPK and/or AKT pathway activation, the ability of small molecule antagonists directed against either pathway to inhibit tumor cell growth was enhanced by Wnt pathway inhibition. These findings support the concept that while certain Wnt activated tumors may escape c-Myc dependence for proliferation, disruption of other oncogenic pathways can unmask cooperative antiproliferative effects for Wnt pathway downregulation.
Collapse
Affiliation(s)
- S Asciutti
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
17
|
Todorović V, Desai BV, Patterson MJS, Amargo EV, Dubash AD, Yin T, Jones JCR, Green KJ. Plakoglobin regulates cell motility through Rho- and fibronectin-dependent Src signaling. J Cell Sci 2010; 123:3576-86. [PMID: 20876660 DOI: 10.1242/jcs.070391] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously showed that the cell-cell junction protein plakoglobin (PG) not only suppresses motility of keratinocytes in contact with each other, but also, unexpectedly, of single cells. Here we show that PG deficiency results in extracellular matrix (ECM)-dependent disruption of mature focal adhesions and cortical actin organization. Plating PG⁻/⁻ cells onto ECM deposited by PG+/⁻ cells partially restored normal cell morphology and inhibited PG⁻/⁻ cell motility. In over 70 adhesion molecules whose expression we previously showed to be altered in PG⁻/⁻ cells, a substantial decrease in fibronectin (FN) in PG⁻/⁻ cells stood out. Re-introduction of PG into PG⁻/⁻ cells restored FN expression, and keratinocyte motility was reversed by plating PG⁻/⁻ cells onto FN. Somewhat surprisingly, based on previously reported roles for PG in regulating gene transcription, PG-null cells exhibited an increase, not a decrease, in FN promoter activity. Instead, PG was required for maintenance of FN mRNA stability. PG⁻/⁻ cells exhibited an increase in activated Src, one of the kinases controlled by FN, a phenotype reversed by plating PG⁻/⁻ cells on ECM deposited by PG+/⁻ keratinocytes. PG⁻/⁻ cells also exhibited Src-independent activation of the small GTPases Rac1 and RhoA. Both Src and RhoA inhibition attenuated PG⁻/⁻ keratinocyte motility. We propose a novel role for PG in regulating cell motility through distinct ECM-Src and RhoGTPase-dependent pathways, influenced in part by PG-dependent regulation of FN mRNA stability.
Collapse
Affiliation(s)
- Viktor Todorović
- Department of Pathology, 303 E. Chicago Avenue, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Getsios S, Simpson CL, Kojima SI, Harmon R, Sheu LJ, Dusek RL, Cornwell M, Green KJ. Desmoglein 1-dependent suppression of EGFR signaling promotes epidermal differentiation and morphogenesis. ACTA ACUST UNITED AC 2009; 185:1243-58. [PMID: 19546243 PMCID: PMC2712955 DOI: 10.1083/jcb.200809044] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dsg1 (desmoglein 1) is a member of the cadherin family of Ca2+-dependent cell adhesion molecules that is first expressed in the epidermis as keratinocytes transit out of the basal layer and becomes concentrated in the uppermost cell layers of this stratified epithelium. In this study, we show that Dsg1 is not only required for maintaining epidermal tissue integrity in the superficial layers but also supports keratinocyte differentiation and suprabasal morphogenesis. Dsg1 lacking N-terminal ectodomain residues required for adhesion remained capable of promoting keratinocyte differentiation. Moreover, this capability did not depend on cytodomain interactions with the armadillo protein plakoglobin or coexpression of its companion suprabasal cadherin, Dsc1 (desmocollin 1). Instead, Dsg1 was required for suppression of epidermal growth factor receptor–Erk1/2 (extracellular signal-regulated kinase 1/2) signaling, thereby facilitating keratinocyte progression through a terminal differentiation program. In addition to serving as a rigid anchor between adjacent cells, this study implicates desmosomal cadherins as key components of a signaling axis governing epithelial morphogenesis.
Collapse
Affiliation(s)
- Spiro Getsios
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Desmosomes are highly specialized anchoring junctions that link intermediate filaments to sites of intercellular adhesion, thus facilitating the formation of a supracellular scaffolding that distributes mechanical forces throughout a tissue. These junctions are thus particularly important for maintaining the integrity of tissues that endure physical stress, such as the epidermis and myocardium. The importance of the classic mechanical functions of desmosomal constituents is underscored by pathologies reported in animal models and an ever-expanding list of human mutations that target both desmosomal cadherins and their associated cytoskeletal anchoring proteins. However, the notion that desmosomes are static structures that exist simply to glue cells together belies their susceptibility to remodeling in response to environmental cues and their important tissue-specific roles in cell behavior and signaling. Here, we review the molecular blueprint of the desmosome and models for assembling its protein components to form an adhesive interface and the desmosomal plaque. We also discuss emerging evidence of supra-adhesive roles for desmosomal proteins in regulating tissue morphogenesis and homeostasis. Finally, we highlight the dynamic nature of these adhesive organelles, examining mechanisms in health and disease for modulating adhesive strength and stability of desmosomes.
Collapse
Affiliation(s)
- Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
20
|
Williamson L, Raess NA, Caldelari R, Zakher A, de Bruin A, Posthaus H, Bolli R, Hunziker T, Suter MM, Müller EJ. Pemphigus vulgaris identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO J 2006; 25:3298-309. [PMID: 16871158 PMCID: PMC1523185 DOI: 10.1038/sj.emboj.7601224] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 06/09/2006] [Indexed: 12/12/2022] Open
Abstract
The autoimmune disease pemphigus vulgaris (PV) manifests as loss of keratinocyte cohesion triggered by autoantibody binding to desmoglein (Dsg)3, an intercellular adhesion molecule of mucous membranes, epidermis, and epidermal stem cells. Here we describe a so far unknown signaling cascade activated by PV antibodies. It extends from a transient enhanced turn over of cell surface-exposed, nonkeratin-anchored Dsg3 and associated plakoglobin (PG), through to depletion of nuclear PG, and as one of the consequences, abrogation of PG-mediated c-Myc suppression. In PV patients (6/6), this results in pathogenic c-Myc overexpression in all targeted tissues, including the stem cell compartments. In summary, these results show that PV antibodies act via PG to abolish the c-Myc suppression required for both maintenance of epidermal stem cells in their niche and controlled differentiation along the epidermal lineage. Besides a completely novel insight into PV pathogenesis, these data identify PG as a potent modulator of epithelial homeostasis via its role as a key suppressor of c-Myc.
Collapse
Affiliation(s)
- Lina Williamson
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Natalia A Raess
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Caldelari
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anthony Zakher
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Alain de Bruin
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Horst Posthaus
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Thomas Hunziker
- Department Dermatology, Medical Faculty, University of Bern, Bern, Switzerland
| | - Maja M Suter
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane J Müller
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Postfach, Länggass-Str. 122, Bern 3001, Switzerland. Tel.: +41 31 631 24 03 or 631 23 98; Fax: +41 31 631 26 35; E-mail:
| |
Collapse
|
21
|
Watt FM, Lo Celso C, Silva-Vargas V. Epidermal stem cells: an update. Curr Opin Genet Dev 2006; 16:518-24. [PMID: 16919447 DOI: 10.1016/j.gde.2006.08.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 08/03/2006] [Indexed: 12/17/2022]
Abstract
The mammalian epidermis is a highly accessible tissue in which to study the properties of adult stem cells. Global gene expression profiling has revealed new markers and regulators of the stem cell compartment. Although stem cells have the potential to differentiate into multiple lineages, their progeny follow a more restricted number of lineages in undamaged epidermis as a result of local microenvironmental cues. The response of the epidermis to a particular signal depends on signal strength and duration. Recent advances in the field have led to elucidation of the mechanisms by which stem cells are maintained and the pathways that interact with Wnt signalling to specify lineage choice as cells leave the stem cell compartment. This work has also yielded new insights into skin tumour development.
Collapse
Affiliation(s)
- Fiona M Watt
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| | | | | |
Collapse
|
22
|
Raurell I, Castaño J, Francí C, García de Herreros A, Duñach M. Presenilin-1 interacts with plakoglobin and enhances plakoglobin-Tcf-4 association. Implications for the regulation of beta-catenin/Tcf-4-dependent transcription. J Biol Chem 2005; 281:1401-11. [PMID: 16306047 DOI: 10.1074/jbc.m508153200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer disease-linked Presenilin-1 (PS1) is a negative modulator of beta-catenin/Tcf-4 activity. However, the mechanism underlying this effect is not well understood. We show here that the effects of PS1 on the activity of this complex in epithelial cells are independent of its gamma-secretase activity and its interaction with beta-catenin. As presented in this report PS1 also binds plakoglobin with similar affinity as beta-catenin, although this interaction does not involve equivalent residues in the two catenins. Moreover, PS1 association with plakoglobin enhances the interaction of this molecule with Tcf-4 and prevents its binding to DNA. These effects were observed with the unprocessed form of PS1, which has higher affinity for plakoglobin and beta-catenin than processed PS1. These results provide a new explanation for the effects of PS1 on gene transcription mediated by beta-catenin in epithelial cells.
Collapse
Affiliation(s)
- Imma Raurell
- Unitat de Biofísica, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | | | | | | | | |
Collapse
|