1
|
Bora-Singhal N, Saha B, Mohankumar D, Padmanabhan J, Coppola D, Chellappan S. A Novel PHD2/VHL-mediated Regulation of YAP1 Contributes to VEGF Expression and Angiogenesis. CANCER RESEARCH COMMUNICATIONS 2022; 2:624-638. [PMID: 35937460 PMCID: PMC9351435 DOI: 10.1158/2767-9764.crc-21-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/10/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The transcriptional co-activator YAP1 is the major oncogenic component of the Hippo signaling pathway and contributes to the genesis and progression of various tumors, including non-small cell lung cancer (NSCLC). YAP1 levels are regulated by the canonical Hippo kinases, MST1/2 and LATS1/2, which modulate its cytoplasmic retention and proteasomal degradation. While non-canonical regulation of YAP1 has been reported, its role in hypoxic response is not fully elucidated. The studies presented here show that YAP1 levels and function are modulated by VHL and PHD2. YAP1 could regulate multiple genes involved in angiogenesis through E2F1; it also associates with HIF1α in cancer cells under hypoxic conditions, inducing the VEGF-A promoter. Under normoxic conditions, PHD2 associates with and hydroxylates specific proline residues on YAP1, facilitating its interaction with VHL and promoting ubiquitination and subsequent proteasomal degradation. Exposure to hypoxia dissociates YAP1 from PHD2 and VHL, elevating YAP1 levels and enhancing its association with HIF1α. YAP1-HIF1α interaction was higher in NSCLC and RCC samples, indicating a role for this interaction in the genesis of these cancers. Our results thus reveal a novel mode of regulation of YAP1 by PHD2 and VHL in normoxic cells, suggesting that YAP1-mediated induction of VEGF and other genes contributes to hypoxic response in tumors.
Collapse
Affiliation(s)
| | - Biswarup Saha
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, Florida
| | | | - Jaya Padmanabhan
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, Florida
| | - Domenico Coppola
- Department of Anatomic pathology, Moffitt Cancer Center, Tampa, Florida
| | | |
Collapse
|
2
|
Zhou L, Ng DSC, Yam JC, Chen LJ, Tham CC, Pang CP, Chu WK. Post-translational modifications on the retinoblastoma protein. J Biomed Sci 2022; 29:33. [PMID: 35650644 PMCID: PMC9161509 DOI: 10.1186/s12929-022-00818-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022] Open
Abstract
The retinoblastoma protein (pRb) functions as a cell cycle regulator controlling G1 to S phase transition and plays critical roles in tumour suppression. It is frequently inactivated in various tumours. The functions of pRb are tightly regulated, where post-translational modifications (PTMs) play crucial roles, including phosphorylation, ubiquitination, SUMOylation, acetylation and methylation. Most PTMs on pRb are reversible and can be detected in non-cancerous cells, playing an important role in cell cycle regulation, cell survival and differentiation. Conversely, altered PTMs on pRb can give rise to anomalies in cell proliferation and tumourigenesis. In this review, we first summarize recent findings pertinent to how individual PTMs impinge on pRb functions. As many of these PTMs on pRb were published as individual articles, we also provide insights on the coordination, either collaborations and/or competitions, of the same or different types of PTMs on pRb. Having a better understanding of how pRb is post-translationally modulated should pave the way for developing novel and specific therapeutic strategies to treat various human diseases.
Collapse
Affiliation(s)
- Linbin Zhou
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Danny Siu-Chun Ng
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jason C Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Clement C Tham
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Flores M, Goodrich DW. Retinoblastoma Protein Paralogs and Tumor Suppression. Front Genet 2022; 13:818719. [PMID: 35368709 PMCID: PMC8971665 DOI: 10.3389/fgene.2022.818719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
The retinoblastoma susceptibility gene (RB1) is the first tumor suppressor gene discovered and a prototype for understanding regulatory networks that function in opposition to oncogenic stimuli. More than 3 decades of research has firmly established a widespread and prominent role for RB1 in human cancer. Yet, this gene encodes but one of three structurally and functionally related proteins that comprise the pocket protein family. A central question in the field is whether the additional genes in this family, RBL1 and RBL2, are important tumor suppressor genes. If so, how does their tumor suppressor activity overlap or differ from RB1. Here we revisit these questions by reviewing relevant data from human cancer genome sequencing studies that have been rapidly accumulating in recent years as well as pertinent functional studies in genetically engineered mice. We conclude that RBL1 and RBL2 do have important tumor suppressor activity in some contexts, but RB1 remains the dominant tumor suppressor in the family. Given their similarities, we speculate on why RB1 tumor suppressor activity is unique.
Collapse
Affiliation(s)
| | - David W. Goodrich
- Roswell Park Comprehensive Cancer Center, Department of Pharmacology and Therapeutics, Buffalo, NY, United States
| |
Collapse
|
4
|
Maan M, Agrawal NJ, Padmanabhan J, Leitzinger CC, Rivera-Rivera Y, Saavedra HI, Chellappan SP. Tank Binding Kinase 1 modulates spindle assembly checkpoint components to regulate mitosis in breast and lung cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118929. [PMID: 33310066 DOI: 10.1016/j.bbamcr.2020.118929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022]
Abstract
Error-free progression through mitosis is critical for proper cell division and accurate distribution of the genetic material. The anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase regulates the progression from metaphase to anaphase and its activation is controlled by the cofactors Cdc20 and Cdh1. Additionally, genome stability is maintained by the spindle assembly checkpoint (SAC), which monitors proper attachment of chromosomes to spindle microtubules prior to cell division. We had shown a role for Tank Binding Kinase 1 (TBK1) in microtubule dynamics and mitosis and here we describe a novel role of TBK1 in regulating SAC in breast and lung cancer cells. TBK1 interacts with and phosphorylates Cdc20 and Cdh1 and depletion of TBK1 elevates SAC components. TBK1 inhibition increases the association of Cdc20 with APC/C and BubR1 indicating inactivation of APC/C; similarly, interaction of Cdh1 with APC/C is also enhanced. TBK1 and TTK inhibition reduces cell viability and enhances centrosome amplification and micronucleation. These results indicate that alterations in TBK1 will impede mitotic progression and combining TBK1 inhibitors with other regulators of mitosis might be effective in eliminating cancer cells.
Collapse
Affiliation(s)
- Meenu Maan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Neha Jaiswal Agrawal
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Jaya Padmanabhan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Christelle Colin Leitzinger
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University/Ponce Research Institute, Ponce 00716-2348, Puerto Rico
| | - Harold I Saavedra
- Department of Basic Sciences, Division of Pharmacology and Cancer Biology, Ponce Health Sciences University/Ponce Research Institute, Ponce 00716-2348, Puerto Rico
| | - Srikumar P Chellappan
- Department of Tumor Biology, H, Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, United States of America.
| |
Collapse
|
5
|
Rashid A, Wang R, Zhang L, Yue J, Yang M, Yen A. Dissecting the novel partners of nuclear c-Raf and its role in all-trans retinoic acid (ATRA)-induced myeloblastic leukemia cells differentiation. Exp Cell Res 2020; 394:111989. [PMID: 32283065 PMCID: PMC10656057 DOI: 10.1016/j.yexcr.2020.111989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023]
Abstract
All-trans retinoic acid (ATRA) is an anti-cancer differentiation therapy agent effective for acute promyelocytic leukemia (APL) but not acute myeloid leukemia (AML) in general. Using the HL-60 human non-APL AML model where ATRA causes nuclear enrichment of c-Raf that drives differentiation and G1/G0 cell cycle arrest, we now observe that c-Raf in the nucleus showed novel interactions with several prominent regulators of the cell cycle and cell differentiation. One is cyclin-dependent kinase 2 (Cdk2). ATRA treatment caused c-Raf to dissociate from Cdk2. This was associated with enhanced binding of Cdk2 with retinoic acid receptor α (RARα). Consistent with this novel Raf/CDK2/RARα axis contributing to differentiation, CD38 expression per cell, which is transcriptionally regulated by a retinoic acid response element (RARE), is enhanced. The RB tumor suppressor, a fundamental regulator of G1 cell cycle progression or arrest, was also targeted by c-Raf in the nucleus. RB and specifically the S608 phosphorylated form (pS608RB) complexed with c-Raf. ATRA treatment induced S608RB-hypophosphorylation associated with G1/G0 cell cycle arrest and release of c-Raf from RB. We also found that nuclear c-Raf interacted with SMARCD1, a pioneering component of the SWI/SNF chromatin remodeling complex. ATRA treatment diminished the amount of this protein bound to c-Raf. The data suggest that ATRA treatment to HL-60 human cells re-directed c-Raf from its historically pro-proliferation functions in the cytoplasm to pro-differentiation functions in the nucleus.
Collapse
Affiliation(s)
- Asif Rashid
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA; Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China
| | - Rui Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Rashid A, Duan X, Gao F, Yang M, Yen A. Roscovitine enhances all- trans retinoic acid (ATRA)-induced nuclear enrichment of an ensemble of activated signaling molecules and augments ATRA-induced myeloid cell differentiation. Oncotarget 2020; 11:1017-1036. [PMID: 32256976 PMCID: PMC7105165 DOI: 10.18632/oncotarget.27508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/08/2020] [Indexed: 02/07/2023] Open
Abstract
Although ATRA represents a successful differentiation therapy for APL, it is largely ineffective for non-APL AMLs. Hence combination therapies using an agent targeting ATRA-regulated molecules that drive cell differentiation/arrest are of interest. Using the HL-60 human non-APL AML model where ATRA causes nuclear enrichment of c-Raf that drives differentiation/G0-arrest, we now observe that roscovitine enhanced nuclear enrichment of certain traditionally cytoplasmic signaling molecules and enhanced differentiation and cell cycle arrest. Roscovitine upregulated ATRA-induced nuclear c-Raf phosphorylation at S259 and S289/296/301. Nuclear c-Raf interacted with RB protein and specifically with pS608RB, the hinge region phosphorylation controlling E2F binding and cell cycle progression. ATRA-induced loss of pS608RB with cell cycle arrest was associated with loss of RB-sequestered c-Raf, thereby coupling cell cycle arrest and increased availability of c-Raf to promote differentiation. Part of this mechanism reflects promoting cell cycle arrest via ATRA-induced upregulation of the p27 Kip1 CDKI. Roscovitine also enhanced the ATRA-induced nuclear enrichment of other signaling molecules traditionally perceived as cytoplasmic promoters of proliferation, but now known to promote differentiation; in particular: SFKs, Lyn, Fgr; adaptor proteins, c-Cbl, SLP-76; a guanine exchange factor, Vav1; and a transcription factor, IRF-1. Akin to c-Raf, Lyn bound to RB, specifically to pS608RB. Lyn-pS608RB association was greatly diminished by ATRA and essentially lost in ATRA plus roscovitine treated cells. Interestingly Lyn-KD enhanced such ATRA-induced nuclear signaling and differentiation and made roscovitine more effective. ATRA thus mobilized traditionally cytoplasmic signaling molecules to the nucleus where they drove differentiation which were further enhanced by roscovitine.
Collapse
Affiliation(s)
- Asif Rashid
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China.,Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Xin Duan
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Feng Gao
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Bora-Singhal N, Mohankumar D, Saha B, Colin CM, Lee JY, Martin MW, Zheng X, Coppola D, Chellappan S. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-renewal and overcome drug resistance by suppressing Sox2. Sci Rep 2020; 10:4722. [PMID: 32170113 PMCID: PMC7069992 DOI: 10.1038/s41598-020-61295-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/20/2020] [Indexed: 01/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is known to have poor patient outcomes due to development of resistance to chemotherapy agents and the EGFR inhibitors, which results in recurrence of highly aggressive lung tumors. Even with recent success in immunotherapy using the checkpoint inhibitors, additional investigations are essential to identify novel therapeutic strategies for efficacious treatment for NSCLC. Our finding that high levels of histone deacetylase 11 (HDAC11) in human lung tumor tissues correlate with poor patient outcome and that depletion or inhibition of HDAC11 not only significantly reduces self-renewal of cancer stem cells (CSCs) from NSCLC but also decreases Sox2 expression that is essential for maintenance of CSCs, indicates that HDAC11 is a potential target to combat NSCLC. We find that HDAC11 suppresses Sox2 expression through the mediation of Gli1, the Hedgehog pathway transcription factor. In addition, we have used highly selective HDAC11 inhibitors that not only target stemness and adherence independent growth of lung cancer cells but these inhibitors could also efficiently ablate the growth of drug-insensitive stem-like cells as well as therapy resistant lung cancer cells. These inhibitors were found to be efficacious even in presence of cancer associated fibroblasts which have been shown to contribute in therapy resistance. Our study presents a novel role of HDAC11 in lung adenocarcinoma progression and the potential use of highly selective inhibitors of HDAC11 in combating lung cancers.
Collapse
Affiliation(s)
- Namrata Bora-Singhal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Durairaj Mohankumar
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Biswarup Saha
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Christelle M Colin
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Jennifer Y Lee
- FORMA Therapeutics, 500 Arsenal St, Suite 100, Watertown, MA, 02472, USA
| | - Matthew W Martin
- FORMA Therapeutics, 500 Arsenal St, Suite 100, Watertown, MA, 02472, USA
| | - Xiaozhang Zheng
- FORMA Therapeutics, 500 Arsenal St, Suite 100, Watertown, MA, 02472, USA
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Srikumar Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
8
|
LncRNA RP11-19E11 is an E2F1 target required for proliferation and survival of basal breast cancer. NPJ Breast Cancer 2020; 6:1. [PMID: 31934613 PMCID: PMC6944689 DOI: 10.1038/s41523-019-0144-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in the regulation of breast cancer initiation and progression. LncRNAs are differentially expressed in breast cancer subtypes. Basal-like breast cancers are generally poorly differentiated tumors, are enriched in embryonic stem cell signatures, lack expression of estrogen receptor, progesterone receptor, and HER2 (triple-negative breast cancer), and show activation of proliferation-associated factors. We hypothesized that lncRNAs are key regulators of basal breast cancers. Using The Cancer Genome Atlas, we identified lncRNAs that are overexpressed in basal tumors compared to other breast cancer subtypes and expressed in at least 10% of patients. Remarkably, we identified lncRNAs whose expression correlated with patient prognosis. We then evaluated the function of a subset of lncRNA candidates in the oncogenic process in vitro. Here, we report the identification and characterization of the chromatin-associated lncRNA, RP11-19E11.1, which is upregulated in 40% of basal primary breast cancers. Gene set enrichment analysis in primary tumors and in cell lines uncovered a correlation between RP11-19E11.1 expression level and the E2F oncogenic pathway. We show that this lncRNA is chromatin-associated and an E2F1 target, and its expression is necessary for cancer cell proliferation and survival. Finally, we used lncRNA expression levels as a tool for drug discovery in vitro, identifying protein kinase C (PKC) as a potential therapeutic target for a subset of basal-like breast cancers. Our findings suggest that lncRNA overexpression is clinically relevant. Understanding deregulated lncRNA expression in basal-like breast cancer may lead to potential prognostic and therapeutic applications.
Collapse
|
9
|
Wallace AS, Supnick HT, Bunaciu RP, Yen A. RRD-251 enhances all-trans retinoic acid (RA)-induced differentiation of HL-60 myeloblastic leukemia cells. Oncotarget 2018; 7:46401-46418. [PMID: 27331409 PMCID: PMC5216806 DOI: 10.18632/oncotarget.10136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/03/2016] [Indexed: 12/28/2022] Open
Abstract
All-trans-retinoic acid (RA) is known to induce terminal granulocytic differentiation and cell cycle arrest of HL-60 cells. Responding to an RA-induced cytosolic signaling machine, c-Raf translocates to the nucleus, providing propulsion for RA-induced differentiation. This novel mechanism is not understood, but presumably reflects c-Raf binding with nuclear gene regulatory proteins. RRD-251 is a small molecule that prevents the interaction of c-Raf and RB, the retinoblastoma tumor suppressor protein. The involvement of c-Raf and RB in RA-induced differentiation motivates interest in the effects of combined RA and RRD-251 treatment on leukemic cell differentiation. We demonstrate that RRD-251 enhances RA-induced differentiation. Mechanistically, we find that nuclear translocated c-Raf associates with pS608 RB. RA causes loss of pS608 RB, where cells with hypophosphorylated S608 RB are G0/G1 restricted. Corroborating the pS608 RB hypophosphorylation, RB sequestration of E2F increased with concomitant loss of cdc6 expression, which is known to be driven by E2F. Hypophosphorylation of S608 RB releases c-Raf from RB sequestration to bind other nuclear targets. Release of c-Raf from RB sequestration results in enhanced association with GSK-3 which is phosphorylated at its S21/9 inhibitory sites. c-Raf binding to GSK-3 is associated with dissociation of GSK-3 and RARα, thereby relieving RARα of GSK-3 inhibition. RRD-251 amplifies each of these RA-induced events. Consistent with the posited enhancement of RARα transcriptional activity by RRD-251, RRD-251 increases the RARE-driven CD38 expression per cell. The RA/c-Raf/GSK-3/RARα axis emerges as a novel differentiation regulatory mechanism susceptible to RRD-251, suggesting enhancing RA-effects with RRD-251 in therapy.
Collapse
Affiliation(s)
- Aaron S Wallace
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Harrison T Supnick
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Rodica P Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
10
|
Kabanov IN, Mavropulo-Stolyarenko GR, Tishchenko LI. Changes in Gene Expression and DNA Methylation of Evolutionarily Young AluY Repeats during Apoptosis of Human K562 Erythro-Myeloblastic Leukemia Cells. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Combined targeting of Raf and Mek synergistically inhibits tumorigenesis in triple negative breast cancer model systems. Oncotarget 2017; 8:80804-80819. [PMID: 29113345 PMCID: PMC5655240 DOI: 10.18632/oncotarget.20534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
Aberrant Ras-MAPK signaling from receptor tyrosine kinases (RTKs), including epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor-2 (HER2), is a hallmark of triple negative breast cancer (TNBC); thus providing rationale for targeting the Ras-MAPK pathway. Components of this EGFR/HER2-Ras-Raf-Mek-Erk pathway were co-targeted in the MDA-MB-231 and MDA-MB-468 human TNBC cell lines, and in vitro effects on signaling and cytotoxicity, as well as in vivo effects on xenograft tumor growth and metastasis were assessed. The dual EGFR/HER2 inhibitor lapatinib (LPN) displayed greater cytotoxic potency and MAPK signaling inhibition than the EGFR inhibitor erlotinib, suggesting both EGFR and HER2 contribute to MAPK signaling in this TNBC model. The Raf inhibitor sorafenib (SFN) or the Mek inhibitor U0126 suppressed MAPK signaling to a greater extent than LPN; which correlated with greater cytotoxic potency of SFN, but not U0126. However, U0126 potentiated the cytotoxic efficacy of LPN and SFN in an additive and synergistic manner, respectively. This in-series Raf-Mek co-targeting synergy was recapitulated in orthotopic mouse xenografts, where SFN and the Mek inhibitor selumitinib (AZD6244) inhibited primary tumor growth and pulmonary metastasis. Raf and Mek co-inhibition exhibits synergy in TNBC models and represent a promising combination therapy for this aggressive breast cancer type.
Collapse
|
12
|
Benharroch D, Prinsloo I, Gopas J, Lazarev I. Lymphangiogenesis in Classical Hodgkin Lymphoma - Preliminary Study with Clinicopathological Correlations. J Cancer 2016; 7:2117-2123. [PMID: 27877228 PMCID: PMC5118676 DOI: 10.7150/jca.16389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/14/2016] [Indexed: 11/25/2022] Open
Abstract
A role for lymphangiogenesis in metastatic breast and prostate cancers has been suggested recently. The relevance of lymphangiogenesis in cancer as a rule, and more specifically in classical Hodgkin lymphoma, is poorly understood in comparison with that of angiogenesis. In a preliminary (pilot) study we have investigated the role of lymphatic vessels growth in 19 cases of classical Hodgkin lymphoma stained with the D2-40 (podoplanin) antibody. In each case, three lymphatic vessels hot spots were scrutinized twice. Of the 57 hot spots thus identified, we chose 15 at random for photography, microvessel counting and image analysis. We determined the mean perimeter, surface area, major axis length and complexity factor for each hot spot and correlated them with clinical and biological features of classical Hodgkin lymphoma. No correlations were found with clinical features. No associations were noted with the standard immuno-markers of classical Hodgkin lymphoma. However, significant inverse correlations were shown with pRb, BAX and IκB-α expression. The mean lymphatic major axis length was inversely correlated with the complexity factor. Last, we carried out an additional clinicopathological correlation of the expression of pRb, BAX and IκB-α in a cohort of classical Hodgkin lymphoma patients previously published.
Collapse
Affiliation(s)
- Daniel Benharroch
- Departments of Pathology, Soroka University Medical Center, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva
| | - Isebrand Prinsloo
- Departments of Pathology, Soroka University Medical Center, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva
| | - Jacob Gopas
- Departments of Oncology, Soroka University Medical Center, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva;; Department of Immunology, Microbiology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Irena Lazarev
- Departments of Oncology, Soroka University Medical Center, and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva
| |
Collapse
|
13
|
Bender RHF, Haigis KM, Gutmann DH. Activated k-ras, but not h-ras or N-ras, regulates brain neural stem cell proliferation in a raf/rb-dependent manner. Stem Cells 2016; 33:1998-2010. [PMID: 25788415 DOI: 10.1002/stem.1990] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 02/08/2015] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
Neural stem cells (NSCs) give rise to all the major cell types in the brain, including neurons, oligodendrocytes, and astrocytes. However, the intracellular signaling pathways that govern brain NSC proliferation and differentiation have been incompletely characterized to date. Since some neurodevelopmental brain disorders (Costello syndrome and Noonan syndrome) are caused by germline activating mutations in the RAS genes, Ras small GTPases are likely critical regulators of brain NSC function. In the mammalian brain, Ras exists as three distinct molecules (H-Ras, K-Ras, and N-Ras), each with different subcellular localizations, downstream signaling effectors, and biological effects. Leveraging a novel series of conditional-activated Ras molecule-expressing genetically engineered mouse strains, we demonstrate that activated K-Ras, but not H-Ras or N-Ras, expression increases brain NSC growth in a Raf-dependent, but Mek-independent, manner. Moreover, we show that activated K-Ras regulation of brain NSC proliferation requires Raf binding and suppression of retinoblastoma (Rb) function. Collectively, these observations establish tissue-specific differences in activated Ras molecule regulation of brain cell growth that operate through a noncanonical mechanism.
Collapse
Affiliation(s)
- R Hugh F Bender
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kevin M Haigis
- Department of Medicine, Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis. Nat Commun 2015; 6:10072. [PMID: 26656453 PMCID: PMC4682058 DOI: 10.1038/ncomms10072] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022] Open
Abstract
TANK Binding Kinase 1 (TBK1) is a non-canonical IκB kinase that contributes to KRAS-driven lung cancer. Here we report that TBK1 plays essential roles in mammalian cell division. Specifically, levels of active phospho-TBK1 increase during mitosis and localize to centrosomes, mitotic spindles and midbody, and selective inhibition or silencing of TBK1 triggers defects in spindle assembly and prevents mitotic progression. TBK1 binds to the centrosomal protein CEP170 and to the mitotic apparatus protein NuMA, and both CEP170 and NuMA are TBK1 substrates. Further, TBK1 is necessary for CEP170 centrosomal localization and binding to the microtubule depolymerase Kif2b, and for NuMA binding to dynein. Finally, selective disruption of the TBK1–CEP170 complex augments microtubule stability and triggers defects in mitosis, suggesting that TBK1 functions as a mitotic kinase necessary for microtubule dynamics and mitosis. TANK binding kinase 1 (TBK1) is a non-canonical IκB kinase that regulates immunity via NF-κB. Here Pillai et al. show that TBK1 localizes to centrosomes during mitosis, and regulates microtubule dynamics and spindle formation by phosphorylating the centrosomal protein CEP170 and the mitotic apparatus protein NuMa.
Collapse
|
15
|
Gil-Ranedo J, Hernando E, Riolobos L, Domínguez C, Kann M, Almendral JM. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly. PLoS Pathog 2015; 11:e1004920. [PMID: 26067441 PMCID: PMC4466232 DOI: 10.1371/journal.ppat.1004920] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/28/2015] [Indexed: 12/02/2022] Open
Abstract
It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life cycles. This junction may determine the characteristic parvovirus tropism for proliferative and cancer cells, and its disturbance could critically contribute to persistence in host tissues. Cellular and viral life cycles are connected through multiple, though poorly understood, mechanisms. Parvoviruses infect humans and a broad spectrum of animals, causing a variety of diseases, but they are also used in experimental cancer therapy and serve as vectors for gene therapy. Parvoviruses can only multiply in proliferating cells providing essential replicative and transcriptional functions. However, it is unknown whether the cell cycle regulatory machinery may also control parvovirus assembly. We found that the nuclear translocation of parvovirus MVM capsid subunits (VPs) was highly dependent on physiological cell cycle regulations in mammalian fibroblasts, including: quiescence, progression through G1/S boundary, DNA synthesis, and cell to cell contacts. VPs nuclear translocation was significantly more sensitive to cell cycle controls than viral genome replication and gene expression. The results support nuclear capsid assembly as the major driving process of parvoviruses biological hallmarks, such as pathogenesis in proliferative tissues and tropism for cancer cells. In addition, disturbing the tight coupling of parvovirus assembly with the cell cycle may determine viral persistence in quiescent and post-mitotic host tissues. These findings may contribute to understand cellular regulations on the assembly of other nuclear eukaryotic viruses, and to develop cell cycle-based avenues for antiviral therapy.
Collapse
Affiliation(s)
- Jon Gil-Ranedo
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Eva Hernando
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Laura Riolobos
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Carlos Domínguez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
| | - Michael Kann
- University of Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- Centre Hospitalier Universitaire de Bordeaux, Service de Virologie, Bordeaux, France
| | - José M. Almendral
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
16
|
Schaal C, Pillai S, Chellappan SP. The Rb-E2F transcriptional regulatory pathway in tumor angiogenesis and metastasis. Adv Cancer Res 2015; 121:147-182. [PMID: 24889531 DOI: 10.1016/b978-0-12-800249-0.00004-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The retinoblastoma tumor suppressor protein Rb plays a major role in regulating G1/S transition and is a critical regulator of cell proliferation. Rb protein exerts its growth regulatory properties mainly by physically interacting with the transcriptionally active members of the E2F transcription factor family, especially E2Fs 1, 2, and 3. Given its critical role in regulating cell proliferation, it is not surprising that Rb is inactivated in almost all tumors, either through the mutation of Rb gene itself or through the mutations of its upstream regulators including K-Ras and INK4. Recent studies have revealed a significant role for Rb and its downstream effectors, especially E2Fs, in regulating various aspects of tumor progression, angiogenesis, and metastasis. Thus, components of the Rb-E2F pathway have been shown to regulate the expression of genes involved in angiogenesis, including VEGF and VEGFR, genes involved in epithelial-mesenchymal transition including E-cadherin and ZEB proteins, and genes involved in invasion and migration like matrix metalloproteinases. Rb has also been shown to play a major role in the functioning of normal and cancer stem cells; further, Rb and E2F appear to play a regulatory role in the energy metabolism of cancer cells. These findings raise the possibility that mutational events that initiate tumorigenesis by inducing uncontrolled cell proliferation might also contribute to the progression and metastasis of cancers through the mediation of the Rb-E2F transcriptional regulatory pathway. This review highlights these recent studies on tumor promoting functions of the Rb-E2F pathway.
Collapse
Affiliation(s)
- Courtney Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Smitha Pillai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.
| |
Collapse
|
17
|
Pillai S, Dasgupta P, Chellappan SP. Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo. Methods Mol Biol 2015; 1288:429-46. [PMID: 25827895 DOI: 10.1007/978-1-4939-2474-5_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies in the past decade have shown that differential gene expression depends not only on the binding of specific transcription factors to discrete promoter elements but also on the epigenetic modification of the DNA as well as histones associated with the promoter. While techniques like electrophoretic mobility shift assays could detect and characterize the binding of specific transcription factors present in cell lysates to DNA sequences in in vitro binding conditions, they were not effective in assessing the binding in intact cells. Development of chromatin immunoprecipitation technique in the past decade enabled the analysis of the association of regulatory molecules with specific promoters or changes in histone modifications in vivo, without overexpressing any component. ChIP assays can provide a snapshot of how a regulatory transcription factor affects the expression of a single gene, or a variety of genes at the same time. Availability of high quality antibodies that recognizes histones modified in a specific fashion further expanded the use of ChIP assays to analyze even minute changes in histone modification and nucleosomes structure. This chapter outlines the general strategies and protocols used to carry out ChIP assays to study the differential recruitment of transcription factors as well as histone modifications.
Collapse
Affiliation(s)
- Smitha Pillai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | | | | |
Collapse
|
18
|
Stewart JE, Ma X, Megison M, Nabers H, Cance WG, Kurenova EV, Beierle EA. Inhibition of FAK and VEGFR-3 binding decreases tumorigenicity in neuroblastoma. Mol Carcinog 2015; 54:9-23. [PMID: 23868727 PMCID: PMC4370318 DOI: 10.1002/mc.22070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 06/01/2013] [Accepted: 06/17/2013] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumor development and progression. Vascular endothelial growth factor receptor-3 (VEGFR-3), another tyrosine kinase, has also been found to be important in the development of many human tumors including neuroblastoma. Recent reports have found that FAK and VEGFR-3 interact, and we have previously shown that both of these kinases interact in neuroblastoma. We have hypothesized that interruption of the FAK-VEGFR-3 interaction would lead to decreased neuroblastoma cell survival. In the current study, we examined the effects of a small molecule, chloropyramine hydrochloride (C4), designed to disrupt the FAK-VEGFR-3 interaction, upon cellular attachment, migration, and survival in two human neuroblastoma cell lines. We also utilized a murine xenograft model to study the impact of C4 upon tumor growth. In these studies, we showed that disruption of the FAK-VEGFR-3 interaction led to decreased cellular attachment, migration, and survival in vitro. In addition, treatment of murine xenografts with chloropyramine hydrochloride decreased neuroblastoma xenograft growth. Further, this molecule acted synergistically with standard chemotherapy to further decrease neuroblastoma xenograft growth. The findings from this current study help to further our understanding of the regulation of neuroblastoma tumorigenesis, and may provide novel therapeutic strategies and targets for neuroblastoma and other solid tumors of childhood.
Collapse
Affiliation(s)
- Jerry E Stewart
- University of Alabama, Birmingham, 1600 7th Ave. S., Lowder Building, Room 300, Birmingham, Alabama
| | | | | | | | | | | | | |
Collapse
|
19
|
Milewska M, Kolch W. Mig-6 participates in the regulation of cell senescence and retinoblastoma protein phosphorylation. Cell Signal 2014; 26:1870-7. [PMID: 24815188 DOI: 10.1016/j.cellsig.2014.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/13/2022]
Abstract
Mitogen-inducible gene-6 (Mig-6) is a cytosolic multiadaptor protein that is best known for its role as a negative feedback regulator of epidermal growth factor receptor (EGFR) mediated signalling. Alternative roles of Mig-6 are becoming increasingly recognised. Consistently with this, Mig-6 was demonstrated to be involved in a broad spectrum of cellular events including tumour suppression which may include the induction of cellular senescence. Here, we investigated the mechanisms of Mig-6 induced premature cell senescence. Endogenous Mig-6 is poorly expressed in young fibroblasts, whilst its expression rises in cells presenting with typical features of senescence. Overexpression of Mig-6 is sufficient to trigger premature cellular senescence of early passage diploid lung fibroblasts (WI-38). Interestingly, Mig-6 overexpression reduced retinoblastoma protein (pRb) phosphorylation at the inactivating Ser249/Thr252 sites. We also found that phosphorylation of these sites in pRb is increased in the presence of the B-Raf V600E oncogenic mutation. We further show that Mig-6 overexpression reduces B-Raf V600E mediated pRb inactivation and preserves pRb function.
Collapse
Affiliation(s)
- Malgorzata Milewska
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
20
|
Accardo A, Aloj L, Aurilio M, Morelli G, Tesauro D. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int J Nanomedicine 2014; 9:1537-57. [PMID: 24741304 PMCID: PMC3970945 DOI: 10.2147/ijn.s53593] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Active targeting by means of drug encapsulated nanoparticles decorated with targeting bioactive moieties represents the next frontier in drug delivery; it reduces drug side effects and increases the therapeutic index. Peptides, based on their chemical and biological properties, could have a prevalent role to direct drug encapsulated nanoparticles, such as liposomes, micelles, or hard nanoparticles, toward the tumor tissues. A considerable number of molecular targets for peptides are either exclusively expressed or overexpressed on both cancer vasculature and cancer cells. They can be classified into three wide categories: integrins; growth factor receptors (GFRs); and G-protein coupled receptors (GPCRs). Therapeutic agents based on nanovectors decorated with peptides targeting membrane receptors belonging to the GPCR family overexpressed by cancer cells are reviewed in this article. The most studied targeting membrane receptors are considered: somatostatin receptors; cholecystokinin receptors; receptors associated with the Bombesin like peptides family; luteinizing hormone-releasing hormone receptors; and neurotensin receptors. Nanovectors of different sizes and shapes (micelles, liposomes, or hard nanoparticles) loaded with doxorubicin or other cytotoxic drugs and externally functionalized with natural or synthetic peptides are able to target the overexpressed receptors and are described based on their formulation and in vitro and in vivo behaviors.
Collapse
Affiliation(s)
- Antonella Accardo
- Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Department of Pharmacy and Istituto di Biostrutture e Bioimmagini -Consiglio Nazionale delle Ricerche (IBB CNR), University of Naples "Federico II", Napoli, Italy
| | - Luigi Aloj
- Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "G. Pascale", Napoli, Italy
| | - Michela Aurilio
- Department of Nuclear Medicine, Istituto Nazionale per lo Studio e la Cura dei Tumori, Fondazione "G. Pascale", Napoli, Italy
| | - Giancarlo Morelli
- Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Department of Pharmacy and Istituto di Biostrutture e Bioimmagini -Consiglio Nazionale delle Ricerche (IBB CNR), University of Naples "Federico II", Napoli, Italy
| | - Diego Tesauro
- Centro interuniversitario di Ricerca sui Peptidi Bioattivi (CIRPeB), Department of Pharmacy and Istituto di Biostrutture e Bioimmagini -Consiglio Nazionale delle Ricerche (IBB CNR), University of Naples "Federico II", Napoli, Italy
| |
Collapse
|
21
|
Flavopiridol synergizes with sorafenib to induce cytotoxicity and potentiate antitumorigenic activity in EGFR/HER-2 and mutant RAS/RAF breast cancer model systems. Neoplasia 2014; 15:939-51. [PMID: 23908594 DOI: 10.1593/neo.13804] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/27/2013] [Accepted: 05/31/2013] [Indexed: 12/20/2022] Open
Abstract
Oncogenic receptor tyrosine kinase (RTK) signaling through the Ras-Raf-Mek-Erk (Ras-MAPK) pathway is implicated in a wide array of carcinomas, including those of the breast. The cyclin-dependent kinases (CDKs) are implicated in regulating proliferative and survival signaling downstream of this pathway. Here, we show that CDK inhibitors exhibit an order of magnitude greater cytotoxic potency than a suite of inhibitors targeting RTK and Ras-MAPK signaling in cell lines representative of clinically recognized breast cancer (BC) subtypes. Drug combination studies show that the pan-CDK inhibitor, flavopiridol (FPD), synergistically potentiated cytotoxicity induced by the Raf inhibitor, sorafenib (SFN). This synergy was most pronounced at sub-EC50 SFN concentrations in MDA-MB-231 (KRAS-G13D and BRAF-G464V mutations), MDA-MB-468 [epidermal growth factor receptor (EGFR) overexpression], and SKBR3 [ErbB2/EGFR2 (HER-2) overexpression] cells but not in hormone-dependent MCF-7 and T47D cells. Potentiation of SFN cytotoxicity by FPD correlated with enhanced apoptosis, suppression of retinoblastoma (Rb) signaling, and reduced Mcl-1 expression. SFN and FPD were also tested in an MDA-MB-231 mammary fat pad engraftment model of tumorigenesis. Mice treated with both drugs exhibited reduced primary tumor growth rates and metastatic tumor load in the lungs compared to treatment with either drug alone, and this correlated with greater reductions in Rb signaling and Mcl-1 expression in resected tumors. These findings support the development of CDK and Raf co-targeting strategies in EGFR/HER-2-overexpressing or RAS/RAF mutant BCs.
Collapse
|
22
|
Mayank AK, Sharma S, Deshwal RK, Lal SK. LIMD1 antagonizes E2F1 activity and cell cycle progression by enhancing Rb function in cancer cells. Cell Biol Int 2014; 38:809-17. [DOI: 10.1002/cbin.10266] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/30/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Adarsh K. Mayank
- School of Life Sciences; Singhania University; Pacheri Beri Rajasthan India
| | - Shipra Sharma
- Virology Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg New Delhi India
| | - Ravi K Deshwal
- Apex Institute of Management and Science; Jaipur Rajasthan
| | - Sunil K. Lal
- Virology Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg New Delhi India
| |
Collapse
|
23
|
Disrupting the interaction between retinoblastoma protein and Raf-1 leads to defects in progenitor cell proliferation and survival during early inner ear development. PLoS One 2013; 8:e83726. [PMID: 24391814 PMCID: PMC3877085 DOI: 10.1371/journal.pone.0083726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/07/2013] [Indexed: 11/19/2022] Open
Abstract
The retinoblastoma protein (pRb) is required for cell-cycle exit of embryonic mammalian hair cells but is not required for hair cell fate determination and early differentiation, and this provides a strategy for hair cell regeneration by manipulating the pRb pathway. To reveal the mechanism of pRb functional modification in the inner ear, we compared the effects of attenuated pRb phosphorylation by an inhibitor of the Mitogen-Activated Protein (MAP) kinase pathway and an inhibitor of the Rb-Raf-1 interaction on cultured chicken otocysts. We demonstrated that the activity of pRb is correlated with its phosphorylation state, which is regulated by a newly established cell cycle-independent pathway mediated by the physical interaction between Raf-1 and pRb. The phosphorylation of pRb plays an important role during the early stage of inner ear development, and attenuated phosphorylation in progenitor cells leads to cell cycle arrest and increased apoptosis along with a global down-regulation of the genes involved in cell cycle progression. Our study provides novel routes to modulate pRb function for hair cell regeneration.
Collapse
|
24
|
Molinelli EJ, Korkut A, Wang W, Miller ML, Gauthier NP, Jing X, Kaushik P, He Q, Mills G, Solit DB, Pratilas CA, Weigt M, Braunstein A, Pagnani A, Zecchina R, Sander C. Perturbation biology: inferring signaling networks in cellular systems. PLoS Comput Biol 2013; 9:e1003290. [PMID: 24367245 PMCID: PMC3868523 DOI: 10.1371/journal.pcbi.1003290] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 08/26/2013] [Indexed: 12/16/2022] Open
Abstract
We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology. Drugs that target specific effects of signaling proteins are promising agents for treating cancer. One of the many obstacles facing optimal drug design is inadequate quantitative understanding of the coordinated interactions between signaling proteins. De novo model inference of network or pathway models refers to the algorithmic construction of mathematical predictive models from experimental data without dependence on prior knowledge. De novo inference is difficult because of the prohibitively large number of possible sets of interactions that may or may not be consistent with observations. Our new method overcomes this difficulty by adapting a method from statistical physics, called Belief Propagation, which first calculates probabilistically the most likely interactions in the vast space of all possible solutions, then derives a set of individual, highly probable solutions in the form of executable models. In this paper, we test this method on artificial data and then apply it to model signaling pathways in a BRAF-mutant melanoma cancer cell line based on a large set of rich output measurements from a systematic set of perturbation experiments using drug combinations. Our results are in agreement with established biological knowledge, predict novel interactions, and predict efficacious drug targets that are specific to the experimental cell line and potentially to related tumors. The method has the potential, with sufficient systematic perturbation data, to model, de novo and quantitatively, the effects of hundreds of proteins on cellular responses, on a scale that is currently unreachable in diverse areas of cell biology. In a disease context, the method is applicable to the computational design of novel combination drug treatments.
Collapse
Affiliation(s)
- Evan J. Molinelli
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Tri-Institutional Program for Computational Biology and Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Anil Korkut
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Weiqing Wang
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Martin L. Miller
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Nicholas P. Gauthier
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Xiaohong Jing
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Poorvi Kaushik
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Tri-Institutional Program for Computational Biology and Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Qin He
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Gordon Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - David B. Solit
- Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Christine A. Pratilas
- Program in Molecular Pharmacology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Martin Weigt
- Laboratoire de Génomique des Microorganismes, Université Pierre et Marie Curie, Paris, France
| | - Alfredo Braunstein
- Politecnico di Torino and Human Genetics Foundation, HuGeF, Torino, Italy
| | - Andrea Pagnani
- Politecnico di Torino and Human Genetics Foundation, HuGeF, Torino, Italy
| | - Riccardo Zecchina
- Politecnico di Torino and Human Genetics Foundation, HuGeF, Torino, Italy
| | - Chris Sander
- Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Treviño JG, Verma M, Singh S, Pillai S, Zhang D, Pernazza D, Sebti SM, Lawrence NJ, Centeno BA, Chellappan SP. Selective disruption of rb-raf-1 kinase interaction inhibits pancreatic adenocarcinoma growth irrespective of gemcitabine sensitivity. Mol Cancer Ther 2013; 12:2722-34. [PMID: 24107447 DOI: 10.1158/1535-7163.mct-12-0719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inactivation of the retinoblastoma (Rb) tumor suppressor protein is widespread in human cancers. Inactivation of Rb is thought to be initiated by association with Raf-1 (C-Raf) kinase, and here we determined how RRD-251, a disruptor of the Rb-Raf-1 interaction, affects pancreatic tumor progression. Assessment of phospho-Rb levels in resected human pancreatic tumor specimens by immunohistochemistry (n = 95) showed that increased Rb phosphorylation correlated with increasing grade of resected human pancreatic adenocarcinomas (P = 0.0272), which correlated with reduced overall patient survival (P = 0.0186). To define the antitumor effects of RRD-251 (50 μmol/L), cell-cycle analyses, senescence, cell viability, cell migration, anchorage-independent growth, angiogenic tubule formation and invasion assays were conducted on gemcitabine-sensitive and -resistant pancreatic cancer cells. RRD-251 prevented S-phase entry, induced senescence and apoptosis, and inhibited anchorage-independent growth and invasion (P < 0.01). Drug efficacy on subcutaneous and orthotopic xenograft models was tested by intraperitoneal injections of RRD-251 (50 mg/kg) alone or in combination with gemcitabine (250 mg/kg). RRD-251 significantly reduced tumor growth in vivo accompanied by reduced Rb phosphorylation and lymph node and liver metastasis (P < 0.01). Combination of RRD-251 with gemcitabine showed cooperative effect on tumor growth (P < 0.01). In conclusion, disruption of the Rb-Raf-1 interaction significantly reduces the malignant properties of pancreatic cancer cells irrespective of their gemcitabine sensitivity. Selective targeting of Rb-Raf-1 interaction might be a promising strategy targeting pancreatic cancer.
Collapse
Affiliation(s)
- José G Treviño
- Corresponding Author: S.P. Chellappan, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Macdonald JI, Dick FA. Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer 2013; 3:619-33. [PMID: 23634251 DOI: 10.1177/1947601912473305] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (pRB) plays an integral role in G1-S checkpoint control and consequently is a frequent target for inactivation in cancer. The RB protein can function as an adaptor, nucleating components such as E2Fs and chromatin regulating enzymes into the same complex. For this reason, pRB's regulation by posttranslational modifications is thought to be critical. pRB is phosphorylated by a number of different kinases such as cyclin dependent kinases (Cdks), p38 MAP kinase, Chk1/2, Abl, and Aurora b. Although phosphorylation of pRB by Cdks has been extensively studied, activities regulated through phosphorylation by other kinases are just starting to be understood. As well as being phosphorylated, pRB is acetylated, methylated, ubiquitylated, and SUMOylated. Acetylation, methylation, and SUMOylation play roles in pRB mediated gene silencing. Ubiquitinylation of pRB promotes its degradation and may be used to regulate apoptosis. Recent proteomic data have revealed that pRB is posttranslationally modified to a much greater extent than previously thought. This new information suggests that many unknown pathways affect pRB regulation. This review focuses on posttranslational modifications of pRB and how they influence its function. The final part of the review summarizes new phosphorylation sites from accumulated proteomic data and discusses the possibilities that might arise from this data.
Collapse
Affiliation(s)
- James I Macdonald
- Western University, London Regional Cancer Program, Department of Biochemistry, London, ON, Canada
| | | |
Collapse
|
27
|
Chaput D, Kirouac LH, Bell-Temin H, Stevens SM, Padmanabhan J. SILAC-based proteomic analysis to investigate the impact of amyloid precursor protein expression in neuronal-like B103 cells. Electrophoresis 2013; 33:3728-37. [PMID: 23161580 DOI: 10.1002/elps.201200251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 11/05/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. Amyloid plaque formation through aggregation of the amyloid beta peptide derived from amyloid precursor protein (APP) is considered one of the hallmark processes leading to AD pathology; however, the precise role of APP in plaque formation and AD pathogenesis is yet to be determined. Using stable isotope labeling by amino acids in cell culture (SILAC) and MS, protein expression profiles of APP null, rat neuronal-like B103 cells were compared to B103-695 cells that express the APP isoform, APP-695. A total of 2979 unique protein groups were identified among three biological replicates and significant protein expression changes were identified in a total of 102 nonredundant proteins. Some of the top biological functions associated with the differentially expressed proteins identified include cellular assembly, organization and morphology, cell cycle, lipid metabolism, protein folding, and PTMs. We report several novel biological pathways influenced by APP-695 expression in neuronal-like cells and provide additional framework for investigating altered molecular mechanisms associated with APP expression and processing and contribution to AD pathology.
Collapse
Affiliation(s)
- Dale Chaput
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
28
|
D’Amici S, Ceccarelli S, Vescarelli E, Romano F, Frati L, Marchese C, Angeloni A. TNFα modulates Fibroblast Growth Factor Receptor 2 gene expression through the pRB/E2F1 pathway: identification of a non-canonical E2F binding motif. PLoS One 2013; 8:e61491. [PMID: 23613863 PMCID: PMC3629046 DOI: 10.1371/journal.pone.0061491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/08/2013] [Indexed: 11/18/2022] Open
Abstract
Interactions between epithelium and mesenchyme during wound healing are not fully understood, but Fibroblast Growth Factors (FGFs) and their receptors FGFRs are recognized as key elements. FGFR2 gene encodes for two splicing transcript variants, FGFR2-IIIb or Keratinocyte Growth Factor Receptor (KGFR) and FGFR2-IIIc, which differ for tissue localization and ligand specificity. Proinflammatory cytokines play an essential role in the regulation of epithelial-mesenchymal interactions, and have been indicated to stimulate FGFs production. Here we demonstrated that upregulation of FGFR2 mRNA and protein expression is induced by the proinflammatory cytokines Tumor Necrosis Factor-α, Interleukin-1β and Interleukin 2. Furthermore, we found that TNFα determines FGFR2 transcriptional induction through activation of pRb, mediated by Raf and/or p38 pathways, and subsequent release of the transcription factor E2F1. Experiments based on FGFR2 promoter serial deletions and site-directed mutagenesis allowed us to identify a minimal responsive element that retains the capacity to be activated by E2F1. Computational analysis indicated that this element is a non-canonical E2F responsive motif. Thus far, the molecular mechanisms of FGFR2 upregulation during wound healing or in pathological events are not known. Our data suggest that FGFR2 expression can be modulated by local recruitment of inflammatory cytokines. Furthermore, since alterations in FGFR2 expression have been linked to the pathogenesis of certain human cancers, these findings could also provide elements for diagnosis and potential targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Sirio D’Amici
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Enrica Vescarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ferdinando Romano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Luigi Frati
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Angeloni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- * E-mail:
| |
Collapse
|
29
|
Kasza A. IL-1 and EGF regulate expression of genes important in inflammation and cancer. Cytokine 2013; 62:22-33. [PMID: 23481102 DOI: 10.1016/j.cyto.2013.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/09/2013] [Accepted: 02/05/2013] [Indexed: 02/08/2023]
Abstract
This review focuses on the mechanisms by which the expression of specific genes is regulated by two proteins that are important in inflammation and cancer, namely the pro-inflammatory cytokine interleukin (IL)-1β and epidermal growth factor (EGF). In the review the receptors that recognize factors that cause inflammation are described with main focus on the receptors associated with activation of IL-1β. The function of IL-1β and pathways leading to activation of transcription factors, particularly NFκB and Elk-1 are analyzed. Then the mechanisms of EGF action, with particular emphasis of the activation of Elk-1 are illustrated. The link between aberrant signaling of EGF receptor family members and cancer development is explained. The relationship between inflammation and tumorigenesis is discussed.
Collapse
Affiliation(s)
- Aneta Kasza
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
30
|
Bakker WJ, Weijts BGMW, Westendorp B, de Bruin A. HIF proteins connect the RB-E2F factors to angiogenesis. Transcription 2013; 4:62-6. [PMID: 23412359 PMCID: PMC3646055 DOI: 10.4161/trns.23680] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recently, we showed that E2F7 and E2F8 (E2F7/8) are critical regulators of angiogenesis through transcriptional control of VEGFA in cooperation with HIF.1 Here we investigate the existence of other novel putative angiogenic E2F7/8-HIF targets, and discuss the role of the RB-E2F pathway in regulating angiogenesis during embryonic and tumor development.
Collapse
Affiliation(s)
- Walbert J Bakker
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
31
|
Thangavel C, Boopathi E, Ertel A, Lim M, Addya S, Fortina P, Witkiewicz AK, Knudsen ES. Regulation of miR106b cluster through the RB pathway: mechanism and functional targets. Cell Cycle 2012; 12:98-111. [PMID: 23255112 DOI: 10.4161/cc.23029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The RB pathway plays a critical role in proliferation control that is commonly subverted in tumor development. However, restoration of RB pathway function can be elicited in many tumor cells by the inhibition of CDK4/6 activity that leads to dephosphorylation of RB and subsequent repression of E2F-mediated transcription. In this context, active RB/E2F complexes inhibit the expression of a critical program of coding genes that promote cell cycle progression. However, the non-coding RNA target genes downstream from RB that could be relevant for tumor biology remain obscure. Here, miRNA gene expression profiling identified the miR106b cluster as being efficiently repressed with CDK4/6 inhibition in an E2F and RB-dependent manner. Importantly, the miR106B-cluster is intragenic of MCM7, and through a series of functional studies, the basis of MCM7 regulation and concordant expression of the miRNA species within the 106b cluster was determined. Importantly, RB-mediated repression of the 106b cluster enhances the transcript levels of p21Cip1 and PTEN. These data provide a mechanistic basis for cross-talk between the RB pathway and p21 and PTEN through the regulation of the MCM7/miR106b locus.
Collapse
|
32
|
Pillai S, Szekeres K, Lawrence NJ, Chellappan SP, Blanck G. Regulation of interlocking gene regulatory network subcircuits by a small molecule inhibitor of retinoblastoma protein (RB) phosphorylation: cancer cell expression of HLA-DR. Gene 2012; 512:403-7. [PMID: 23041127 DOI: 10.1016/j.gene.2012.09.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/28/2012] [Accepted: 09/23/2012] [Indexed: 11/17/2022]
Abstract
The induction of the major histocompatibility (MHC), antigen-presenting class II molecules by interferon-gamma, in solid tumor cells, requires the retinoblastoma tumor suppressor protein (Rb). In the absence of Rb, a repressosome blocks the access of positive-acting, promoter binding proteins to the MHC class II promoter. However, a complete molecular linkage between Rb expression and the disassembly of the MHC class II repressosome has been lacking. By treating A549 lung carcinoma cells with a novel small molecule that prevents phosphorylation-mediated, Rb inactivation, we demonstrate that Rb represses the synthesis of an MHC class II repressosome component, YY1. The reduction in YY1 synthesis correlates with the advent of MHC class II inducibility; with loss of YY1 binding to the promoter of the HLA-DRA gene, the canonical human MHC class II gene; and with increased Rb binding to the YY1 promoter. These results support the concept that the Rb gene regulatory network (GRN) subcircuit that regulates cell proliferation is linked to a GRN subcircuit regulating a tumor cell immune function.
Collapse
Affiliation(s)
- Smitha Pillai
- Drug Discovery Program, Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
33
|
Genetic and biochemical alterations in non-small cell lung cancer. Biochem Res Int 2012; 2012:940405. [PMID: 22928112 PMCID: PMC3426175 DOI: 10.1155/2012/940405] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/09/2012] [Indexed: 11/17/2022] Open
Abstract
Despite significant advances in the detection and treatment of lung cancer, it causes the highest number of cancer-related mortality. Recent advances in the detection of genetic alterations in patient samples along with physiologically relevant animal models has yielded a new understanding of the molecular etiology of lung cancer. This has facilitated the development of potent and specific targeted therapies, based on the genetic and biochemical alterations present in the tumor, especially non-small-cell lung cancer (NSCLC). It is now clear that heterogeneous cell signaling pathways are disrupted to promote NSCLC, including mutations in critical growth regulatory proteins (K-Ras, EGFR, B-RAF, MEK-1, HER2, MET, EML-4-ALK, KIF5B-RET, and NKX2.1) and inactivation of growth inhibitory pathways (TP53, PTEN, p16, and LKB-1). How these pathways differ between smokers and non-smokers is also important for clinical treatment strategies and development of targeted therapies. This paper describes these molecular targets in NSCLC, and describes the biological significance of each mutation and their potential to act as a therapeutic target.
Collapse
|
34
|
Kunigal S, Ponnusamy MP, Momi N, Batra SK, Chellappan SP. Nicotine, IFN-γ and retinoic acid mediated induction of MUC4 in pancreatic cancer requires E2F1 and STAT-1 transcription factors and utilize different signaling cascades. Mol Cancer 2012; 11:24. [PMID: 22537161 PMCID: PMC3464875 DOI: 10.1186/1476-4598-11-24] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/26/2012] [Indexed: 12/12/2022] Open
Abstract
Background The membrane-bound mucins are thought to play an important biological role in cell–cell and cell–matrix interactions, in cell signaling and in modulating biological properties of cancer cell. MUC4, a transmembrane mucin is overexpressed in pancreatic tumors, while remaining undetectable in the normal pancreas, thus indicating a potential role in pancreatic cancer pathogenesis. The molecular mechanisms involved in the regulation of MUC4 gene are not yet fully understood. Smoking is strongly correlated with pancreatic cancer and in the present study; we elucidate the molecular mechanisms by which nicotine as well as agents like retinoic acid (RA) and interferon-γ (IFN-γ) induce the expression of MUC4 in pancreatic cancer cell lines CD18, CAPAN2, AsPC1 and BxPC3. Results Chromatin immunoprecipitation assays and real-time PCR showed that transcription factors E2F1 and STAT1 can positively regulate MUC4 expression at the transcriptional level. IFN-γ and RA could collaborate with nicotine in elevating the expression of MUC4, utilizing E2F1 and STAT1 transcription factors. Depletion of STAT1 or E2F1 abrogated the induction of MUC4; nicotine-mediated induction of MUC4 appeared to require α7-nicotinic acetylcholine receptor subunit. Further, Src and ERK family kinases also mediated the induction of MUC4, since inhibiting these signaling molecules prevented the induction of MUC4. MUC4 was also found to be necessary for the nicotine-mediated invasion of pancreatic cancer cells, suggesting that induction of MUC4 by nicotine and other agents might contribute to the genesis and progression of pancreatic cancer. Conclusions Our studies show that agents that can promote the growth and invasion of pancreatic cancer cells induce the MUC4 gene through multiple pathways and this induction requires the transcriptional activity of E2F1 and STAT1. Further, the Src as well as ERK signaling pathways appear to be involved in the induction of this gene. It appears that targeting these signaling pathways might inhibit the expression of MUC4 and prevent the proliferation and invasion of pancreatic cancer cells.
Collapse
Affiliation(s)
- Sateesh Kunigal
- Dept, of Tumor Biology H, Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
35
|
Davis R, Pillai S, Lawrence N, Sebti S, Chellappan SP. TNF-α-mediated proliferation of vascular smooth muscle cells involves Raf-1-mediated inactivation of Rb and transcription of E2F1-regulated genes. Cell Cycle 2012; 11:109-18. [PMID: 22185776 DOI: 10.4161/cc.11.1.18473] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is characterized by hyperplastic neointima and an inflammatory response with cytokines such as TNFα. TNFα is a pleiotropic cytokine that mediates inflammatory, proliferative, cytostatic and cytotoxic effects in a variety of cell types, including endothelial cells and vascular smooth muscle cells (VSMCs). Interestingly, TNFα has been shown to play two very opposing roles in these cell types; it inhibits proliferation and induces apoptosis in endothelial cells, while it enhances the proliferation and migration of VSMCs. Here we show that TNFα is capable of stimulating proliferation of rat VSMCs as well as human VSMCs in a Raf-1/MAP K-dependent manner. TNFα could increase the expression of E2F-regulated proliferative cdc6, Thymidylate synthase (TS) and cdc25A genes in Aortic smooth muscle cells (AoSMC), as seen by real time PCR assays. There is an activation of the stress-induced kinase, JNK1, in VSMCs upon TNFα stimulation. TNFα was capable of inducing binding of the Raf-1 kinase to Rb, and treatment with the Rb-Raf-1 inhibitor, RRD-251, could prevent TNFα-induced S-phase entry in AoSMCs. In addition, inhibition of Raf-1 or Src kinases using pharmacologic inhibitors could also prevent S-phase entry, while inhibition of JNK was not as effective. These results suggest that inhibiting the Rb-Raf-1 interaction is a potential avenue to prevent VSMC proliferation associated with atherosclerosis.
Collapse
Affiliation(s)
- Rebecca Davis
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
36
|
Brown KC, Lau JK, Dom AM, Witte TR, Luo H, Crabtree CM, Shah YH, Shiflett BS, Marcelo AJ, Proper NA, Hardman WE, Egleton RD, Chen YC, Mangiarua EI, Dasgupta P. MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway. Angiogenesis 2011; 15:99-114. [PMID: 22198237 DOI: 10.1007/s10456-011-9246-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 12/14/2011] [Indexed: 01/18/2023]
Abstract
Small cell lung cancer (SCLC) demonstrates a strong etiological association with smoking. Although cigarette smoke is a mixture of about 4,000 compounds, nicotine is the addictive component of cigarette smoke. Several convergent studies have shown that nicotine promotes angiogenesis in lung cancers via the α7-nicotinic acetylcholine receptor (α7-nAChR) on endothelial cells. Therefore, we conjectured that α7-nAChR antagonists may attenuate nicotine-induced angiogenesis and be useful for the treatment of human SCLC. For the first time, our study explores the anti-angiogenic activity of MG624, a small-molecule α7-nAChR antagonist, in several experimental models of angiogenesis. We observed that MG624 potently suppressed the proliferation of primary human microvascular endothelial cells of the lung (HMEC-Ls). Furthermore, MG624 displayed robust anti-angiogenic activity in the Matrigel, rat aortic ring and rat retinal explant assays. The anti-angiogenic activity of MG624 was assessed by two in vivo models, namely the chicken chorioallantoic membrane model and the nude mice model. In both of these experimental models, MG624 inhibited angiogenesis of human SCLC tumors. Most importantly, the administration of MG624 was not associated with any toxic side effects, lethargy or discomfort in the mice. The anti-angiogenic activity of MG624 was mediated via the suppression of nicotine-induced FGF2 levels in HMEC-Ls. MG624 decreased nicotine-induced early growth response gene 1 (Egr-1) levels in HMEC-Ls, and reduced the levels of Egr-1 on the FGF2 promoter. Consequently, this process decreased FGF2 levels and angiogenesis. Our findings suggest that the anti-angiogenic effects of MG624 could be useful in anti-angiogenic therapy of human SCLCs.
Collapse
Affiliation(s)
- Kathleen C Brown
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, 1700 3rd Avenue, Huntington, WV 25755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Johnson JL, Pillai S, Pernazza D, Sebti SM, Lawrence NJ, Chellappan SP. Regulation of matrix metalloproteinase genes by E2F transcription factors: Rb-Raf-1 interaction as a novel target for metastatic disease. Cancer Res 2011; 72:516-26. [PMID: 22086850 DOI: 10.1158/0008-5472.can-11-2647] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The retinoblastoma (Rb)-E2F transcriptional regulatory pathway plays a major role in cell-cycle regulation, but its role in invasion and metastasis is less well understood. We find that many genes involved in the invasion of cancer cells, such as matrix metalloproteinases (MMP), have potential E2F-binding sites in their promoters. E2F-binding sites were predicted on all 23 human MMP gene promoters, many of which harbored multiple E2F-binding sites. Studies presented here show that MMP genes such as MMP9, MMP14, and MMP15 which are overexpressed in non-small cell lung cancer, have multiple E2F-binding sites and are regulated by the Rb-E2F pathway. Chromatin immunoprecipitation assays showed the association of E2F1 with the MMP9, MMP14, and MMP15 promoters, and transient transfection experiments showed that these promoters are E2F responsive. Correspondingly, depletion of E2F family members by RNA interference techniques reduced the expression of these genes with a corresponding reduction in collagen degradation activity. Furthermore, activating Rb by inhibiting the interaction of Raf-1 with Rb by using the Rb-Raf-1 disruptor RRD-251 was sufficient to inhibit MMP transcription. This led to reduced invasion and migration of cancer cells in vitro and metastatic foci development in a tail vein lung metastasis model in mice. These results suggest that E2F transcription factors may play a role in promoting metastasis through regulation of MMP genes and that targeting the Rb-Raf-1 interaction is a promising approach for the treatment of metastatic disease.
Collapse
Affiliation(s)
- Jackie L Johnson
- Department of Tumor Biology, University of South Florida, Tampa, Florida, USA
| | | | | | | | | | | |
Collapse
|
38
|
TNF-α response of vascular endothelial and vascular smooth muscle cells involve differential utilization of ASK1 kinase and p73. Cell Death Differ 2011; 19:274-83. [PMID: 21738216 DOI: 10.1038/cdd.2011.93] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Atherosclerosis involves a specialized inflammatory process regulated by an intricate network of cytokine and chemokine signaling. Atherosclerotic lesions lead to the release of cytokines that can have multiple affects on various vascular cell functions either promoting lesion expansion or alternatively retard progression. Tumor necrosis factor-α (TNF-α) is one such cytokine that can activate both cell survival and cell death mechanisms simultaneously. Here we show that TNF-α induces apoptosis in human aortic endothelial cells (HAECs), while it promotes the proliferation of vascular smooth muscle cells (VSMCs). Both events involved the activation of the Rb-E2F1 transcriptional regulatory pathway. Stimulation of HAECs with TNF-α led to an increased expression of p73 protein and a reduction in the levels of p53. This involved apoptosis signal-regulating kinase 1 (ASK1)- mediated inactivation of Rb and its dissociation from the p73 promoter. In contrast, TNF-α stimulation of VSMCs enhanced the association of E2F1 with proliferative promoters like thymidylate synthase and cdc25A, while Rb was dissociated. ASK1 kinase has a critical role in the apoptotic process, as its depletion or dissociation from Rb reduced TNF-α-induced apoptosis. These results show that the cytokine TNF-α can elicit diametrically opposite responses in vascular endothelial cells and VSMCs, utilizing the Rb-E2F pathway.
Collapse
|
39
|
Abstract
Raf are conserved, ubiquitous serine/protein kinases discovered as the cellular elements hijacked by transforming retroviruses. The three mammalian RAF proteins (A, B and CRAF) can be activated by the human oncogene RAS, downstream from which they exert both kinase-dependent and kinase-independent, tumor-promoting functions. The kinase-dependent functions are mediated chiefly by the MEK/ERK pathway, whose activation is associated with proliferation in a broad range of human tumors. Almost 10 years ago, activating BRAF mutations were discovered in a subset of human tumors, and in the past year treatment with small-molecule RAF inhibitors has yielded unprecedented response rates in melanoma patients. Thus, Raf qualifies as an excellent molecular target for anticancer therapy. This review focuses on the role of BRAF and CRAF in different aspects of carcinogenesis, on the success of molecular therapies targeting Raf and the challenges they present.
Collapse
|
40
|
Mukherjee R, McGuinness DH, McCall P, Underwood MA, Seywright M, Orange C, Edwards J. Upregulation of MAPK pathway is associated with survival in castrate-resistant prostate cancer. Br J Cancer 2011; 104:1920-8. [PMID: 21559022 PMCID: PMC3111196 DOI: 10.1038/bjc.2011.163] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Recent evidence has implicated the MAP kinase (MAPK) pathway with the development of castrate-resistant prostate cancer (CRPC). We have previously reported gene amplification of critical members of this pathway with the development of castrate-resistant disease. In addition, we have shown that rising Raf-1 expression, with the development of CRPC, influences time to biochemical relapse. We therefore sought to further analyse the role of both Raf-1 and its downstream target MAPK in the molecular pathogenesis of CRPC. Methods: Protein expression of Raf-1 and MAPK, including their activation status, was analysed using immunohistochemistry in a database of 65 paired tumour specimens obtained before and after the development of CRPC and correlated with other members of the pathway. Results: Patients whose nuclear expression of MAPK rose with the development of CRPC had a significantly shorter median time to death following biochemical relapse (1.40 vs 3.00 years, P=0.0255) as well as reduced disease-specific survival when compared with those whose expression fell or remained unchanged (1.16 vs 2.62 years, P=0.0005). Significant correlations were observed between protein expression of Raf-1 and MAPK with the type 1 receptor tyrosine kinases, Her2 and epidermal growth factor receptor, as well as the transcription factor AP-1 in CRPC tumours. Conclusion: We conclude that the Her2/Raf-1/MAPK/AP-1 axis may promote the development of CRPC, leading to early relapse, and reduced disease-specific survival. In addition, members of the pathway may act as novel therapeutic and/or diagnostic targets for prostate cancer.
Collapse
Affiliation(s)
- R Mukherjee
- College of Medical, Veterinary and Life Sciences, Institute of Cancer, McGregor Building, Glasgow Western Infirmary, Glasgow G11 6NT, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The RB1 gene is the first tumor suppressor gene identified whose mutational inactivation is the cause of a human cancer, the pediatric cancer retinoblastoma. The 25 years of research since its discovery has not only illuminated a general role for RB1 in human cancer, but also its critical importance in normal development. Understanding the molecular function of the RB1 encoded protein, pRb, is a long-standing goal that promises to inform our understanding of cancer, its relationship to normal development, and possible therapeutic strategies to combat this disease. Achieving this goal has been difficult, complicated by the complexity of pRb and related proteins. The goal of this review is to explore the hypothesis that, at its core, the molecular function of pRb is to dynamically regulate the location-specific assembly or disassembly of protein complexes on the DNA in response to the output of various signaling pathways. These protein complexes participate in a variety of molecular processes relevant to DNA including gene transcription, DNA replication, DNA repair, and mitosis. Through regulation of these processes, RB1 plays a uniquely prominent role in normal development and cancer.
Collapse
Affiliation(s)
- Meenalakshmi Chinnam
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | |
Collapse
|
42
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
43
|
Dasgupta P, Rizwani W, Pillai S, Davis R, Banerjee S, Hug K, Lloyd M, Coppola D, Haura E, Chellappan SP. ARRB1-mediated regulation of E2F target genes in nicotine-induced growth of lung tumors. J Natl Cancer Inst 2011; 103:317-33. [PMID: 21212384 DOI: 10.1093/jnci/djq541] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nicotine induces the proliferation of non-small cell lung cancer (NSCLC) cells via nicotinic acetylcholine receptors and the arrestin, β1 (ARRB1) protein. However, whether ARRB1 translocates to the nucleus upon nicotinic acetylcholine receptor activation and how it regulates growth of human NSCLCs are not known. METHODS We investigated nuclear localization of ARRB1 in human NSCLC cell lines (A549 and H1650), normal lung cell lines (NHBE and SAEC), and lung cancer tissue microarray. A549 cells were transfected with ARRB1-specific short hairpin RNA (A549-sh) to knockdown ARRB1 expression, or with empty vector (A549-EV), to examine the role of ARRB1 in the mitogenic and antiapoptotic effects of nicotine, binding of ARRB1 to E2F transcription factors, and the role of ARRB1 in nicotine-induced expression of E2F-regulated survival and proliferative genes cell division cycle 6 homolog (CDC6), thymidylate synthetase (TYMS), and baculoviral IAP repeat-containing 5 (BIRC5). Real-time polymerase chain reaction was performed for quantitative analysis of mRNA expression. Chromatin immunoprecipitation assays were performed on A549 cells and fresh-frozen human NSCLC tumors (n = 8) to examine the binding of ARRB1, E1A binding protein (EP300), and acetylated histone 3 (Ac-H3) on the E2F-regulated genes. All statistical tests were two-sided. RESULTS Nicotine induced the nuclear translocation of ARRB1 in NSCLC and normal lung cells, and lung tumor tissues from smokers showed an increased nuclear localization. The mitogenic and antiapoptotic effects of nicotine were reduced in A549-sh cells. Nuclear ARRB1 bound to E2F transcription factors in normal lung cells, NSCLC cells, and tumors. Nicotine treatment induced a statistically significant increased expression of E2F-regulated genes in A549-EV but not in A549-sh cells; the maximum difference being observed in BIRC5 (A549-EV vs A549-sh, mean fold-increase in mRNA level upon nicotine treatment = 20.7-fold, 95% confidence interval = 19.2- to 22.2-fold, vs mean = 0.8-fold, 95% confidence interval= 0.78- to 0.82-fold, P < .001). Furthermore, nicotine induced the binding of ARRB1, EP300, and Ac-H3 on E2F-regulated genes. CONCLUSION Nicotine induced the nuclear translocation of ARRB1 and showed increased expression of proliferative and survival genes, thereby contributing to the growth and progression of NSCLCs.
Collapse
Affiliation(s)
- Piyali Dasgupta
- Department of Oncologic Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Johansson HJ, Andaloussi SEL, Langel U. Mimicry of protein function with cell-penetrating peptides. Methods Mol Biol 2011; 683:233-247. [PMID: 21053134 DOI: 10.1007/978-1-60761-919-2_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proteins are essential components of cellular processes inside cells, and their interactions between each other and with genes are important for the normal physiological functioning of cells as well as for disease states. Modulating protein interactions by different means can potentially control these interactions and restore normal function to diseased cells. The ways to do so are multiple, and such efforts often begin with knowledge of potential target proteins in order to devise mediators that retain the function of the original protein, i.e., mimic the protein functions. An alternative strategy is to utilize protein mimics to inhibit target proteins rather than restoring the activity of a protein. The vast majority of protein -mimics exploited to date have been designed to inhibit the activity of oncogenes or activate tumor suppressors for the purpose of tumor therapy. These protein mimics are usually based on small organic compounds or peptides, derived from interaction surfaces of the proteins, and in some cases, full proteins have been exploited. Although peptides and proteins are naturally highly specific and efficient inside cells, they suffer from low bioavailability resulting from their inability to enter cells. One strategy increasingly employed to facilitate the internalization of peptides and proteins has been to chemically conjugate them to cell-penetrating peptides (CPP) or to recombinantly express protein-CPP fusion constructs.This chapter provides an overview of some of the aspects of perturbing and mimicking protein interactions using peptides and proteins and CPP as transport vectors.
Collapse
Affiliation(s)
- Henrik J Johansson
- Department of Oncology-Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
45
|
Singh S, Davis R, Alamanda V, Pireddu R, Pernazza D, Sebti S, Lawrence N, Chellappan S. Rb-Raf-1 interaction disruptor RRD-251 induces apoptosis in metastatic melanoma cells and synergizes with dacarbazine. Mol Cancer Ther 2010; 9:3330-41. [PMID: 21139044 DOI: 10.1158/1535-7163.mct-10-0442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metastatic melanoma is an aggressive cancer with very low response rate against conventional chemotherapeutic agents such as dacarbazine (DTIC). Inhibitor of Rb-Raf-1 interaction RRD-251 was tested against the melanoma cell lines SK-MEL-28, SK-MEL-5, and SK-MEL-2. RRD-251 was found to be a potent inhibitor of melanoma cell proliferation, irrespective of V600E B-Raf mutation status of the cell lines. In a SK-MEL-28 xenograft experiment, RRD-251 exerted a significant suppression of tumor growth compared with vehicle (P = 0.003). Similar to in vitro effects, tumors from RRD-251-treated animals showed decreased Rb-Raf-1 interaction in vivo. Growth suppressive effects of RRD-251 were associated with induction of apoptosis as well as a G(1) arrest, with an accompanying decrease in S-phase cells. RRD-251 inhibited Rb phosphorylation and downregulated E2F1 protein levels in these cells. Real-time PCR analysis showed that RRD-251 caused downregulation of cell-cycle regulatory genes thymidylate synthase (TS) and cdc6 as well as the antiapoptotic gene Mcl-1. Combinatorial treatment of RRD-251 and DTIC resulted in a significantly higher apoptosis in DTIC resistant cell lines SK-MEL-28 and SK-MEL-5, as revealed by increased caspase-3 activity and PARP cleavage. Because aberrant Rb/E2F pathway is associated with melanoma progression and resistance to apoptosis, these results suggest that the Rb-Raf-1 inhibitor could be an effective agent for melanoma treatment, either alone or in combination with DTIC.
Collapse
Affiliation(s)
- Sandeep Singh
- Drug Discovery Department, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hosta-Rigau L, Olmedo I, Arbiol J, Cruz LJ, Kogan MJ, Albericio F. Multifunctionalized gold nanoparticles with peptides targeted to gastrin-releasing peptide receptor of a tumor cell line. Bioconjug Chem 2010; 21:1070-8. [PMID: 20476781 DOI: 10.1021/bc1000164] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalization of gold nanoparticles (AuNPs) with both a targeting peptide (an analogue of the peptide Bombesin) and a drug peptide ligand (an analogue of the RAF peptide) with the aim of improving selectivity in the delivery of the conjugates as well as the antitumor activity is described. Studies on the internalization mechanism of peptide-AuNP conjugates and viability of cells were carried out. An enhancement of the activity and selectivity of the peptide multifunctionalized conjugates was observed.
Collapse
Affiliation(s)
- Leticia Hosta-Rigau
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Institute for Research in Biomedicine, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Singh S, Johnson J, Chellappan S. Small molecule regulators of Rb-E2F pathway as modulators of transcription. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:788-94. [PMID: 20637913 PMCID: PMC2997897 DOI: 10.1016/j.bbagrm.2010.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/24/2010] [Accepted: 07/08/2010] [Indexed: 12/25/2022]
Abstract
The retinoblastoma tumor suppressor protein, Rb, plays a major role in the regulation of mammalian cell cycle progression. It has been shown that Rb function is essential for the proper modulation of G1/S transition and inactivation of Rb contributes to deregulated cell proliferation. Rb exerts its cell cycle regulatory functions mainly by targeting the E2F family of transcription factors and Rb has been shown to physically interact with E2Fs 1, 2 and 3, repressing their transcriptional activity. Multiple genes involved in DNA synthesis and cell cycle progression are regulated by E2Fs, and Rb prevents their expression by inhibiting E2F activity, inducing growth arrest. It has been established that inactivation of Rb by phosphorylation, mutation, or by the interaction of viral oncoproteins leads to a release of the repression of E2F activity, facilitating cell cycle progression. Rb-mediated repression of E2F activity involves the recruitment of a variety of transcriptional co-repressors and chromatin remodeling proteins, including histone deacetylases, DNA methyltransferases and Brg1/Brm chromatin remodeling proteins. Inactivation of Rb by sequential phosphorylation events during cell cycle progression leads to a dissociation of these co-repressors from Rb, facilitating transcription. It has been found that small molecules that prevent the phosphorylation of Rb prevent the dissociation of certain co-repressors from Rb, especially Brg1, leading to the maintenance of Rb-mediated transcriptional repression and cell cycle arrest. Such small molecules have anti-cancer activities and will also act as valuable probes to study chromatin remodeling and transcriptional regulation.
Collapse
Affiliation(s)
- Sandeep Singh
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Jackie Johnson
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Srikumar Chellappan
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| |
Collapse
|
48
|
Khan SN, Khan AU. Role of histone acetylation in cell physiology and diseases: An update. Clin Chim Acta 2010; 411:1401-11. [PMID: 20598676 DOI: 10.1016/j.cca.2010.06.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/04/2010] [Accepted: 06/16/2010] [Indexed: 01/06/2023]
Abstract
Although the role of histone acetylation in gene regulation has been the subject of many reviews, their impact on cell physiology and pathological states of proliferation, differentiation and genome stability in eukaryotic cells remain to be elucidated. Therefore, this review will discuss the molecular, physiological and biochemical aspects of histone acetylation and focus on the interplay of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in different disease states. Current treatment strategies are mostly limited to enzyme inhibitors, though potential lies in targeting other imperative chromatin remodeling factors involved in gene regulation.
Collapse
Affiliation(s)
- Shahper N Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
49
|
Pillai S, Kovacs M, Chellappan S. Regulation of vascular endothelial growth factor receptors by Rb and E2F1: role of acetylation. Cancer Res 2010; 70:4931-40. [PMID: 20516113 DOI: 10.1158/0008-5472.can-10-0501] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
E2F transcription factors regulate a variety of cellular processes, but their role in angiogenesis is not clear. We find that many genes involved in angiogenesis such as FLT-1, KDR, and angiopoietin 2 have potential E2F1 binding sites in their promoter. Chromatin immunoprecipitation (ChIP) assays showed that E2F1 can associate with these promoters and the recruitment of E2F1 was enhanced upon vascular endothelial growth factor (VEGF) stimulation with concomitant dissociation of Rb, leading to the transcriptional activation of these promoters. Transient transfection experiments showed that these promoters were induced by E2F1 and repressed by Rb, whereas depletion of E2F1 decreased their expression. The increased binding of E2F1 to these promoters upon VEGF stimulation correlated with the acetylation of histones and E2F1; this required VEGF receptor function, as seen in ChIP-re-ChIP experiments. This suggests the existence of a positive feedback loop regulating E2F1 acetylation and VEGF receptor expression. Acetylation associated with VEGF signaling seems to be predominantly mediated by P300/CBP-associated factor, and the depletion of histone acetyl transferases disrupted the formation of angiogenic tubules. These results suggest a novel role for E2F1 and acetylation in the angiogenic process.
Collapse
Affiliation(s)
- Smitha Pillai
- Drug Discovery Program, Department of Oncologic Sciences, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | | | |
Collapse
|
50
|
Brown KC, Witte TR, Hardman WE, Luo H, Chen YC, Carpenter AB, Lau JK, Dasgupta P. Capsaicin displays anti-proliferative activity against human small cell lung cancer in cell culture and nude mice models via the E2F pathway. PLoS One 2010; 5:e10243. [PMID: 20421925 PMCID: PMC2857654 DOI: 10.1371/journal.pone.0010243] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/24/2010] [Indexed: 11/18/2022] Open
Abstract
Background Small cell lung cancer (SCLC) is characterized by rapid progression and low survival rates. Therefore, novel therapeutic agents are urgently needed for this disease. Capsaicin, the active ingredient of chilli peppers, displays anti-proliferative activity in prostate and epidermoid cancer in vitro. However, the anti-proliferative activity of capsaicin has not been studied in human SCLCs. The present manuscript fills this void of knowledge and explores the anti-proliferative effect of capsaicin in SCLC in vitro and in vivo. Methodology/Principal Findings BrdU assays and PCNA ELISAs showed that capsaicin displays robust anti-proliferative activity in four human SCLC cell lines. Furthermore, capsaicin potently suppressed the growth of H69 human SCLC tumors in vivo as ascertained by CAM assays and nude mice models. The second part of our study attempted to provide insight into molecular mechanisms underlying the anti-proliferative activity of capsaicin. We found that the anti-proliferative activity of capsaicin is correlated with a decrease in the expression of E2F-responsive proliferative genes like cyclin E, thymidylate synthase, cdc25A and cdc6, both at mRNA and protein levels. The transcription factor E2F4 mediated the anti-proliferative activity of capsaicin. Ablation of E2F4 levels by siRNA methodology suppressed capsaicin-induced G1 arrest. ChIP assays demonstrated that capsaicin caused the recruitment of E2F4 and p130 on E2F-responsive proliferative promoters, thereby inhibiting cell proliferation. Conclusions/Significance Our findings suggest that the anti-proliferative effects of capsaicin could be useful in the therapy of human SCLCs.
Collapse
Affiliation(s)
- Kathleen C. Brown
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Ted R. Witte
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - W. Elaine Hardman
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Haitao Luo
- Department of Biology, Alderson-Broaddus College, Phillipi, West Virginia, United States of America
| | - Yi C. Chen
- Department of Biology, Alderson-Broaddus College, Phillipi, West Virginia, United States of America
| | - A. Betts Carpenter
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Jamie K. Lau
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Piyali Dasgupta
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
- * E-mail:
| |
Collapse
|