1
|
Chüeh AC, Advani G, Foroutan M, Smith J, Ng N, Nandurkar H, Lio DS, Zhu HJ, Chong YP, Verkade H, Fujita DJ, Bjorge J, Basheer F, Lim JP, Luk I, Dhillon A, Sakthianandeswaren A, Mouradov D, Sieber O, Hollande F, Mariadason JM, Cheng HC. CSK-homologous kinase (CHK/MATK) is a potential colorectal cancer tumour suppressor gene epigenetically silenced by promoter methylation. Oncogene 2021; 40:3015-3029. [PMID: 33767439 DOI: 10.1038/s41388-021-01755-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/24/2021] [Accepted: 03/11/2021] [Indexed: 02/01/2023]
Abstract
Hyperactivation of SRC-family protein kinases (SFKs) contributes to the initiation and progression of human colorectal cancer (CRC). Since oncogenic mutations of SFK genes are rare in human CRC, we investigated if SFK hyperactivation is linked to dysregulation of their upstream inhibitors, C-terminal SRC kinase (CSK) and its homolog CSK-homologous kinase (CHK/MATK). We demonstrate that expression of CHK/MATK but not CSK was significantly downregulated in CRC cell lines and primary tumours compared to normal colonic tissue. Investigation of the mechanism by which CHK/MATK expression is down-regulated in CRC cells uncovered hypermethylation of the CHK/MATK promoter in CRC cell lines and primary tumours. Promoter methylation of CHK/MATK was also observed in several other tumour types. Consistent with epigenetic silencing of CHK/MATK, genetic deletion or pharmacological inhibition of DNA methyltransferases increased CHK/MATK mRNA expression in CHK/MATK-methylated colon cancer cell lines. SFKs were hyperactivated in CHK/MATK-methylated CRC cells despite expressing enzymatically active CSK, suggesting loss of CHK/MATK contributes to SFK hyperactivation. Re-expression of CHK/MATK in CRC cell lines led to reduction in SFK activity via a non-catalytic mechanism, a reduction in anchorage-independent growth, cell proliferation and migration in vitro, and a reduction in tumour growth and metastasis in a zebrafish embryo xenotransplantation model in vivo, collectively identifying CHK/MATK as a novel putative tumour suppressor gene in CRC. Furthermore, our discovery that CHK/MATK hypermethylation occurs in the majority of tumours warrants its further investigation as a diagnostic marker of CRC.
Collapse
Affiliation(s)
- Anderly C Chüeh
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia.
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
- Department of Medicine (Austin Hospital), University of Melbourne, Heidelberg, Victoria, Australia.
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Gahana Advani
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Momeneh Foroutan
- Department of Clinical Pathology, the University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Jai Smith
- Department of Clinical Pathology, the University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Nadia Ng
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Harshal Nandurkar
- Australian Centre for Blood Diseases, Monash University, Prahran, Victoria, Australia
| | - Daisy S Lio
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Hong-Jian Zhu
- Department of Surgery (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - Yuh-Ping Chong
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Heather Verkade
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Donald J Fujita
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey Bjorge
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Faiza Basheer
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Jet Phey Lim
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Ian Luk
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia
| | - Amardeep Dhillon
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Anuratha Sakthianandeswaren
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Dmitri Mouradov
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Oliver Sieber
- The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Surgery (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - Frédéric Hollande
- Department of Clinical Pathology, the University of Melbourne, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- The University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Heidelberg, Victoria, Australia
- Department of Medicine (Austin Hospital), University of Melbourne, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Biological and biochemical properties of the c-src+ gene product overexpressed in chicken embryo fibroblasts. Mol Cell Biol 1989. [PMID: 2477684 DOI: 10.1128/mcb.9.8.3332] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The c-src protein isolated from neuronal cells (pp60c-src+) displays a higher level of protein kinase activity than does pp60c-src from nonneural tissues. There are two structural alterations present in the amino-terminal half of pp60c-src+ expressed in neurons which could contribute to the enhanced activity of this form of pp60c-src: (i) a hexapeptide insert located at amino acid 114 of avian pp60c-src+ and (ii) a novel site(s) of serine phosphorylation. We characterized pp60c-src+ expressed in a nonneuronal cell type to identify factors that regulate the activity of the c-src+ protein and the importance of the neuronal environment on this regulation. The c-src+ protein overexpressed in chicken embryo fibroblasts (CEFs) displayed higher kinase activity than did pp60c-src. The major sites of phosphorylation of the c-src+ protein were Ser-17 and Tyr-527. The unique site(s) of serine phosphorylation originally identified in pp60c-src+ expressed in neurons was not detected in the c-src+ protein overexpressed in CEFs. Therefore, the hexapeptide insert is sufficient to cause an elevation in the tyrosine protein kinase activity of pp60c-src+. Our data also indicate that CEFs infected with the Rous sarcoma virus (RSV)c-src+ display phenotypic changes that distinguish them from cultures producing pp60c-src and that pp60c-src+-expressing cells are better able to grow in an anchorage-independent manner. The level of total cellular tyrosine phosphorylation in RSVc-src+-infected cultures was moderately higher than the level observed in cultures infected with RSVc-src. This level was not as pronounced as that observed in cells infected with RSVv-src or oncogenic variants of RSVc-src. Thus, pp60c-src+ could be considered a partially activated c-src variant protein much like other c-src proteins that contain mutations in the amino-terminal domain.
Collapse
|
3
|
Levy JB, Brugge JS. Biological and biochemical properties of the c-src+ gene product overexpressed in chicken embryo fibroblasts. Mol Cell Biol 1989; 9:3332-41. [PMID: 2477684 PMCID: PMC362378 DOI: 10.1128/mcb.9.8.3332-3341.1989] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The c-src protein isolated from neuronal cells (pp60c-src+) displays a higher level of protein kinase activity than does pp60c-src from nonneural tissues. There are two structural alterations present in the amino-terminal half of pp60c-src+ expressed in neurons which could contribute to the enhanced activity of this form of pp60c-src: (i) a hexapeptide insert located at amino acid 114 of avian pp60c-src+ and (ii) a novel site(s) of serine phosphorylation. We characterized pp60c-src+ expressed in a nonneuronal cell type to identify factors that regulate the activity of the c-src+ protein and the importance of the neuronal environment on this regulation. The c-src+ protein overexpressed in chicken embryo fibroblasts (CEFs) displayed higher kinase activity than did pp60c-src. The major sites of phosphorylation of the c-src+ protein were Ser-17 and Tyr-527. The unique site(s) of serine phosphorylation originally identified in pp60c-src+ expressed in neurons was not detected in the c-src+ protein overexpressed in CEFs. Therefore, the hexapeptide insert is sufficient to cause an elevation in the tyrosine protein kinase activity of pp60c-src+. Our data also indicate that CEFs infected with the Rous sarcoma virus (RSV)c-src+ display phenotypic changes that distinguish them from cultures producing pp60c-src and that pp60c-src+-expressing cells are better able to grow in an anchorage-independent manner. The level of total cellular tyrosine phosphorylation in RSVc-src+-infected cultures was moderately higher than the level observed in cultures infected with RSVc-src. This level was not as pronounced as that observed in cells infected with RSVv-src or oncogenic variants of RSVc-src. Thus, pp60c-src+ could be considered a partially activated c-src variant protein much like other c-src proteins that contain mutations in the amino-terminal domain.
Collapse
Affiliation(s)
- J B Levy
- Department of Microbiology, State University of New York, Stony Brook 11794
| | | |
Collapse
|
4
|
Deletions within the amino-terminal half of the c-src gene product that alter the functional activity of the protein. Mol Cell Biol 1989. [PMID: 2471059 DOI: 10.1128/mcb.9.3.1109] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To examine how amino acid sequences outside of the catalytic domain of pp60c-src influence the functional activity of this protein, we have introduced deletion mutations within the amino-terminal half of pp60c-src. These mutations caused distinct changes in the biochemical properties of the c-src gene products and in the properties of cells infected with retroviruses carrying these mutant c-src genes. Cells expressing the c-srcNX protein, which contains a deletion of amino acids 15 to 89, displayed a refractile, spindle-shaped morphology, formed intermediate-sized, tightly packed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Thus, deletion of amino acids 15 to 89 can activate the kinase activity and transforming potential of the c-src gene product. Deletion of amino acids 112 to 225, however, did not increase the kinase activity or transforming ability of pp60c-src; indeed, deletion of these sequences in c-srcHP suppressed phenotypic alterations induced by pp60c-src. Cells expressing the c-srcNP or c-srcBS gene products (containing deletions of amino acids 15 to 225 and 55 to 169, respectively) displayed a fusiform, refractile morphology and formed diffuse colonies in soft agar; the mutant proteins displayed an increased in vitro protein-tyrosine kinase activity. However, only a few cellular proteins contained elevated levels of phosphotyrosine in vivo. Thus, deletions downstream of amino acid 89 severely restricted the ability of c-src to phosphorylate cellular substrates in vivo without affecting the intrinsic tyrosine kinase activity of the c-src gene product. These results suggest the existence of at least two modulatory regions within the amino-terminal half of pp60c-src that are important for the regulation of tyrosine kinase activity and for the interaction of pp60c-src with cellular substrates.
Collapse
|
5
|
The epidermal growth factor receptor from prostate cells is dephosphorylated by a prostate-specific phosphotyrosyl phosphatase. Mol Cell Biol 1989. [PMID: 2854198 DOI: 10.1128/mcb.8.12.5477] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human prostatic acid phosphatase (PAcP) has been found to have phosphotyrosyl-protein phosphatase activity (H. C. Li, J. Chernoff, L. B. Chen, and A. Kirschonbaun, Eur. J. Biochem. 138:45-51, 1984; M.-F. Lin and G. M. Clinton, Biochem. J. 235:351-357, 1986) and has been suggested to negatively regulate phosphotyrosine levels, at least in part, by inhibition of tyrosine protein kinase activity (M.-F. Lin and G. M. Clinton, Adv. Protein Phosphatases 4:199-228, 1987; M.-F. Lin, C. L. Lee, and G. M. Clinton, Mol. Cell. Biol. 6:4753-4757, 1986). We investigated the molecular interaction of PAcP with a specific tyrosine kinase, the epidermal growth factor (EGF) receptor, from prostate carcinoma cells. Of several proteins phosphorylated in membrane vesicles from prostate carcinoma cells, PAcP selectively dephosphorylated the EGF receptor. The prostate EGF receptor was more efficiently dephosphorylated by PAcP than by another phosphotyrosyl phosphatase, potato acid phosphatase. Further characterization of the interaction of PAcP with the EGF receptor revealed that the optimal rate of dephosphorylation occurred at neutral rather than at acid pH. Thus, the enzyme that we formerly referred to as PAcP we now call prostatic phosphotyrosyl-protein phosphatase. Hydrolysis of phosphate from tyrosine residues in the immunoprecipitated EGF receptor catalyzed by purified prostatic phosphotyrosyl-protein phosphatase caused a 40 to 50% decrease in the receptor tyrosine kinase activity with angiotensin as the substrate. In contrast, autophosphorylation of the receptor was associated with an increase in tyrosine kinase activity.
Collapse
|
6
|
Nemeth SP, Fox LG, DeMarco M, Brugge JS. Deletions within the amino-terminal half of the c-src gene product that alter the functional activity of the protein. Mol Cell Biol 1989; 9:1109-19. [PMID: 2471059 PMCID: PMC362701 DOI: 10.1128/mcb.9.3.1109-1119.1989] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To examine how amino acid sequences outside of the catalytic domain of pp60c-src influence the functional activity of this protein, we have introduced deletion mutations within the amino-terminal half of pp60c-src. These mutations caused distinct changes in the biochemical properties of the c-src gene products and in the properties of cells infected with retroviruses carrying these mutant c-src genes. Cells expressing the c-srcNX protein, which contains a deletion of amino acids 15 to 89, displayed a refractile, spindle-shaped morphology, formed intermediate-sized, tightly packed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Thus, deletion of amino acids 15 to 89 can activate the kinase activity and transforming potential of the c-src gene product. Deletion of amino acids 112 to 225, however, did not increase the kinase activity or transforming ability of pp60c-src; indeed, deletion of these sequences in c-srcHP suppressed phenotypic alterations induced by pp60c-src. Cells expressing the c-srcNP or c-srcBS gene products (containing deletions of amino acids 15 to 225 and 55 to 169, respectively) displayed a fusiform, refractile morphology and formed diffuse colonies in soft agar; the mutant proteins displayed an increased in vitro protein-tyrosine kinase activity. However, only a few cellular proteins contained elevated levels of phosphotyrosine in vivo. Thus, deletions downstream of amino acid 89 severely restricted the ability of c-src to phosphorylate cellular substrates in vivo without affecting the intrinsic tyrosine kinase activity of the c-src gene product. These results suggest the existence of at least two modulatory regions within the amino-terminal half of pp60c-src that are important for the regulation of tyrosine kinase activity and for the interaction of pp60c-src with cellular substrates.
Collapse
Affiliation(s)
- S P Nemeth
- Department of Microbiology, State University of New York, Stony Brook 11794
| | | | | | | |
Collapse
|
7
|
Lin MF, Clinton GM. The epidermal growth factor receptor from prostate cells is dephosphorylated by a prostate-specific phosphotyrosyl phosphatase. Mol Cell Biol 1988; 8:5477-85. [PMID: 2854198 PMCID: PMC365651 DOI: 10.1128/mcb.8.12.5477-5485.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human prostatic acid phosphatase (PAcP) has been found to have phosphotyrosyl-protein phosphatase activity (H. C. Li, J. Chernoff, L. B. Chen, and A. Kirschonbaun, Eur. J. Biochem. 138:45-51, 1984; M.-F. Lin and G. M. Clinton, Biochem. J. 235:351-357, 1986) and has been suggested to negatively regulate phosphotyrosine levels, at least in part, by inhibition of tyrosine protein kinase activity (M.-F. Lin and G. M. Clinton, Adv. Protein Phosphatases 4:199-228, 1987; M.-F. Lin, C. L. Lee, and G. M. Clinton, Mol. Cell. Biol. 6:4753-4757, 1986). We investigated the molecular interaction of PAcP with a specific tyrosine kinase, the epidermal growth factor (EGF) receptor, from prostate carcinoma cells. Of several proteins phosphorylated in membrane vesicles from prostate carcinoma cells, PAcP selectively dephosphorylated the EGF receptor. The prostate EGF receptor was more efficiently dephosphorylated by PAcP than by another phosphotyrosyl phosphatase, potato acid phosphatase. Further characterization of the interaction of PAcP with the EGF receptor revealed that the optimal rate of dephosphorylation occurred at neutral rather than at acid pH. Thus, the enzyme that we formerly referred to as PAcP we now call prostatic phosphotyrosyl-protein phosphatase. Hydrolysis of phosphate from tyrosine residues in the immunoprecipitated EGF receptor catalyzed by purified prostatic phosphotyrosyl-protein phosphatase caused a 40 to 50% decrease in the receptor tyrosine kinase activity with angiotensin as the substrate. In contrast, autophosphorylation of the receptor was associated with an increase in tyrosine kinase activity.
Collapse
Affiliation(s)
- M F Lin
- Department of Biochemistry, School of Medicine, Oregon Health Sciences University, Portland 97201
| | | |
Collapse
|
8
|
McGlade CJ, Tremblay ML, Yee SP, Ross R, Branton PE. Acylation of the 176R (19-kilodalton) early region 1B protein of human adenovirus type 5. J Virol 1987; 61:3227-34. [PMID: 2957509 PMCID: PMC255902 DOI: 10.1128/jvi.61.10.3227-3234.1987] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Antipeptide sera were prepared in rabbits against synthetic peptides corresponding to the predicted amino and carboxy termini of the early region 1B 176R (19-kilodalton [kDa]) protein of human adenovirus type 5. Both antisera specifically immunoprecipitated the 19- and 18.5-kDa forms of the 176R protein observed previously with antitumor sera. These data suggested that both species are full-length molecules of 176 residues. To identify posttranslational modifications that could explain the formation of these multiple species and possibly their known association with membranes, studies were carried out to determine whether they are glycosylated or acylated. Neither the 19- nor the 18.5-kDa species appeared to be a glycoprotein, however, they were labeled with [3H]palmitate and [3H]myristate, indicating that both species are acylated. Thus, whereas acylation does not appear to be the cause of the multiple species, it could play a role in the membrane association of these viral proteins. The acylation of 176R was found to be unusual. The fatty acid linkage was resistant to treatment with hydroxylamine or methanol-KOH, suggesting that acylation was through an amide bond. In addition, both palmitate and myristate were present in 176R, suggesting either a lack of specificity in the acylation reaction or the existence of more than one acylation site.
Collapse
|
9
|
McCarley DJ, Parsons JT, Benjamin DC, Parsons SJ. Inhibition of the tyrosine kinase activity of v-src, v-fgr, and v-yes gene products by a monoclonal antibody which binds both amino and carboxy peptide fragments of pp60v-src. J Virol 1987; 61:1927-37. [PMID: 2437325 PMCID: PMC254200 DOI: 10.1128/jvi.61.6.1927-1937.1987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A monoclonal antibody, R2D2, raised to the src gene product of Rous sarcoma virus was found to inhibit the tyrosine protein kinase activity of pp60v-src in autophosphorylation reactions and in reactions involving exogenously added substrates, such as casein and histone. R2D2 also inhibited the enzymatic activity of two related viral transforming proteins, pp70gag-fgr and pp90gag-yes. The inhibitory ability of R2D2 was dependent upon immunoglobulin concentration and could be demonstrated in both immune complexes formed directly with R2D2 and preformed immune complexes to which R2D2 was added. Binding sites in both the amino-terminal 110 amino acid residues and the carboxy-terminal 240 amino acids of pp60v-src were identified for R2D2. These results indicate that at least part of the epitope recognized by R2D2 resides within a region of the src protein which is required for protein kinase activity. The localization of the R2D2 epitope to the amino- as well as to the carboxy-terminal portions of pp60v-src, together with results of studies analyzing the relative binding efficiencies of R2D2 to the intact protein and to V-8 proteolytic fragments of pp60v-src, are consistent with the view that the R2D2 epitope is conformational in nature and that it is assembled from residues contained within both N-terminal and C-terminal regions of the molecule.
Collapse
|
10
|
Anderson SK, Fujita DJ. Morphf mutants of Rous sarcoma virus: nucleotide sequencing analysis suggests that a class of morphf mutants was generated through splicing of a cryptic intron. J Virol 1987; 61:1893-900. [PMID: 3033320 PMCID: PMC254195 DOI: 10.1128/jvi.61.6.1893-1900.1987] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The nature of the lesions involved in producing the fusiform phenotype of three mutants (WO101, WO201, and tsST529) of the Schmidt-Ruppin A strain of Rous sarcoma virus (RSV) was determined by molecular cloning and DNA sequencing. WO101 and WO201 contained an in-frame deletion of the v-src region coding for amino acids 116 to 140 of p60v-src. The deleted segment was flanked by consensus splice donor and acceptor sequences and contained an appropriately positioned branchpoint acceptor consensus sequence, suggesting that the deletion occurred through an aberrant RNA splicing event. S1 mapping experiments performed on RNA isolated from chicken cells infected with molecularly cloned wild-type RSV DNA suggested that the splice acceptor involved in the generation of this deletion was utilized at a low frequency (less than 1.0%) in wild-type RSV-infected cells. These results suggested that stable mutations may have arisen in the coding sequence of a eucaryotic viral transforming gene as a result of a probable aberrant RNA splicing event followed by reverse transcription into DNA. ST529 was found to harbor the same deletion present in WO101 and WO201 but also contained a point mutation which resulted in the substitution of lysine for glutamic acid at position 93. This change and the resulting large change in local charge were presumably required for the temperature-sensitive transformation phenotype of ST529. These results, together with other known deletions that produce fusiform mutants, suggested that a region within the amino-terminal one-third coding region of the src gene contributed to a structural domain of p60v-src that was important for controlling some morphological parameters of transformation in cells infected with RSV.
Collapse
|
11
|
Abstract
We have compared the tyrosine kinase activity of pp60c-src isolated from intact chicken embryo fibroblasts treated with micromolar sodium orthovanadate for 4 h and from untreated cells. We found an approximate 50% reduction in both autophosphorylation of pp60c-src and phosphorylation of casein when examined in the immune complex kinase assay. The reduction of in vitro enzymatic activity correlated with a vanadate-induced increase in in vivo phosphorylation of pp60c-src at the major site of tyrosine phosphorylation in the carboxyl-terminal half of the molecule and at serine in the amino-terminal half of the molecule. Our observations in vivo and those of Courtneidge in vitro (EMBO J. 4:1471-1477, 1985) suggest that vanadate may enhance a cellular regulatory mechanism that inhibits the activity of pp60c-src in normal cells. A likely candidate for this mechanism is phosphorylation at a tyrosine residue distinct from tyrosine 416, probably tyrosine 527 in the carboxyl-terminal sequence of amino acids unique to pp60c-src. The regulatory role, if any, of serine phosphorylation in pp60c-src remains unclear. The 36-kilodalton phosphoprotein, a substrate of pp60v-src, showed a significant phosphorylation at tyrosine after treatment of normal chicken embryo fibroblasts with vanadate. Assuming that pp60c-src is inhibited intracellularly by vanadate, either another tyrosine kinase is stimulated by vanadate (e.g., a growth factor receptor) or the 36-kilodalton phosphoprotein in normal cells is no longer rapidly dephosphorylated by a tyrosine phosphatase in the presence of vanadate.
Collapse
|
12
|
Abstract
It has previously been shown that an electrophoretic variant form of the Rous sarcoma virus transforming protein, pp60v-src, exists in src-transformed cells. This variant, which was readily observed in vanadate-treated cells, was characterized as possessing extensive amino-terminal domain phosphotyrosine modification. Its appearance was further correlated with increased src-specific protein kinase activity. In this study, we used a src-specific monoclonal antibody (MAb) to resolve immunologic forms of pp60v-src. The MAb was able to distinguish between two populations of typical lower-band pp60v-src and was unreactive with the electrophoretic variant upper-band pp60v-src species. Using serial immunoprecipitations, we resolved four populations of pp60v-src: src protein either immunoreactive or unreactive with the MAb from both untreated and vanadate-treated transformed cells. The pp60v-src in each fraction displayed a distinct phosphoamino acid composition and tryptic phosphopeptide profile. However, analysis of their tyrosyl kinase specific activities showed that the immunologically resolved populations of pp60v-src from a given culture did not differ. Both pp60v-src fractions from vanadate-treated cells exhibited similar kinase specific activities, which were greatly enhanced over those of enzyme preparations from untreated cells. Since the MAb-reactive pp60v-src fraction from vanadate-treated cells lacked the electrophoretic variant upper-band pp60v-src species yet still possessed enhanced enzymatic specific activity, the initially stated correlation between the appearance of the electrophoretic variant src form and increased src kinase activity breaks down. These results suggest that yet to be defined modifications of the src protein may be involved in its functional regulation.
Collapse
|
13
|
Abstract
We have compared the tyrosine kinase activity of pp60c-src isolated from intact chicken embryo fibroblasts treated with micromolar sodium orthovanadate for 4 h and from untreated cells. We found an approximate 50% reduction in both autophosphorylation of pp60c-src and phosphorylation of casein when examined in the immune complex kinase assay. The reduction of in vitro enzymatic activity correlated with a vanadate-induced increase in in vivo phosphorylation of pp60c-src at the major site of tyrosine phosphorylation in the carboxyl-terminal half of the molecule and at serine in the amino-terminal half of the molecule. Our observations in vivo and those of Courtneidge in vitro (EMBO J. 4:1471-1477, 1985) suggest that vanadate may enhance a cellular regulatory mechanism that inhibits the activity of pp60c-src in normal cells. A likely candidate for this mechanism is phosphorylation at a tyrosine residue distinct from tyrosine 416, probably tyrosine 527 in the carboxyl-terminal sequence of amino acids unique to pp60c-src. The regulatory role, if any, of serine phosphorylation in pp60c-src remains unclear. The 36-kilodalton phosphoprotein, a substrate of pp60v-src, showed a significant phosphorylation at tyrosine after treatment of normal chicken embryo fibroblasts with vanadate. Assuming that pp60c-src is inhibited intracellularly by vanadate, either another tyrosine kinase is stimulated by vanadate (e.g., a growth factor receptor) or the 36-kilodalton phosphoprotein in normal cells is no longer rapidly dephosphorylated by a tyrosine phosphatase in the presence of vanadate.
Collapse
|
14
|
Tyrosyl kinase activity is inversely related to prostatic acid phosphatase activity in two human prostate carcinoma cell lines. Mol Cell Biol 1987. [PMID: 3796616 DOI: 10.1128/mcb.6.12.4753] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alterations in prostatic acid phosphatase (PAcP), a phosphotyrosyl phosphatase, corresponded to changes in overall tyrosyl kinase activity. PAcP added to extracts of prostate carcinoma cells with a low endogenous level of PAcP activity and elevated tyrosyl kinase activity decreased the tyrosyl kinase activity. On the other hand, when PAcP activity was decreased by the addition of androgens to cells, there was a corresponding increase in tyrosyl kinase activity.
Collapse
|
15
|
Dephosphorylation or antibody binding to the carboxy terminus stimulates pp60c-src. Mol Cell Biol 1987. [PMID: 2432403 DOI: 10.1128/mcb.6.12.4467] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of pp60c-src at Tyr-527, six residues from the carboxy terminus, has been implicated in regulation of the protein-tyrosine kinase activity of pp60c-src. Here we show that dephosphorylation of pp60c-src by phosphatase treatment in vitro caused a 10- to 20-fold increase in pp60c-src protein-tyrosine kinase activity. Binding of specific antibody to the region of pp60c-src which contains phosphotyrosine-527 also increased kinase activity. Each treatment increased phosphorylation of added substrates and of Tyr-416 within pp60c-src by a similar mechanism that involved altered interactions with ATP and increased catalytic rate. We suggest that the phosphorylated carboxy terminus acts as an inhibitor of the protein kinase domain of pp60c-src, unless its conformation is altered by either dephosphorylation or antibody binding. The antibody additionally stimulated the phosphorylation of forms of pp60c-src that had reduced gel mobility, much like those phosphorylated in kinase reactions containing pp60c-src activated by polyomavirus medium tumor antigen. These in vitro experiments provide models for the activation of pp60c-src in cells transformed by polyomavirus. We also show that autophosphorylation of pp60c-src at Tyr-527 occurs only to a very limited extent in vitro, even when Tyr-527 is made available for phosphorylation by treatment with phosphatase. This suggests that other protein-tyrosine kinases may normally phosphorylate Tyr-527 and regulate pp60c-src in the cell.
Collapse
|
16
|
Novel serine phosphorylation of pp60c-src in intact cells after tumor promoter treatment. Mol Cell Biol 1987. [PMID: 2431272 DOI: 10.1128/mcb.6.2.735] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of normal cells with the tumor promoters 12-O-tetradecanoylphorbol-13-acetate and mezerein results in increased phosphorylation of pp60c-src. Two-dimensional tryptic phosphopeptide analysis of partial V8 protease fragments indicated that this phosphorylation takes place on a serine residue which lies within the amino-terminal 18 kilodaltons of pp60c-src and represents the major phosphorylation site following tumor promoter treatment. Untreated cells exhibited a low but detectable level of phosphorylation at this serine residue. The significance of these results with respect to the phosphoregulation of pp60c-src as well as tumor promotion is discussed.
Collapse
|
17
|
Altered sites of tyrosine phosphorylation in pp60c-src associated with polyomavirus middle tumor antigen. Mol Cell Biol 1987. [PMID: 2431281 DOI: 10.1128/mcb.6.5.1562] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We characterized the tyrosine phosphorylation sites of free pp60c-src and of pp60c-src associated with the polyomavirus middle tumor antigen (mT) in transformed avian and rodent cells. The sites of tyrosine phosphorylation in the two populations of pp60c-src were different, both in vitro and in vivo. Free pp60c-src was phosphorylated in vitro at a single site, tyrosine 416. pp60c-src associated with mT was phosphorylated in vitro on tyrosine 416 and on one or more additional tyrosine residues located in the amino-terminal region of the molecule. Free pp60c-src in polyomavirus mT-transformed cells was phosphorylated in vivo on tyrosine 527. In contrast, pp60c-src associated with mT was phosphorylated in vivo on tyrosine 416 and not detectably on tyrosine 527. Thus, the in vivo phosphorylation sites of pp60c-src associated with mT in transformed cells are identical to those of pp60v-src, the Rous sarcoma virus transforming protein. The results suggest that altered phosphorylation of pp60c-src associated with mT may play a role in the enhancement of the pp60c-src protein kinase activity and in cell transformation by polyomavirus.
Collapse
|
18
|
Retrovirus shuttle vector for study of kinase activities of pp60c-src synthesized in vitro and overproduced in vivo. Mol Cell Biol 1986. [PMID: 2431288 DOI: 10.1128/mcb.6.6.2033] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed a recombinant murine retrovirus which efficiently transduces avian pp60c-src into murine cells and which is easily rescued from infected cells in plasmid form. To characterize the virus, several randomly selected NIH 3T3 lines were isolated after infection with recombinant retroviral stocks. All lines overproduced avian pp60c-src and appeared morphologically normal. Immunoprecipitates made from these lines with antisera specific for pp60c-src were tested for their kinase activities in vitro. We find that both autokinase and enolase kinase activities increase proportionately with the level of pp60c-src in the immunoprecipitates. To further test the authenticity of the pp60c-src encoded by the retroviral vector, these analyses were repeated in the presence of polyomavirus middle T antigen. Avian pp60c-src was activated as a protein kinase, indicating that the virally encoded pp60c-src interacts normally with middle T antigen. Interestingly, by increasing the intracellular levels of pp60c-src 15-fold over normal endogenous levels, we were unable to obtain a proportionate increase in the amount of middle-T-antigen-pp60c-src complex. Finally, using the shuttle features designed into the vector, we have isolated the first fully processed cDNA encoding functional avian pp60c-src X pp60c-src synthesized in vitro with this cDNA had intrinsic protein kinase activity and no detectable phosphatidylinositol kinase activity.
Collapse
|
19
|
Lin MF, Lee CL, Clinton GM. Tyrosyl kinase activity is inversely related to prostatic acid phosphatase activity in two human prostate carcinoma cell lines. Mol Cell Biol 1986; 6:4753-7. [PMID: 3796616 PMCID: PMC367263 DOI: 10.1128/mcb.6.12.4753-4757.1986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Alterations in prostatic acid phosphatase (PAcP), a phosphotyrosyl phosphatase, corresponded to changes in overall tyrosyl kinase activity. PAcP added to extracts of prostate carcinoma cells with a low endogenous level of PAcP activity and elevated tyrosyl kinase activity decreased the tyrosyl kinase activity. On the other hand, when PAcP activity was decreased by the addition of androgens to cells, there was a corresponding increase in tyrosyl kinase activity.
Collapse
|
20
|
Cooper JA, King CS. Dephosphorylation or antibody binding to the carboxy terminus stimulates pp60c-src. Mol Cell Biol 1986; 6:4467-77. [PMID: 2432403 PMCID: PMC367230 DOI: 10.1128/mcb.6.12.4467-4477.1986] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation of pp60c-src at Tyr-527, six residues from the carboxy terminus, has been implicated in regulation of the protein-tyrosine kinase activity of pp60c-src. Here we show that dephosphorylation of pp60c-src by phosphatase treatment in vitro caused a 10- to 20-fold increase in pp60c-src protein-tyrosine kinase activity. Binding of specific antibody to the region of pp60c-src which contains phosphotyrosine-527 also increased kinase activity. Each treatment increased phosphorylation of added substrates and of Tyr-416 within pp60c-src by a similar mechanism that involved altered interactions with ATP and increased catalytic rate. We suggest that the phosphorylated carboxy terminus acts as an inhibitor of the protein kinase domain of pp60c-src, unless its conformation is altered by either dephosphorylation or antibody binding. The antibody additionally stimulated the phosphorylation of forms of pp60c-src that had reduced gel mobility, much like those phosphorylated in kinase reactions containing pp60c-src activated by polyomavirus medium tumor antigen. These in vitro experiments provide models for the activation of pp60c-src in cells transformed by polyomavirus. We also show that autophosphorylation of pp60c-src at Tyr-527 occurs only to a very limited extent in vitro, even when Tyr-527 is made available for phosphorylation by treatment with phosphatase. This suggests that other protein-tyrosine kinases may normally phosphorylate Tyr-527 and regulate pp60c-src in the cell.
Collapse
|
21
|
Restriction of the in vitro and in vivo tyrosine protein kinase activities of pp60c-src relative to pp60v-src. Mol Cell Biol 1986. [PMID: 2426575 DOI: 10.1128/mcb.5.10.2753] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tyrosine protein kinase activities of pp60c-src and pp60v-src were compared. The activities were qualitatively similar in vitro when the src proteins were bound in an immune complex with monoclonal antibody; both proteins utilized either ATP or GTP as phosphate donors, preferred Mn2+ to Mg2+, and had similar exogenous substrate specificities. The specific activity of pp60c-src was about 10-fold lower than that of pp60v-src for exogenous substrate phosphorylation but was only 1.1- to 2-fold lower than that of pp60v-src for autophosphorylation. Six glycolytic enzymes, including three not previously identified as substrates for pp60src phosphorylation, were phosphorylated by both pp60c-src and pp60v-src. Levels of pp60c-src fourfold higher than the amount of pp60v-src in src-plasmid-transformed cells did not detectably alter the level of phosphotyrosine in cellular proteins, but increasing the expression of pp60c-src another twofold (which induces cells to form foci in monolayer culture (P.J. Johnson, P.M. Coussens, A.V. Danko, and D. Shalloway, Mol. Cell. Biol. 5:1073-1083, 1985) resulted in a threefold increase in the level of cellular protein phosphotyrosine. Immunoprecipitation and analysis of the alkali-stable phosphoproteins by two-dimensional electrophoresis showed that, in contrast to pp60v-src-transformed cells, pp36 and enolase are only weakly phosphorylated in these high-level pp60c-src overexpresser cells. Even allowing for the in vitro differences in specific activities of phosphorylation, these results suggest that the pp60c-src tyrosine protein phosphorylating activity may be restricted relative to that of pp60v-src by additional in vivo mechanisms.
Collapse
|
22
|
N-terminal deletions in Rous sarcoma virus p60src: effects on tyrosine kinase and biological activities and on recombination in tissue culture with the cellular src gene. Mol Cell Biol 1986. [PMID: 2426576 DOI: 10.1128/mcb.5.10.2789] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed deletions within the region of cloned Rous sarcoma virus DNA coding for the N-terminal 30 kilodaltons of p60src. Infectious virus was recovered after transfection. Deletions of amino acids 15 to 149, 15 to 169, or 149 to 169 attenuated but did not abolish transforming activity, as assayed by focus formation and anchorage-independent growth. These deletions also had only slight effects on the tyrosine kinase activity of the mutant src protein. Deletion of amino acids 169 to 264 or 15 to 264 completely abolished transforming activity, and src kinase activity was reduced at least 10-fold. However, these mutant viruses generated low levels of transforming virus by recombination with the cellular src gene. The results suggest that as well as previously identified functional domains for p60src myristylation and membrane binding (amino acids 1 to 14) and tyrosine kinase activity (amino acids 250 to 526), additional N-terminal sequences (particularly amino acids 82 to 169) can influence the transforming activity of the src protein.
Collapse
|
23
|
Piwnica-Worms H, Kaplan DR, Whitman M, Roberts TM. Retrovirus shuttle vector for study of kinase activities of pp60c-src synthesized in vitro and overproduced in vivo. Mol Cell Biol 1986; 6:2033-40. [PMID: 2431288 PMCID: PMC367743 DOI: 10.1128/mcb.6.6.2033-2040.1986] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have constructed a recombinant murine retrovirus which efficiently transduces avian pp60c-src into murine cells and which is easily rescued from infected cells in plasmid form. To characterize the virus, several randomly selected NIH 3T3 lines were isolated after infection with recombinant retroviral stocks. All lines overproduced avian pp60c-src and appeared morphologically normal. Immunoprecipitates made from these lines with antisera specific for pp60c-src were tested for their kinase activities in vitro. We find that both autokinase and enolase kinase activities increase proportionately with the level of pp60c-src in the immunoprecipitates. To further test the authenticity of the pp60c-src encoded by the retroviral vector, these analyses were repeated in the presence of polyomavirus middle T antigen. Avian pp60c-src was activated as a protein kinase, indicating that the virally encoded pp60c-src interacts normally with middle T antigen. Interestingly, by increasing the intracellular levels of pp60c-src 15-fold over normal endogenous levels, we were unable to obtain a proportionate increase in the amount of middle-T-antigen-pp60c-src complex. Finally, using the shuttle features designed into the vector, we have isolated the first fully processed cDNA encoding functional avian pp60c-src X pp60c-src synthesized in vitro with this cDNA had intrinsic protein kinase activity and no detectable phosphatidylinositol kinase activity.
Collapse
|
24
|
Cartwright CA, Kaplan PL, Cooper JA, Hunter T, Eckhart W. Altered sites of tyrosine phosphorylation in pp60c-src associated with polyomavirus middle tumor antigen. Mol Cell Biol 1986; 6:1562-70. [PMID: 2431281 PMCID: PMC367682 DOI: 10.1128/mcb.6.5.1562-1570.1986] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We characterized the tyrosine phosphorylation sites of free pp60c-src and of pp60c-src associated with the polyomavirus middle tumor antigen (mT) in transformed avian and rodent cells. The sites of tyrosine phosphorylation in the two populations of pp60c-src were different, both in vitro and in vivo. Free pp60c-src was phosphorylated in vitro at a single site, tyrosine 416. pp60c-src associated with mT was phosphorylated in vitro on tyrosine 416 and on one or more additional tyrosine residues located in the amino-terminal region of the molecule. Free pp60c-src in polyomavirus mT-transformed cells was phosphorylated in vivo on tyrosine 527. In contrast, pp60c-src associated with mT was phosphorylated in vivo on tyrosine 416 and not detectably on tyrosine 527. Thus, the in vivo phosphorylation sites of pp60c-src associated with mT in transformed cells are identical to those of pp60v-src, the Rous sarcoma virus transforming protein. The results suggest that altered phosphorylation of pp60c-src associated with mT may play a role in the enhancement of the pp60c-src protein kinase activity and in cell transformation by polyomavirus.
Collapse
|
25
|
Gentry LE, Chaffin KE, Shoyab M, Purchio AF. Novel serine phosphorylation of pp60c-src in intact cells after tumor promoter treatment. Mol Cell Biol 1986; 6:735-8. [PMID: 2431272 PMCID: PMC367568 DOI: 10.1128/mcb.6.2.735-738.1986] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treatment of normal cells with the tumor promoters 12-O-tetradecanoylphorbol-13-acetate and mezerein results in increased phosphorylation of pp60c-src. Two-dimensional tryptic phosphopeptide analysis of partial V8 protease fragments indicated that this phosphorylation takes place on a serine residue which lies within the amino-terminal 18 kilodaltons of pp60c-src and represents the major phosphorylation site following tumor promoter treatment. Untreated cells exhibited a low but detectable level of phosphorylation at this serine residue. The significance of these results with respect to the phosphoregulation of pp60c-src as well as tumor promotion is discussed.
Collapse
|
26
|
The product of the protooncogene c-src is modified during the cellular response to platelet-derived growth factor. Proc Natl Acad Sci U S A 1985; 82:7845-9. [PMID: 2415973 PMCID: PMC390866 DOI: 10.1073/pnas.82.23.7845] [Citation(s) in RCA: 151] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have observed a modification of the cellular protein kinase pp60c-src, elicited in murine 3T3 fibroblasts by platelet-derived growth factor (PDGF). The modification occurred rapidly after addition of PDGF to the culture medium and was first detected as a reduction in the electrophoretic mobility of a portion of the pp60c-src molecules. A similarly modified form of the viral homologue pp60v-src occurs in vivo in the absence of stimulation by PDGF. The occurrence of modified forms of both pp60c-src and pp60v-src was associated with a novel phosphorylation at tyrosine in the amino-terminal domains of the proteins. The time-course and dose-response for this modification of pp60c-src paralleled PDGF-induced increases in phosphorylation of pp36, a major cellular substrate for several tyrosine-specific protein kinases. In parallel experiments, treatment of cells with PDGF increased the kinase activity of pp60c-src in an immunocomplex assay. These results suggest pp60c-src may play a role in the mitogenic response to PDGF.
Collapse
|
27
|
Increased pp60c-src tyrosyl kinase activity in human neuroblastomas is associated with amino-terminal tyrosine phosphorylation of the src gene product. Proc Natl Acad Sci U S A 1985; 82:7275-9. [PMID: 2414774 PMCID: PMC390832 DOI: 10.1073/pnas.82.21.7275] [Citation(s) in RCA: 106] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have observed a 20- to 40-fold increase in pp60c-src tyrosyl kinase activity in human neuroblastoma cell lines over that found in either human glioblastoma cells or human fibroblasts. The level of c-src gene transcripts and pp60c-src protein synthesis in the neuroblastoma cells was not significantly increased when compared to the levels found in glioblastoma cells. Approximately one-half of the pp60c-src molecules synthesized during a 4-hr [35S]methionine or [32P]orthophosphate labeling period in neuroblastoma cells were found to migrate more slowly on NaDodSO4/polyacrylamide gels than pp60c-src molecules labeled in glioblastoma cells. Peptide and phosphoamino acid analysis of the in vivo phosphorylated c-src molecules from these two cell types revealed that pp60c-src molecules from the neuroblastoma cells possess in the amino-terminal portion of the protein at least one unique tyrosine phosphorylation site not found in pp60c-src derived from glioblastoma cells.
Collapse
|
28
|
Coussens PM, Cooper JA, Hunter T, Shalloway D. Restriction of the in vitro and in vivo tyrosine protein kinase activities of pp60c-src relative to pp60v-src. Mol Cell Biol 1985; 5:2753-63. [PMID: 2426575 PMCID: PMC367013 DOI: 10.1128/mcb.5.10.2753-2763.1985] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tyrosine protein kinase activities of pp60c-src and pp60v-src were compared. The activities were qualitatively similar in vitro when the src proteins were bound in an immune complex with monoclonal antibody; both proteins utilized either ATP or GTP as phosphate donors, preferred Mn2+ to Mg2+, and had similar exogenous substrate specificities. The specific activity of pp60c-src was about 10-fold lower than that of pp60v-src for exogenous substrate phosphorylation but was only 1.1- to 2-fold lower than that of pp60v-src for autophosphorylation. Six glycolytic enzymes, including three not previously identified as substrates for pp60src phosphorylation, were phosphorylated by both pp60c-src and pp60v-src. Levels of pp60c-src fourfold higher than the amount of pp60v-src in src-plasmid-transformed cells did not detectably alter the level of phosphotyrosine in cellular proteins, but increasing the expression of pp60c-src another twofold (which induces cells to form foci in monolayer culture (P.J. Johnson, P.M. Coussens, A.V. Danko, and D. Shalloway, Mol. Cell. Biol. 5:1073-1083, 1985) resulted in a threefold increase in the level of cellular protein phosphotyrosine. Immunoprecipitation and analysis of the alkali-stable phosphoproteins by two-dimensional electrophoresis showed that, in contrast to pp60v-src-transformed cells, pp36 and enolase are only weakly phosphorylated in these high-level pp60c-src overexpresser cells. Even allowing for the in vitro differences in specific activities of phosphorylation, these results suggest that the pp60c-src tyrosine protein phosphorylating activity may be restricted relative to that of pp60v-src by additional in vivo mechanisms.
Collapse
|
29
|
Cross FR, Garber EA, Hanafusa H. N-terminal deletions in Rous sarcoma virus p60src: effects on tyrosine kinase and biological activities and on recombination in tissue culture with the cellular src gene. Mol Cell Biol 1985; 5:2789-95. [PMID: 2426576 PMCID: PMC367017 DOI: 10.1128/mcb.5.10.2789-2795.1985] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have constructed deletions within the region of cloned Rous sarcoma virus DNA coding for the N-terminal 30 kilodaltons of p60src. Infectious virus was recovered after transfection. Deletions of amino acids 15 to 149, 15 to 169, or 149 to 169 attenuated but did not abolish transforming activity, as assayed by focus formation and anchorage-independent growth. These deletions also had only slight effects on the tyrosine kinase activity of the mutant src protein. Deletion of amino acids 169 to 264 or 15 to 264 completely abolished transforming activity, and src kinase activity was reduced at least 10-fold. However, these mutant viruses generated low levels of transforming virus by recombination with the cellular src gene. The results suggest that as well as previously identified functional domains for p60src myristylation and membrane binding (amino acids 1 to 14) and tyrosine kinase activity (amino acids 250 to 526), additional N-terminal sequences (particularly amino acids 82 to 169) can influence the transforming activity of the src protein.
Collapse
|
30
|
A mutation at the ATP-binding site of pp60v-src abolishes kinase activity, transformation, and tumorigenicity. Mol Cell Biol 1985. [PMID: 3927152 DOI: 10.1128/mcb.5.7.1772] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed a mutant, called RSV-SF2, at the ATP-binding site of pp60v-src. In this mutant, lysine-295 is replaced with methionine. SF2 pp60v-src was found to have a half-life similar to that of wild-type pp60v-src and was localized in the membranous fraction of the cell. Rat cells expressing SF2 pp60v-src were morphologically untransformed and do not form tumors. The SF2 pp60v-src isolated from these cells lacked kinase activity with either specific immunoglobulin or other substrates, and expression of SF2 pp60v-src failed to cause an increase of total phosphotyrosine in the proteins of infected cells. Wild-type pp60v-src was phosphorylated on serine and tyrosine in infected cells, and the analogous phosphorylations could also be carried out in vitro. Phosphorylation of serine was catalyzed by a cyclic AMP-dependent protein kinase, and phosphorylation of tyrosine was perhaps catalyzed by pp60v-src itself. By contrast, SF2 pp60v-src could not be phosphorylated on serine or tyrosine either in infected cells or in vitro. These findings strengthen the belief that the phosphotransferase activity of pp60v-src is required for neoplastic transformation by the protein and suggest that the binding of ATP to pp60v-src elicits an allosteric change required for phosphorylation of serine in the protein.
Collapse
|
31
|
Snyder MA, Bishop JM, McGrath JP, Levinson AD. A mutation at the ATP-binding site of pp60v-src abolishes kinase activity, transformation, and tumorigenicity. Mol Cell Biol 1985; 5:1772-9. [PMID: 3927152 PMCID: PMC367296 DOI: 10.1128/mcb.5.7.1772-1779.1985] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We constructed a mutant, called RSV-SF2, at the ATP-binding site of pp60v-src. In this mutant, lysine-295 is replaced with methionine. SF2 pp60v-src was found to have a half-life similar to that of wild-type pp60v-src and was localized in the membranous fraction of the cell. Rat cells expressing SF2 pp60v-src were morphologically untransformed and do not form tumors. The SF2 pp60v-src isolated from these cells lacked kinase activity with either specific immunoglobulin or other substrates, and expression of SF2 pp60v-src failed to cause an increase of total phosphotyrosine in the proteins of infected cells. Wild-type pp60v-src was phosphorylated on serine and tyrosine in infected cells, and the analogous phosphorylations could also be carried out in vitro. Phosphorylation of serine was catalyzed by a cyclic AMP-dependent protein kinase, and phosphorylation of tyrosine was perhaps catalyzed by pp60v-src itself. By contrast, SF2 pp60v-src could not be phosphorylated on serine or tyrosine either in infected cells or in vitro. These findings strengthen the belief that the phosphotransferase activity of pp60v-src is required for neoplastic transformation by the protein and suggest that the binding of ATP to pp60v-src elicits an allosteric change required for phosphorylation of serine in the protein.
Collapse
|
32
|
Yonemoto W, Jarvis-Morar M, Brugge JS, Bolen JB, Israel MA. Tyrosine phosphorylation within the amino-terminal domain of pp60c-src molecules associated with polyoma virus middle-sized tumor antigen. Proc Natl Acad Sci U S A 1985; 82:4568-72. [PMID: 3927285 PMCID: PMC390426 DOI: 10.1073/pnas.82.14.4568] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have examined the in vitro phosphorylation of cellular src protein (pp60c-src) molecules associated with the polyoma virus middle-sized tumor antigen in polyoma virus-transformed cells. These pp60c-src molecules possessed an enhanced tyrosyl kinase activity, migrated aberrantly on NaDodSO4/polyacrylamide gels, and contained a novel site of tyrosine phosphorylation within the amino-terminal region of the molecule. The pp60c-src molecules not associated with the middle-sized tumor antigen were phosphorylated exclusively on a tyrosine residue within the carboxyl-terminal domain of pp60c-src. A similar modified form of the middle-sized tumor antigen-associated pp60c-src protein was detected in lysates from polyoma virus-transformed cells labeled in vivo with [32P]orthophosphate in the presence of sodium orthovanadate, an inhibitor of phosphotyrosyl phosphatases.
Collapse
|
33
|
Abstract
The transforming protein of polyoma virus, middle T antigen, associates with the protein tyrosine kinase pp60c-src, and analysis of mutants of middle T suggests that this complex plays an important role in transformation by polyoma. It has recently been reported that pp60c-src from polyoma virus-transformed cells has enhanced tyrosine kinase activity in vitro. The data presented here confirm these findings and show that the enhanced kinase activity of pp60c-src is due to an increase in the Vmax of the enzyme. Sucrose density gradient analysis demonstrates that only the form of pp60c-src which is bound to middle T antigen is activated. The difference in enzyme activity between pp60c-src from normal and middle T-transformed cells is more marked when the enzyme is prepared from lysates containing the phosphotyrosine protein phosphatase inhibitor, sodium orthovanadate. pp60c-src from middle T transformed cells is unaffected, but pp60c-src from normal cells has reduced kinase activity if dephosphorylation is prevented. The kinase activity of pp60c-src thus appears to be regulated by its degree of phosphorylation at tyrosine, and data are presented which support this hypothesis. pp60c-src is the first example of a protein tyrosine kinase whose activity is inhibited by phosphorylation at tyrosine. Middle T antigen may increase the kinase activity of pp60c-src by preventing phosphorylation at this regulatory site.
Collapse
|
34
|
Structurally and functionally modified forms of pp60v-src in Rous sarcoma virus-transformed cell lysates. Mol Cell Biol 1985. [PMID: 6095053 DOI: 10.1128/mcb.4.7.1213] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
When analyzed from transformed cell lysates, pp60v-src, the product of the Rous sarcoma virus src gene, typically appears as a single polypeptide of 60,000 molecular weight, phosphorylated at two major sites, an amino-terminal region serine residue and carboxy-terminal region tyrosine residue. We describe here the identification of variant forms of pp60v-src present in transformed cell lysates that exhibited an altered electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels. This change in migration appeared to be the result of some alteration in the amino-terminal portion of the molecule and paralleled the appearance of extensive amino-terminal region tyrosine phosphorylation on the pp60v-src molecule. These structural modifications were further correlated with a dramatic increase in the protein kinase-specific activity of pp60v-src. The detection of these variant forms of pp60v-src depended on the prior treatment of the transformed cell cultures with vanadium ions or the inclusion in the cell disruption buffer of Mg2+ or ATP-Mg2+. The implications is that modified, highly active forms of the pp60v-src protein exist in transformed cells, but are transient and rapidly converted to stable forms, possibly by specific dephosphorylation. We suggest that amino-terminal region tyrosine phosphorylation of pp60v-src, presumably the result of autophosphorylation, serves to greatly enhance src protein enzymatic activity, but that much of the regulation of this transforming protein's function may involve a phosphotyrosyl protein phosphatase.
Collapse
|
35
|
Collett MS, Belzer SK, Purchio AF. Structurally and functionally modified forms of pp60v-src in Rous sarcoma virus-transformed cell lysates. Mol Cell Biol 1984; 4:1213-20. [PMID: 6095053 PMCID: PMC368901 DOI: 10.1128/mcb.4.7.1213-1220.1984] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
When analyzed from transformed cell lysates, pp60v-src, the product of the Rous sarcoma virus src gene, typically appears as a single polypeptide of 60,000 molecular weight, phosphorylated at two major sites, an amino-terminal region serine residue and carboxy-terminal region tyrosine residue. We describe here the identification of variant forms of pp60v-src present in transformed cell lysates that exhibited an altered electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels. This change in migration appeared to be the result of some alteration in the amino-terminal portion of the molecule and paralleled the appearance of extensive amino-terminal region tyrosine phosphorylation on the pp60v-src molecule. These structural modifications were further correlated with a dramatic increase in the protein kinase-specific activity of pp60v-src. The detection of these variant forms of pp60v-src depended on the prior treatment of the transformed cell cultures with vanadium ions or the inclusion in the cell disruption buffer of Mg2+ or ATP-Mg2+. The implications is that modified, highly active forms of the pp60v-src protein exist in transformed cells, but are transient and rapidly converted to stable forms, possibly by specific dephosphorylation. We suggest that amino-terminal region tyrosine phosphorylation of pp60v-src, presumably the result of autophosphorylation, serves to greatly enhance src protein enzymatic activity, but that much of the regulation of this transforming protein's function may involve a phosphotyrosyl protein phosphatase.
Collapse
|