1
|
Dunker W, Zaver SA, Pineda JMB, Howard CJ, Bradley RK, Woodward JJ. The proto-oncogene SRC phosphorylates cGAS to inhibit an antitumor immune response. JCI Insight 2023; 8:e167270. [PMID: 37166992 PMCID: PMC10371251 DOI: 10.1172/jci.insight.167270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a DNA sensor and responsible for inducing an antitumor immune response. Recent studies reveal that cGAS is frequently inhibited in cancer, and therapeutic targets to promote antitumor cGAS function remain elusive. SRC is a proto-oncogene tyrosine kinase and is expressed at elevated levels in numerous cancers. Here, we demonstrate that SRC expression in primary and metastatic bladder cancer negatively correlates with innate immune gene expression and immune cell infiltration. We determine that SRC restricts cGAS signaling in human cell lines through SRC small molecule inhibitors, depletion, and overexpression. cGAS and SRC interact in cells and in vitro, while SRC directly inhibits cGAS enzymatic activity and DNA binding in a kinase-dependent manner. SRC phosphorylates cGAS, and inhibition of cGAS Y248 phosphorylation partially reduces SRC inhibition. Collectively, our study demonstrates that cGAS antitumor signaling is hindered by the proto-oncogene SRC and describes how cancer-associated proteins can regulate the innate immune system.
Collapse
Affiliation(s)
| | - Shivam A. Zaver
- Department of Microbiology and
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
| | - Jose Mario Bello Pineda
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Robert K. Bradley
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
2
|
Robilotto GL, Mohapatra DP, Shepherd AJ, Mickle AD. Role of Src kinase in regulating protein kinase C mediated phosphorylation of TRPV1. Eur J Pain 2022; 26:1967-1978. [PMID: 35900227 PMCID: PMC9483845 DOI: 10.1002/ejp.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/19/2022] [Accepted: 07/23/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Transient receptor potential vanilloid-1 (TRPV1), activated by heat, acidic pH, endogenous vanilloids and capsaicin, is essential for thermal hyperalgesia. Under inflammatory conditions, phosphorylation of TRPV1 by protein kinase C (PKC) can sensitize the channel and decrease the activation threshold. Src kinase also phosphorylates TRPV1, promoting channel trafficking to the plasma membrane. These post-translational modifications are important for several chronic pain conditions. This study presents a previously undescribed relationship between Src and PKC phosphorylation of TRPV1, influencing the thermal hypersensitivity associated with TRPV1 activation. METHODS We assessed TRPV1 channel activity using intracellular calcium imaging and patch-clamp electrophysiology in mouse dorsal root ganglion cultures. Additionally, we used behavioural experiments to evaluate plantar thermal sensitivity following intraplantar injections of activators of known modulators of TRPV1 with and without an Src antagonist. RESULTS Using calcium imaging and patch-clamp techniques, we demonstrated that pharmacological inhibition of Src kinase or mutation of the Src phosphorylation site on TRPV1 prevented PKC but not PKA-mediated sensitization of TRPV1 in vitro. We found that intraplantar injection of the PKC activator phorbol 12-myristate 13-acetate (PMA) or bradykinin produces thermal hypersensitivity that can be attenuated by pharmacological inhibition of Src. Additionally, complete Freund's Adjuvant (CFA)-induced inflammatory hypersensitivity could also be attenuated by local Src kinase inhibition. CONCLUSIONS Our data demonstrate that Src phosphorylation is critical for PKC-mediated sensitization of TRPV1. Further, in a model of inflammatory pain, CFA, Src kinase inhibition could reduce thermal hypersensitivity. Targeting of Src kinase may have analgesic benefits in inflammatory pain conditions. SIGNIFICANCE Src kinase-mediated phosphorylation of TRPV1 is a critical regulator of the PKC-induced sensitization induced by multiple inflammatory mediators. This suggest a new regulatory mechanism governing TRPV1 function and a potential therapeutic target for inflammatory type pain, including cancer pain where Src antagonists are currently utilized.
Collapse
Affiliation(s)
- Gabriella L. Robilotto
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida
| | - Durga P. Mohapatra
- Department of Pharmacology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242
- Anesthesia, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242
| | - Andrew J. Shepherd
- Department of Pharmacology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242
- Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Aaron D. Mickle
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida
- Department of Pharmacology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida
- Department of Neuroscience, College of Medicine, University of Florida
| |
Collapse
|
3
|
Goel RK, Lukong KE. Understanding the cellular roles of Fyn-related kinase (FRK): implications in cancer biology. Cancer Metastasis Rev 2017; 35:179-99. [PMID: 27067725 DOI: 10.1007/s10555-016-9623-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The non-receptor tyrosine kinase Fyn-related kinase (FRK) is a member of the BRK family kinases (BFKs) and is distantly related to the Src family kinases (SFKs). FRK was first discovered in 1993, and studies pursued thereafter attributed a potential tumour-suppressive function to the enzyme. In recent years, however, further functional characterization of the tyrosine kinase in diverse cancer types suggests that FRK may potentially play an oncogenic role as well. Specifically, while ectopic expression of FRK suppresses cell proliferation and migration in breast and brain cancers, knockdown or catalytic inhibition of FRK suppresses these cellular processes in pancreatic and liver cancer. Such functional paradox is therefore evidently exhibited in a tissue-specific context. This review sheds light on the recent developments emerged from investigations on FRK which include: (a) a review of the expression pattern of the protein in mammalian cells/tissues, (b) underlying genomic perturbations and (c) a mechanistic function of the enzyme across different cellular environments. Given its functional heterogeneity observed across different cancers, we also discuss the therapeutic significance of FRK.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5, Saskatchewan, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5, Saskatchewan, Canada.
| |
Collapse
|
4
|
Montes-Grajales D, Bernardes GJL, Olivero-Verbel J. Urban Endocrine Disruptors Targeting Breast Cancer Proteins. Chem Res Toxicol 2016; 29:150-61. [PMID: 26700111 DOI: 10.1021/acs.chemrestox.5b00342] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Humans are exposed to a huge amount of environmental pollutants called endocrine disrupting chemicals (EDCs). These molecules interfere with the homeostasis of the body, usually through mimicking natural hormones leading to activation or blocking of their receptors. Many of these compounds have been associated with a broad range of diseases including the development or increased susceptibility to breast cancer, the most prevalent cancer in women worldwide, according to the World Health Organization. Thus, this article presents a virtual high-throughput screening (vHTS) to evaluate the affinity of proteins related to breast cancer, such as ESR1, ERBB2, PGR, BCRA1, and SHBG, among others, with EDCs from urban sources. A blind docking strategy was employed to screen each protein-ligand pair in triplicate in AutoDock Vina 2.0, using the computed binding affinities as ranking criteria. The three-dimensional structures were previously obtained from EDCs DataBank and Protein Data Bank, prepared and optimized by SYBYL X-2.0. Some of the chemicals that exhibited the best affinity scores for breast cancer proteins in each category were 1,3,7,8-tetrachlorodibenzo-p-dioxin, bisphenol A derivatives, perfluorooctanesulfonic acid, and benzo(a)pyrene, for catalase, several proteins, sex hormone-binding globulin, and cytochrome P450 1A2, respectively. An experimental validation of this approach was performed with a complex that gave a moderate binding affinity in silico, the sex hormone binding globulin (SHBG), and bisphenol A (BPA) complex. The protein was obtained using DNA recombinant technology and the physical interaction with BPA assessed through spectroscopic techniques. BPA binds on the recombinant SHBG, and this results in an increase of its α helix content. In short, this work shows the potential of several EDCs to bind breast cancer associated proteins as a tool to prioritize compounds to perform in vitro analysis to benefit the regulation or exposure prevention by the general population.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena , Cartagena 130015, Colombia.,Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom.,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena , Cartagena 130015, Colombia
| |
Collapse
|
5
|
Machiyama H, Yamaguchi T, Sawada Y, Watanabe TM, Fujita H. SH3 domain of c-Src governs its dynamics at focal adhesions and the cell membrane. FEBS J 2015; 282:4034-55. [DOI: 10.1111/febs.13404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Yasuhiro Sawada
- Research Institute; National Rehabilitation Center for Persons with Disabilities; Saitama Japan
| | - Tomonobu M. Watanabe
- Immunology Frontier Research Center; Osaka University; Suita Japan
- Quantitative Biology Center; Riken; Suita Osaka Japan
| | - Hideaki Fujita
- Immunology Frontier Research Center; Osaka University; Suita Japan
- Quantitative Biology Center; Riken; Suita Osaka Japan
| |
Collapse
|
6
|
Tyrosine 416 is phosphorylated in the closed, repressed conformation of c-Src. PLoS One 2013; 8:e71035. [PMID: 23923048 PMCID: PMC3724807 DOI: 10.1371/journal.pone.0071035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022] Open
Abstract
c-Src kinase activity is regulated by phosphorylation of Y527 and Y416. Y527 phosphorylation stabilizes a closed conformation, which suppresses kinase activity towards substrates, whereas phosphorylation at Y416 promotes an elevated kinase activity by stabilizing the activation loop in a manner permissive for substrate binding. Here we investigated the correlation of Y416 phosphorylation with c-Src activity when c-Src was locked into the open and closed conformations (by mutations Y527F and Q528E, P529E, G530I respectively). Consistent with prior findings, we found Y416 to be more greatly phosphorylated when c-Src was in an open, active conformation. However, we also observed an appreciable amount of Y416 was phosphorylated when c-Src was in a closed, repressed conformation under conditions by which c-Src was unable to phosphorylate substrate STAT3. The phosphorylation of Y416 in the closed conformation arose by autophosphorylation, since abolishing kinase activity by mutating the ATP binding site (K295M) prevented phosphorylation. Basal Y416 phosphorylation correlated positively with cellular levels of c-Src suggesting autophosphorylation depended on self-association. Using sedimentation velocity analysis on cell lysate with fluorescence detection optics, we confirmed that c-Src forms monomers and dimers, with the open conformation also forming a minor population of larger mass complexes. Collectively, our studies suggest a model by which dimerization of c-Src primes c-Src via Y416 phosphorylation to enable rapid potentiation of activity when Src adopts an open conformation. Once in the open conformation, c-Src can amplify the response by recruiting and phosphorylating substrates such as STAT3 and increasing the extent of autophosphorylation.
Collapse
|
7
|
Postel R, Vakeel P, Topczewski J, Knöll R, Bakkers J. Zebrafish integrin-linked kinase is required in skeletal muscles for strengthening the integrin-ECM adhesion complex. Dev Biol 2008; 318:92-101. [PMID: 18436206 DOI: 10.1016/j.ydbio.2008.03.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/27/2008] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
Abstract
Mechanical instability of skeletal muscle cells is the major cause of congenital muscular dystrophy. Here we show that the zebrafish lost-contact mutant, that lacks a functional integrin-linked kinase (ilk) gene, suffers from mechanical instability of skeletal muscle fibres. With genetic and morpholino knock-down experiments we demonstrate that: 1) laminin, itgalpha7, Ilk and beta-parvin are all critical for mechanical stability in skeletal muscles. 2) Ilk acts redundantly with the dystrophin/dystroglycan adhesion complex in maintaining mechanical stability of skeletal muscles. 3) Ilk protein is recruited to the myotendinous junctions, which requires the ECM component laminin and the presence of itgalpha7 in the sarcolemma. 4) Ilk, unexpectedly, is dispensable for formation of the adhesion complex. Ilk, however, is required for strengthening the adhesion of the muscle fibre with the ECM and this activity requires the presence of a functional kinase domain in Ilk. 5) We identified a novel interaction between Ilk and the mechanical stretch sensor protein MLP. Thus, Ilk is an essential intracellular component downstream of laminin and itgalpha7, providing strengthening of skeletal muscle fibre adhesion with the ECM and therefore qualified as a novel candidate gene for congenital muscular dystrophy.
Collapse
Affiliation(s)
- Ruben Postel
- Hubrecht Institute and University Medical Centre Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Sunitinib in the management of gastrointestinal stromal tumours (GISTs). EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2007; 34:844-850. [PMID: 18082353 DOI: 10.1016/j.ejso.2007.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 10/24/2007] [Indexed: 11/23/2022]
Abstract
AIMS Gastrointestinal stromal tumours (GISTs) are rare mesenchymal neoplasms of the gut with a 5-year survival of approximately 50%. Surgery remains the treatment of choice in resectable disease, with conventional chemotherapy largely ineffective. Over 90% of GIST possesses mutations in the c-KIT oncogene, producing an overactive tyrosine kinase, which may be driving the malignant process. Imatinib inhibits the aberrant tyrosine kinase and imatinib therapy in metastatic disease has shown significant clinical benefit. However, resistance typically develops within 2 years, with the need for further therapy. This article aims to introduce the reader to a new development in cancer therapeutics. METHODS A literature search was performed using the MEDLINE database to identify publications relevant to the review. References within these articles were used to expand the search. Abstracts from recent ASCO symposia were hand searched for relevant articles. FINDINGS Sunitinib (SU11248) is a novel multi-targeted tyrosine kinase inhibitor with activity not only against the receptor tyrosine kinase product of c-KIT but also other cell-signalling pathways that may be relevant in GIST; FLT3, platelet-derived growth receptor (PDGFR) and vascular endothelial growth factor receptor (VEGFR). Two Phase II trials and one Phase III trial have investigated the activity of sunitinib against imatinib-resistant GIST. Early results showed significant benefits in time to disease progression that led to licensing of the drug in America and more recently in Europe. A Phase III trial comparing dose-increased imatinib and sunitinib in progressed GIST is currently planned. CONCLUSIONS Initial clinical results with sunitinib are promising and suggest a future role. Further studies are needed before sunitinib can be recommended for the routine treatment of imatinib-refractory GIST.
Collapse
|
9
|
Tam LW, Wilson NF, Lefebvre PA. A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. ACTA ACUST UNITED AC 2007; 176:819-29. [PMID: 17353359 PMCID: PMC2064056 DOI: 10.1083/jcb.200610022] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Little is known about how cells regulate the size of their organelles. In this study, we find that proper flagellar length control in Chlamydomonas reinhardtii requires the activity of a new member of the cyclin-dependent kinase (CDK) family, which is encoded by the LF2 (long flagella 2) gene. This novel CDK contains all of the important residues that are essential for kinase activity but lacks the cyclin-binding motif PSTAIRE. Analysis of genetic lesions in a series of lf2 mutant alleles and site-directed mutagenesis of LF2p reveals that improper flagellar length and defective flagellar assembly correlate with the extent of disruption of conserved kinase structures or residues by mutations. LF2p appears to interact with both LF1p and LF3p in the cytoplasm, as indicated by immunofluorescence localization, sucrose density gradients, cell fractionation, and yeast two-hybrid experiments. We propose that LF2p is the catalytic subunit of a regulatory kinase complex that controls flagellar length and flagellar assembly.
Collapse
Affiliation(s)
- Lai-Wa Tam
- Department of Plant Biology, University of Minnesota, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
10
|
Abstract
Src tyrosine kinases are essential in numerous cell signaling pathways, and improper functioning of these enzymes has been implicated in many diseases. The activity of Src kinases is regulated by conformational activation, which involves several structural changes within the catalytic domain (CD): the orientation of two lobes of CD; rearrangement of the activation loop (A-loop); and movement of an alpha-helix (alphaC), which is located at the interface between the two lobes, into or away from the catalytic cleft. Conformational activation was investigated using biased molecular dynamics to explore the transition pathway between the active and the down-regulated conformation of CD for the Src-kinase family member Lyn kinase, and to gain insight into the interdependence of these changes. Lobe opening is observed to be a facile motion, whereas movement of the A-loop motion is more complex requiring secondary structure changes as well as communication with alphaC. A key result is that the conformational transition involves a switch in an electrostatic network of six polar residues between the active and the down-regulated conformations. The exchange between interactions links the three main motions of the CD. Kinetic experiments that would demonstrate the contribution of the switched electrostatic network to the enzyme mechanism are proposed. Possible implications for regulation conferred by interdomain interactions are also discussed.
Collapse
Affiliation(s)
- Elif Ozkirimli
- Medicinal Chemistry and Molecular Pharmacology Department, Markey Center for Structural Biology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907-2091, USA
| | | |
Collapse
|
11
|
Zong X, Eckert C, Yuan H, Wahl-Schott C, Abicht H, Fang L, Li R, Mistrik P, Gerstner A, Much B, Baumann L, Michalakis S, Zeng R, Chen Z, Biel M. A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase. J Biol Chem 2005; 280:34224-32. [PMID: 16079136 DOI: 10.1074/jbc.m506544200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated channels (HCN1-4) play a crucial role in the regulation of cell excitability. Importantly, they contribute to spontaneous rhythmic activity in brain and heart. HCN channels are principally activated by membrane hyperpolarization and binding of cAMP. Here, we identify tyrosine phosphorylation by Src kinase as another mechanism affecting channel gating. Inhibition of Src by specific blockers slowed down activation kinetics of native and heterologously expressed HCN channels. The same effect on HCN channel activation was observed in cells cotransfected with a dominant-negative Src mutant. Immunoprecipitation demonstrated that Src binds to and phosphorylates native and heterologously expressed HCN2. Src interacts via its SH3 domain with a sequence of HCN2 encompassing part of the C-linker and the cyclic nucleotide binding domain. We identified a highly conserved tyrosine residue in the C-linker of HCN channels (Tyr476 in HCN2) that confers modulation by Src. Replacement of this tyrosine by phenylalanine in HCN2 or HCN4 abolished sensitivity to Src inhibitors. Mass spectrometry confirmed that Tyr476 is phosphorylated by Src. Our results have functional implications for HCN channel gating. Furthermore, they indicate that tyrosine phosphorylation contributes in vivo to the fine tuning of HCN channel activity.
Collapse
Affiliation(s)
- Xiangang Zong
- Department Pharmazie, Pharmakologie für Naturwissenschaften, Ludwig-Maximilians Universität München, Butenandtstrasse 7, 81377 München
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gianni D, Zambrano N, Bimonte M, Minopoli G, Mercken L, Talamo F, Scaloni A, Russo T. Platelet-derived growth factor induces the beta-gamma-secretase-mediated cleavage of Alzheimer's amyloid precursor protein through a Src-Rac-dependent pathway. J Biol Chem 2003; 278:9290-7. [PMID: 12645527 DOI: 10.1074/jbc.m211899200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The beta-amyloid peptide (Abeta) present in the senile plaques of Alzheimer's disease derives from the cleavage of a membrane protein, named APP, driven by two enzymes, known as beta- and gamma-secretases. The mechanisms regulating this cleavage are not understood. We have developed an experimental system to identify possible extracellular signals able to trigger the cleavage of an APP-Gal4 fusion protein, which is detected by measuring the expression of the CAT gene transcribed under the control of the Gal4 transcription factor, which is released from the membrane upon the cleavage of APP-Gal4. By using this assay, we purified a protein contained in the C6 cell-conditioned medium, which activates the cleavage of APP-Gal4 and which we demonstrated to be PDGF-BB. The APP-Gal4 processing induced by PDGF is dependent on the gamma-secretase activity, being abolished by an inhibitor of this enzyme, and is the consequence of the activation of a pathway downstream of the PDGF-receptor, which includes the non-receptor tyrosine kinase Src and the small G-protein Rac1. These findings are confirmed by the observation that a constitutively active form of Src increases Abeta generation and that, in cells stably expressing APP, the generation of A is strongly decreased by the Src tyrosine kinase inhibitor PP2.
Collapse
Affiliation(s)
- Davide Gianni
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli 80131, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chang BY, Harte RA, Cartwright CA. RACK1: a novel substrate for the Src protein-tyrosine kinase. Oncogene 2002; 21:7619-29. [PMID: 12400005 DOI: 10.1038/sj.onc.1206002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2002] [Revised: 08/20/2002] [Accepted: 08/29/2002] [Indexed: 12/30/2022]
Abstract
RACK1 is one of a group of PKC-interacting proteins collectively called RACKs (Receptors for Activated C-Kinases). Previously, we showed that RACK1 also interacts with the Src tyrosine kinase, and is an inhibitor of Src activity and cell growth. PKC activation induces the intracellular movement and co-localization of RACK1 and Src, and the tyrosine phosphorylation of RACK1. To determine whether RACK1 is a Src substrate, we assessed phosphorylation of RACK1 by various tyrosine kinases in vitro, and by kinase-active and inactive mutants of Src in vivo. We found that RACK1 is a Src substrate. Moreover, Src activity is necessary for both the tyrosine phosphorylation of RACK1 and the binding of RACK1 to Src's SH2 domain that occur following PKC activation. To identify the tyrosine(s) on RACK1 that is phosphorylated by Src, we generated and tested a series of RACK1 mutants. We found that Src phosphorylates RACK1 on Tyr 228 and/or Tyr 246, highly-conserved tyrosines located in the sixth WD repeat that interact with Src's SH2 domain. We think that RACK1 is an important Src substrate that signals downstream of growth factor receptor tyrosine kinases and is involved in the regulation of Src function and cell growth.
Collapse
Affiliation(s)
- Betty Y Chang
- Department of Medicine, Stanford University, Stanford, California, CA 94305, USA
| | | | | |
Collapse
|
14
|
Nitabach MN, Llamas DA, Thompson IJ, Collins KA, Holmes TC. Phosphorylation-dependent and phosphorylation-independent modes of modulation of shaker family voltage-gated potassium channels by SRC family protein tyrosine kinases. J Neurosci 2002; 22:7913-22. [PMID: 12223544 PMCID: PMC6758110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Modulation of voltage-gated potassium (Kv) channels by protein phosphorylation plays an essential role in the regulation of the membrane properties of cells. Protein-protein binding domains, such as Src homology 3 (SH3) domains, direct ion channel modulation by coupling the channels with intracellular signaling enzymes. The conventional view is that protein kinase binding to ion channels leads to modulation by bringing the channel substrate into physical proximity to the enzyme, thereby fostering covalent modification of the channel. The SH3 domain binding-dependent functional suppression of Kv1.5 currents by Src family protein tyrosine kinases (PTKs) is considered a canonical example of this type of mechanism. In the present study we address whether the SH3-dependent binding of Src family PTKs to Shaker family Kvs mediates modulatory events that are independent of and/or dependent on Src-catalyzed tyrosine phosphorylation of the channel. We find that Src binding and tyrosine phosphorylation are each able to modulate Kv1 family macroscopic channel currents independently. SH3-dependent binding of Src leads to the suppression of both Kv1.5 and Kv1.4 (modified to contain proline-rich SH3 domain binding sites) macroscopic currents even in the absence of Src-catalyzed tyrosine phosphorylation, whereas binding-independent tyrosine phosphorylation by Src leads to the suppression of Kv1.5 macroscopic currents and the modulation of Kv1.4 inactivation kinetics.
Collapse
Affiliation(s)
- Michael N Nitabach
- Department of Biology, New York University, New York, New York 10003, USA
| | | | | | | | | |
Collapse
|
15
|
Marx M, Warren SL, Madri JA. pp60(c-src) modulates microvascular endothelial phenotype and in vitro angiogenesis. Exp Mol Pathol 2001; 70:201-13. [PMID: 11417999 DOI: 10.1006/exmp.2001.2358] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tyrosine kinase c-src associates with the platelet-derived growth factor (PDGF) receptor. Overexpression of wild-type c-src, a kinase-negative c-src mutant, and v-src in microvascular endothelial cells modulated the mitogenic effect of PDGF, suggesting that c-src kinase activity inhibits PDGF signals. Analyses of cell morphology in two-dimensional culture revealed changes in cell shape and size induced by the overexpression of c-src proteins. Investigations in three-dimensional culture unveiled a modulatory role of c-src during in vitro angiogenesis. Overexpression of c-src resulted in an increased diameter of tube-like structures, and the number of branching segments was decreased. Expression of the kinase-negative c-src mutant resulted in abortive tube formation consisting of disconnected multicellular fragments. These results indicate that the c-src tyrosine kinase exerts regulatory effects on endothelial proliferation, size, and cytoskeletal organization in two-dimensional culture and on the formation of a differentiated multicellular network in three-dimensional culture.
Collapse
Affiliation(s)
- M Marx
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
16
|
Ellis CE, Schwartzberg PL, Grider TL, Fink DW, Nussbaum RL. alpha-synuclein is phosphorylated by members of the Src family of protein-tyrosine kinases. J Biol Chem 2001; 276:3879-84. [PMID: 11078745 DOI: 10.1074/jbc.m010316200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
alpha-Synuclein (alpha-Syn) is implicated in the pathogenesis of Parkinson's Disease, genetically through missense mutations linked to early onset disease and pathologically through its presence in Lewy bodies. alpha-Syn is phosphorylated on serine residues; however, tyrosine phosphorylation of alpha-Syn has not been established (, ). A comparison of the protein sequence between Synuclein family members revealed that all four tyrosine residues of alpha-Syn are conserved in all orthologs and beta-Syn paralogs described to date, suggesting that these residues may be of functional importance (). For this reason, experiments were performed to determine whether alpha-Syn could be phosphorylated on tyrosine residue(s) in human cells. Indeed, alpha-Syn is phosphorylated within 2 min of pervanadate treatment in alpha-Syn-transfected cells. Tyrosine phosphorylation occurs primarily on tyrosine 125 and was inhibited by PP2, a selective inhibitor of Src protein-tyrosine kinase (PTK) family members at concentrations consistent with inhibition of Src function (). Finally, we demonstrate that alpha-Syn can be phosphorylated directly both in cotransfection experiments using c-Src and Fyn expression vectors and in in vitro kinase assays with purified kinases. These data suggest that alpha-Syn can be a target for phosphorylation by the Src family of PTKs.
Collapse
Affiliation(s)
- C E Ellis
- Genetic Diseases Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
17
|
Chung KC, Sung JY, Ahn W, Rhim H, Oh TH, Lee MG, Ahn YS. Intracellular calcium mobilization induces immediate early gene pip92 via Src and mitogen-activated protein kinase in immortalized hippocampal cells. J Biol Chem 2001; 276:2132-8. [PMID: 11053438 DOI: 10.1074/jbc.m007492200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of intracellular calcium levels plays a central role in cell survival, proliferation, and differentiation. A cell-permeable, tumor-promoting thapsigargin elevates the intracellular calcium levels by inhibiting endoplasmic reticulum Ca(2+)-ATPase. The Src-tyrosine kinase family is involved in a broad range of cellular responses ranging from cell growth and cytoskeletal rearrangement to differentiation. The immediate early gene pip92 is induced in neuronal cell death as well as cell growth and differentiation. To resolve the molecular mechanism of cell growth by intracellular calcium mobilization, we have examined the effect of thapsigargin and subsequent intracellular calcium influx on pip92 expression in immortalized rat hippocampal H19-7 cells. An increase of intracellular calcium ion levels induced by thapsigargin stimulated the expression of pip92 in H19-7 cells. Transient transfection of the cells with kinase-inactive mitogen-activated protein kinase kinase (MEK) and Src kinase or pretreatment with the chemical MEK inhibitor PD98059 significantly inhibited pip92 expression induced by thapsigargin. When constitutively active v-Src or MEK was overexpressed, the transcriptional activity of the pip92 gene was markedly increased. Dominant inhibitory Raf-1 blocked the transcriptional activity of pip92 induced by thapsigargin. The transcription factor Elk1 is activated during thapsigargin-induced pip92 expression. Taken together, these results suggest that an increase of intracellular calcium ion levels by thapsigargin stimulates the pip92 expression via Raf-MEK-extracellular signal-regulated protein kinase- as well as Src kinase-dependent signaling pathways.
Collapse
Affiliation(s)
- K C Chung
- Department of Pharmacology and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea.
| | | | | | | | | | | | | |
Collapse
|
18
|
Lavoie JN, Champagne C, Gingras MC, Robert A. Adenovirus E4 open reading frame 4-induced apoptosis involves dysregulation of Src family kinases. J Cell Biol 2000; 150:1037-56. [PMID: 10973994 PMCID: PMC2175248 DOI: 10.1083/jcb.150.5.1037] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The adenoviral early region 4 open reading frame 4 (E4orf4) death factor induces p53-independent apoptosis in many cell types and appears to kill selectively transformed cells. Here we show that expression of E4orf4 in transformed epithelial cells results in early caspase-independent membrane blebbing, associated with changes in the organization of focal adhesions and actin cytoskeleton. Evidence that E4orf4 can associate with and modulate Src family kinase activity, inhibiting Src-dependent phosphorylation of focal adhesion kinase (FAK) and paxillin while increasing phosphorylation of cortactin and some other cellular proteins, is presented. Furthermore, E4orf4 dramatically inhibited the ability of FAK and c-src to cooperate in induction of tyrosine phosphorylation of cellular substrates, suggesting that E4orf4 can interfere with the formation of a signaling complex at focal adhesion sites. Consistent with a functional role for E4orf4-Src interaction, overexpression of activated c-src dramatically potentiated E4orf4-induced membrane blebbing and apoptosis, whereas kinase dead c-src constructs inhibited E4orf4 effects on cell morphology and death. Moreover treatment of E4orf4-expressing cells with PP2, a selective Src kinase inhibitor, led to inhibition of E4orf4-dependent membrane blebbing and later to a marked decrease in E4orf4-induced nuclear condensation. Taken together, these observations indicate that expression of adenovirus 2 E4orf4 can initiate caspase-independent extranuclear manifestations of apoptosis through a modulation of Src family kinases and that these are involved in signaling E4orf4-dependent apoptosis. This study also suggests that Src family kinases are likely to play a role in the cytoplasmic execution of apoptotic programs.
Collapse
Affiliation(s)
- J N Lavoie
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Québec, G1R 2J6, Canada.
| | | | | | | |
Collapse
|
19
|
Hunter T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos Trans R Soc Lond B Biol Sci 1998; 353:583-605. [PMID: 9602534 PMCID: PMC1692245 DOI: 10.1098/rstb.1998.0228] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The reversible phosphorylation of tyrosines in proteins plays a key role in regulating many different processes in eukaryotic organisms, such as growth control, cell cycle control, differentiation cell shape and movement, gene transcription, synaptic transmission, and insulin action. Phosphorylation of proteins is brought about by enzymes called protein-tyrosine kinases that add phosphate to specific tyrosines in target proteins; phosphate is removed from phosphorylated tyrosines by enzymes called protein-tyrosine phosphatases. Phosphorylated tyrosines are recognized by specialized binding domains on other proteins, and such interactions are used to initiate intracellular signaling pathways. Currently, more than 95 protein-tyrosine kinases and more than 55 protein-tyrosine phosphatase genes are known in Homo sapiens. Aberrant tyrosine phosphorylation is a hallmark of many types of cancer and other human diseases. Drugs are being developed that antagonize the responsible protein-tyrosine kinases and phosphatases in order to combat these diseases.
Collapse
Affiliation(s)
- T Hunter
- Molecular Biology and Virology Laboratory, Salk Institute, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Curto M, Frankel P, Carrero A, Foster DA. Novel recruitment of Shc, Grb2, and Sos by fibroblast growth factor receptor-1 in v-Src-transformed cells. Biochem Biophys Res Commun 1998; 243:555-60. [PMID: 9480847 DOI: 10.1006/bbrc.1997.7982] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In response to fibroblast growth factor (FGF), FGF receptor-1 (FGFR-1) (flg) becomes tyrosine phosphorylated and associates with phospholipase C gamma (PLC gamma) and a 90 kDa protein. We report here that in cells transformed by v-Src, FGFR-1 becomes phosphorylated on tyrosine; however, neither PLC gamma nor p90 was found to be associated with tyrosine-phosphorylated FGFR-1. Instead, there was a strong constitutive association of FGFR-1 with the adaptor proteins Shc and Grb2 and the Ras guanine nucleotide exchange factor Sos. Association with Shc and Grb2 and Sos was not observed in response to FGF. Suramin did not prevent either tyrosine phosphorylation or Shc/Grb2/Sos association, indicating a non-autocrine mechanism. Thus, in cells transformed by v-Src, tyrosine phosphorylation of FGFR-1 results not in the expected association with PLC gamma and p90, but rather in the recruitment of the Ras activating Shc/Grb2/Sos complex. These data suggest a mechanism for Ras activation by v-Src involving phosphorylation of novel tyrosine(s) on FGFR-1.
Collapse
Affiliation(s)
- M Curto
- Department of Biological Sciences, Hunter College of the City University of New York, New York 10021, USA
| | | | | | | |
Collapse
|
21
|
Della Rocca GJ, van Biesen T, Daaka Y, Luttrell DK, Luttrell LM, Lefkowitz RJ. Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J Biol Chem 1997; 272:19125-32. [PMID: 9235901 DOI: 10.1074/jbc.272.31.19125] [Citation(s) in RCA: 372] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many receptors that couple to heterotrimeric guanine-nucleotide binding proteins (G proteins) have been shown to mediate rapid activation of the mitogen-activated protein kinases Erk1 and Erk2. In different cell types, the signaling pathways employed appear to be a function of the available repertoire of receptors, G proteins, and effectors. In HEK-293 cells, stimulation of either alpha1B- or alpha2A-adrenergic receptors (ARs) leads to rapid 5-10-fold increases in Erk1/2 phosphorylation. Phosphorylation of Erk1/2 in response to stimulation of the alpha2A-AR is effectively attenuated by pretreatment with pertussis toxin or by coexpression of a Gbetagamma subunit complex sequestrant peptide (betaARK1ct) and dominant-negative mutants of Ras (N17-Ras), mSOS1 (SOS-Pro), and Raf (DeltaN-Raf). Erk1/2 phosphorylation in response to alpha1B-AR stimulation is also attenuated by coexpression of N17-Ras, SOS-Pro, or DeltaN-Raf, but not by coexpression of betaARK1ct or by pretreatment with pertussis toxin. The alpha1B- and alpha2A-AR signals are both blocked by phospholipase C inhibition, intracellular Ca2+ chelation, and inhibitors of protein-tyrosine kinases. Overexpression of a dominant-negative mutant of c-Src or of the negative regulator of c-Src function, Csk, results in attenuation of the alpha1B-AR- and alpha2A-AR-mediated Erk1/2 signals. Chemical inhibitors of calmodulin, but not of PKC, and overexpression of a dominant-negative mutant of the protein-tyrosine kinase Pyk2 also attenuate mitogen-activated protein kinase phosphorylation after both alpha1B- and alpha2A-AR stimulation. Erk1/2 activation, then, proceeds via a common Ras-, calcium-, and tyrosine kinase-dependent pathway for both Gi- and Gq/11-coupled receptors. These results indicate that in HEK-293 cells, the Gbetagamma subunit-mediated alpha2A-AR- and the Galphaq/11-mediated alpha1B-AR-coupled Erk1/2 activation pathways converge at the level of phospholipase C. These data suggest that calcium-calmodulin plays a central role in the calcium-dependent regulation of tyrosine phosphorylation by G protein-coupled receptors in some systems.
Collapse
Affiliation(s)
- G J Della Rocca
- Howard Hughes Medical Institute and the Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
22
|
Luttrell LM, Della Rocca GJ, van Biesen T, Luttrell DK, Lefkowitz RJ. Gbetagamma subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J Biol Chem 1997; 272:4637-44. [PMID: 9020193 DOI: 10.1074/jbc.272.7.4637] [Citation(s) in RCA: 358] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In many cells, stimulation of mitogen-activated protein kinases by both receptor tyrosine kinases and receptors that couple to pertussis toxin-sensitive heterotrimeric G proteins proceed via convergent signaling pathways. Both signals are sensitive to inhibitors of tyrosine protein kinases and require Ras activation via phosphotyrosine-dependent recruitment of Ras guanine nucleotide exchange factors. Receptor tyrosine kinase stimulation mediates ligand-induced receptor autophosphorylation, which creates the initial binding sites for SH2 domain-containing docking proteins. However, the mechanism whereby G protein-coupled receptors mediate the phosphotyrosine-dependent assembly of a mitogenic signaling complex is poorly understood. We have studied the role of Src family nonreceptor tyrosine kinases in G protein-coupled receptor-mediated tyrosine phosphorylation in a transiently transfected COS-7 cell system. Stimulation of Gi-coupled lysophosphatidic acid and alpha2A adrenergic receptors or overexpression of Gbeta1gamma2 subunits leads to tyrosine phosphorylation of the Shc adapter protein, which then associates with tyrosine phosphoproteins of approximately 130 and 180 kDa, as well as Grb2. The 180-kDa Shc-associated tyrosine phosphoprotein band contains both epidermal growth factor (EGF) receptor and p185(neu). 3-5-fold increases in EGF receptor but not p185(neu) tyrosine phosphorylation occur following Gi-coupled receptor stimulation. Inhibition of endogenous Src family kinase activity by cellular expression of a dominant negative kinase-inactive mutant of c-Src inhibits Gbeta1gamma2 subunit-mediated and Gi-coupled receptor-mediated phosphorylation of both EGF receptor and Shc. Expression of Csk, which inactivates Src family kinases by phosphorylating the regulatory carboxyl-terminal tyrosine residue, has the same effect. The Gi-coupled receptor-mediated increase in EGF receptor phosphorylation does not reflect increased EGF receptor autophosphorylation, assayed using an autophosphorylation-specific EGF receptor monoclonal antibody. Lysophosphatidic acid stimulates binding of EGF receptor to a GST fusion protein containing the c-Src SH2 domain, and this too is blocked by Csk expression. These data suggest that Gbetagamma subunit-mediated activation of Src family nonreceptor tyrosine kinases can account for the Gi-coupled receptor-mediated tyrosine phosphorylation events that direct recruitment of the Shc and Grb2 adapter proteins to the membrane.
Collapse
Affiliation(s)
- L M Luttrell
- Howard Hughes Medical Institute and the Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
23
|
Luttrell LM, Hawes BE, van Biesen T, Luttrell DK, Lansing TJ, Lefkowitz RJ. Role of c-Src tyrosine kinase in G protein-coupled receptor- and Gbetagamma subunit-mediated activation of mitogen-activated protein kinases. J Biol Chem 1996; 271:19443-50. [PMID: 8702633 DOI: 10.1074/jbc.271.32.19443] [Citation(s) in RCA: 430] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Several G protein-coupled receptors that interact with pertussis toxin-sensitive heterotrimeric G proteins mediate Ras-dependent activation of mitogen-activated protein (MAP) kinases. The mechanism involves Gbetagamma subunit-mediated increases in tyrosine phosphorylation of the Shc adapter protein, Shc*Grb2 complex formation, and recruitment of Ras guanine nucleotide exchange factor activity. We have investigated the role of the ubiquitous nonreceptor tyrosine kinase c-Src in activation of the MAP kinase pathway via endogenous G protein-coupled lysophosphatidic acid (LPA) receptors or by transient expression of Gbetagamma subunits in COS-7 cells. In vitro kinase assays of Shc immunoprecipitates following LPA stimulation demonstrated rapid, transient recruitment of tyrosine kinase activity into Shc immune complexes. Recruitment of tyrosine kinase activity was pertussis toxin-sensitive and mimicked by cellular expression of Gbetagamma subunits. Immunoblots for coprecipitated proteins in Shc immunoprecipitates revealed a transient association of Shc and c-Src following LPA stimulation, which coincided with increases in Shc-associated tyrosine kinase activity and Shc tyrosine phosphorylation. LPA stimulation or expression of Gbetagamma subunits resulted in c-Src activation, as assessed by increased c-Src autophosphorylation. Overexpression of wild-type or constitutively active mutant c-Src, but not kinase inactive mutant c-Src, lead to increased tyrosine kinase activity in Shc immunoprecipitates, increased Shc tyrosine phosphorylation, and Shc.Grb2 complex formation. MAP kinase activation resulting from LPA receptor stimulation, expression of Gbetagamma subunits, or expression of c-Src was sensitive to dominant negatives of mSos, Ras, and Raf. Coexpression of Csk, which inactivates Src family kinases by phosphorylating the regulatory C-terminal tyrosine residue, inhibited LPA stimulation of Shc tyrosine phosphorylation, Shc.Grb2 complex formation, and MAP kinase activation. These data suggest that Gbetagamma subunit-mediated formation of Shc.c-Src complexes and c-Src kinase activation are early events in Ras-dependent activation of MAP kinase via pertussis toxin-sensitive G protein-coupled receptors.
Collapse
Affiliation(s)
- L M Luttrell
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Src is the best understood member of a family of 9 tyrosine kinases that regulates cellular responses to extracellular stimuli. Activated mutants of Src are oncogenic. Using Src as an example, and referring to other Src family members where appropriate, this review describes the structure of Src, the functions of the individual domains, the regulation of Src kinase activity in the cell, the selection of substrates, and the biological functions of Src. The review concentrates on developments in the last 6-7 years, and cites data resulting from the isolation and characterization of Src mutants, crystallographic studies of the structures of SH2, SH3 and tyrosine kinase domains, biochemical studies of Src kinase activity and binding properties, and the biology of transgenic and knockout mouse strains.
Collapse
Affiliation(s)
- M T Brown
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | | |
Collapse
|
25
|
|
26
|
Workman P, D'Incalci M, Bursch W, Harrap KR, Hawkins RE, Neidle S, Powis G. European School of Oncology Task Force Report. New approaches in cancer pharmacology: drug design and development (Part 2). Eur J Cancer 1994; 30A:1148-60. [PMID: 7654448 DOI: 10.1016/0959-8049(94)90475-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P Workman
- CRC Beatson Laboratories, CRC Department of Medical Oncology, University of Glasgow, U.K
| | | | | | | | | | | | | |
Collapse
|
27
|
Rudd CE, Janssen O, Prasad KV, Raab M, da Silva A, Telfer JC, Yamamoto M. src-related protein tyrosine kinases and their surface receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1155:239-66. [PMID: 8357828 DOI: 10.1016/0304-419x(93)90007-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The CD4-p56lck and CD8-p56lck complexes have served as a paradym for an expanding number of interactions between src-family members (p56lck, p59fyn, p56lyn, p55blk) and surface receptors. These interactions implicate src-related kinases in the regulation of a variety of intracellular events, from lymphokine production and cytotoxicity to the expression of specific nuclear binding proteins. Different molecular mechanisms appear to have evolved to facilitate the receptor-kinase interactions, including the use of N-terminal regions, SH2 regions and kinase domains. Variation exists in stoichiometry, affinity and the nature of signals generated by these complexes in cells. The CD4-p56lck complex differs from receptor-tyrosine kinases in a number of important ways, including mechanisms of kinase domain regulation and recruitment of substrates such as PI 3-kinase. Furthermore, they may have a special affinity for receptor-substrates such as the TcR zeta, MB1/B29 or CD5 receptors, and act to recruit other SH2-carrying proteins, such as ZAP-70 to the receptor complexes. Receptor-src kinase interactions represent the first step in a cascade of intracellular events within the protein-tyrosine kinase/phosphatase cascade.
Collapse
Affiliation(s)
- C E Rudd
- Division of Tumor Immunology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | | | | | | | | | | |
Collapse
|
28
|
Tomoda T, Murata T, Arai K, Muramatsu M. Mutations on 170Glu, a substrate recognition residue in mouse cAMP-dependent protein kinase, generate enzymes with altered substrate affinity and biological functions. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1175:333-42. [PMID: 8094634 DOI: 10.1016/0167-4889(93)90226-f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Site-directed mutations in the catalytic subunit of mouse cAMP-dependent protein kinase (PKAcat) were generated to assess the residue(s) important for the recognition of the substrate peptide and its biological functions. Since the region, 165R-166D-167L-168K-169P-170E-171 N of PKAcat has been shown to be located near the substrate analogue inhibitor peptide binding site (Knighton et al. (1991) Science 253, 414-420), we initially constructed three PKAcat mutants, D166A, K168A, and E170A, in which 166D, 168K, and 170E, respectively, were altered to alanine. When expressed in COS7 cells, D166A and K168A were insoluble, whereas E170A was soluble but had lower in-vitro kinase activity than the wild-type PKAcat. E170A and other 170E mutants, E170Q, E170V, E170R and E170D were equally soluble and displayed various catalytic activities with increased Km and decreased Vmax with regard to Kemptide substrate. Most prominently, E170R did not phosphorylate Kemptide, suggesting that 170E is important for the interaction with Kemptide. The in-vivo activities of the PKAcat mutants were examined in two independent biological assays. First, in Jurkat cells, overexpression of all the 170E mutants except E170R activated the c-fos promoter at various levels lower than the wild-type PKAcat, suggesting that these mutants retain at least partial biological activity. Second, progesterone-induced germinal vesicle break-down in Xenopus oocytes, inhibited by expression of wild-type PKAcat, was inhibited to a similar extent by all the 170E mutants except E170R. All these results support the idea that 170E is a peptide-recognition residue.
Collapse
Affiliation(s)
- T Tomoda
- Department of Molecular and Developmental Biology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
29
|
Nüesch JP, Cotmore SF, Tattersall P. Expression of functional parvoviral NS1 from recombinant vaccinia virus: effects of mutations in the nucleotide-binding motif. Virology 1992; 191:406-16. [PMID: 1413512 DOI: 10.1016/0042-6822(92)90202-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The gene encoding the major replicative protein, NS1, of minute virus of mice (MVM) was transferred into a recombinant vaccinia virus vector in place of the vaccinia thymidine kinase gene. The NS1 gene was placed under control of a bacteriophage T7 promoter and expressed in cells coinfected with another recombinant vaccinia virus, vTF7-3, which encodes the T7 RNA polymerase. Expression of NS1 was further enhanced by the presence of a 5' untranslated region, derived from encephalomyocarditis virus, which allows efficient cap-independent translation. This system was used to produce and analyze wild-type NS1 and two mutant forms of the protein, NS1K405R and NS1K405M, in which the highly conserved lysine codon located in the putative purine triphosphate binding site of NS1 was changed to arginine and methionine, respectively. Full-length NS1 was expressed efficiently in both human and mouse cells infected with each of the three recombinant viruses, and in each case the NS1 was rapidly and efficiently translocated into the nucleus. Wild-type NS1 expressed in this way was biologically active. It was able to trans-activate an MVM P38 promoter located in a host chromosomal site, whereas the two mutant forms of NS1 showed no significant activity in this assay, and it was capable of resolving palindromic junction fragments cloned from multimeric MVM replicative form DNA molecules. These substrates, representing MVM genomic left-end:left-end and right-end:right-end fusions, were resolved in a DNA synthesis-dependent in vitro reaction supplemented with nuclear extracts containing recombinant wild-type NS1. Neither of the two mutant forms of the polypeptide had any detectable activity in this assay.
Collapse
Affiliation(s)
- J P Nüesch
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | |
Collapse
|
30
|
Foster R, Martin GS. A mutation in the catalytic domain of pp60v-src is responsible for the host- and temperature-dependent phenotype of the Rous sarcoma virus mutant tsLA33-1. Virology 1992; 187:145-55. [PMID: 1310553 DOI: 10.1016/0042-6822(92)90303-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have analyzed a host- and temperature-dependent mutant of Rous sarcoma virus in order to learn more about the nature of mutations which lead to a host range phenotype. We have cloned and sequenced the v-src genes from this mutant, tsLA33-1, and from its presumed parent, tsLA33. Both the tsLA33 and the tsLA33-1 pp60v-src proteins contain multiple mutations. The tsLA33 v-src gene product has amino acid alterations at four positions. In the tsLA33-1 v-src gene product, two of these four mutations have reverted to wild type. We have constructed chimeras between the two mutant v-src gene products and between each mutant and the Prague A v-src gene product. To assess the contribution of each amino acid change to the transformation phenotypes of tsLA33 and tsLA33-1, we expressed the hybrid proteins in both chicken embryo fibroblasts and Rat-3 fibroblasts. Additionally, we have measured the protein tyrosine kinase activity of chimeras constructed between the tsLA33 and tsLA33-1 pp60v-src proteins. Our results indicate that mutations in the catalytic domain of each protein are the principal determinants of the transforming ability and protein tyrosine kinase activity of the tsLA33 and tsLA33-1 pp60v-src proteins.
Collapse
Affiliation(s)
- R Foster
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
31
|
Griffin LD, Gelb BD, Wheeler DA, Davison D, Adams V, McCabe ER. Mammalian hexokinase 1: evolutionary conservation and structure to function analysis. Genomics 1991; 11:1014-24. [PMID: 1783373 DOI: 10.1016/0888-7543(91)90027-c] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have amplified and sequenced the complete coding region of bovine hexokinase isoenzyme 1 (HK1) from brain RNA with PCR primers selected for sequence conservation. The sequence information was analyzed to evaluate the evolutionary and structure-function relationships among the mammalian and yeast HK isoenzymes. Structure to function analysis identified an unduplicated, invariant N-terminal domain involved in HK1 outer mitochondrial membrane targeting, as well as putative carbohydrate and nucleotide-binding sites in the regulatory and catalytic halves of HK1 essential to enzyme function. The ATP-binding site in the catalytic half of the HK1 protein resembles nucleotide-binding regions from protein kinases, with the single amino acid replacement (lysine to glutamate) in the ATP-binding site of the amino half explaining the loss of HK1 catalytic function in the regulatory domain. Sequence comparisons suggest that the 50-kDa mammalian and yeast glucokinases arose separately in evolution. In addition to providing valuable phylogenetic and structure-function insights, this work provides an efficient strategy for rapid cloning and sequencing of the coding regions for other HKs and related proteins.
Collapse
Affiliation(s)
- L D Griffin
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas
| | | | | | | | | | | |
Collapse
|
32
|
Muñoz-Dorado J, Inouye S, Inouye M. A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell 1991; 67:995-1006. [PMID: 1835671 DOI: 10.1016/0092-8674(91)90372-6] [Citation(s) in RCA: 183] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PCR reactions were carried out on the genomic DNA of M. xanthus, a soil bacterium capable of differentiation to form fruiting bodies, using oligonucleotides representing highly conserved regions of eukaryotic protein serine/threonine kinases. A gene (pkn1) thus cloned contains an ORF of 693 amino acid residues whose amino-terminal domain shows significant sequence similarity with the catalytic domain of eukaryotic protein serine/threonine kinases. The pkn1 gene was overexpressed in E. coli, and the gene product has been found to be autophosphorylated at both serine and threonine residues. The expression of pkn1 is developmentally regulated to start immediately before spore formation. When pkn1 is deleted, differentiation starts prematurely, resulting in poor spore production. These results indicate that the protein serine/threonine kinase plays an important role in the onset of proper differentiation.
Collapse
Affiliation(s)
- J Muñoz-Dorado
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School at Rutgers, Piscataway 08854
| | | | | |
Collapse
|
33
|
Srivastava AK, Chiasson JC, Chiasson JL, Lacroix A, Windisch L. Biochemical characteristics of cytosolic and particulate forms of protein tyrosine kinases from N-methyl-N-nitrosourea (MNU)-induced rat mammary carcinoma. Mol Cell Biochem 1991; 106:87-97. [PMID: 1922015 DOI: 10.1007/bf00231192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein tyrosine kinase (PTK) activities in methyl nitrosourea (MNU)-induced rat mammary carcinoma has been investigated by using poly (glu: tyr; 4:1) as an exogenous substrate. The PTK activity of the mammary carcinoma was almost equally distributed between the particulate and soluble (cytosolic) fractions at 110,000 X g. The activity of the particulate enzyme was stimulated by non-ionic detergent Triton X-100 by about 2-fold whereas the detergent had no effect on the cytosolic form. More than 60% of the particulate enzyme could be solubilized by 5% Triton X-100. Although, both particulate and cytosolic PTKs catalyzed the phosphorylation of several tyrosine containing synthetic substrates to various degrees, poly (glu: tyr; 4:1) was the best substrate (apparent Km. 0.7 mg/ml). Both forms of enzymes utilized ATP as the phosphoryl group donor, with an apparent Km of 40 microM. Among various divalent cations tested, Co2+, Mn2+ and Mg2+ were able to fulfill the divalent cation requirement of both forms of the PTKs. All these cations exerted biphasic effects on the kinase activities, however, Mg2+ was the most potent cation. Agents such as epidermal growth factor, insulin and platelet derived growth factor which stimulate their respective receptor-PTK activities were without effect on PTK activities of mammary carcinoma. On the other hand, though heparin and quercetin inhibited both enzyme activities in a concentration dependent manner, the particulate form was more sensitive to inhibition than the cytosolic form. These data indicate that MNU-induced rat mammary carcinoma expresses both particulate and cytosolic forms of PTKs and that there are significant differences in the properties of the two forms of PTKs. Differential effects of some agents on mammary carcinoma PTKs suggest that these enzymes may be acutely regulated in vivo and could play an important role in mammary carcinogenesis.
Collapse
Affiliation(s)
- A K Srivastava
- Research Group on Diabetes and Metabolic Regulation, University of Montreal, Québec, Canada
| | | | | | | | | |
Collapse
|
34
|
Buck V, White A, Rosamond J. CDC7 protein kinase activity is required for mitosis and meiosis in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1991; 227:452-7. [PMID: 1865880 DOI: 10.1007/bf00273937] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The product of the CDC7 gene of Saccharomyces cerevisiae has multiple cellular functions, being needed for the initiation of DNA synthesis during mitosis as well as for synaptonemal complex formation and commitment to recombination during meiosis. The CDC7 protein has protein kinase activity and contains the conserved residues characteristic of the protein kinase catalytic domain. To determine which of the cellular functions of CDC7 require this protein kinase activity, we have mutated some of the conserved residues within the CDC7 catalytic domain and have examined the ability of the mutant proteins to support mitosis and meiosis. The results indicate that the protein kinase activity of the CDC7 gene product is essential for its function in both mitosis and meiosis and that this activity is potentially regulated by phosphorylation of the CDC7 protein.
Collapse
Affiliation(s)
- V Buck
- Department of Biochemistry and Molecular Biology, University of Manchester, UK
| | | | | |
Collapse
|
35
|
Thiagalingam S, Grossman L. Both ATPase sites of Escherichia coli UvrA have functional roles in nucleotide excision repair. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99176-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Morgan DO, Kaplan JM, Bishop JM, Varmus HE. Production of p60c-src by baculovirus expression and immunoaffinity purification. Methods Enzymol 1991; 200:645-60. [PMID: 1720191 DOI: 10.1016/0076-6879(91)00177-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Abstract
The actions of several hormones and neurotransmitters evoke signal transduction pathways which rapidly elevate the cytosolic concentrations of the intracellular messengers, cAMP and cGMP. The cyclic-nucleotide dependent protein kinases, cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG), are the major intracellular receptors of cAMP and cGMP. These enzymes become active upon binding respective cyclic nucleotides and modulate a diverse array of biochemical events through the phosphorylation of specific substrate proteins. The focus of this review is to describe the progress made in understanding the structure and function of both PKA and PKG.
Collapse
Affiliation(s)
- J D Scott
- Vollum Institute for Advanced Biomedical Research L-474, Portland, OR 97201-3098
| |
Collapse
|
38
|
Singh B, al-Bagdadi F, Liu JX, Arlinghaus RB. Use of antipeptide antibodies to probe the catalytic activity of p37v-mos. Virology 1990; 178:535-42. [PMID: 2171192 DOI: 10.1016/0042-6822(90)90351-q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several site-directed antipeptide antibodies were generated to probe the kinase function of p37v-mos. Anti-mos(37-55) antibodies allowed autophosphorylation of p37v-mos, as well as transphosphorylation of exogenously added purified bovine vimentin. Rabbit antipeptide antibodies against v-mos residues 158-70, 194-206, 260-271, and 363-374 and a mouse monoclonal antibody against residues 344-359 completely inhibited p37v-mos protein kinase activity in vitro. p37v-mos autophosphorylation and vimentin transphosphorylation were affected similarly. These results suggest important roles for insert and the carboxy-terminal domains in the catalytic activity of p37v-mos.
Collapse
Affiliation(s)
- B Singh
- University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | | | |
Collapse
|
39
|
Brown NA, Stofko RE, Uhler MD. Induction of alkaline phosphatase in mouse L cells by overexpression of the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38283-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
George RJ, Parker CW. Preliminary characterization of phosphotyrosine phosphatase activities in human peripheral blood lymphocytes: identification of CD45 as a phosphotyrosine phosphatase. J Cell Biochem 1990; 42:71-81. [PMID: 2155244 DOI: 10.1002/jcb.240420203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A preliminary characterization of the protein phosphotyrosine phosphatase (PTPase) activity in human peripheral blood lymphocytes (PBL) has been made using two tyrosine-containing peptides and the epidermal growth factor receptor from A-431 cells as substrates. High PTPase activity with a pH optimum near 7.4 was observed in both the membrane and the cytosolic fractions. At least three distinct fractions with PTPase activity were separated on DEAE cellulose columns, indicating that the enzyme is heterogeneous. Vanadate, molybdate, and salts of zinc, copper, and mercury were all effective enzyme inhibitors, although the inhibition was generally incomplete and showed some variation with the enzyme preparation. The difficulty in completely inhibiting PTPase activity in lymphocytes may help explain the variation between laboratories in studies of tyrosine phosphorylation in these cells. Studies with highly purified T lymphocytes obtained by filtration of PBL through nylon wool columns indicated that the activity is present in T cells. Absorption with agarose containing anti-HLe-1, a mouse monoclonal IgG1 antibody specific for the leukocyte-specific surface protein T-200 (CD45), removed up to 40% of the PTPase activity. Enzyme activity was recovered on the immunoadsorbent after extensive washing, confirming that the enzyme was being bound to the beads. Immunoabsorbents containing other mouse IgG1 antibodies failed to bind PTPase activity, indicating that the binding to beads with anti-HLe-1 antibody is specific. Further characterization of the CD45 and PTPase activities in lymphocytes may provide a better understanding of the role of protein tyrosine phosphorylation in the regulation of proliferation and differentiation in these cells.
Collapse
Affiliation(s)
- R J George
- Howard Hughes Medical Institute, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
41
|
Piwnica-Worms H, Williams NG, Cheng SH, Roberts TM. Regulation of pp60c-src and its interaction with polyomavirus middle T antigen in insect cells. J Virol 1990; 64:61-8. [PMID: 2152834 PMCID: PMC249044 DOI: 10.1128/jvi.64.1.61-68.1990] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High yields of soluble, biologically active pp60c-src and middle t antigen (MTAg) of polyomavirus were produced in insect cells, using a baculovirus expression system. In mammalian cells, pp60c-src undergoes a regulatory phosphorylation on Tyr-527 in vivo and is autophosphorylated on Tyr-416 in vitro. In insect cells, pp60c-src was phosphorylated primarily on Tyr-416, although Tyr-527 was detectable at a low level. A kinase-negative mutant of pp60c-src was not phosphorylated on either Tyr-527 or Tyr-416 in insect cells and thus is an excellent biochemical reagent to search for the regulatory kinase that usually phosphorylates Tyr-527 in mammalian cells. MTAg synthesized in insect cells was not phosphorylated on tyrosine residues in vivo or in vitro, suggesting that it did not associate with any endogenous tyrosine kinases. However, MTAg isolated from cells coinfected with viruses encoding both MTAg and pp60c-src was phosphorylated on tyrosine residues both in vivo and in vitro.
Collapse
Affiliation(s)
- H Piwnica-Worms
- Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
42
|
Stueland CS, Ikeda TP, LaPorte DC. Mutation of the Predicted ATP Binding Site Inactivates Both Activities of Isocitrate Dehydrogenase Kinase/Phosphatase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)80068-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
Shenoy S, Choi JK, Bagrodia S, Copeland TD, Maller JL, Shalloway D. Purified maturation promoting factor phosphorylates pp60c-src at the sites phosphorylated during fibroblast mitosis. Cell 1989; 57:763-74. [PMID: 2470512 DOI: 10.1016/0092-8674(89)90791-5] [Citation(s) in RCA: 272] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously shown that overexpressed chicken pp60c-src has retarded mobility, novel serine/threonine phosphorylation, and enhanced kinase activity during NIH 3T3 cell mitosis. Here we show that novel mitotic phosphorylations occur at Thr 34, Thr 46, and Ser 72. The possibility, previously raised, that Ser 17 is dephosphorylated during mitosis is excluded. The phosphorylated sites lie in consensus sequences for phosphorylation by p34cdc2, the catalytic component of maturation promoting factor (MPF). Furthermore, highly purified MPF from metaphase-arrested Xenopus eggs phosphorylated both wild-type and kinase-defective pp60c-src at these sites. Altered phosphorylation alone is sufficient to account for the large retardation in mitotic pp60c-src electrophoretic mobility: phosphorylation of normal pp60c-src by MPF retarded mobility and dephosphorylation of mitotic pp60c-src restored normal mobility. These results suggest that pp60c-src is one of the targets for MPF action, which may account in part for the pleiotropic changes in protein phosphorylation and cellular architecture that occur during mitosis.
Collapse
Affiliation(s)
- S Shenoy
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | | | | | |
Collapse
|
44
|
Morgan DO, Kaplan JM, Bishop JM, Varmus HE. Mitosis-specific phosphorylation of p60c-src by p34cdc2-associated protein kinase. Cell 1989; 57:775-86. [PMID: 2470513 DOI: 10.1016/0092-8674(89)90792-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As cells enter mitosis, the protein-tyrosine kinase, p60c-src, is known to be extensively phosphorylated on threonine in its amino-terminal region. In the present work, extracts of mitotic cells were searched for the protein kinase responsible for this phosphorylation. HeLa cells and Xenopus eggs were found to contain a mitosis-specific protein kinase activity capable of phosphorylating highly purified p60c-src in vitro on threonine residues. Tryptic phosphopeptide maps indicate that the mitotic HeLa kinase phosphorylates the same sites in vitro as those used during mitosis in vivo. In addition, this mitotic HeLa kinase comigrates on gel filtration with p34cdc2-associated histone H1 kinase, a well known regulator of mitotic events. Finally, antibodies to the C-terminal peptide of human p34cdc2 specifically deplete p60c-src-phosphorylating activity from mitotic extracts. These results suggest that p60c-src may act as an effector of p34cdc2 in certain mitotic processes.
Collapse
Affiliation(s)
- D O Morgan
- Department of Microbiology, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- R W Storms
- Department of Microbiology, University of Texas, Austin 78712-1095
| | | |
Collapse
|
46
|
Abstract
Promising progress in understanding the molecular basis of insulin action has been achieved by demonstrating that the insulin receptor is an insulin-sensitive tyrosine kinase. Here we discuss the structure of this receptor kinase and compare it with receptors for related growth factors. We review the known modes to regulate the receptor kinase activity, either through its autophosphorylation (on tyrosine residues) or through its phosphorylation by other kinases (on serine and threonine residues). We discuss the role of the receptor kinase activity in hormone signal transduction in light of results indicating a reduced kinase activity in insulin-resistant states. Finally, studies to identify natural substrates for the insulin receptor kinase are presented. The possible physiological role of these phosphorylated substrates in mediating insulin action is evaluated.
Collapse
Affiliation(s)
- Y Zick
- Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
47
|
Parsons JT, Weber MJ. Genetics of src: structure and functional organization of a protein tyrosine kinase. Curr Top Microbiol Immunol 1989; 147:79-127. [PMID: 2482802 DOI: 10.1007/978-3-642-74697-0_3] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
|
49
|
Abstract
This paper has reviewed, in a broad sense, the potential involvement of the oncogenes and their progenitors, the protooncogenes, in signal transduction pathways. The membrane-associated oncogene products appear to be connected with the generation and/or regulation of secondary messengers, particularly those associated with Ca2+/phospholipid-dependent activation of the serine/threonine kinase protein kinase C. Activation of transmembrane receptors, either through binding their native ligand or through point mutations that lead to constitutive expression, results in the expression of their intrinsic tyrosine-specific protein kinases. In PDGF-stimulated cells, this results in the increased turnover of phosphatidylinositols and the subsequent release of IP3 (Habenicht et al., 1981; Berridge et al., 1984). This coincides with activation of a PI kinase activity (Kaplan et al., 1987). Likewise, the fms product, which is the receptor for CSF-1, induces a guanine nucleotide-dependent activation of phospholipase C (Jackowski et al., 1986). Receptor functions are potentially regulated through differential binding of ligands (as proposed with PDGF), through interactions with other receptors, and through the "feedback" regulation mediated by protein kinase C. PDGF stimulation leads to modulation of the EGF receptor through protein kinase C (Bowen-Pope et al., 1983; Collins et al., 1983; Davis and Czech, 1985). Similarly, the neu product becomes phosphorylated on tyrosine residues following treatment of cells with EGF, although the neu protein does not bind EGF itself (King et al., 1988; Stern and Kamps, 1988). The tyrosine kinases of the src family are not receptors themselves, although they may mediate specific receptor-generated signals. The clck product is physically and functionally associated with the T-cell receptors CD4 and CD8, and becomes active upon specific stimulation of cells expressing those markers (Veillette et al., 1988a,b). The precise physiological role of the src family products has not been established, but their kinase activity is intrinsic to that function. The v- and c-src products are hyperphosphorylated during mitosis (Chackalaparampil and Shalloway, 1988), which correlates with periods of reduced cell-to-cell adhesion and communication (Warren and Nelson, 1987; Azarnia et al., 1988). Furthermore, pp60c-src is associated with a PI kinase activity when complexed with MTAg of polyoma virus, suggesting a function in stimulating increased turnover of the phosphatidylinositols (Heber and Courtneidge, 1987; Kaplan et al., 1987).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R W Storms
- Department of Microbiology, University of Texas, Austin 78712
| | | |
Collapse
|
50
|
Tonks NK, Charbonneau H, Diltz CD, Fischer EH, Walsh KA. Demonstration that the leukocyte common antigen CD45 is a protein tyrosine phosphatase. Biochemistry 1988; 27:8695-701. [PMID: 2853967 DOI: 10.1021/bi00424a001] [Citation(s) in RCA: 352] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It has been proposed on the basis of amino acid sequence homology that the leukocyte common antigen CD45 represents a family of catalytically active, receptor-linked protein tyrosine phosphatases [Charbonneau, H., Tonks, N. K., Walsh, K. A., & Fischer, E. H. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7182-7186]. The present study confirms that CD45 possesses intrinsic protein tyrosine phosphatase (PTPase) activity. First, a mouse monoclonal antibody to CD45 (mAb 9.4) specifically eliminated, by precipitation, PTPase activity from a high Mr fraction containing CD45, prepared by gel filtration (Sephacryl S200) of a Triton X-100 extract of human spleen. Second, PTPase activity was demonstrated in a highly purified preparation of CD45 that was eluted with a high pH buffer from an affinity column, constructed from the same antibody. Third, on sucrose density gradient centrifugation, PTPase activity was only found in those fractions that contained CD45 as determined by Western analysis. When CD45 was caused to aggregate, first by reacting it with mAb 9.4 and then adding a secondary, cross-linking anti-mouse mAb, the PTPase activity shifted to the same higher Mr fractions that contained CD45. No shift in CD45 or PTPase was observed following addition of a control IgG2a. On this basis, it is concluded that CD45 is a protein tyrosine phosphatase.
Collapse
Affiliation(s)
- N K Tonks
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | | | | | |
Collapse
|