1
|
Abstract
Sesquiterpene lactones (STLs) are a large and structurally diverse group of plant metabolites generally found in the Asteraceae family. STLs exhibit a wide spectrum of biological activities and it is generally accepted that their major mechanism of action is the alkylation of the thiol groups of biological molecules. The guaianolides is one of various groups of STLs. Anti-tumour and anti-migraine effects, an allergenic agent, an inhibitor of smooth muscle cells and of meristematic cell proliferation are only a few of the most commonly reported activities of STLs. In amphibians, fully grown ovarian oocytes are arrested at the beginning of meiosis I. Under stimulus with progesterone, this meiotic arrest is released and meiosis progresses to metaphase II, a process known as oocyte maturation. There are previous records of the inhibitory effect of dehydroleucodin (DhL), a guaianolide lactone, on the progression of meiosis. It has been also shown that DhL and its 11,13-dihydroderivative (2H-DhL; a mixture of epimers at C-11) act as blockers of the resumption of meiosis in fully grown ovarian oocytes from the amphibian Rhinella arenarum (formerly classified as Bufo arenarum). The aim of this study was to analyze the effect of four closely related guaianolides, i.e., DhL, achillin, desacetoxymatricarin and estafietin as possible inhibitors of meiosis in oocytes of amphibians in vitro and discuss some structure-activity relationships. It was found that the inhibitory effect on meiosis resumption is greater when the lactone has two potentially reactive centres, either a α,β-α',β'-diunsaturated cyclopentanone moiety or an epoxide group plus an exo-methylene-γ-lactone function.
Collapse
|
2
|
Effect of different types of sesquiterpene lactones on the maturation of Rhinella arenarum oocytes. ZYGOTE 2014; 23:406-11. [PMID: 24522008 DOI: 10.1017/s0967199413000695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The sesquiterpene lactones (STLs) are a large class of plant secondary metabolites that are generally found in the Asteraceae family and that have high diversity with respect to chemical structure as well as biological activity. STLs have been classified into different groups, such as guaianolides, germacranolides, and melampolides etc., based on their carboxylic skeleton. In amphibians, fully grown ovarian oocytes are arrested at the beginning of meiosis I. Under the stimulus of progesterone, this meiotic arrest is released and meiosis progresses to metaphase II, a process known as oocyte maturation. The purpose of this work was to determine whether sesquiterpene lactones from the germacranolide and melampolide groups act as inhibitor agents on the meiosis of amphibian oocytes in vitro. Results for germacranolides indicated that the addition of deoxyelephantopins caused a high degree of inhibition and that minimolide showed a moderate inhibitory effect, whereas glaucolide A was inactive. Furthermore, the addition of melampolides (uvedalin, enhydrin, polymatin A and polymatin B) showed inhibitory effects. For enhydrin and uvedalin, inhibitory effects were observed at the higher concentrations assayed. The results of this study suggest that the inhibitory activity of the tested sesquiterpene lactones on the meiosis of Rhinella arenarum oocytes is not dependent on the group to which they belong, i.e. not on the carboxylic skeleton, but probably due to the arrangement and type of function groups present in the molecules. All assayed lactones in the germacranolide group showed low toxicity. In contrast, important differences in toxicity were observed for lactones from the melampolide group: enhydrin and uvedalin showed low toxicity, but polymatin A and B were highly toxic.
Collapse
|
3
|
Yamamoto TM, Blake-Hodek K, Williams BC, Lewellyn AL, Goldberg ML, Maller JL. Regulation of Greatwall kinase during Xenopus oocyte maturation. Mol Biol Cell 2011; 22:2157-64. [PMID: 21551066 PMCID: PMC3128519 DOI: 10.1091/mbc.e11-01-0008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Greatwall kinase is required for M phase maintenance by inhibiting PP2A. Gwl associates with PP2A in G2 oocytes, but the complex dissociates during M phase (meiosis I). Mutating Lys71 to Met (K71M) generates gain-of-function Gwl kinase activity toward endosulfinethat is sufficient to induce oocyte maturation in the absence of progesterone. Greatwall kinase has been identified as a key element in M phase initiation and maintenance in Drosophila, Xenopus oocytes/eggs, and mammalian cells. In M phase, Greatwall phosphorylates endosulfine and related proteins that bind to and inhibit protein phosphatase 2A/B55, the principal phosphatase for Cdk-phosphorylated substrates. We show that Greatwall binds active PP2A/B55 in G2 phase oocytes but dissociates from it when progesterone-treated oocytes reach M phase. This dissociation does not require Greatwall kinase activity or phosphorylation at T748 in the presumptive T loop of the kinase. A mutant K71M Greatwall, also known as Scant in Drosophila, induces M phase in the absence of progesterone when expressed in oocytes, despite its reduced stability and elevated degradation by the proteasome. M phase induction by Scant Greatwall requires protein synthesis but is not associated with altered binding or release of PP2A/B55 as compared to wild-type Greatwall. However, in vitro studies with Greatwall proteins purified from interphase cells indicate that Scant, but not wild-type Greatwall, has low but detectable activity against endosulfine. These results demonstrate progesterone-dependent regulation of the PP2A/B55–Greatwall interaction during oocyte maturation and suggest that the cognate Scant Greatwall mutation has sufficient constitutive kinase activity to promote M phase in Xenopus oocytes.
Collapse
Affiliation(s)
- Tomomi M Yamamoto
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
4
|
Large-scale identification of novel mitosis-specific phosphoproteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:882-90. [PMID: 18373986 DOI: 10.1016/j.bbapap.2008.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 11/23/2022]
Abstract
Systematic identification of phosphoproteins is essential for understanding cellular signalling pathways since phosphorylation plays important roles in cellular regulation. Monoclonal antibody MPM-2 recognizes a discrete set of mitosis-specific phosphoproteins and constitutes a specific tool to investigate the significance of phosphorylation in cell cycle. However, due to the difficulties in identifying antigens revealed on immunoblot membrane, only minority of MPM-2 antigens have been identified. Here we originated proteomics approaches for large-scale identification of MPM-2 phosphoproteins. Mitotic extracts were run on several two-dimensional gel electrophoresis (2D) in parallel, and stained by Coomassie Blue. Each individual spot on one of the gels was excised, and proteins in it were further resolved by regular SDS-electrophoresis and blotted on membrane for MPM-2 stain. Counterparts of the positive proteins were selected on another parallel 2D gel and identified by mass-spectrometry. Using this strategy, 100 spots were excised from Coomassie-stained 2D gel and screened by 1D immunoblots for MPM-2 reactivity, and 22 proteins containing potential MPM-2 epitope were identified in addition to a known MPM-2 antigen, laminin-binding protein. These results were further validated by immunofluorescence, co-immunoprecipitation and in vitro phosphorylation assay. The identification of an unprecedented number of potential MPM-2 phosphoprotein antigens gives new insight into the range of proteins involved in the regulation of the early stages of cell division. Meanwhile, this strategy could be used wherever unknown antigens are explored, especially for antibodies that can recognize more than one antigen.
Collapse
|
5
|
Toranzo GS, Bonilla F, Zelarayán L, Oterino J, Bühler MI. Activation of maturation promoting factor in Bufo arenarum oocytes: injection of mature cytoplasm and germinal vesicle contents. ZYGOTE 2007; 14:305-16. [PMID: 17266789 DOI: 10.1017/s0967199406003820] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 03/09/2005] [Indexed: 11/07/2022]
Abstract
Although progesterone is the established maturation inducer in amphibians, Bufo arenarum oocytes obtained during the reproductive period (spring-summer) resume meiosis with no need of an exogenous hormonal stimulus if deprived of their enveloping follicle cells, a phenomenon called spontaneous maturation. In this species it is possible to obtain oocytes competent and incompetent to undergo spontaneous maturation according to the seasonal period in which animals are captured. Reinitiation of meiosis is regulated by maturation promoting factor (MPF), a complex of the cyclin-dependent kinase p34cdc2 and cyclin B. Although the function and molecule of MPF are common among species, the formation and activation mechanisms of MPF differ according to species. This study was undertaken to evaluate the presence of pre-MPF in Bufo arenarum oocytes incompetent to mature spontaneously and the effect of the injection of mature cytoplasm or germinal vesicle contents on the resumption of meiosis. The results of our treatment of Bufo arenarum immature oocytes incompetent to mature spontaneously with sodium metavanadate (NaVO3) and dexamethasone (DEX) indicates that these oocytes have a pre-MPF, which activates and induces germinal vesicle breakdown (GVBD) by dephosphorylation on Thr-14/Tyr-15 by cdc25 phosphatase and without cyclin B synthesis. The injection of cytoplasm containing active MPF is sufficient to activate an amplification loop that requires the activation of cdc25 and protein kinase C, the decrease in cAMP levels, and is independent of protein synthesis. However, the injection of germinal vesicle content also induces GVBD in the immature receptor oocyte, a process dependent on protein synthesis but not on cdc25 phosphatase or PKC activity.
Collapse
Affiliation(s)
- G Sánchez Toranzo
- Departmento de Biología del Desarrollo, San Miguel de Tucumán, Argentina
| | | | | | | | | |
Collapse
|
6
|
Bjerregaard B, Wrenzycki C, Philimonenko VV, Hozak P, Laurincik J, Niemann H, Motlik J, Maddox-Hyttel P. Regulation of Ribosomal RNA Synthesis During the Final Phases of Porcine Oocyte Growth. Biol Reprod 2003; 70:925-35. [PMID: 14627545 DOI: 10.1095/biolreprod.103.020941] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In porcine oocytes, acquisition of meiotic competence coincides with a decrease of general transcriptional activity at the end of the oocyte growth phase and, specifically, of ribosomal RNA (rRNA) synthesis in the nucleolus. The present study investigated the regulation of rRNA synthesis during porcine oocyte growth. Localization and expression of components involved in regulation of the rRNA synthesis (the RNA polymerase I-associated factor PAF53, upstream binding factor [UBF], and the pocket proteins p130 and pRb) were assessed by immunocytochemistry and semiquantitative reverse transcription-polymerase chain reaction and correlated with ultrastructural analysis and autoradiography following [3H]uridine incubation in growing and fully grown porcine oocytes. In addition, meiotic resumption, ultrastructure, and expression of p130, UBF, and PAF53 were analyzed in growing and fully grown porcine oocytes cultured with 100 microM butyrolactone I (BL-I), a potent inhibitor of cyclin-dependent kinases, to gain insight concerning the regulation of rRNA transcription during meiotic arrest. Immunocytochemical analysis demonstrated that p130 became colocalized with UBF and PAF53 and that the intensity of the PAF53 labeling decreased toward the end of the oocyte growth phase. These data suggest that the decrease in rRNA synthesis is regulated through inhibition of UBF by p130 as well as by decreased availability of PAF53. Moreover, expression of mRNA encoding PAF53 was decreased at the end of the oocyte growth phase. At the morphological level, these events coincided with inactivation of the nucleolus, as visualized by the transformation of the fibrillogranular nucleolus to an electron-dense fibrillar sphere with remnants of the fibrillar centers at the surface. Meiotic inhibition with 100 microM BL-I had a detrimental effect on the ability of porcine oocytes to resume meiosis and on nucleolus morphology, resulting in a lack of RNA synthetic capability as the fibrillar components, where rRNA transcription and initial processing occur, condensed or even disintegrated.
Collapse
Affiliation(s)
- Bolette Bjerregaard
- Department of Anatomy and Physiology, Royal Veterinary and Agricultural University, 1870 Frederiksberg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Hamaguchi Y, Kuriyama R. Effects of the phosphatase inhibitors, okadaic acid, ATPgammaS, and calyculin A on the dividing sand dollar egg. Cell Struct Funct 2002; 27:127-37. [PMID: 12207043 DOI: 10.1247/csf.27.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The effects of the phosphatase inhibitors, okadaic acid (OA), adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), and calyculin A (CL-A) on anaphase chromosome movement, cytokinesis, and cytoskeletal structures at cell division were examined by being microinjected into mitotic sand dollar eggs. When OA was injected, chromosome movement was inhibited and, moreover, chromosomes were ejected from the polar regions of the mitotic apparatus. By immunofluorescence, microtubules were observed to be severed in the OA-injected eggs, causing the smooth cell surface to be changed to an irregular surface. When ATPgammaS and CL-A were injected, the effect on cell shape was remarkable: In dividing eggs, furrowing stopped within several seconds after injection, small blebs appeared on the cell surface and became large, spherical or dumbbell cell shapes then changed to irregular forms, and subsequently cytoplasmic flow occurred. Microfilament detection revealed that actin accumulation in the cortex, which was not limited to the furrow cortex, occurred shortly after injection. Cortical accumulation of actin is thought to induce force generation and random cortical contraction, and accordingly to result in bleb extrusion from the cortex. Consequently, the phosphatase inhibitors inhibited the transition from mitosis to interphase by mediating cortical accumulation of actin filaments and/or fragmentation of microtubules.
Collapse
Affiliation(s)
- Yukihisa Hamaguchi
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, O-okayama, Japan.
| | | |
Collapse
|
8
|
Hashimoto S, Minami N, Takakura R, Imai H. Bovine immature oocytes acquire developmental competence during meiotic arrest in vitro. Biol Reprod 2002; 66:1696-701. [PMID: 12021049 DOI: 10.1095/biolreprod66.6.1696] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
To test the hypothesis that oocytes require time to acquire developmental competence during meiotic arrest, we investigated the effects of butyrolactone I (BL I), a potent and specific inhibitor of cyclin-dependent kinase, on the developmental competence of bovine oocytes after in vitro fertilization (IVF) following release from meiotic arrest. In the present study, 4 culture conditions were used: addition of BSA or fetal bovine serum (FBS) under 2 oxygen tensions (5% vs. 20%) during meiotic arrest with 100-microM BL I. The developmental competence to the blastocyst stage was higher (P < 0.01) in oocytes that were arrested in FBS-supplemented medium under 5% O2 (37%) than in oocytes that were arrested under other conditions (5%-24%) or that matured directly following follicle aspiration (23%). The time course of nuclear maturation of BL I-treated oocytes was also examined. The results demonstrated that oocytes treated with BL I start germinal vesicle (GV) breakdown and reach the metaphase II stage 5.5-6.0 h earlier than nonarrested oocytes. The developmental rates to the blastocyst stage of BL I-treated oocytes matured for 15.5 and 21 h were higher (P < 0.05) than those of nontreated oocytes matured for 21 and 26.5 h, respectively. These results demonstrate that bovine immature oocytes, which were arrested at the GV stage with BL I in FBS-supplemented medium under low oxygen tension, acquire higher developmental competence during meiotic arrest.
Collapse
Affiliation(s)
- Shu Hashimoto
- Embryo Transplantation Laboratory, Snow Brand Milk Products Co. Ltd., 119 Uenae, Tomakomai, Hokkaido 059-1365, Japan
| | | | | | | |
Collapse
|
9
|
Sim DLC, Yeo WM, Chow VTK. The novel human HUEL (C4orf1) protein shares homology with the DNA-binding domain of the XPA DNA repair protein and displays nuclear translocation in a cell cycle-dependent manner. Int J Biochem Cell Biol 2002; 34:487-504. [PMID: 11906820 DOI: 10.1016/s1357-2725(01)00156-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have previously isolated and characterized a novel human gene HUEL (C4orf1) that is ubiquitously expressed in a wide range of human fetal, adult tissues and cancer cell lines. HUEL maps to region 4p12-p13 within the short arm of chromosome 4 whose deletion is frequently associated with bladder and other carcinomas. Here we present the genomic organization, sizes and boundaries of exons and introns of HUEL. The GC-rich upstream genomic region and 5' untranslated region (UTR) together constitute a CpG island, a hallmark of housekeeping genes. The 3250 bp HUEL cDNA incorporates a 1704 bp ORF that translates into a hydrophilic protein of 568-amino acids (aa), detected as a band of approximately 70 kDa by Western blotting. We have isolated the murine homolog of HUEL which exhibits 89% nucleotide and 94% amino acid identity to its human counterpart. The HUEL protein shares significant homology with the minimal DNA-binding domain (DNA-BD) of the DNA repair protein encoded by the xeroderma pigmentosum group A (XPA) gene. Other notable features within HUEL include the putative nuclear receptor interaction motif, nuclear localization and export signals, zinc finger, leucine zipper and acidic domains. Mimosine-mediated cell cycle synchronization of PLC/PRF/5 liver cancer cells clearly portrayed translocation of HUEL into the nucleus specifically during the S phase of the cell cycle. Yeast two-hybrid experiments revealed interactions of HUEL with two partner proteins (designated HIPC and HIPB) bearing similarity to a mitotically phosphorylated protein and to reverse transcriptase. Co-immunoprecipitation assays validated the interaction between HUEL and HIPC proteins in mammalian cells. HUEL is likely to be an evolutionarily conserved, housekeeping gene that plays a role intimately linked with cellular replication, DNA synthesis and/or transcriptional regulation.
Collapse
Affiliation(s)
- Del L C Sim
- Human Genome Laboratory, Department of Microbiology, Faculty of Medicine, National University of Singapore, Kent Ridge 117597, Singapore
| | | | | |
Collapse
|
10
|
Abstract
BACKGROUND Regulation of the major transitions in the cell cycle, such as G1/S, G2/M, and metaphase to anaphase, are increasingly well understood. However, we have a poor understanding of the timing of events within each phase of the cell cycle, such as S phase or early mitosis. Two extreme models of regulation are possible. A "regulator-controlled model" in which the order of events is governed by the activation of a series of cytoplasmic regulators, such as kinases, phosphatases, or proteases; or a "substrate-controlled model" in which temporal regulation is determined by the differential responses of the cellular machinery to a common set of activators. RESULTS We have tried to distinguish between these two models by examining the timing of both biochemical and morphological events in Xenopus egg extracts during mitosis. Several proteins respond with different delays to the activation of Cdc2. We have found that the timing of phosphorylation is largely unchanged when these proteins are exposed to extracts that have been in mitosis for various periods of time. Similarly, when Xenopus interphase nuclei are added to extracts at different times after the G2/M transition, they undergo all the expected morphological changes in the proper sequence and with very similar kinetics. CONCLUSIONS Our results suggest that during early mitosis (from prophase to metaphase) the timing of biochemical events (such as phosphorylation) and morphological events (such as structural changes in the nucleus) is at least partly controlled by the responses of the substrates themselves to a common set of signals.
Collapse
Affiliation(s)
- Ann B Georgi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
11
|
Kubelka M, Motlík J, Schultz RM, Pavlok A. Butyrolactone I reversibly inhibits meiotic maturation of bovine oocytes,Without influencing chromosome condensation activity. Biol Reprod 2000; 62:292-302. [PMID: 10642565 DOI: 10.1095/biolreprod62.2.292] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In this study, butyrolactone I (BL I), a potent and specific inhibitor of cyclin-dependent kinases, was shown to block germinal vesicle (GV) breakdown (GVBD) in bovine oocytes in a concentration-dependent manner; GVBD was almost totally inhibited over the course of 24-48 h of culture when 100 microM BL I was included in tissue culture medium 199 containing either polyvinyl alcohol or BSA. Correlated with this inhibition was the failure of either p34(cdc2) kinase or mitogen-activated protein (MAP) kinase to become activated, and it was unlikely that BL I directly inhibited MAP kinase, since 100 microM BL I did not inhibit MAP kinase activity present in extracts obtained from metaphase II-arrested bovine eggs that possess high levels of MAP kinase activity. Nevertheless, the formation of highly condensed bivalents was observed in 78% of the BL I-treated GV-intact oocytes. This result suggests that chromosome condensation during first meiosis in bovine oocytes does not require the activity of either p34(cdc2) kinase or MAP kinase. Treatment of BL I-arrested oocytes with okadaic acid (OA) did not result in either the activation of p34(cdc2) kinase or MAP kinase, or inducement of GVBD. The BL I-induced block of GVBD for 24 h was reversible, and a subsequent 24-h culture resulted in 90% of oocytes reaching metaphase II with emission of the first polar body. Correlated with the progression to and arrest at metaphase II was the full activation of both p34(cdc2) and MAP kinases. The reversibility after 48 h of culture in BL I was partially decreased when compared to that achieved after an initial 24-h culture. Fertilization in vitro of these eggs resulted in a high incidence of both sperm penetration and pronucleus formation (88% and 70%, respectively).
Collapse
Affiliation(s)
- M Kubelka
- Institute of Animal Physiology and Genetics, 277 21 Libechov, Czech Republic
| | | | | | | |
Collapse
|
12
|
Albert A, Lavoie S, Vincent M. A hyperphosphorylated form of RNA polymerase II is the major interphase antigen of the phosphoprotein antibody MPM-2 and interacts with the peptidyl-prolyl isomerase Pin1. J Cell Sci 1999; 112 ( Pt 15):2493-500. [PMID: 10393805 DOI: 10.1242/jcs.112.15.2493] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The monoclonal antibody MPM-2 recognizes a subset of M phase phosphoproteins in a phosphorylation-dependent manner. It is believed that phosphorylation at MPM-2 antigenic sites could regulate mitotic events since most of the MPM-2 antigens identified to date have M phase functions. In addition, many of these proteins are substrates of the mitotic regulator Pin1, a peptidyl-prolyl isomerase which is present throughout the cell cycle and which is thought to alter its mitotic targets by changing their conformation. In interphase cells, most MPM-2 reactivity is confined to nuclear speckles. We report here that a hyperphosphorylated form of the RNA polymerase II largest subunit is the major MPM-2 interphase antigen. These findings were made possible by the availability of another monoclonal antibody, CC-3, that was previously used to identify a 255 kDa nuclear matrix protein associated with spliceosomal components as a hyperphosphorylated form of the RNA polymerase II largest subunit. MPM-2 recognizes a phosphoepitope of the large subunit that becomes hyperphosphorylated upon heat shock in contrast to the phosphoepitope defined by CC-3, whose reactivity is diminished by the heat treatment. Therefore, these two antibodies may discriminate between distinct functional forms of RNA polymerase II. We also show that RNA polymerase II large subunit interacts with Pin1 in HeLa cells. Pin1 may thus regulate transcriptional and post-transcriptional events by catalyzing phosphorylation-dependent conformational changes of the large RNA polymerase II subunit.
Collapse
Affiliation(s)
- A Albert
- Département de médecine and CREFSIP, Pavillon C.-E.-Marchand, Université Laval, Ste-Foy, Québec, Canada, G1K 7P4
| | | | | |
Collapse
|
13
|
Dorey K, Barilá D, Gavin AC, Nebreda AR, Superti-Furga G. Regulation of human c-Abl tyrosine kinase activity in Xenopus oocytes and acceleration of progesterone-induced G2/M transition by oncogenic forms. Biol Chem 1999; 380:223-30. [PMID: 10195429 DOI: 10.1515/bc.1999.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Deregulated activity of the Abl protein tyrosine kinase is oncogenic in humans and in animals. The normal cellular form of the enzyme is maintained at a low state of activity by mechanisms that have not yet been entirely elucidated. In particular, little is known about the trans-acting cellular factors involved. We have tested the activity of human c-Abl microinjected into oocytes of Xenopus laevis. In contrast to versions of Abl capable of transforming mammalian cells, which were highly active when introduced into oocytes, the activity of wild type c-Abl was inhibited. Oncogenic forms of Abl efficiently enhanced the ability of Xenopus oocytes to enter M phase following stimulation by progesterone. Abl-enhanced maturation was normal as judged by accumulation of Mos as well as activation of MAP kinase and Cdc2/CyclinB (MPF). Concomitant with maturation and activation of these kinases, Abl became extensively phosphorylated. Altogether, this suggests that an SH3 domain-dependent Abl regulation mechanism similar to the one observed in mammalian cells operates in Xenopus oocytes. Maturation enhancement by microinjection into Xenopus oocytes represents a useful novel assay for analyzing Abl activity. Moreover, the Xenopus oocyte may be a convenient source of trans-acting Abl regulators for biochemical studies.
Collapse
Affiliation(s)
- K Dorey
- Developmental Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
14
|
Balamurugan K, Haider S. Partial purification of maturation-promoting factor from catfish, Clarias batrachus: identification as the histone H1 kinase and its periodic activation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 120:329-42. [PMID: 9827048 DOI: 10.1016/s0742-8413(98)10023-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Maturation-promoting factor (MPF) has been demonstrated in the 100,000 g supernatant of 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (17 alpha, 20 beta-DP)-induced catfish, Clarias batrachus oocytes using DEAE-cellulose and sephadex G-200 chromatography. Partially purified MPF molecule eluted as a single peak on sephadex G-200 with molecular mass of approximately 200 kDa in native PAGE. SDS-PAGE analysis showed the presence of five proteins of 32, 34, 45, 46 and 48 kDa. Antibody against the PSTAIR sequence of p34cdc2 recognized 32 and 34 kDa proteins, whereas rabbit anti-cyclin B1 and B2 crossreacted with 46 and 48 kDa proteins, respectively. Cyclin B was absent in immature oocytes and appeared after 7 h of 17 alpha, 20 beta-DP stimulation, coinciding with the histone H1 kinase (HH1K) activity and start of germinal vesicle breakdown (GVBD). Our data indicate that C. batrachus MPF is a complex of cdc2 kinase and cyclin B molecules. A close relationship between HH1K activity and catfish oocyte maturation has been demonstrated using cycloheximide, cytochalasin B and colchicine. HH1K activation was inhibited by cycloheximide, while cytochalasin B and colchicine were ineffective. These finding suggests that the activation of HH1K depends on protein synthesis, whereas disruption of microfilaments influences only nucleus migration without effect on GVBD or HH1K activation. An increase of phosphorylated proteins after activation of catfish oocytes with 17 alpha, 20 beta-DP has also been observed.
Collapse
Affiliation(s)
- K Balamurugan
- Department of Zoology, Banaras Hindu University, India
| | | |
Collapse
|
15
|
Che S, Weil MM, Nelman-Gonzalez M, Ashorn CL, Kuang J. MPM-2 epitope sequence is not sufficient for recognition and phosphorylation by ME kinase-H. FEBS Lett 1997; 413:417-23. [PMID: 9303547 DOI: 10.1016/s0014-5793(97)00948-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Monoclonal antibody MPM-2 recognizes a large family of mitotic phosphoproteins in a phosphorylation-dependent manner. The antigenic phosphoepitope, designated the MPM-2 epitope, putatively consists of hydrophobic residue-Thr/Ser-Pro-hydrophobic residue-uncharged/basic residue. In this study, we addressed whether this sequence motif contains all the information necessary for recognition and phosphorylation by the kinase that phosphorylates most MPM-2 antigens. A fusion protein between glutathione S-transferase and a 19-residue peptide that contained two representative MPM-2 epitope sequences overlapping with two potential MAP kinase phosphorylation sites was constructed. Both the MPM-2 epitope sequences in the fusion protein (GST-MPM2) were phosphorylated by Xenopus egg extract, making the fusion protein MPM-2 reactive. However, while MAP kinase phosphorylated both the MPM-2 epitope sequences, neither ME kinase-H, a good candidate for a major MPM-2 epitope kinase, nor mitotic cdc2 kinase, which is known to phosphorylate certain MPM-2 antigens in vitro, phosphorylated GST-MPM2 to any significant extent. Furthermore, depletion of MAP kinase activity removed most, if not all, of the GST-MPM2 phosphorylating activity from crude Xenopus egg extracts. These results suggest that additional or different structural information than that provided by the deduced MPM-2 epitope sequence is required for recognition and phosphorylation by ME kinase-H or other major MPM-2 epitope kinases. They also offer a valid explanation for selective phosphorylation of certain MPM-2 antigens by MAP kinase as well as selective recognition of certain phosphorylated MAP kinase substrates by MPM-2.
Collapse
Affiliation(s)
- S Che
- Department of Clinical Investigation, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | |
Collapse
|
16
|
Stukenberg PT, Lustig KD, McGarry TJ, King RW, Kuang J, Kirschner MW. Systematic identification of mitotic phosphoproteins. Curr Biol 1997; 7:338-48. [PMID: 9115395 DOI: 10.1016/s0960-9822(06)00157-6] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cyclin-dependent kinases (CDKs) are thought to initiate and coordinate cell division processes by sequentially phosphorylating key targets; in most cases these substrates remain unidentified. RESULTS Using a screen that scores for phosphorylation of proteins, which were translated from pools of cDNA plasmids in vitro, by either phosphoepitope antibody recognition or electrophoretic mobility shifts, we have identified 20 mitotically phosphorylated proteins from Xenopus embryos, 15 of which have sequence similarity to other proteins. Of these proteins, five have previously been shown to be phosphorylated during mitosis (epithelial-microtubule associated protein-115, Oct91, Elongation factor 1gamma, BRG1 and Ribosomal protein L18A), five are related to proteins postulated to have roles in mitosis (epithelial-microtubule associated protein-115, Schizosaccharomyces pombe Cdc5, innercentrosome protein, BRG1 and the RNA helicase WM6), and nine are related to transcription factors (BRG1, negative co-factor 2alpha, Oct91, S. pombe Cdc5, HoxD1, Sox3, Vent2, and two isoforms of Xbr1b). Of 16 substrates tested, 14 can be directly phosphorylated in vitro by the mitotic CDK, cyclin B-Cdc2, although three of these may be physiological substrates of other kinases activated during mitosis. CONCLUSIONS Examination of this broad set of mitotic phosphoproteins has allowed us to draw three conclusions about how the activation of CDKs regulates cell-cycle events. First, Cdc2 itself appears to directly phosphorylate most of the mitotic phosphoproteins. Second, during mitosis most of the substrates are phosphorylated more than once and a number may be targets of multiple kinases, suggesting combinatorial regulation. Third, the large fraction of mitotic phosphoproteins that are presumptive transcription factors, two of which have been previously shown to dissociate from DNA during mitosis, suggests that an important function of mitotic phosphorylation is to strip the chromatin of proteins associated with gene expression.
Collapse
Affiliation(s)
- P T Stukenberg
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
17
|
Dedieu T, Gall L, Crozet N, Sevellec C, Ruffini S. Mitogen-activated protein kinase activity during goat oocyte maturation and the acquisition of meiotic competence. Mol Reprod Dev 1996; 45:351-8. [PMID: 8916046 DOI: 10.1002/(sici)1098-2795(199611)45:3<351::aid-mrd12>3.0.co;2-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Changes in MPF and MAPK activities during meiotic maturation of goat oocytes were investigated. Detection of MPF activity occurred concomitantly with GVBD, increased at MI, decreased during anaphase-telophase I transition, and increased thereafter in MII oocytes. The appearance of MAPK activity was delayed compared to MPF activity. MAPK activity increased after GVBD and persisted during the MI-MII transition. Whether MAPK was implicated in goat oocyte meiotic competence was also investigated by using oocytes from different follicle size categories that arrest at specific stages of the maturation process (GV, GVBD, MI, and MII). Results indicate that the ability of goat oocytes to resume meiosis is not directly related to the presence of Erk2. The ability to phosphorylate MAPK is acquired by the oocyte during follicular growth after the ability to resume meiosis. GVBD-arrested oocytes exhibited a high level of MPF activity after 27 hr of culture. However, 28% of oocytes from this group contained inactive MAPK, and 72% exhibited high MAPK activity. In addition, 29% of GVBD-arrested oocytes contained a residual interphasic network without recruitment of microtubules around the condensed chromosomes; 71% of GVBD-arrested oocytes displayed recruitment of microtubules near the condensed chromosomes and contained asters of microtubules distributed throughout the cytoplasm. These results indicate that oocytes arrested at GVBD were not exactly at the same point in the meiotic cell cycle progression, and suggest that MAPK could be implicated in the regulation of microtubule organization. The data presented here suggest that in goat oocytes, MAPK is not implicated in the early events of meiosis resumption, but rather in post-GVBD events such as spindle formation and MII arrest.
Collapse
Affiliation(s)
- T Dedieu
- Unité de Biologie de la Fécondation, INRA, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
18
|
Gall L, De Smedt V, Crozet N, Ruffini S, Sévellec C. Meiotically incompetent and competent goat oocytes: Timing of nuclear events and protein phosphorylation. Theriogenology 1996; 46:825-35. [PMID: 16727946 DOI: 10.1016/s0093-691x(96)00240-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/1995] [Accepted: 02/21/1996] [Indexed: 11/28/2022]
Abstract
The ability of mammalian oocytes to resume meiosis and to complete the first meiotic division is acquired sequentially during their growth phase. The acquisition of meiotic competence in goat oocytes has been previously correlated with follicular size (9). Since protein phosphorylation/dephosphorylation play a key role in oocyte maturation, it could be that in meiotically incompetent oocytes, such post-translational modifications are inadequate. The aim of this study was to analyze whether changes in oocyte proteins phosphorylation occurred during the acquisition of meiotic competence. For this propose, goat oocytes were divided into 4 classes according to follicular size and meiotic competence: Class A oocytes from follicles < 0.5 mm in diameter: Class B oocytes from follicles 0.5-0.8 mm; Class C oocytes from follicles 1-1.8 mm and class D oocytes from follicles > 3 mm. The protein phosphorylation patterns of these classes of oocytes were studied at different times of in vitro maturation. After 4h of culture, when all oocytes were in the germinal vesicle stage, only the oocytes from Class D displayed the phosphoproteins at 110 kD, 31 kD and around 63 kD. In contrast to Class D oocytes Classes B and C oocytes were partially competent to mature, they underwent germinal vesicle breakdown later than fully competent Class D oocytes and remained in early prometaphase I or in metaphase I, respectively. They exhibited the phosphoprotein changes that are associated with commitment to resume meiosis; but the changes occurred later than in Class D oocytes, which were fully competent to reach metaphase II. After 27 h of culture, the phosphorylation patterns of Class B, C and D oocytes were identical, whereas the meiotic stages reached were quite different. The phosphoprotein changes associated with oocyte maturation did not occur in meiotically incompetent Class A oocytes, which were blocked at the germinal vesicle stage. From these results it can be concluded that, at the GV stage, meiotically incompetent and competent goat oocytes display different patterns of protein phosphorylation. Once oocytes are able to resume meiosis they undergo specific phosphorylation changes, but whether these changes are markers or regulators of maturation events remains to be determined.
Collapse
Affiliation(s)
- L Gall
- Unité de Biologie de la Fécondation, Station de Physiologie Animale, I.N.R.A., 78352 Jouy-en-Josas cedex, France
| | | | | | | | | |
Collapse
|
19
|
Yoshida N, Tanaka T, Yamashita M. Changes in Phosphorylation Activities during Goldfish and Xenopus Oocyte Maturation. Zoolog Sci 1995. [DOI: 10.2108/zsj.12.599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Lévesque JT, Sirard MA. Effects of different kinases and phosphatases on nuclear and cytoplasmic maturation of bovine oocytes. Mol Reprod Dev 1995; 42:114-21. [PMID: 8562045 DOI: 10.1002/mrd.1080420115] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phosphorylation is considered as a common post-translational modification implicated in the control of various key enzymes. In somatic and germinal cells, important regulators of the cell cycle are controlled by their phosphorylation status, and some act as kinases or phosphatases themselves. Bovine oocytes are blocked in the germinal vesicle (GV) stage until either an LH surge occurs or until oocytes are released from the inhibitory influence of the follicle. Meiotic resumption in vitro is therefore an excellent model for the study of phosphorylation events that occur in the G2/M transition, a control point of the cellular cycle. To better understand this transition, we have modulated, either directly or indirectly, kinases using known effectors (epidermal growth factor, EGF; isobutylmethylxanthine-forskolin, Bx-Fk; 6-dimethylaminopurine, 6-DMAP) or phosphatases (okadaic acid, OA) or cycloheximide, which is known to inhibit maturation through protein synthesis suppression. With this procedure, influence on meiotic resumption and phosphoprotein patterns was verified. Both EGF and OA accelerated nuclear maturation after 9 hr of culture. Only 23% (n = 140) and 9% (n = 111) of oocytes were still at GV stage with EGF and OA, respectively, compared to 41% (n = 105) of control oocytes. The different treatments changed the protein patterns in oocytes. In cumulus cells, the patterns were especially modified by the OA treatment. Characteristic changes that occur in germ cells were also identified. Nuclear maturation was inhibited by modulators of kinase (6-DMAP, GV = 74%, n = 126; cAMP dependent protein kinase (PKA) stimulators, Bx-Fk, GV = 71%, n = 129) likewise, phosphoprotein patterns were affected, especially in oocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J T Lévesque
- Département des Sciences Animales, Université Laval, Québec, Canada
| | | |
Collapse
|
21
|
Kubelka M, Rimkeviĉová Z, Guerrier P, Motlík J. Inhibition of protein synthesis affects histone H1 kinase, but not chromosome condensation activity, during the first meiotic division of pig oocytes. Mol Reprod Dev 1995; 41:63-9. [PMID: 7619507 DOI: 10.1002/mrd.1080410110] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The influence of protein synthesis on the regulation of the first meiotic division was studied in pig oocytes. We show that histone H1 kinase activity gradually increases during in vitro culture of pig oocytes, reaching maximum in metaphase I stage after 24 hr of culture. However, in the presence of the protein synthesis inhibitor cycloheximide, histone H1 kinase is not activated during the whole culture period, and after 24 hr it is approximately at the same level as in prophase-stage oocytes. The gradual increase in phosphorylation of six proteins of molecular weights 39, 48, 53, 66, 96, and 120 kDa, observed during the first 24 hr of culture, was not detected when cycloheximide was added to the culture medium. Similarly, the decrease in phosphorylation of a 90-kDa protein was not seen in cycloheximide-treated oocytes. On the other hand, the levels of both MPF components, p34cdc2 and cyclin B, which were found to be nearly constant during the first meiotic division, were not influenced by cycloheximide treatment as revealed by Western blotting. The process of germinal vesicle breakdown (GVBD) was totally blocked by cycloheximide. The condensation of chromatin, however, was not influenced, suggesting that GVBD and chromosome condensation could be regulated independently. The different degrees of MPF activation involved in these processes, as well as the nature of the protein(s) which must be synthesized for triggering GVBD, are discussed.
Collapse
Affiliation(s)
- M Kubelka
- Department of Genetics, Czech Academy of Sciences, Libechov
| | | | | | | |
Collapse
|
22
|
Schlegel R, Harris MO, Belinsky GS. Tyrosine phosphorylations specific to mitosis in human and hamster cells. J Cell Biochem 1995; 57:351-61. [PMID: 7539009 DOI: 10.1002/jcb.240570219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Changes in protein tyrosine phosphorylation are known to be important for regulating cell cycle progression. With the aim of identifying new proteins involved in the regulation of mitosis, we used an antibody against phosphotyrosine to analyze proteins from synchronized human and hamster cells. At least seven proteins were found that displayed mitosis-specific tyrosine phosphorylation in HeLa cells (pp165, 205, 240, 250, 270, 290, and approximately 400) and one such protein in hamster BHK cells (pp155). In synchronized HeLa and BHK cells, all proteins except HeLa pp165, pp205, and pp250 were readily detectable only in mitosis. Tyrosine phosphorylation of pp165, pp205, and pp250 was apparent during arrest in S phase, suggesting that cell cycle perturbations can affect the phosphorylation state of some of these proteins. In a related finding in BHK cells, pp155 underwent tyrosine phosphorylation when cells were forced into premature mitosis by caffeine treatment. Only one protein (pp135 in HeLa cells) was found to be dephosphorylated on tyrosine during mitosis. The above findings may prove helpful for isolating new cell cycle proteins that are important for both the normal regulation of mitosis and the mitotic aberrations associated with cell cycle perturbations and chemical treatments.
Collapse
Affiliation(s)
- R Schlegel
- Department of Molecular and Cellular Toxicology Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
23
|
Roger PP, Reuse S, Maenhaut C, Dumont JE. Multiple facets of the modulation of growth by cAMP. VITAMINS AND HORMONES 1995; 51:59-191. [PMID: 7483330 DOI: 10.1016/s0083-6729(08)61038-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- P P Roger
- Institute of Interdisciplinary Research, Free University of Brussels, Belgium
| | | | | | | |
Collapse
|
24
|
Gall L, Le Gal F, De Smedt V. Protein phosphorylation patterns during in vitro maturation of the goat oocyte. Mol Reprod Dev 1993; 36:500-6. [PMID: 8305214 DOI: 10.1002/mrd.1080360415] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Protein phosphorylation patterns were studied by radiolabelling goat cumulus oocyte complexes with [32P]orthophosphate for various periods of time. The radiolabelled denuded oocytes were assessed for nuclear status and were used individually for gel electrophoresis. This study demonstrated that specific changes in protein phosphorylations were programmed during goat oocyte maturation. One of the most prominent changes was a general increase in the phosphorylation rate at germinal vesicle breakdown (GVBD). From 8 hr of culture, dominant phosphoprotein bands with apparent molecular weights of 27, 31, 40, and 50 kD were observed; they remained at this level until the metaphase II stage. In the molecular weight range of 65-80 kD, the protein phosphorylation pattern exhibited characteristic differences, with a complex series of phosphoproteins appearing and disappearing, duration maturation. Addition of 6-dimethylaminopurine (6-DMAP) at the onset of culture blocked the maturation process after GVBD and induced a dramatic condensation of chromatin. When added at different times after GVBD, 6-DMAP invariably induced chromosome condensation. This inhibition was partly reversible; i.e., after removal of the drug, oocytes were able to progress only until metaphase I.
Collapse
Affiliation(s)
- L Gall
- Unité de Biologie de la Fécondation, Station de Physiologie Animale, INRA, Jouy-en-Josas, France
| | | | | |
Collapse
|
25
|
Clute P, Masui Y. Development of Microtubule-Dependence of the Chromosome Cycle at the Midblastula Transition in Xenopus laevis Embryos. (Xenopus/cell cycle/chromosomes/microtubutes/midblastula transition). Dev Growth Differ 1992. [DOI: 10.1111/j.1440-169x.1992.00027.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Kozma SC, Thomas G. Serine/threonine kinases in the propagation of the early mitogenic response. Rev Physiol Biochem Pharmacol 1992; 119:123-55. [PMID: 1534927 DOI: 10.1007/3540551921_5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- S C Kozma
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
27
|
Biochemical characterization of a family of serine/threonine protein kinases regulated by tyrosine and serine/threonine phosphorylations. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54918-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
28
|
Sturgill TW, Wu J. Recent progress in characterization of protein kinase cascades for phosphorylation of ribosomal protein S6. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1092:350-7. [PMID: 1646641 DOI: 10.1016/s0167-4889(97)90012-4] [Citation(s) in RCA: 350] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ribosomal protein S6 is phosphorylated in response to mitogens by activation of one or more protein kinase cascades. Phosphorylation of S6 in vivo is catalyzed by (at least) two distinct mitogen-activated S6 kinase families distinguishable by size, the 70 kDa and 90 kDa S6 kinases. Both S6 kinases are activated by serine/threonine phosphorylation. Members of each family have been cloned. The 90 kDa S6 kinases are activated more rapidly than the 70 kDa S6 kinase, and may have other intracellular targets. The 70 kDa S6 kinase is relatively specific for 40 S ribosomal subunits. No kinase capable of activating the 70 kDa S6 kinase has been identified. Members of the 90 kDa S6 kinases are activated in vitro by 42 kDa and 44 kDa MAP kinases, which are in turn activated by mitogen-dependent activators. The pathways for mitogen-stimulated S6 phosphorylation are discussed.
Collapse
Affiliation(s)
- T W Sturgill
- Department of Medicine, University of Virginia, Charlottesville
| | | |
Collapse
|
29
|
Freeman RS, Donoghue DJ. Protein kinases and protooncogenes: biochemical regulators of the eukaryotic cell cycle. Biochemistry 1991; 30:2293-302. [PMID: 2001361 DOI: 10.1021/bi00223a001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R S Freeman
- Department of Chemistry, University of California, San Diego, La Jolla 92093-0322
| | | |
Collapse
|
30
|
Kuang J, Penkala JE, Wright DA, Saunders GF, Rao PN. A novel M phase-specific H1 kinase recognized by the mitosis-specific monoclonal antibody MPM-2. Dev Biol 1991; 144:54-64. [PMID: 1995402 DOI: 10.1016/0012-1606(91)90478-l] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
At the onset of mitosis, eukaryotic cells display an abrupt increase in a Ca2(+)- and cyclic nucleotide-independent histone H1 kinase activity, referred to as growth-associated or M phase-specific H1 kinase. The molecular basis for this activity is generally attributed to a kinase complex that consists of the p34cdc2 protein and cyclin, and exhibits maturation-promoting factor (MPF) activity. In the present study, we show that more than one kinase contributes to M phase-specific H1 kinase activity. When mature Xenopus oocyte extract prepared with ATP gamma S and NaF was fractionated by gel filtration, two prominent peaks of H1 kinase activity were detected, with apparent molecular masses of 600 and 150 kDa. The 150-kDa kinase copurified with the p34cdc2 protein and was immobilized by the suc 1 gene product p13 and anti-cyclin B2, which are specific for the cdc2 kinase complex. However, the 600-kDa kinase did not satisfy any of these criteria, thus identifying it as a novel M phase-specific H1 kinase. Only the 600-kDa kinase was recognized by the mitosis-specific monoclonal antibody, MPM-2, which inhibits Xenopus oocyte maturation and immunodepletes MPF activity. Furthermore, not only did the full activation of this kinase (MPM-2 kinase) coincide with the activation of MPF during the cell cycle, but also MPM-2 kinase-positive fractions obtained by gel filtration accelerated progesterone-induced oocyte maturation. It is, therefore, likely that MPM-2 kinase is a positive regulator in the M phase induction pathway.
Collapse
Affiliation(s)
- J Kuang
- Department of Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- D Shalloway
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | |
Collapse
|
32
|
Charbonneau M, Bonnec G, Boujard D. Patterns of protein synthesis during Xenopus oocyte maturation differ according to the type of stimulation. CELL DIFFERENTIATION AND DEVELOPMENT : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF DEVELOPMENTAL BIOLOGISTS 1990; 31:197-206. [PMID: 2271996 DOI: 10.1016/0922-3371(90)90132-g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We examined the qualitative patterns of protein synthesis in fully grown prophase-blocked oocytes of Xenopus laevis and after meiosis reinitiation accompanying maturation of the oocytes. Newly synthesized proteins labelled with [35S]methionine were run on isoelectric focusing gels and further separated in the second dimension on SDS-polyacrylamide slab gels. Three types of maturation inducer were compared: progesterone, considered as the natural inducer of Xenopus oocyte maturation, hCG (human chorionic gonadotropin) and insulin. Three polypeptides with apparent molecular masses of 37 kDa (pI 4.7-4.8), 78 kDa (pI 4.7) and 138 kDa (pI 4.6-4.7) were found to be always synthesized in all three types of stimulation, while the synthesis of a fourth one (molecular mass 116 kDa, pI 4.7) was arrested during oocyte maturation. Moreover, when the follicular cells surrounding the oocytes were part of the stimulating pathway, which is the case during hCG-induced maturation, an additional polypeptide was synthesized by the oocytes (molecular mass 106 kDa, pI 6.0-6.2). This polypeptide was not synthesized during progesterone- or insulin-induced oocyte maturation, two types of stimulation which do not require the presence of the follicular cells. The biological significance of the hCG-induced polypeptide, not necessary for oocyte maturation, is discussed. On the other hand, the four other modifications in protein synthesis taking place during all three types of maturation-inducing stimulation appear to be necessary for oocyte maturation, since oocytes which failed to mature in response to stimulation always missed one or several of these four polypeptides.
Collapse
Affiliation(s)
- M Charbonneau
- Laboratoire de Biologie et Génétique du Développement, URA 256 CNRS, Université de Rennes I, France
| | | | | |
Collapse
|
33
|
Belmont LD, Hyman AA, Sawin KE, Mitchison TJ. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 1990; 62:579-89. [PMID: 2379239 DOI: 10.1016/0092-8674(90)90022-7] [Citation(s) in RCA: 357] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using Xenopus egg extracts arrested in interphase or mitosis, we directly observed differences in microtubule dynamics at different stages of the cell cycle. Interphase extracts were prepared from eggs in the first interphase after meiosis. Mitotic extracts were prepared by addition of purified cyclin to interphase extracts. Microtubules were nucleated by the addition of centrosomes and visualized by fluorescence video-microscopy in extracts to which rhodamine-labeled tubulin had been added. We found a striking difference in microtubule dynamics in mitotic versus interphase extracts. Quantitative analysis revealed that the rates of polymerization and depolymerization are similar in interphase and mitosis and that within the spatial and temporal resolution of our experiments the difference in dynamics is due almost entirely to an increase in the frequency of transition from growing to shrinking (catastrophe frequency) in the mitotic extracts.
Collapse
Affiliation(s)
- L D Belmont
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
34
|
Abstract
The mechanism by which MPF induces nuclear lamin disassembly and nuclear envelope breakdown during mitosis was studied in a frog egg extract in which the transition from interphase to mitosis can be induced by the addition of MPF. Bacterially expressed human nuclear lamin C, assembled in vitro into filaments, showed increased phosphorylation on specific sites in the extract in response to MPF. Phosphorylation was accompanied by disassembly of the lamin filaments. We determined the sequences of the sites phosphorylated both in the presence and absence of MPF. The sequence data suggest that multiple protein kinases act on the lamins, and S6 kinase II was identified as one potentially important lamin kinase.
Collapse
Affiliation(s)
- G E Ward
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | |
Collapse
|
35
|
Abstract
Cytostatic factor (CSF), found in the cytoplasm of unfertilized eggs of amphibians, causes metaphase arrest when microinjected into cleaving blastomeres. Although CSF from Rana pipiens eggs has been extracted and characterized, little is known about CSF extracted from eggs of other species. We investigated the conditions required to preserve CSF activity in cytosols extracted from Xenopus laevis eggs and found that it was necessary to expose the eggs to CO2 prior to extraction and that the extraction buffer must contain sodium beta-glycerophosphate. CSF activity disappeared after 24 h of storage at 2 degrees C. Cytological examination showed that the arrested blastomeres injected with cytosols had been arrested at metaphase and contained a spindle lacking polar asters, in which highly condensed chromosomes were embedded.
Collapse
Affiliation(s)
- R M Moses
- Department of Zoology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
36
|
Doonan JH, Morris NR. The bimG gene of Aspergillus nidulans, required for completion of anaphase, encodes a homolog of mammalian phosphoprotein phosphatase 1. Cell 1989; 57:987-96. [PMID: 2544297 DOI: 10.1016/0092-8674(89)90337-1] [Citation(s) in RCA: 266] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In Aspergillus nidulans, the temperature-sensitive, recessive cell cycle mutation bimG11 causes an elevated mitotic index at restrictive temperature and an inability to complete the anaphase separation of daughter nuclei. We have shown that this mutation has an abnormally high content of nuclear phosphoproteins and that the wild-type gene encodes a type 1 protein phosphatase. We conclude that dephosphorylation of a key protein(s) is required to complete mitosis.
Collapse
Affiliation(s)
- J H Doonan
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School (at Rutgers) Piscataway 08854
| | | |
Collapse
|
37
|
Zhao JY, Kuang J, Adlakha RC, Rao PN. Threonine phosphorylation is associated with mitosis in HeLa cells. FEBS Lett 1989; 249:389-95. [PMID: 2500366 DOI: 10.1016/0014-5793(89)80665-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphorylation and dephosphorylation of proteins play an important role in the regulation of mitosis and meiosis. In our previous studies we have described mitosis-specific monoclonal antibody MPM-2 that recognizes a family of phosphopeptides in mitotic cells but not in interphase cells. These peptides are synthesized in S phase but modified by phosphorylation during G2/mitosis transition. The epitope for the MPM-2 is a phosphorylated site. In this study, we attempted to determine which amino acids are phosphorylated during the G2-mitosis (M) transition. We raised a polyclonal antibody against one of the antigens recognized by MPM-2, i.e. a protein of 55 kDa, that is present in interphase cells but modified by phosphorylation during mitosis. This antibody recognizes the p55 protein in both interphase and mitosis while it is recognized by the monoclonal antibody MPM-2 only in mitotic cells. Phosphoamino acid analysis of protein p55 from 32P-labeled S-phase and M-phase HeLa cell extracts after immunoprecipitation with anti-p55 antibodies revealed that threonine was extensively phosphorylated in p55 during G2-M but not in S phase, whereas serine was phosphorylated during both S and M phases. Tyrosine was not phosphorylated. Identical results were obtained when antigens recognized by MPM-2 were subjected to similar analysis. As cells completed mitosis and entered G1 phase phosphothreonine was completely dephosphorylated whereas phosphoserine was not. These results suggest that phosphorylation of threonine might be specific to some of the mitosis-related events.
Collapse
Affiliation(s)
- J Y Zhao
- Department of Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston
| | | | | | | |
Collapse
|
38
|
Shenoy S, Choi JK, Bagrodia S, Copeland TD, Maller JL, Shalloway D. Purified maturation promoting factor phosphorylates pp60c-src at the sites phosphorylated during fibroblast mitosis. Cell 1989; 57:763-74. [PMID: 2470512 DOI: 10.1016/0092-8674(89)90791-5] [Citation(s) in RCA: 272] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously shown that overexpressed chicken pp60c-src has retarded mobility, novel serine/threonine phosphorylation, and enhanced kinase activity during NIH 3T3 cell mitosis. Here we show that novel mitotic phosphorylations occur at Thr 34, Thr 46, and Ser 72. The possibility, previously raised, that Ser 17 is dephosphorylated during mitosis is excluded. The phosphorylated sites lie in consensus sequences for phosphorylation by p34cdc2, the catalytic component of maturation promoting factor (MPF). Furthermore, highly purified MPF from metaphase-arrested Xenopus eggs phosphorylated both wild-type and kinase-defective pp60c-src at these sites. Altered phosphorylation alone is sufficient to account for the large retardation in mitotic pp60c-src electrophoretic mobility: phosphorylation of normal pp60c-src by MPF retarded mobility and dephosphorylation of mitotic pp60c-src restored normal mobility. These results suggest that pp60c-src is one of the targets for MPF action, which may account in part for the pleiotropic changes in protein phosphorylation and cellular architecture that occur during mitosis.
Collapse
Affiliation(s)
- S Shenoy
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- T Hunt
- Department of Biochemistry, University of Cambridge, UK
| |
Collapse
|
40
|
Minshull J, Blow JJ, Hunt T. Translation of cyclin mRNA is necessary for extracts of activated xenopus eggs to enter mitosis. Cell 1989; 56:947-56. [PMID: 2564315 DOI: 10.1016/0092-8674(89)90628-4] [Citation(s) in RCA: 309] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cyclins are a family of proteins encoded by maternal mRNA. Cyclin polypeptides accumulate during interphase and are destroyed during mitosis at about the time of entry into anaphase. We show here that Xenopus oocytes contain mRNAs encoding two cyclins that are major translation products in a cell-free extract from activated eggs. Cutting these mRNAs with antisense oligonucleotides and endogenous RNAase H blocks entry into mitosis in a cell-free egg extract. The extracts can enter mitosis if either of the cyclin mRNAs is left intact. We conclude that the synthesis of these cyclins is necessary for mitotic cell cycles in cleaving Xenopus embryos.
Collapse
Affiliation(s)
- J Minshull
- Department of Biochemistry, University of Cambridge, England
| | | | | |
Collapse
|
41
|
Wordeman L, Davis FM, Rao PN, Cande WZ. Distribution of phosphorylated spindle-associated proteins in the diatom Stephanopyxis turris. CELL MOTILITY AND THE CYTOSKELETON 1989; 12:33-41. [PMID: 2650886 DOI: 10.1002/cm.970120105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitotic spindles isolated from the diatom Stephanopyxis turris become thiophosphorylated in the presence of ATP gamma S at specific locations within the mitotic apparatus, resulting in a stimulation of ATP-dependent spindle elongation in vitro. Here, using indirect immunofluorescence, we compare the staining pattern of an antibody against thiophosphorylated proteins to that of MPM-2, an antibody against mitosis-specific phosphoproteins, in isolated spindles. Both antibodies label spindle poles, kinetochores, and the midzone. Neither antibody exhibits reduced labeling in salt-extracted spindles, although prior salt extraction inhibits thiophosphorylation in ATP gamma S. Furthermore, both antibodies recognize a 205 kd band on immunoblots of spindle extracts. Microtubule-organizing centers and mitotic spindles label brightly with the MPM-2 antibody in intact cells. These results show that functional mitotic spindles isolated from S. turris are phosphorylated both in vivo and in vitro. We discuss the possible role of phosphorylated cytoskeletal proteins in the control of mitotic spindle function.
Collapse
Affiliation(s)
- L Wordeman
- Department of Pharmacology, University of California, San Francisco
| | | | | | | |
Collapse
|
42
|
Lohka MJ, Maller JL. Induction of metaphase chromosome condensation in human sperm by Xenopus egg extracts. Exp Cell Res 1988; 179:303-9. [PMID: 3169148 DOI: 10.1016/0014-4827(88)90370-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free extracts of Xenopus eggs cause permeabilized Xenopus sperm to form pronuclei, which condense into metaphase chromosomes when the cytosol from metaphase-arrested unfertilized eggs is added to the extracts. In this paper, the ability of these cell-free extracts to cause similar changes in permeabilized human sperm was examined. Sperm that had been treated with the disulfide reducing agent dithiothreitol formed pronuclei, whereas untreated sperm did not. The addition of metaphase cytosol to the extracts caused the pronuclei to form metaphase chromosomes but only after incubation times that were two to three times longer than those required for Xenopus sperm nuclei. These results indicate that despite species differences, the Xenopus egg extracts can be used to visualize the chromosomes of human sperm and possibly those of other species.
Collapse
Affiliation(s)
- M J Lohka
- Department of Pharmacology, University of Colorado School of Medicine, Denver 80262
| | | |
Collapse
|
43
|
|
44
|
Wittenberg C, Reed SI. Control of the yeast cell cycle is associated with assembly/disassembly of the Cdc28 protein kinase complex. Cell 1988; 54:1061-72. [PMID: 3046752 DOI: 10.1016/0092-8674(88)90121-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Saccharomyces cerevisiae gene CDC28 encodes a protein kinase required for progression from G1 to S phase in the cell cycle. We present evidence that the active form of the Cdc28 protein kinase is a complex of approximately 160 kd containing an endogenous substrate, p40, and possibly other polypeptides. This complex phosphorylates p40 and exogenous histone H1 in vitro. Cell cycle arrest during G1 results in inactivation of the protein kinase accompanied by the disassembly of the complex. Furthermore, assembly of the complex is regulated during the cell cycle, reaching a maximum during G1. Partial complexes thought to be intermediates in the assembly process phosphorylate histone H1 but not p40. Addition of soluble factors to these partial complexes in vitro restores p40 phosphorylation and causes the complex to increase to the mature size. A model is presented in which p40 phosphorylation is required during G1 for cells to initiate a new cell cycle.
Collapse
Affiliation(s)
- C Wittenberg
- Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | |
Collapse
|
45
|
Cyert MS, Scherson T, Kirschner MW. Monoclonal antibodies specific for thiophosphorylated proteins recognize Xenopus MPF. Dev Biol 1988; 129:209-16. [PMID: 3044877 DOI: 10.1016/0012-1606(88)90175-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Maturation promoting factor, (MPF), is a crucial regulatory component of the eukaryotic cell cycle. Though it is ubiquitous, MPF has been difficult to purify to homogeneity, and little is known about its physical properties or composition. In an attempt to further characterize and purify this protein, we have isolated five monoclonal antibodies that immunoadsorb MPF activity, and inhibit the activity in solution. However, all the antibodies recognize many proteins in partially purified MPF. We have shown that antibody binding is dependent on previous exposure of the preparation to ATP gamma S. This suggests that the antibodies specifically recognize thiophosphoproteins, although not all thiophosphorylated proteins in MPF are immunoprecipitated. Using one antibody, MPF was partially purified by immunoadsorption chromatography. These experiments provide the first evidence that MPF from Xenopus is a phosphoprotein that becomes thiophosphorylated upon addition of ATP gamma S.
Collapse
Affiliation(s)
- M S Cyert
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | | | |
Collapse
|
46
|
Shibuya EK, Masui Y. Stabilization and enhancement of primary cytostatic factor (CSF) by ATP and NaF in amphibian egg cytosols. Dev Biol 1988; 129:253-64. [PMID: 3261698 DOI: 10.1016/0012-1606(88)90179-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Amphibian zygotes microinjected with the cytoplasm or cytosol of unactivated eggs are arrested at metaphase of mitosis. The activity responsible for this effect has been designated primary "cytostatic factor (CSF)." Primary CSF disappears from the cytoplasm after egg activation, as well as from cytosols after addition of Ca2+. In the present study, using fresh cytosols of Rana pipiens eggs, a unit of CSF activity was defined as the dose required to arrest 50% of the recipients, and the specific activity of a cytosol was expressed in units per microgram protein. Specific activities of cytosols prepared with the one-step centrifugation method employed in the present study were double the activities in cytosols obtained by the previously described two-step procedure. During storage at 2 degrees C, CSF specific activity in cytosols fell rapidly within hours of extraction and disappeared completely within 2 days. However, if NaF and ATP were added to fresh cytosols, specific activities increased within hours and remained high for at least several days. Addition of gamma-S-ATP also significantly increased the longevity of the activity during storage at 2 degrees C. Further, it was found that primary CSF activity could be recovered by ATP additions to cytosols in which residual activity was still present, but no activity was recovered by ATP addition if cytosols had completely lost activity. When Ca2+ was added to cytosols to which NaF and ATP had been added, CSF was inactivated more slowly than in control cytosols without NaF and ATP additions. Therefore, it appears that maintenance of primary CSF activity in vitro requires protein phosphorylation and that protein dephosphorylation is involved with its inactivation. Also, we compared the sensitivities to primary CSF of Xenopus laevis and R. pipiens two-cell embryos. In order to arrest 50% of recipients, the concentration of primary CSF in Xenopus blastomeres was three times higher than in Rana blastomeres.
Collapse
Affiliation(s)
- E K Shibuya
- Department of Zoology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
47
|
Dunphy WG, Brizuela L, Beach D, Newport J. The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 1988; 54:423-31. [PMID: 3293802 DOI: 10.1016/0092-8674(88)90205-x] [Citation(s) in RCA: 602] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In Xenopus, a cytoplasmic agent known as MPF induces entry into mitosis. In fission yeast, genetic studies have shown that the cdc2 kinase regulates mitotic initiation. The 13 kd product of the suc1 gene interacts with the cdc2 kinase in yeast cells. We show that the yeast suc1 gene product (p13) is a potent inhibitor of MPF in cell-free extracts from Xenopus eggs. p13 appears to exert its antagonistic effect by binding directly to MPF. MPF activity is quantitatively depleted by chromatography on a p13 affinity column. Concomitantly, the Xenopus counterpart of the yeast cdc2 protein is adsorbed to the column. A 42 kd protein also binds specifically to the p13 affinity matrix. These findings suggest that the Xenopus cdc2 protein and the 42 kd protein are components of MPF.
Collapse
Affiliation(s)
- W G Dunphy
- Department of Biology, University of California, San Diego, La Jolla 92093
| | | | | | | |
Collapse
|
48
|
Gautier J, Norbury C, Lohka M, Nurse P, Maller J. Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 1988; 54:433-9. [PMID: 3293803 DOI: 10.1016/0092-8674(88)90206-1] [Citation(s) in RCA: 681] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the fission yeast S. pombe, the Mr = 34 kd product of the cdc2+ gene (p34cdc2) is a protein kinase that controls entry into mitosis. In Xenopus oocytes and other cells, maturation-promoting factor (MPF) appears in late G2 phase and is able to cause entry into mitosis. Purified MPF consists of two major proteins of Mr approximately equal to 32 kd and 45 kd and expresses protein kinase activity. We report here that antibodies to S. pombe p34cdc2 are able to immunoblot and immunoprecipitate the approximately equal to 32 kd component of MPF from Xenopus eggs. The Mr approximately equal to 32 kd and 45 kd proteins exist as a complex that expresses protein kinase activity. These findings indicate that a Xenopus p34cdc2 homolog is present in purified MPF and suggest that p34cdc2 is a component of the control mechanism initiating mitosis generally in eukaryotic cells.
Collapse
Affiliation(s)
- J Gautier
- Department of Pharmacology, University of Colorado School of Medicine, Denver 80262
| | | | | | | | | |
Collapse
|
49
|
Kaiserman HB, Ingebritsen TS, Benbow RM. Regulation of Xenopus laevis DNA topoisomerase I activity by phosphorylation in vitro. Biochemistry 1988; 27:3216-22. [PMID: 2839226 DOI: 10.1021/bi00409a014] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA topoisomerase I has been purified to electrophoretic homogeneity from ovaries of the frog Xenopus laevis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the most purified fraction revealed a single major band at 110 kDa and less abundant minor bands centered at 62 kDa. Incubation of the most purified fraction with immobilized calf intestinal alkaline phosphatase abolished all DNA topoisomerase enzymatic activity in a time-dependent reaction. Treatment of the dephosphorylated X. laevis DNA topoisomerase I with a X. laevis casein kinase type II activity and ATP restored DNA topoisomerase activity to a level higher than that observed in the most purified fraction. In vitro labeling experiments which employed the most purified DNA topoisomerase I fraction, [gamma-32P]ATP, and the casein kinase type II enzyme showed that both the 110- and 62-kDa bands became phosphorylated in approximately molar proportions. Phosphoamino acid analysis showed that only serine residues became phosphorylated. Phosphorylation was accompanied by an increase in DNA topoisomerase activity in vitro. Dephosphorylation of DNA topoisomerase I appears to block formation of the initial enzyme-substrate complex on the basis of the failure of the dephosphorylated enzyme to nick DNA in the presence of camptothecin. We conclude that X. laevis DNA topoisomerase I is partially phosphorylated as isolated and that this phosphorylation is essential for expression of enzymatic activity in vitro. On the basis of the ability of the casein kinase type II activity to reactivate dephosphorylated DNA topoisomerase I, we speculate that this kinase may contribute to the physiological regulation of DNA topoisomerase I activity.
Collapse
Affiliation(s)
- H B Kaiserman
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
50
|
Abstract
We have developed a soluble, cell-free system from premeiotic Xenopus oocytes that executes the post-translational activation of a precursor form of maturation promoting factor (MPF). We have distinguished at least two components of this ATP-dependent reaction: pre-MPF, a precursor to MPF that activates independently of added MPF and whose apparent molecular weight changes from 400 kd to 260 kd upon activation; and INH, an inhibitor of pre-MPF activation that confers MPF dependence on the reaction. We present evidence suggesting that INH is a phosphatase and that the activation of pre-MPF occurs via phosphorylation. INH activity itself seems to be regulated by another phosphatase, protein phosphatase-1. We have directly examined the pattern of protein phosphorylation during the activation reaction and have found 92 and 140 kd proteins whose phosphorylation increases when MPF activity appears. This system makes possible a direct examination of the regulation of MPF activity during the cell cycle.
Collapse
Affiliation(s)
- M S Cyert
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143
| | | |
Collapse
|