1
|
Kato G. Regulatory Roles of the N-Terminal Intrinsically Disordered Region of Modular Src. Int J Mol Sci 2022; 23:2241. [PMID: 35216357 PMCID: PMC8874404 DOI: 10.3390/ijms23042241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Src, the prototype of Src family kinases (SFKs), is a modular protein consisting of SH4 (SH4) and unique (UD) domains in an N-terminal intrinsically disordered region (IDR), and SH3, SH2, and kinase (KD) folded domains conserved among SFKs. Src functions as a pleiotropic signaling hub in proliferating and post-mitotic cells, and it is related to cancer and neurological diseases. However, its regulatory mechanism is unclear because the existing canonical model is derived from crystallographic analyses of folded constructs lacking the IDR. This work reviews nuclear magnetic resonance analyses of partially structured lipid-binding segments in the flexible UD and the fuzzy intramolecular complex (FIMC) comprising IDR and SH3 domains, which interacts with lipid membranes and proteins. Furthermore, recently determined IDR-related Src characteristics are discussed, including dimerization, SH4/KD intramolecular fastener bundling of folded domains, and the sorting of adhesive structures. Finally, the modulatory roles of IDR phosphorylation in Src activities involving the FIMC are explored. The new regulatory roles of IDRs are integrated with the canonical model to elucidate the functions of full-length Src. This review presents new aspects of Src regulation, and provides a future direction for studies on the structure and function of Src, and their implications for pathological processes.
Collapse
Affiliation(s)
- Goro Kato
- Laboratory of Biological Chemistry, Center for Medical Education and Sciences, University of Yamanashi, 1110 Shimokato, Chuo 409-3898, Yamanashi, Japan
| |
Collapse
|
2
|
Pütz SM. Mbt/PAK4 together with SRC modulates N-Cadherin adherens junctions in the developing Drosophila eye. Biol Open 2019; 8:8/3/bio038406. [PMID: 30885947 PMCID: PMC6451336 DOI: 10.1242/bio.038406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023] Open
Abstract
Tissue morphogenesis is accompanied by changes of adherens junctions (AJ). During Drosophila eye development, AJ reorganization includes the formation of isolated N-Cadherin AJ between photoreceptors R3/R4. Little is known about how these N-Cadherin AJ are established and maintained. This study focuses on the kinases Mbt/PAK4 and SRC, both known to alter E-Cadherin AJ across phyla. Drosophila p21-activated kinase Mbt and the non-receptor tyrosine kinases Src64 and Src42 regulate proper N-Cadherin AJ. N-Cadherin AJ elongation depends on SRC kinase activity. Cell culture experiments demonstrate binding of both Drosophila SRC isoforms to N-Cadherin and its subsequent tyrosine phosphorylation. In contrast, Mbt stabilizes but does not bind N-Cadherin in vitro. Mbt is required in R3/R4 for zipping the N-Cadherin AJ between these cells, independent of its kinase activity and Cdc42-binding. The mbt phenotype can be reverted by mutations in Src64 and Src42. Because Mbt neither directly binds to SRC proteins nor has a reproducible influence on their kinase activity, the conclusion is that Mbt and SRC signaling converge on N-Cadherin. N-Cadherin AJ formation during eye development requires a proper balance between the promoting effects of Mbt and the inhibiting influences of SRC kinases. Summary: N-Cadherin adherens junction formation in the Drosophila larval eye imaginal disc is controlled by the combined functions of the p21-activated kinase Mbt/PAK4 and the kinases Src64 and Src42.
Collapse
Affiliation(s)
- Stephanie M Pütz
- Institute of Medical Radiation and Cell Research, University of Würzburg, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
3
|
Zanivan S, Meves A, Behrendt K, Schoof EM, Neilson LJ, Cox J, Tang HR, Kalna G, van Ree JH, van Deursen JM, Trempus CS, Machesky LM, Linding R, Wickström SA, Fässler R, Mann M. In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis. Cell Rep 2013; 3:552-66. [PMID: 23375375 DOI: 10.1016/j.celrep.2013.01.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2011] [Revised: 11/27/2012] [Accepted: 01/03/2013] [Indexed: 12/16/2022] Open
Abstract
Cancer progresses through distinct stages, and mouse models recapitulating traits of this progression are frequently used to explore genetic, morphological, and pharmacological aspects of tumor development. To complement genomic investigations of this process, we here quantify phosphoproteomic changes in skin cancer development using the SILAC mouse technology coupled to high-resolution mass spectrometry. We distill protein expression signatures from our data that distinguish between skin cancer stages. A distinct phosphoproteome of the two stages of cancer progression is identified that correlates with perturbed cell growth and implicates cell adhesion as a major driver of malignancy. Importantly, integrated analysis of phosphoproteomic data and prediction of kinase activity revealed PAK4-PKC/SRC network to be highly deregulated in SCC but not in papilloma. This detailed molecular picture, both at the proteome and phosphoproteome level, will prove useful for the study of mechanisms of tumor progression.
Collapse
Affiliation(s)
- Sara Zanivan
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The Src family of protooncoproteins is required for prc through at least two phases of the cell cycle and for sc cell-type-specific functions. Recent crystal structures of fragments of two representatives reveal a compact am their Src-homology 3 (SH3), SH2 and catalytic domai embodies an unexpected mechanism of regulation. Th. the enzymatic activity of Src is controlled by intramol associations between the SH2 domain and C-tail and SH3 domain and a surprising internal target. The stn highlight a mechanism by which substrates can comp internal sequences for binding to the SH3 and SH2 do thereby stimulating kinase activity. This implies that distinction between upstream activators and downstre will sometimes be ambiguous.
Collapse
|
5
|
BTG2 suppresses cancer cell migration through inhibition of Src-FAK signaling by downregulation of reactive oxygen species generation in mitochondria. Clin Exp Metastasis 2012; 29:901-13. [PMID: 22562501 DOI: 10.1007/s10585-012-9479-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2011] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
Abstract
BTG2 is a tumor suppressor gene. It is frequently downregulated in human cancer tissues, and its loss is associated with cancer cell metastasis, suggesting that the suppression of BTG2 plays a critical role in cancer cell migration and invasion. Here, we report that re-expression of BTG2 decreased cell migration and invasion in A549 and PC3 cancer cells. Furthermore, BTG2 expression was correlated with downregulation of focal adhesion kinase (FAK) Tyr576 and Tyr925 residues phosphorylation, while Tyr397 which is the autophosphorylation site was not influenced by BTG2 expression. c-Src phosphorylation which is the upstream of FAK was not influenced, whereas c-Src kinase activity was significantly decreased by BTG2 expression. BTG2 overexpression increased Src reduction state and inhibited reactive oxygen species (ROS) generation by being localized in mitochondria. Mitochondria-target BTG2 also inhibited cell migration via downregulation of Src-FAK signaling. In conclusion, our study reveals that BTG2 negatively regulated cancer cell migration by inhibiting Src activity through downregulation of ROS generation in mitochondria.
Collapse
|
6
|
Razani-Boroujerdi S, Langley RJ, Singh SP, Pena-Philippides JC, Rir-sima-ah J, Gundavarapu S, Mishra NC, Sopori ML. The role of IL-1β in nicotine-induced immunosuppression and neuroimmune communication. J Neuroimmune Pharmacol 2011; 6:585-96. [PMID: 21671006 DOI: 10.1007/s11481-011-9284-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2010] [Accepted: 05/27/2011] [Indexed: 11/27/2022]
Abstract
Although a number of inflammatory cytokines are increased during sepsis, the clinical trials aimed at down-regulating these mediators have not improved the outcome. These paradoxical results are attributed to loss of the "tolerance" phase that normally follows the proinflammatory response. Chronic nicotine (NT) suppresses both adaptive and innate immune responses, and the effects are partly mediated by the nicotinic acetylcholine receptors in the brain; however, the mechanism of neuroimmune communication is not clear. Here, we present evidence that, in rats and mice, NT initially increases IL-1β in the brain, but the expression is downregulated within 1-2 week of chronic exposure, and the animals become resistant to proinflammatory/pyrogenic stimuli. To examine the relationship between NT, IL-1β, and immunosuppression, we hypothesized that NT induces IL-1β in the brain, and its constant presence produces immunological "tolerance". Indeed, unlike wild-type C57BL/6 mice, chronic NT failed to induce immunosuppression or downregulation of IL-1β expression in IL-1β-receptor knockout mice. Moreover, while acute intracerebroventricular administration of IL-1β in Lewis (LEW) rats activated Fyn and protein tyrosine kinase activities in the spleen, chronic administration of low levels of IL-1β progressively diminished the pyrogenic and T cell proliferative responses of treated animals. Thus, IL-1β may play a critical role in the perception of inflammation by the CNS and the induction of an immunologic "tolerant" state. Moreover, the immunosuppressive effects of NT might be at least partly mediated through its effects on the brain IL-1β. This represents a novel mechanism for neuroimmune communication.
Collapse
Affiliation(s)
- Seddigheh Razani-Boroujerdi
- Respiratory Immunology Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr., S.E., Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Callera GE, Yogi A, Briones AM, Montezano AC, He Y, Tostes RC, Schiffrin EL, Touyz RM. Vascular proinflammatory responses by aldosterone are mediated via c-Src trafficking to cholesterol-rich microdomains: role of PDGFR. Cardiovasc Res 2011; 91:720-31. [DOI: 10.1093/cvr/cvr131] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
|
8
|
Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Methods 2010; 7:148-55. [PMID: 20101245 PMCID: PMC2881471 DOI: 10.1038/nmeth.1418] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2009] [Accepted: 12/10/2009] [Indexed: 11/08/2022]
Abstract
We describe microwestern arrays, which enable quantitative, sensitive and high-throughput assessment of protein abundance and modifications after electrophoretic separation of microarrayed cell lysates. This method allowed us to measure 91 phosphosites on 67 proteins at six time points after stimulation with five epidermal growth factor (EGF) concentrations in A431 human carcinoma cells. We inferred the connectivities among 15 phosphorylation sites in 10 receptor tyrosine kinases (RTKs) and two sites from Src kinase using Bayesian network modeling and two mutual information-based methods; the three inference methods yielded substantial agreement on the network topology. These results imply multiple distinct RTK coactivation mechanisms and support the notion that small amounts of experimental data collected from phenotypically diverse network states may enable network inference.
Collapse
|
9
|
Identification of c-Src tyrosine kinase substrates in platelet-derived growth factor receptor signaling. Mol Oncol 2009; 3:439-50. [PMID: 19632164 DOI: 10.1016/j.molonc.2009.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2009] [Revised: 06/17/2009] [Accepted: 07/04/2009] [Indexed: 11/20/2022] Open
Abstract
c-Src non-receptor tyrosine kinase is an important component of the platelet-derived growth factor (PDGF) receptor signaling pathway. c-Src has been shown to mediate the mitogenic response to PDGF in fibroblasts. However, the exact components of PDGF receptor signaling pathway mediated by c-Src remain unclear. Here, we used stable isotope labeling with amino acids in cell culture (SILAC) coupled with mass spectrometry to identify Src-family kinase substrates involved in PDGF signaling. Using SILAC, we were able to detect changes in tyrosine phosphorylation patterns of 43 potential c-Src kinase substrates in PDGF receptor signaling. This included 23 known c-Src kinase substrates, of which 16 proteins have known roles in PDGF signaling while the remaining 7 proteins have not previously been implicated in PDGF receptor signaling. Importantly, our analysis also led to identification of 20 novel Src-family kinase substrates, of which 5 proteins were previously reported as PDGF receptor signaling pathway intermediates while the remaining 15 proteins represent novel signaling intermediates in PDGF receptor signaling. In validation experiments, we demonstrated that PDGF indeed induced the phosphorylation of a subset of candidate Src-family kinase substrates - Calpain 2, Eps15 and Trim28 - in a c-Src-dependent fashion.
Collapse
|
10
|
Pérez Y, Gairí M, Pons M, Bernadó P. Structural characterization of the natively unfolded N-terminal domain of human c-Src kinase: insights into the role of phosphorylation of the unique domain. J Mol Biol 2009; 391:136-48. [PMID: 19520085 DOI: 10.1016/j.jmb.2009.06.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2009] [Revised: 06/04/2009] [Accepted: 06/04/2009] [Indexed: 11/17/2022]
Abstract
The N-terminal regions of the members of Src family of non-receptor protein tyrosine kinases are intrinsically unfolded and contain the maximum sequence divergence among them. In this study, we have addressed the structural characterization by nuclear magnetic resonance of this region of 84 residues that encompasses the SH4 and the unique domains (USrc) of the human c-Src. With this aim, the backbone assignment was performed using (13)C-detected experiments that overcome the spectral resolution problems and the large number of prolines that are typical for intrinsically unfolded proteins. The analysis of the residual dipolar couplings measured for the USrc indicates the presence of a low populated helical structure in the 60-75 region. No long-range contacts between remote fragments of the chain were detected with paramagnetic relaxation enhancement experiments. The structural characterization was extended to two different phosphorylation states of USrc that encompassed three different phosphorylated sites, Ser17, Thr37, and Ser75. The structural and conformational changes upon phosphorylation were monitored through chemical shift perturbations and residual dipolar couplings, indicating that modifications occur at local level and no global rearrangements were apparent. These results suggest a scenario where phosphorylation induces a global electrostatic perturbation that could be involved in the membrane unbinding of c-Src and that could be related with the localization of the enzyme. These observations suggest the unique domain of Src kinases as a source of selectivity and reinforce the relevant role of intrinsically disordered proteins in biological processes.
Collapse
Affiliation(s)
- Yolanda Pérez
- Institute for Research in Biomedicine, Parc Científic de Barcelona, Baldiri Reixac 10, Barcelona, Spain
| | | | | | | |
Collapse
|
11
|
Tournaviti S, Pietro ES, Terjung S, Schafmeier T, Wegehingel S, Ritzerfeld J, Schulz J, Smith DF, Pepperkok R, Nickel W. Reversible phosphorylation as a molecular switch to regulate plasma membrane targeting of acylated SH4 domain proteins. Traffic 2009; 10:1047-60. [PMID: 19453972 DOI: 10.1111/j.1600-0854.2009.00921.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Abstract
Acylated SH4 domains represent N-terminal targeting signals that anchor peripheral membrane proteins such as Src kinases in the inner leaflet of plasma membranes. Here we provide evidence for a novel regulatory mechanism that may control the levels of SH4 proteins being associated with plasma membranes. Using a fusion protein of the SH4 domain of Leishmania HASPB and GFP as a model system, we demonstrate that threonine 6 is a substrate for phosphorylation. Substitution of threonine 6 by glutamate (to mimic a phosphothreonine residue) resulted in a dramatic redistribution from plasma membranes to intracellular sites with a particular accumulation in a perinuclear region. As shown by both pharmacological inhibition and RNAi-mediated down-regulation of the threonine/ serine-specific phosphatases PP1 and PP2A, recycling back to the plasma membrane required dephosphorylation of threonine 6. We provide evidence that a cycle of phosphorylation and dephosphorylation may also be involved in intracellular targeting of other SH4 proteins such as the Src kinase Yes.
Collapse
|
12
|
Lawson C, Goupil S, Leclerc P. Increased activity of the human sperm tyrosine kinase SRC by the cAMP-dependent pathway in the presence of calcium. Biol Reprod 2008; 79:657-66. [PMID: 18562702 DOI: 10.1095/biolreprod.108.070367] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/01/2022] Open
Abstract
SRC-related tyrosine kinases are suggested to play a role in the increase of sperm protein phosphotyrosine content that occurs during capacitation. In our laboratory, we previously demonstrated that the SRC-related tyrosine kinase YES1 (also known as c-YES) is present in human spermatozoa. However, since it is negatively regulated by Ca(2+), whose intracellular concentration increases during capacitation, another kinase would most likely be involved in the capacitation-related increase in sperm protein tyrosine phosphorylation. The present study represents the first direct assessment of SRC tyrosine kinase activity in ejaculated mammalian sperm. By immunohistochemistry on human testis sections, it is clearly shown that SRC is expressed during spermatogenesis, mainly in round and elongating spermatids. Using an indirect immunofluorescence approach, SRC is detected in the acrosomal region of the head and in the sperm flagellum of ejaculated sperm. This tyrosine kinase is associated with the plasma membrane and with cytoskeletal elements, as suggested by its partial solubility in nonionic detergents. Despite its partial solubility, SRC kinase activity was assayed after immunoprecipitation using acid-denatured enolase as a substrate. It is clearly demonstrated that SRC activity is inhibited by SU6656 and PP1, selective SRC family tyrosine kinase inhibitors, and activated in a Ca(2+)-dependent manner. Furthermore, it is shown that SRC is activated in a cAMP/PRKA-dependent manner; SRC coimmunoprecipitates with the catalytic subunit of the cAMP-dependent protein kinase (PRKAC) and is phosphorylated by this latter kinase, resulting in an increase in enolase phosphorylation. All these results support the involvement of the tyrosine kinase SRC in the increase in sperm protein phosphotyrosine content observed during capacitation.
Collapse
Affiliation(s)
- Christine Lawson
- Département d'Obstétrique, Université Laval and Ontogénie et Reproduction, Centre de recherche du Centre Hospitalier Universitaire de Québec, Québec, Canada G1V 4G2
| | | | | |
Collapse
|
13
|
Kazlauskas A. Platelet-Derived Growth Factor. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
|
14
|
Angiotensin II induces vascular endothelial growth factor in pancreatic cancer cells through an angiotensin II type 1 receptor and ERK1/2 signaling. J Gastrointest Surg 2008; 12:57-66. [PMID: 18026817 DOI: 10.1007/s11605-007-0403-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/18/2007] [Accepted: 10/23/2007] [Indexed: 01/31/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a crucial pro-angiogenic component in pancreatic ductal adenocarcinoma (PDA), and its high expression levels have been correlated with poor prognosis and early postoperative recurrence. We have recently shown that high levels of angiotensin II (AngII) type 1 receptor (AT1R) correlate and colocalize with VEGF in invasive PDA and that AngII induces VEGF expression in PDA cell lines. In this study, we explored the signaling mechanisms involved in the AngII-mediated VEGF induction and correlated AT1R and VEGF expression in noninvasive precursor lesions. An AT1R antagonist significantly (p<0.05) inhibited the AngII-mediated induction of VEGF messenger RNA and protein in all PDA cell lines. AngII-VEGF induction was inhibited by the tyrosine kinase inhibitor genistein, suggesting a mitogen-activated protein kinase signaling mechanism. AngII activated the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), but not p38 or c-Jun NH2-terminal MAP kinases. Inhibition of ERK1/2 activation reduced the AngII-induced VEGF synthesis. Immunohistochemical analysis of precursor lesions showed increased expression of AT1R in most ductal cells undergoing metaplasia. Pancreatic intraepithelial neoplasms showed more intense AT1R staining when compared to intraductal papillary mucinous neoplasms, which showed heterogeneous immunoreactivity. VEGF followed the same distribution pattern of AT1R in both lesions. AT1R expression in the premalignant pancreatic lesions suggests its involvement in tumor progression and angiogenesis. Our mechanistic findings provide the first insight into an AngII-initiated signaling pathway that regulates PDA angiogenesis. An AT1R-mediated VEGF induction suggests the possibility of AT1R blockade as a novel therapeutic strategy to control angiogenesis in PDA.
Collapse
|
15
|
Kriz R, Lin LL, Sultzman L, Ellis C, Heldin CH, Pawson T, Knopf J. Phospholipase C isozymes: structural and functional similarities. CIBA FOUNDATION SYMPOSIUM 2007; 150:112-23; discussion 124-7. [PMID: 2373024 DOI: 10.1002/9780470513927.ch8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Phospholipase C (PLC) is shown to comprise at least nine isoforms. These isoforms can be separated into three structurally related classes. Within a class the isozymes have similar enzymological properties. In the case of the PLC gamma class, both isoforms may be regulated by tyrosine phosphorylation. For PLC gamma 1 we show that the tyrosine phosphorylation sites are contained within the SH2/SH3 region or 'modulatory domain'. The overexpression of PLC gamma 1 in Rat-2 cells results in increased phosphatidylinositol breakdown in response to PDGF treatment, demonstrating that PLC gamma 1 mediates this response. We note that thrombin activates PLC gamma 1 in addition to other PLC isoforms.
Collapse
Affiliation(s)
- R Kriz
- Genetics Institute, Cambridge, MA 02140
| | | | | | | | | | | | | |
Collapse
|
16
|
Bassa BV, Noh JW, Ganji SH, Shin MK, Roh DD, Kamanna VS. Lysophosphatidylcholine stimulates EGF receptor activation and mesangial cell proliferation: regulatory role of Src and PKC. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1364-71. [PMID: 17950662 DOI: 10.1016/j.bbalip.2007.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2007] [Revised: 09/06/2007] [Accepted: 09/13/2007] [Indexed: 11/25/2022]
Abstract
Lysophosphatidylcholine (LPC), a major component of oxidized-low density lipoproteins (ox-LDL), modulates various pathobiological processes involved in vascular and glomerular diseases. Although several studies have shown increased plasma concentrations of ox-LDL as well as LPC in patients with renal disease, the role of LPC in mesangial cell proliferation and associated signaling mechanisms are not clearly understood. In this study, we have shown that LPC induced the phosphorylation of epidermal growth factor receptor (EGFR), as well as the p42/44 MAP kinases. LPC activated Src-kinase and protein kinase C (PKC), and both Src kinase inhibitor PP-2 and PKC inhibitor inhibited the activation of EGFR by LPC. LPC (5-25 microM) stimulated human mesangial cell proliferation by 4-5 fold. Preincubation of mesangial cells with the Src inhibitor (PP-2), or PKC inhibitor (bisindolylmaleimide GF109203-X), or EGF receptor kinase inhibitor (AG1478), or MEK inhibitor (PD98059) significantly inhibited LPC-mediated mesangial cell proliferation. The data suggest that LPC, by activating Src and PKC signaling pathways, stimulates EGF receptor transactivation and down-stream MAP kinase signaling resulting in mesangial hypercellularity, which is a characteristic feature of diverse renal diseases.
Collapse
Affiliation(s)
- Babu V Bassa
- Medical Research Service, Department of Veterans Affairs Healthcare System, Long Beach, CA 90822, USA
| | | | | | | | | | | |
Collapse
|
17
|
Arafat HA, Gong Q, Chipitsyna G, Rizvi A, Saa CT, Yeo CJ. Antihypertensives as novel antineoplastics: angiotensin-I-converting enzyme inhibitors and angiotensin II type 1 receptor blockers in pancreatic ductal adenocarcinoma. J Am Coll Surg 2007; 204:996-1005; discussion 1005-6. [PMID: 17481528 DOI: 10.1016/j.jamcollsurg.2007.01.067] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2006] [Accepted: 01/15/2007] [Indexed: 01/20/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is a crucial proangiogenic component in pancreatic ductal adenocarcinoma (PDA), and its high expression levels have been correlated with poor prognosis and early postoperative recurrence. Angiotensin II (AngII), which has been shown to increase VEGF production in a variety of cancers, is actively generated in the pancreas. We hypothesized that AngII plays a crucial role in PDA-associated angiogenesis. STUDY DESIGN We analyzed the expression and localization of AngI converting enzyme (ACE) and AngII type 1 receptor (AT1R) in relation to VEGF in matched invasive human PDA (n=25) and surrounding nonmalignant tissues using real-time polymerase chain reaction, Western immunoblotting, and immunohistochemistry. VEGF levels in conditioned media of HS766T and PK9 PDA cells treated with or without AngII (10(-7) mol/L) were measured by ELISA. The effects of an AT1R blocker (losartan) and an ACE inhibitor (captopril) on VEGF production and cellular proliferation were also examined. RESULTS ACE and AT1R mRNA and protein levels were significantly upregulated in 19 of the 25 neoplastic tissues examined (approximately 75%), when compared with matching controls. VEGF expression was significantly higher in tissues that expressed high levels of AT1R and ACE (n=19), compared with low levels (n=4) or negative (n=2) cases. ACE protein collocalized with AT1R and VEGF in the malignant ducts and in the stromal cells. Addition of AngII significantly enhanced VEGF mRNA production and protein secretion, an effect that was prevented when cells were preincubated with captopril or losartan. Blocking endogenous AngII by captopril or losartan significantly suppressed cell proliferation. CONCLUSIONS Both ACE and AT1R are functionally expressed in PDA and may be involved in tumor angiogenesis. Because AT1R blockers and ACE inhibitors are already widely used clinically, they may represent a potential novel and promising strategy for controlling angiogenesis, prevention of metastasis, and prolongation of survival in patients with primary or metastatic PDA.
Collapse
Affiliation(s)
- Hwyda A Arafat
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
18
|
Chipitsyna G, Gong Q, Gray CF, Haroon Y, Kamer E, Arafat HA. Induction of monocyte chemoattractant protein-1 expression by angiotensin II in the pancreatic islets and beta-cells. Endocrinology 2007; 148:2198-208. [PMID: 17303665 DOI: 10.1210/en.2006-1358] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
Angiotensin II (AngII), the principal hormone of the renin-angiotensin system, is actively generated in the pancreas and has been suggested as a key mediator of inflammation. Monocyte chemoattractant protein-1 (MCP-1) is a chemokine that plays an important role in the recruitment of mononuclear cells into the pancreatic islets. In this study, we investigated the potential molecular basis for the role of AngII in islet inflammation through studying its effect on MCP-1. AngII significantly increased the expression of MCP-1 mRNA and protein in the RINm5F beta-cell line and activated MCP-1 promoter. AngII-MCP-1 mRNA induction was inhibited by an AngII type 1 receptor antagonist but was unchanged by an AngII type 2 receptor antagonist. AngII-MCP-1 induction was inhibited by the tyrosine kinase inhibitor genistein, suggesting a MAPK signaling mechanism. AngII activated the phosphorylation of ERK1/2 but not p38 or c-Jun NH(2)-terminal MAPKs. Inhibition of ERK1/2 activation reduced the AngII-induced MCP-1 synthesis. In nonobese diabetic mice pancreata, the temporal pattern of angiotensin-converting enzyme expression correlated well with progression of insulitis and beta-cell destruction. Immunostaining of pancreatic serial sections show colocalization of angiotensin-converting enzyme with MCP-1 in beta-cells in the islets. In freshly isolated islets from normoglycemic mice, AngII alone and in combination with IL-1beta elicited an inflammatory response by stimulation of MCP-1. Our data suggest a positive autocrine/paracrine action for the local pancreatic AngII-generating system during insulitis and provide the first insight into an AngII-initiated signal transduction pathway that regulates MCP-1 as a possible inflammatory mechanism in the islets.
Collapse
Affiliation(s)
- Galina Chipitsyna
- Department of Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
19
|
Choudhury GG, Mahimainathan L, Das F, Venkatesan B, Ghosh-Choudhury N. c-Src couples PI 3 kinase/Akt and MAPK signaling to PDGF-induced DNA synthesis in mesangial cells. Cell Signal 2007; 18:1854-64. [PMID: 16530387 DOI: 10.1016/j.cellsig.2006.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2006] [Revised: 02/02/2006] [Accepted: 02/03/2006] [Indexed: 10/24/2022]
Abstract
Platelet-derived growth factor BB (PDGF) and PDGF receptor-beta (PDGFR) play critical roles in mesangial cell proliferation during embryonic development and in mesangioproliferative glomerulonephritis. We have shown previously that phosphatidylinositol (PI) 3 kinase/Akt and Erk1/2 mitogen-activated protein kinase (MAPK) contribute to PDGF-dependent proliferation of mesangial cells, but the mechanism by which these two enzyme cascades are activated by PDGFR signaling is not precisely known. We examined the role of c-Src tyrosine kinase in this process. PDGF increased phosphorylation of c-Src in a time-dependent manner indicating its activation. A pharmacologic inhibitor of c-Src, PP1, blocked PDGF-induced DNA synthesis with concomitant inhibition of c-Src phosphorylation. Immune-complex kinase assays of c-Src and PDGFR demonstrated inhibition of c-Src tyrosine kinase activity by PP1, without an effect on PDGFR tyrosine phosphorylation. Both PP1 and expression of dominant negative c-Src inhibited PDGF-induced PI 3 kinase, resulting in attenuation of Akt kinase activity. Expression of constitutively active c-Src increased Akt activity to the same extent as with PDGF. Constitutively active c-Src augmented PDGF-induced Akt activity, thus contributing to Akt signaling. Inhibition of c-Src tyrosine kinase blocked PDGF-stimulated MAPK activity and resulted in attenuation of c-fos gene transcription with concomitant prevention of Elk-1 transactivation. Furthermore, inhibition of c-Src increased p27(Kip1) cyclin kinase inhibitor, and attenuated PDGF-induced pRb phosphorylation and CDK2 activity. These data provide the first evidence in mesangial cells that PDGF-activated c-Src tyrosine kinase relays signals to PI 3 kinase/Akt and MAPK. Furthermore our results demonstrate that c-Src integrates signals into the nucleus to activate CDK2, which is required for DNA synthesis.
Collapse
Affiliation(s)
- Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | |
Collapse
|
20
|
Platek A, Vassilev VS, de Diesbach P, Tyteca D, Mettlen M, Courtoy PJ. Constitutive diffuse activation of phosphoinositide 3-kinase at the plasma membrane by v-Src suppresses the chemotactic response to PDGF by abrogating the polarity of PDGF receptor signalling. Exp Cell Res 2007; 313:1090-105. [PMID: 17335807 DOI: 10.1016/j.yexcr.2007.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2006] [Revised: 01/26/2007] [Accepted: 01/28/2007] [Indexed: 12/18/2022]
Abstract
Cancer cells depend on chemotaxis for invasion and frequently overexpress and/or activate Src. We previously reported that v-Src accelerates motility by promoting phosphoinositide 3-kinase (PI3-K) signalling but abrogates chemotaxis. We here addressed the mechanism of the loss of chemotactic response to platelet-derived growth factor (PDGF) gradients in fibroblasts harbouring a thermosensitive v-Src kinase. At non-permissive temperature, PDGF receptor (PDGFR) signalling, assessed by phosphoY(751)-specific antibodies (a docking site for PI3-K), was not detected without PDGF and showed a concentration-dependent PDGF response. Both immunolabeling of PI3-K (p110) and live cell imaging of its product (phosphatidylinositol 3,4,5 tris-phosphate) showed PI3-K recruitment and activation at lamellipodia polarized towards a PDGF gradient. Centrosomes and PDGFR- and Src-bearing endosomes were also oriented towards this gradient. Upon v-Src thermoactivation, (i) Y(751) phosphorylation was moderately induced without PDGF and synergistically increased with PDGF; (ii) PI3-K was recruited and activated all along the plasma membrane without PDGF and did not polarize in response to a PDGF gradient; and (iii) polarization of centrosomes and of PDGFR-bearing endosomes were also abrogated. Thus, PDGF can further increase PDGFR auto-phosphorylation despite strong Src kinase activity, but diffuse downstream activation of PI3-K by Src abrogates cell polarization and chemotaxis: "signalling requires silence".
Collapse
Affiliation(s)
- Anna Platek
- Université catholique de Louvain, Christian de Duve Institute of Cellular Pathology, CELL Unit, UCL 75.41, avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Kannan S, Audet A, Knittel J, Mullegama S, Gao GF, Wu M. Src kinase Lyn is crucial for Pseudomonas aeruginosa internalization into lung cells. Eur J Immunol 2006; 36:1739-52. [PMID: 16791881 DOI: 10.1002/eji.200635973] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Lyn is an important B cell signaling kinase of the Src tyrosine kinase family with a broad range of functions from cytoskeletal changes to induction of apoptosis. However, the role of Lyn in infectious diseases is not clear. Here, we demonstrate that Lyn activation by phosphorylation significantly impacted invasion of an alveolar epithelial cell line, primary lung cells, and rat lungs by Pseudomonas aeruginosa (PA), a common opportunistic lung pathogen affecting individuals with deficient lung immunity. Our results indicate that activation of Lyn and its interaction with rafts and TLR2, played an important role in the initial stages of PA interaction with host cells. The role of Lyn was further evaluated using the pharmacologic Src-specific inhibitor PP2, a dominant negative mutant, and finally confirmed with Lyn-deficient (Lyn(-/-)) bone marrow-derived mast cells. Inhibition of Lyn's function by above approaches prevented PA internalization. Moreover, blocking of Lyn also affected downstream events: induction of inflammatory cytokines and apoptosis. This report brings out a new role of Lyn in infectious diseases and indicates potential new targets for prevention and treatment of infections.
Collapse
Affiliation(s)
- Shibichakravarthy Kannan
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 558203, USA
| | | | | | | | | | | |
Collapse
|
22
|
Dekanty A, Sauane M, Cadenas B, Coluccio F, Barrio M, Casala J, Paciencia M, Rogers F, Coso OA, Piwien-Pilipuk G, Rudland PS, de Asúa LJ. Leukemia Inhibitory Factor Induces DNA Synthesis in Swiss Mouse 3T3 Cells Independently of Cyclin D1 Expression through a Mechanism Involving MEK/ERK1/2 Activation. J Biol Chem 2006; 281:6136-43. [PMID: 16291739 DOI: 10.1074/jbc.m505839200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Leukemia inhibitory factor (LIF) and oncostatin M (OSM) induce DNA synthesis in Swiss 3T3 cells through common signaling mechanism(s), whereas other related cytokines such as interleukin-6 and ciliary neurotrophic factor do not cause this response. Induction of DNA replication by LIF or prostaglandin F2alpha (PGF2alpha) occurs, in part, through different signaling events. LIF and OSM specifically trigger STAT1 cytoplasmic to nuclear translocation, whereas PGF2alpha fails to do so. However, LIF and PGF2alpha can trigger increases in ERK1/2 activity, which are required for their mitogenic responses because U0126, a MEK1/2 inhibitor, prevents both ERK1/2 activation and induction of DNA synthesis by LIF or PGF2alpha treatment. PGF2alpha induces cyclin D expression and full phosphorylation of retinoblastoma protein. In contrast, LIF fails to promote increases in cyclin D mRNA/protein levels; consequently, LIF induces DNA synthesis without promoting full phosphorylation of retinoblastoma protein (Rb). However, both LIF and PGF2alpha increase cyclin E expression. Furthermore, LIF mitogenic action does not involve protein kinase C (PKC) activation, because a PKC inhibitor does not block this effect. In contrast, PKC activity is required for PGF2alpha mitogenic action. More importantly, the synergistic effect between LIF and PGF2alpha to promote S phase entry is independent of PKC activation. These results show fundamental differences between LIF- and PGF2alpha-dependent mechanism(s) that induce cellular entry into S phase. These findings are critical in understanding how LIF and other related cytokine-regulated events participate in normal cell cycle control and may also provide clues to unravel crucial processes underlying cancerous cell division.
Collapse
Affiliation(s)
- Andres Dekanty
- Fundación Instituto Leloir, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Transmembrane receptors link the extracellular environment to the internal control elements of the cell. This signaling influences cell division, differentiation, survival, motility, adhesion, spreading and vesicular transport. Central to this signaling is the Src family of nonreceptor tyrosine kinases. The most studied kinase of this nine member family, c-Src, shares a similar structure, as well as a similar expression pattern to that of another Src family protein, c-Yes. Despite high conservation in sequence, molecular studies demonstrate that the functional domains of these kinases can contribute to specificity in signaling. At the cellular level, analysis of tight junction formation also serves as a model to differentiate c-Yes and c-Src signaling. Results suggest that c-Yes promotes formation of the tight junction by phosphorylating occludin, while c-Src signaling downregulates occludin formation in a Raf-1 dependent manner. In addition, pp62c-Yes knockout mice exhibit a specific physiological function phenotype that is distinct from c-src-/- mice. In these studies, c-yes-/- mice exhibit decreased transcytosis of pIgA from the blood to the bile, while c-src-/- mice exhibit deficits in osteoclasts function and bone resorption. Of particular interest in this review are receptor signals that specifically influence the actions of c-Yes. Growth factors that influence many Src family proteins include the PDGF-R, CSF-1 receptor and others. Since these receptors interact with various Src-family kinases, it is predicted that specific signaling is generated by differential recruitment to the cell membrane and/or differentiated interactions with substrates and binding partners. This review provides an overview of c-Yes interactions with specific receptor signaling pathways and how this interaction potentially influences the known physiological roles of c-Yes.
Collapse
Affiliation(s)
- David A Clump
- Department of Microbiology, Immunology, and Cell Biology, The Mary Babb Randolph Cancer Center and the West Virginia University, Morgantown, WV 26506-9300, USA
| | | | | | | |
Collapse
|
24
|
Li X, Brunton VG, Burgar HR, Wheldon LM, Heath JK. FRS2-dependent SRC activation is required for fibroblast growth factor receptor-induced phosphorylation of Sprouty and suppression of ERK activity. J Cell Sci 2005; 117:6007-17. [PMID: 15564375 DOI: 10.1242/jcs.01519] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022] Open
Abstract
Activation of signalling by fibroblast growth factor receptor leads to phosphorylation of the signalling attenuator human Sprouty 2 (hSpry2) on residue Y55. This event requires the presence of the signalling adaptor fibroblast growth factor receptor substrate 2 (FRS2). The phosphorylation of hSpry2 is therefore mediated by an intermediate kinase. Using a SRC family kinase-specific inhibitor and mutant cells, we show that hSpry2 is a direct substrate for SRC family kinases, including SRC itself. Activation of SRC via fibroblast growth factor signalling is dependent upon FRS2 and fibroblast growth factor receptor kinase activity. SRC forms a complex with hSpry2 and this interaction is enhanced by hSpry2 phosphorylation. Phosphorylation of hSpry2 is required for hSpry2 to inhibit activation of the extracellular signal-regulated kinase pathway. These results show that recruitment of SRC to FRS2 leads to activation of signal attenuation pathways.
Collapse
Affiliation(s)
- Xuan Li
- CR-UK Growth Factor Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | |
Collapse
|
25
|
Roskoski R. Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun 2005; 331:1-14. [DOI: 10.1016/j.bbrc.2005.03.012] [Citation(s) in RCA: 385] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2005] [Indexed: 02/07/2023]
|
26
|
Abstract
During mitosis, the activity of the c-Src protein tyrosine kinase increases. The tyrosine phosphorylation of a 68 kDa protein (Sam68) also increases at this time, and recent studies have shown that Src and Sam68 interact. Sam68 is highly related to p62, a RasGAP-associated protein, and has homology to RNA-binding proteins. The relationship between p62 and Sam68, and their roles in Src signalling, need to be clarified, but these findings suggest that Src may participate in regulating RNA processing during the cell cycle.
Collapse
Affiliation(s)
- S A Courtneidge
- Differentiation Programme, European Molecular Biology Laboratory, Postfach 16.2209, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | | |
Collapse
|
27
|
Zhao YL, Takagawa K, Oya T, Yang HF, Gao ZY, Kawaguchi M, Ishii Y, Sasaoka T, Owada K, Furuta I, Sasahara M. Active Src expression is induced after rat peripheral nerve injury. Glia 2003; 42:184-93. [PMID: 12655602 DOI: 10.1002/glia.10223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
The non-receptor-type Src tyrosine kinases are key components of intracellular signal transduction that are expressed at high levels in the nervous system. To improve understanding of the cascades of molecular events underlying peripheral nerve regeneration, we analyzed active Src expression in the crushed or cut rat sciatic nerves using a monoclonal antibody (clone 28) that recognizes the active form of Src tyrosine kinases, including c-Src and c-Fyn. Western blots showed that active Src expressed in the normal sciatic nerve transiently increased up to threefolds after both types of injury. Immunohistochemistry using clone 28 showed that axonal components are the primary sites of active Src expression in the normal sciatic nerve. Soon after both types of injury, active Src was abundantly expressed in Schwann cells of the segments distal to the injury site. The expression of active Src in the cells decreased with restoration of the axon-Schwann cell relationship and eventually became depleted to very low levels after crushing, but was sustained at high levels in the cut model until the end of the experiment. Regenerated axons consistently expressed active Src throughout nerve regeneration and these eventually became the major sites of active Src expression in the crushed nerve. Among the Src tyrosine kinases, active c-Src selectively increased after crushing according to immunoprecipitation and immunoblotting analyses. Due to its potent biological activity, the increased amounts of the active form of Src probably enhance axonal regrowth, the Schwann cell response, and axon-Schwann cell contact for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Ying-Luan Zhao
- Department of Pathology II, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Eliceiri BP, Puente XS, Hood JD, Stupack DG, Schlaepfer DD, Huang XZ, Sheppard D, Cheresh DA. Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. J Cell Biol 2002; 157:149-60. [PMID: 11927607 PMCID: PMC2173263 DOI: 10.1083/jcb.200109079] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) promotes vascular permeability (VP) and neovascularization, and is required for development. We find that VEGF-stimulated Src activity in chick embryo blood vessels induces the coupling of focal adhesion kinase (FAK) to integrin alpha(v)beta5, a critical event in VEGF-mediated signaling and biological responsiveness. In contrast, FAK is constitutively associated with beta1 and beta3 integrins in the presence or absence of growth factors. In cultured endothelial cells, VEGF, but not basic fibroblast growth factor, promotes the Src-mediated phosphorylation of FAK on tyrosine 861, which contributes to the formation of a FAK/alpha(v)beta5 signaling complex. Moreover, formation of this FAK/alpha(v)beta5 complex is significantly reduced in pp60c-src-deficient mice. Supporting these results, mice deficient in either pp60c-src or integrin beta5, but not integrin beta3, have a reduced VP response to VEGF. This FAK/alpha(v)beta5 complex was also detected in epidermal growth factor-stimulated epithelial cells, suggesting a function for this complex outside the endothelium. Our findings indicate that Src can coordinate specific growth factor and extracellular matrix inputs by recruiting integrin alpha(v)beta5 into a FAK-containing signaling complex during growth factor-mediated biological responses.
Collapse
Affiliation(s)
- Brian P Eliceiri
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Suprynowicz FA, Baege A, Sunitha I, Schlegel R. c-Src activation by the E5 oncoprotein enables transformation independently of PDGF receptor activation. Oncogene 2002; 21:1695-706. [PMID: 11896601 DOI: 10.1038/sj.onc.1205223] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2001] [Revised: 11/03/2001] [Accepted: 12/03/2001] [Indexed: 11/09/2022]
Abstract
The E5 oncoprotein of bovine papillomavirus type 1 is a Golgi-resident, hydrophobic polypeptide that can transform immortalized fibroblasts by activating endogenous platelet-derived growth factor receptor beta (PDGF-R). However, the existence of E5 mutants that dissociate transformation from PDGF-R activation implies that there are additional mechanism(s) by which E5 can transform cells. We now show that both wt E5, and transforming E5 mutants that are defective for PDGF-R activation, constitutively activate endogenous c-Src in NIH3T3 cell lines to levels normally associated with acute growth factor stimulation. The ubiquitous Src family protein tyrosine kinase (PTK) Fyn is not activated by these E5 constructs, nor are focal adhesion kinase and endogenous receptor PTKs for insulin, epidermal growth factor, basic fibroblast growth factor and insulin-like growth factor. We further demonstrate that transforming activity of the L26A E5 mutant, which is highly defective for PDGF-R activation, depends on its ability to activate Src. L26A E5 does not transform SYF cells that are deficient for Src, Fyn and Yes, unless Src expression is reconstituted, and does not transform NIH3T3 cells in which Src PTK activity is maintained at a basal level by means of kinase-defective K295R Src overexpression.
Collapse
Affiliation(s)
- Frank A Suprynowicz
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | |
Collapse
|
30
|
Newcomb LF, Mastick CC. Src family kinase-dependent phosphorylation of a 29-kDa caveolin-associated protein. Biochem Biophys Res Commun 2002; 290:1447-53. [PMID: 11820784 DOI: 10.1006/bbrc.2002.6371] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
PDGF receptors and Src family kinases are concentrated in caveolae, where signal transduction cascades involving these molecules are thought to be organized. The Src family tyrosine kinases are cotransducers of signals emanating from the activated PDGF receptor. However, the Src family kinase substrates that are involved in PDGF-induced signaling remain to be fully elucidated. We have identified a 29-kDa protein in caveolae that was phosphorylated in response to PDGF stimulation. This protein, pp29, was tightly bound to the caveolar coat protein caveolin-1. pp29 was among the most prominent phosphoproteins observed in cells overexpressing Fyn, suggesting that it may be a Fyn substrate. Consistent with this, pp29 was among a specific subset of proteins whose PDGF-stimulated phosphorylation was blocked by expression of kinase inactive Fyn. These data indicate that pp29 lies downstream of Fyn activation in a PDGF-stimulated signaling pathway, and that pp29 is an abundant site for nucleation of signal transduction cascades.
Collapse
Affiliation(s)
- Lisa F Newcomb
- Department of Biochemistry, University of Nevada, Reno, Nevada 89557, USA
| | | |
Collapse
|
31
|
Marx M, Warren SL, Madri JA. pp60(c-src) modulates microvascular endothelial phenotype and in vitro angiogenesis. Exp Mol Pathol 2001; 70:201-13. [PMID: 11417999 DOI: 10.1006/exmp.2001.2358] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
The tyrosine kinase c-src associates with the platelet-derived growth factor (PDGF) receptor. Overexpression of wild-type c-src, a kinase-negative c-src mutant, and v-src in microvascular endothelial cells modulated the mitogenic effect of PDGF, suggesting that c-src kinase activity inhibits PDGF signals. Analyses of cell morphology in two-dimensional culture revealed changes in cell shape and size induced by the overexpression of c-src proteins. Investigations in three-dimensional culture unveiled a modulatory role of c-src during in vitro angiogenesis. Overexpression of c-src resulted in an increased diameter of tube-like structures, and the number of branching segments was decreased. Expression of the kinase-negative c-src mutant resulted in abortive tube formation consisting of disconnected multicellular fragments. These results indicate that the c-src tyrosine kinase exerts regulatory effects on endothelial proliferation, size, and cytoskeletal organization in two-dimensional culture and on the formation of a differentiated multicellular network in three-dimensional culture.
Collapse
Affiliation(s)
- M Marx
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
32
|
Abstract
The non-receptor tyrosine kinase Src is important for many aspects of cell physiology. The viral src gene was the first retroviral oncogene to be identified, and its cellular counterpart was the first proto-oncogene to be discovered in the vertebrate genome. Src has been important, not only as an object of study in itself, but also as an entry point into the molecular genetics of cancer.
Collapse
Affiliation(s)
- G S Martin
- Department of Molecular and Cell Biology, University of California, 401 Barker Hall #3204, Berkeley, California 94720-3204, USA.
| |
Collapse
|
33
|
Arafat HA, Kim GS, DiSanto ME, Wein AJ, Chacko S. Heterogeneity of bladder myocytes in vitro: modulation of myosin isoform expression. Tissue Cell 2001; 33:219-32. [PMID: 11469535 DOI: 10.1054/tice.2001.0171] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
We studied the expression of myosin heavy chain isoforms differing at the N-terminal (SM-A, SM-B) and the C-terminal (SM1, SM2) regions and non-muscle myosin heavy chain II-A and II-B (NMMHC II-A and B) in newborn and adult rabbit bladder smooth muscle cells (SMCs) and in cultures of enzymatically dissociated neonatal detrusor. RT-PCR analyses revealed that 94.5+/-3.27% of MHC transcripts of the adult bladder SMCs contained the 21-nucleotide insert (SM-B) compared with 83.8+/-3.2% in the newborn bladder, with the remainder of the mRNA being non-inserted (SM-A). In 3, 7, and 10 days of primary culture (proliferating, confluent, and post-confluent, respectively) and up to 4 subculture passages, bladder myocytes expressed predominantly SM-A. Immunofluorescence microscopy revealed heterogeneity in cultured myocytes, i.e. SM-B positive cells coexisting with negatively stained cells. In adult bladder, the C-terminal isoforms SM1 and SM2 represented, 43.1+/-4.3% and 56.89 + 4.3% of the mRNA, respectively, while newborn bladders expressed 72.5+/-7% SM1 and 27.5+/-7% SM2. Upon culturing, cells predominantly expressed SM1 at both the mRNA and protein levels. NMMHC II-A was expressed by both adult and newborn bladders and in culture, whereas NMMHC II-B was expressed at low levels only in newborn bladders, but upregulated in culture. These data indicate that bladder myocytes in vitro undergo modulation with relative overexpression of SM-A and SM1 and upregulation of NMMHC II-B. Information on the mechanisms responsible for this modulation in vitro might provide an understanding of the nature of altered myosin isoform expression associated with smooth muscle dysfunction in certain bladder diseases.
Collapse
Affiliation(s)
- H A Arafat
- Division of Urology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
34
|
Zhang Y, Turkson J, Carter-Su C, Smithgall T, Levitzki A, Kraker A, Krolewski JJ, Medveczky P, Jove R. Activation of Stat3 in v-Src-transformed fibroblasts requires cooperation of Jak1 kinase activity. J Biol Chem 2000; 275:24935-44. [PMID: 10823829 DOI: 10.1074/jbc.m002383200] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023] Open
Abstract
Signal transducers and activators of transcription (STATs) are latent cytoplasmic transcription factors that transduce signals from the cell membrane to the nucleus upon activation by tyrosine phosphorylation. Several protein-tyrosine kinases can induce phosphorylation of STATs in cells, including Janus kinase (JAK) and Src family kinases. One STAT family member, Stat3, is constitutively activated in Src-transformed NIH3T3 cells and is required for cell transformation. However, it is not entirely clear whether Src kinase can phosphorylate Stat3 directly or through another pathway, such as JAK family kinases. To address this question, we investigated the phosphorylation of STATs in baculovirus-infected Sf-9 insect cells in the presence of Src. Our results show that Src can tyrosine-phosphorylate Stat1 and Stat3 but not Stat5 in this system. The phosphorylated Stat1 and Stat3 proteins are functionally activated, as measured by their abilities to specifically bind DNA oligonucleotide probes. In addition, the JAK family member Jak1 efficiently phosphorylates Stat1 but not Stat3 in Sf-9 cells. By contrast, we observe that AG490, a JAK family-selective inhibitor, and dominant negative Jak1 protein can significantly inhibit Stat3-induced DNA binding activity as well as Stat3-mediated gene activation in NIH3T3 cells. Furthermore, wild-type or kinase-inactive platelet-derived growth factor receptor enhances Stat3 activation by v-Src, consistent with the receptor serving a scaffolding function for recruitment and activation of Stat3. Our results demonstrate that Src kinase is capable of activating STATs in Sf-9 insect cells without expression of JAK family members; however, Jak1 and platelet-derived growth factor receptor are required for maximal Stat3 activation by Src kinase in mammalian cells. Based on these findings, we propose a model in which Jak1 serves to recruit Stat3 to a receptor complex with Src kinase, which in turn directly phosphorylates and activates Stat3 in Src-transformed fibroblasts.
Collapse
Affiliation(s)
- Y Zhang
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jones RJ, Brunton VG, Frame MC. Adhesion-linked kinases in cancer; emphasis on src, focal adhesion kinase and PI 3-kinase. Eur J Cancer 2000; 36:1595-606. [PMID: 10959046 DOI: 10.1016/s0959-8049(00)00153-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
Our understanding of the complex signal transduction pathways involved in signalling within cancer cells, between cancer cells and between cancer cells and their environment has increased dramatically in recent years. Here we concentrate on three non-receptor kinases: Src, focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI 3-kinase). These form part of a complex network of intracellular signals which is thought to be important in regulating cancer cells.
Collapse
Affiliation(s)
- R J Jones
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, G61 1BD, Glasgow, UK
| | | | | |
Collapse
|
36
|
Wang YZ, Wharton W, Garcia R, Kraker A, Jove R, Pledger WJ. Activation of Stat3 preassembled with platelet-derived growth factor beta receptors requires Src kinase activity. Oncogene 2000; 19:2075-85. [PMID: 10815799 DOI: 10.1038/sj.onc.1203548] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Members of the STAT family of transcriptional regulators modulate the expression of a variety of gene products that promote cell proliferation, survival and transformation. Although initially identified as mediators of cytokine signaling, the STAT proteins are also activated by, and thus may contribute to the actions of, polypeptide growth factors. To define the mechanism by which these factors activate STATs, we examined the process of Stat3 activation in Balb/c-3T3 fibroblasts treated with platelet-derived growth factor (PDGF). As STATs are activated by tyrosine phosphorylation, and as PDGF receptors are ligand-activated tyrosine kinases, we considered the possibility that Stat3 interacts with and is phosphorylated by PDGF receptors. We find that Stat3 associates with PDGF beta receptors in both the presence and, surprisingly, the absence of PDGF. Moreover, Stat3 was phosphorylated on tyrosine in PDGF beta receptor immunoprecipitates of PDGF-treated but not untreated cells. Although required, receptor activation was insufficient for Stat3 activation. When added to cells in combination with a pharmacologic agent (PD180970) that specifically inhibits the activity of Src family tyrosine kinases, PDGF did not activate Stat3 as monitored by electrophoretic mobility shift assay. PD180970 did not affect MAPK activation by PDGF or the JAK-dependent activation of Stat3 by interleukin-6. The necessity of Src activity for Stat3 activation by PDGF was further evidenced by data showing the presence of Src in complexes containing both Stat3 and PDGF beta receptors in PDGF-treated cells. These results suggest a novel mechanism of STAT activation in which inactive Stat3 pre-assembles with inactive PDGF receptors, and in response to ligand binding and in a manner dependent on Src kinase activity, is rapidly phosphorylated and activated. Additional data demonstrate that Src kinase activity is also required for PDGF stimulation of DNA synthesis in density-arrested cells.
Collapse
Affiliation(s)
- Y Z Wang
- Molecular Oncology, Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | |
Collapse
|
37
|
Sauane M, Correa L, Rogers F, Krasnapolski M, Barraclough R, Rudland PS, de Asúa LJ. Prostaglandin F(2alpha) (PGF(2alpha)) induces cyclin D1 expression and DNA synthesis via early signaling mechanisms in Swiss mouse 3T3 cells. Biochem Biophys Res Commun 2000; 270:11-6. [PMID: 10733897 DOI: 10.1006/bbrc.2000.2383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Prostaglandin F(2alpha) (PGF(2alpha)), a mitogen for Swiss 3T3 cells, triggers cyclin D1 mRNA/protein expression prior to cellular entry into the S phase, but fails to raise cdk4 or cyclin D3 levels, while 1-oleoyl-2-diacylglycerol (OAG), a protein kinase C (PKC) and tyrosine kinase (TK) activator, induces only cyclin D1 expression with no mitogenic response. In contrast, in PKC-depleted or -inhibited cells, PGF(2alpha), but not OAG, increases cyclin D1 expression with no mitogenic response. Finally, OAG, in the presence of orthovanadate (Na(3)VO(4)) or TGF(beta1), induces DNA synthesis. Thus, it appears that PGF(2alpha) triggers cyclin D1 expression via two independent signaling events that complement with TGF(beta1)-triggered events to induce DNA synthesis.
Collapse
Affiliation(s)
- M Sauane
- Instituto de Investigaciones Bioquímicas "Luis F. Leloir" Fundación Campomar, Avenida Patricias Argentinas 435, Buenos Aires, 1405, Argentina
| | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- C L Abram
- SUGEN, 230 East Grand Avenue, South San Francisco, California, 94080, USA
| | | |
Collapse
|
39
|
Abstract
The observation that platelet-derived growth factor (PDGF) increases the catalytic activity of Src family members (Src) suggests that they contribute to PDGF-dependent responses. The role of Src in PDGF-dependent cell cycle progression, phosphorylation of proteins, and chemotaxis has been tested by investigators using a variety of cell types and approaches, and it appears that the contribution of Src is highly variable. This idea is perhaps best illustrated by the finding that Src plays radically different roles downstream of the PDGF alpha- and beta-receptor subunits. Hence, Src is a versatile signal relay enzyme, whose contribution to a signaling cascade depends on variables such as the nature of the receptor via which the cell is activated, as well as the cell type itself.
Collapse
Affiliation(s)
- K A DeMali
- Schepens Eye Research Institute, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts, 02114, USA
| | | | | | | |
Collapse
|
40
|
Schaller MD, Hildebrand JD, Parsons JT. Complex formation with focal adhesion kinase: A mechanism to regulate activity and subcellular localization of Src kinases. Mol Biol Cell 1999; 10:3489-505. [PMID: 10512882 PMCID: PMC25619 DOI: 10.1091/mbc.10.10.3489] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023] Open
Abstract
Tyrosine phosphorylation of focal adhesion kinase (FAK) creates a high-affinity binding site for the src homology 2 domain of the Src family of tyrosine kinases. Assembly of a complex between FAK and Src kinases may serve to regulate the subcellular localization and the enzymatic activity of members of the Src family of kinases. We show that simultaneous overexpression of FAK and pp60(c-src) or p59(fyn) results in the enhancement of the tyrosine phosphorylation of a limited number of cellular substrates, including paxillin. Under these conditions, tyrosine phosphorylation of paxillin is largely cell adhesion dependent. FAK mutants defective for Src binding or focal adhesion targeting fail to cooperate with pp60(c-src) or p59(fyn) to induce paxillin phosphorylation, whereas catalytically defective FAK mutants can direct paxillin phosphorylation. The negative regulatory site of pp60(c-src) is hypophosphorylated when in complex with FAK, and coexpression with FAK leads to a redistribution of pp60(c-src) from a diffuse cellular location to focal adhesions. A FAK mutant defective for Src binding does not effectively induce the translocation of pp60(c-src) to focal adhesions. These results suggest that association with FAK can alter the localization of Src kinases and that FAK functions to direct phosphorylation of cellular substrates by recruitment of Src kinases.
Collapse
Affiliation(s)
- M D Schaller
- Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
41
|
Camodeca N, Breakwell NA, Rowan MJ, Anwyl R. Induction of LTD by activation of group I mGluR in the dentate gyrus in vitro. Neuropharmacology 1999; 38:1597-606. [PMID: 10530821 DOI: 10.1016/s0028-3908(99)00093-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
Abstract
The ability of activation of group I metabotropic glutamate receptors (mGluR) to induce long-term depression (LTD) was investigated in the medial perforant path of the dentate gyrus in vitro. Application of the group I agonists (RS)-3,5-dihydroxyphenylglycine (DHPG) and (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), and also the partial agonist (S)-(+)-2-(3'-Carboxybicyclo[1.1.1]pentyl)-glycine (UPF 596), induced LTD of the field EPSP. The induction of LTD is likely to be mediated via mGluR5 since CHPG and UPF 596 are selective agonists/partial agonists at that receptor. Further evidence for the involvement of group I mGluR in LTD induction was the finding, that the DHPG and low frequency stimulation induced LTD were inhibited by the group I mGluR antagonist [CRS]-1-aminoindan-1,5-dicarboxylic acid (AIDA). Investigation of the intracellular mechanisms underlying the induction of the group I mGluR-mediated LTD showed an inhibition of the LTD by the protein kinase C (PKC) inhibitor bisindolylmaleimide I and the protein tyrosine kinase inhibitor lavendustin A, but not the PKA inhibitor H89. These studies demonstrate that DHPG-induced LTD can be induced by the activation of mGluR5 followed by intracellular stimulation of PKC and tyrosine kinase.
Collapse
Affiliation(s)
- N Camodeca
- Department of Physiology, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
42
|
Bassa BV, Roh DD, Vaziri ND, Kirschenbaum MA, Kamanna VS. Lysophosphatidylcholine activates mesangial cell PKC and MAP kinase by PLCgamma-1 and tyrosine kinase-Ras pathways. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:F328-37. [PMID: 10484515 DOI: 10.1152/ajprenal.1999.277.3.f328] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Although lysophosphatidylcholine (LPC)-mediated cellular responses are attributed to the activation of protein kinase C (PKC), relatively little is known about the upstream signaling mechanisms that regulate the activation of PKC and downstream mitogen-activated protein (MAP) kinase. LPC activated p42 MAP kinase and PKC in mesangial cells. LPC-mediated MAP kinase activation was inhibited (but not completely) by PKC inhibition, suggesting additional signaling events. LPC stimulated protein tyrosine kinase (PTK) activity and induced Ras-GTP binding. LPC-induced MAP kinase activity was blocked by the PTK inhibitor genistein. Because LPC increased PTK activity, we examined the involvement of phospholipase Cgamma-1 (PLCgamma-1) as a key participant in LPC-induced PKC activation. LPC stimulated the phosphorylation of PLCgamma-1. PTK inhibitors suppressed LPC-induced PKC activity, whereas the same had no effect on phorbol 12-myristate 13-acetate-mediated PKC activity. Other lysophospholipids [e.g., lysophosphatidylinositol and lysophosphatidic acid (LPA)] also induced MAP kinase activity, and only LPA-induced MAP kinase activation was sensitive to pertussis toxin. These results indicate that LPC-mediated PKC activation may be regulated by PTK-dependent activation of PLCgamma-1, and both PKC and PTK-Ras pathways are involved in LPC-mediated downstream MAP kinase activation.
Collapse
Affiliation(s)
- B V Bassa
- Nephrology Section, Department of Veterans Affairs Medical Center, Long Beach, California 90822, USA
| | | | | | | | | |
Collapse
|
43
|
Sachsenmaier C, Sadowski HB, Cooper JA. STAT activation by the PDGF receptor requires juxtamembrane phosphorylation sites but not Src tyrosine kinase activation. Oncogene 1999; 18:3583-92. [PMID: 10380880 DOI: 10.1038/sj.onc.1202694] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Activation of the platelet-derived growth factor (PDGF) receptor tyrosine kinase induces tyrosine phosphorylation of Signal Transducer and Activator of Transcription (STAT) proteins. Since the PDGF receptor also activates the Src tyrosine kinase, it is possible that Src mediates tyrosine phosphorylation of STATs in PDGF-treated cells. Consistent with a role for Src in STAT activation, we found that a PDGF receptor juxtamembrane tyrosine residue required for Src activation is necessary and sufficient for activation of STATs 1 and 3. To test the Src requirement further, we made other mutations in the PDGF receptor juxtamembrane region that increased or decreased Src binding. In epithelial and fibroblast cells, PDGF activated STAT1, 3 and 6 in the absence of detectable binding and activation of Src. In addition, PDGF induced c-myc RNA expression and DNA synthesis even though Src was not detectably activated. The activation of MAP kinase and the induction of c-fos gene expression both correlated with STAT but not Src activation by the receptor. We conclude that juxtamembrane tyrosine phosphorylation is necessary for both Src tyrosine kinase and STAT activation by the betaPDGF receptor, but that both processes are regulated independently by this region.
Collapse
Affiliation(s)
- C Sachsenmaier
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
44
|
Ponniah S, Wang DZ, Lim KL, Pallen CJ. Targeted disruption of the tyrosine phosphatase PTPalpha leads to constitutive downregulation of the kinases Src and Fyn. Curr Biol 1999; 9:535-8. [PMID: 10339428 DOI: 10.1016/s0960-9822(99)80238-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
A role for the receptor-like protein tyrosine phosphatase alpha (PTPalpha) in regulating the kinase activity of Src family members has been proposed because ectopic expression of PTPalpha enhances the dephosphorylation and activation of Src and Fyn [1] [2] [3]. We have generated mice lacking catalytically active PTPalpha to address the question of whether PTPalpha is a physiological activator of Src and Fyn, and to investigate its other potential functions in the context of the whole animal. Mice homozygous for the targeted PTPalpha allele (PTPalpha-/-) and lacking detectable PTPalpha protein exhibited no gross phenotypic defects. The kinase activities of Src and Fyn were significantly reduced in PTPalpha-/- mouse brain and primary embryonic fibroblasts, and this correlated with enhanced phosphorylation of the carboxy-terminal regulatory Tyr527 of Src in PTPalpha-/- mice. Thus, PTPalpha is a physiological positive regulator of the tyrosine kinases Src and Fyn. Increased tyrosine phosphorylation of several unidentified proteins was also apparent in PTPalpha-/- mouse brain lysates. These may be PTPalpha substrates or downstream signaling proteins. Taken together, the results indicate that PTPalpha has a dual function as a positive and negative regulator of tyrosine phosphorylation events, increasing phosphotyrosyl proteins through activation of Src and Fyn, and directly or indirectly removing tyrosine phosphate from other unidentified proteins.
Collapse
Affiliation(s)
- S Ponniah
- Cell Regulation Laboratory, In Vivo Model Systems Unit, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore, 117609, Republic of Singapore
| | | | | | | |
Collapse
|
45
|
Verbeek BS, Vroom TM, Rijksen G. Overexpression of c-Src enhances cell-matrix adhesion and cell migration in PDGF-stimulated NIH3T3 fibroblasts. Exp Cell Res 1999; 248:531-7. [PMID: 10222144 DOI: 10.1006/excr.1999.4416] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
c-Src is normally associated with the plasma membrane, but upon activation by tyrosine kinase receptors it translocates to the cytoskeleton. Activation of c-Src alters its conformation and induces the association of c-Src with cytoskeletal proteins. c-Src is implicated in tyrosine phosphorylation of cytoskeletal proteins, which might affect the cytoskeletal architecture. Rearrangements of the cytoskeleton affect cell-matrix adhesion and cell migration. In this study NIH3T3 fibroblasts, that overexpress c-Src, were used to analyze the effect of c-Src on both cell-matrix adhesion and cell migration. Upon PDGF stimulation translocation of c-Src to the cytoskeleton was detected. PDGF treatment also increased cell-matrix adhesion and cell migration. The cell line with the highest c-Src expression showed the largest increases in both phenomena. These findings suggest that translocation of c-Src to the cytoskeleton results in enhanced cell-matrix adhesion and cell migration.
Collapse
Affiliation(s)
- B S Verbeek
- Department of Hematology, University Hospital Utrecht, Utrecht, 3508 GA, The Netherlands.
| | | | | |
Collapse
|
46
|
Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T. Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 1999; 274:2234-42. [PMID: 9890986 DOI: 10.1074/jbc.274.4.2234] [Citation(s) in RCA: 429] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
In the present study, we studied the signal transduction mechanism that is involved in the expression of c-Jun protein evident after exposure of rat liver epithelial RL34 cells to the major end product of oxidized fatty acid metabolism, 4-hydroxy-2-nonenal (HNE). HNE treatment of the cells resulted in depletion of intracellular glutathione (GSH) and in the formation of protein-bound HNE in plasma membrane. In addition, HNE strongly induced intracellular peroxide production, suggesting that HNE exerted oxidative stress on the cells. Potent expression of c-Jun occurred within 30 min of HNE treatment, which was accompanied by a time-dependent increase in activator protein-1 (AP-1) DNA binding activity. We found that HNE caused an immediate increase in tyrosine phosphorylation in RL34 cells. In addition, HNE strongly induced phosphorylation of c-Jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinases and also moderately induced phosphorylation of extracellular signal-regulated kinases. The phosphorylation of JNK was accompanied by a rapid and transient increase in JNK and p38 activities, whereas changes in the activity of extracellular signal-regulated kinase were scarcely observed. GSH depletion by L-buthionine-S, R-sulfoximine, a specific inhibitor of GSH biosynthesis, only slightly enhanced peroxide production and JNK activation, suggesting that HNE exerted these effects independent of GSH depletion. This and the findings that (i) HNE strongly induced intracellular peroxide production, (ii) HNE-induced JNK activation was inhibited by pretreatment of the cells with a thiol antioxidant, N-acetylcysteine, and (iii) H2O2 significantly activated JNK support the hypothesis that pro-oxidants play a crucial role in the HNE-induced activation of stress signaling pathways. In addition, we found that, among the inhibitors of tyrosine kinases, cyclooxygenase, and Ca2+ influx, only quercetin exerted a significant inhibitory effect on HNE-induced JNK activation. In light of the JNK-dependent induction of c-jun transcription and the AP-1-induced transcription of xenobiotic-metabolizing enzymes, these data may show a potential critical role for JNK in the induction of a cellular defense program against toxic products generated from lipid peroxidation.
Collapse
Affiliation(s)
- K Uchida
- Laboratory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya 464-8601, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
Ritchie S, Bonham K. The human c-Src proto-oncogene promoter contains multiple targets for triplex-forming oligonucleotides. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1998; 8:391-400. [PMID: 9826266 DOI: 10.1089/oli.1.1998.8.391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
Abstract
The overexpression and activation of the human c-Src proto-oncogene is closely associated with cancer of the colon and breast. Characterization of the 5' region of the c-Src gene revealed that the promoter is very GC rich, regulated by the Sp family of transcription factors, and contains four perfect homopolypurine/homopolypyrimidine tracts (Pu:Py tracts). These Pu:Py tracts (TC1, TC1.1, TC2, and TC3) are located near or overlap critical Spl binding sites required for full activation of the gene. Triplex-forming oligonucleotides (TFOs) can be targeted to such sequences with high affinity to form intermolecular triple-helical DNA and modulate transcriptional activity. We therefore designed a series of antiparallel purine-based TFOs and measured their ability to form triplexes with the c-Src promoter Pu:Py tracts using comigration, bandshift, and chemical footprint techniques. With one interesting exception, all of the TFOs were found to bind with specificity and high affinity (67 nM-28 nM) to their target sequences at physiologic pH. These results indicate that the c-Src gene can successfully form stable triplexes under physiologic conditions and is, therefore, an excellent candidate for triplex-mediated transcriptional downregulation.
Collapse
Affiliation(s)
- S Ritchie
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
48
|
Gelderloos JA, Rosenkranz S, Bazenet C, Kazlauskas A. A role for Src in signal relay by the platelet-derived growth factor alpha receptor. J Biol Chem 1998; 273:5908-15. [PMID: 9488729 DOI: 10.1074/jbc.273.10.5908] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that Src is required for platelet-derived growth factor (PDGF)-dependent cell cycle progression in fibroblasts. Since fibroblasts usually express both PDGF receptors (PDGFRs), these findings suggested that Src was mandatory for signal relay by both the alpha and betaPDGFRs. In this study, we have focused on the role of Src in signal relay by the alphaPDGFR. In response to stimulation with PDGF-AA, which selectively engages the alphaPDGFR, Src family members (Src) associated with the alphaPDGFR and Src kinase were activated. A mutant receptor, in which tyrosines 572 and 574 were replaced with phenylalanine (F72/74), failed to efficiently associate with Src or activate Src. The wild type (WT) and F72/74 receptors induced the expression of c-myc and c-fos to comparable levels. Furthermore, an equivalent extent of PDGF-dependent soft agar growth was observed in cells expressing the WT or the F72/74 alphaPDGFR. Comparing the ability of these two receptors to initiate tyrosine phosphorylation of signaling molecules indicated that both receptors mediated phosphorylation of the receptor itself, phospholipase Cgamma 1, and SHP-2 to similar levels. In contrast, the F72/74 receptor triggered phosphorylation of Shc to 1 and 20% of the WT levels for the 55- and 46-kDa Shc isoforms, respectively. These findings indicate that after exposure of cells to PDGF-AA, Src stably associates with the alphaPDGFR, and Src activity is increased. Furthermore, Src is required for the PDGF-dependent phosphorylation of signaling molecules such as Shc. Finally, activation of Src during the G0/G1 transition does not appear to be required for latter cell cycle events such as induction of c-myc or cell proliferation.
Collapse
Affiliation(s)
- J A Gelderloos
- The Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
49
|
Jalali S, Li YS, Sotoudeh M, Yuan S, Li S, Chien S, Shyy JY. Shear stress activates p60src-Ras-MAPK signaling pathways in vascular endothelial cells. Arterioscler Thromb Vasc Biol 1998; 18:227-34. [PMID: 9484987 DOI: 10.1161/01.atv.18.2.227] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
The aim of this study was to elucidate the upstream signaling mechanism that mediates the fluid shear stress activation of mitogen-activated protein kinases (MAPKs), including c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinases (ERKs), in vascular endothelial cells (ECs). Our results indicate that p60src is rapidly activated by fluid shear stress in bovine aortic endothelial cells (BAECs). Shear stress induction of the hemagglutinin (HA) epitope-tagged HA-JNK1 and the Myc epitope-tagged Myc-ERK2 was significantly attenuated by v-src(K295R) and c-src(K295R), the kinase-defective mutants ofv-src and c-src, respectively. HA-JNK1 and Myc-ERK2 were activated by c-src(F527), a constitutively activated form of p60src, and the activation was abolished by RasN17, a dominant-negative mutant of p2lras. In contrast, although HA-JNK1 and Myc-ERK2 were also activated by RasL61, an activated form of p21ras, the activation was not affected by v-src(K295R). These results indicate that p60src is upstream to the Ras-JNK and Ras-ERK pathways in response to shear stress. The shear stress inductions of the promoters of monocyte chemotactic protein-1 (MCP-1) and c-fos, driven by TPA-responsive element (TRE) and serum-responsive element (SRE), respectively, were attenuated by v-src(K295R). This attenuation is associated with decreased transcriptional activities of c-Jun and Elk-1, the transcription factors targeting TRE and SRE, respectively. Thus, p60src plays a critical role in the shear stress activation of MAPK pathways and induction of Activating Protein-1 (AP- 1)/TRE and Elk-1/SRE-mediated transcription in ECs.
Collapse
Affiliation(s)
- S Jalali
- Department of Bioengineering and Institute for Biomedical Engineering, University of California, San Diego, La Jolla 92093-0412, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Src family protein tyrosine kinases are activated following engagement of many different classes of cellular receptors and participate in signaling pathways that control a diverse spectrum of receptor-induced biological activities. While several of these kinases have evolved to play distinct roles in specific receptor pathways, there is considerable redundancy in the functions of these kinases, both with respect to the receptor pathways that activate these kinases and the downstream effectors that mediate their biological activities. This chapter reviews the evidence implicating Src family kinases in specific receptor pathways and describes the mechanisms leading to their activation, the targets that interact with these kinases, and the biological events that they regulate.
Collapse
Affiliation(s)
- S M Thomas
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|