1
|
Alam JM, Riha EN, Ahmed H, Thai HM, Garnepudi K, Kesavan RB, Jayaraman G, Sangster A, Curry D, Butz HA, Smith L, Vowles M, Oakeson KF, Young EL, Sarva ST. Unique North American isolates of severe metastatic hypervirulent Klebsiella pneumoniae strain infections with hepatic abscesses seen in young patients within Texas. PLoS One 2025; 20:e0308305. [PMID: 39899509 PMCID: PMC11790080 DOI: 10.1371/journal.pone.0308305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/20/2024] [Indexed: 02/05/2025] Open
Abstract
RATIONALE Hypervirulent Klebsiella pneumoniae (hvKp) infections have principally been identified in Asia. Within a two-month period, two patients between the ages of 30 to 50 years old presented to a tertiary referral hospital in Texas with septic shock, hepatic abscess, and septic thrombophlebitis. Blood cultures were positive for Klebsiella pneumoniae (isolates 2020CK-00441 and 2021CK-00720 respectively). The first patient survived after a prolonged hospital course while the second patient expired. OBJECTIVES Describe the clinical presentation of these two patients. Perform whole genome sequencing and bioinformatic analysis to evaluate potential outbreak of specific hvKp bacteria isolates. METHODS Whole genome sequencing was performed using both paired-end Illumina MiSeq and nanopore sequencing to obtain a Completed genome for both isolates. MAIN RESULTS 2020CK-00441 belonged to ST23 type while 2021CK-00720 was a ST65 type isolate. Kleborate analyses predicted with high confidence both isolates were hvKp. Phylogenetic analyses showed the two strains are not closely related to each other nor to any known hvKp isolates reported. Both isolates had yersiniabactin, colibactin, aerobactin and salmochelin producing loci which likely confer these isolates hvKp phenotype. 2020CK-00441 and 2021CK-00720 had a unique pK2044 like plasmid. CONCLUSIONS HvKp strains capable of causing devastating metastatic septic infections have emerged in Texas. These isolates are unique compared to other hvKp strains globally. Country-wide surveillance and whole genome sequencing of these strains is essential to prevent a major public health emergency in the USA.
Collapse
Affiliation(s)
- Junaid M. Alam
- Internal Medicine, HCA Houston Healthcare, Kingwood, TX, United States of America
| | - Eric N. Riha
- Internal Medicine, HCA Houston Healthcare, Kingwood, TX, United States of America
| | - Haris Ahmed
- Internal Medicine, HCA Houston Healthcare, Kingwood, TX, United States of America
| | - Hong M. Thai
- Internal Medicine, HCA Houston Healthcare, Kingwood, TX, United States of America
| | - Kevin Garnepudi
- Infectious Disease, HCA Houston Healthcare, Kingwood, TX, United States of America
| | - Ramesh B. Kesavan
- Pulmonary and Critical Care Medicine, HCA Houston Healthcare Kingwood, Kingwood, TX, United States of America
- Pulmonary Critical Care and Sleep Specialists PA, Kingwood, TX, United States of America
| | - Gnananandh Jayaraman
- Pulmonary and Critical Care Medicine, HCA Houston Healthcare Kingwood, Kingwood, TX, United States of America
- Pulmonary Critical Care and Sleep Specialists PA, Kingwood, TX, United States of America
| | - Anna Sangster
- Utah Department of Health/ Utah Public Health Laboratory, Taylorsville, Utah, United States of America
| | - Dylan Curry
- Utah Department of Health/ Utah Public Health Laboratory, Taylorsville, Utah, United States of America
| | - Heidi A. Butz
- Utah Department of Health/ Utah Public Health Laboratory, Taylorsville, Utah, United States of America
| | - Lori Smith
- Utah Department of Health/ Utah Public Health Laboratory, Taylorsville, Utah, United States of America
| | - Maureen Vowles
- Utah Department of Health/ Utah Public Health Laboratory, Taylorsville, Utah, United States of America
| | - Kelly F. Oakeson
- Utah Department of Health/ Utah Public Health Laboratory, Taylorsville, Utah, United States of America
| | - Erin L. Young
- Utah Department of Health/ Utah Public Health Laboratory, Taylorsville, Utah, United States of America
| | - Siva T. Sarva
- Pulmonary and Critical Care Medicine, HCA Houston Healthcare Kingwood, Kingwood, TX, United States of America
- Pulmonary Critical Care and Sleep Specialists PA, Kingwood, TX, United States of America
| |
Collapse
|
2
|
Ghazal F, Farooq S, Wahab AT, Maharjan R, Zafar H, Siddiqui H, Shafi S, Choudhary MI. Identification of quinoline derivatives as growth inhibitors of MDR pathogen Klebsiella pneumoniae. Future Microbiol 2022; 17:843-859. [PMID: 35796056 DOI: 10.2217/fmb-2021-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: This study was aimed to identify compounds with significant inhibitory potential against multidrug-resistant (MDR), multidrug-sensitive, and clinical isolates of Klebsiella pneumoniae. Materials & methods: Antibacterial activity of the nitroquinoline derivatives was assessed by micro-plate Alamar Blue assay. Results: Nitroquinoline derivatives 9, 11 and 14 showed inhibitory activity against MDR K. pneumoniae. Docking studies of these compounds with topoisomerase IV of K. pneumonia indicated the interactions of these compounds at the active site residues of enzyme near to cofactor (Mg+2). Furthermore, compound 11 was identified as a reactive oxygen species (ROS) inducer. None of the compounds showed hemolytic effect. Conclusion: This study was designed to identify compounds active against MDR K. pneumoniae which causes infections, such as pneumonia and urinary tract infections.
Collapse
Affiliation(s)
- Farzeen Ghazal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Saba Farooq
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Atia-Tul Wahab
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rukesh Maharjan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Humaira Zafar
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hina Siddiqui
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sara Shafi
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M I Choudhary
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.,Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Kochan TJ, Nozick SH, Medernach RL, Cheung BH, Gatesy SWM, Lebrun-Corbin M, Mitra SD, Khalatyan N, Krapp F, Qi C, Ozer EA, Hauser AR. Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates. BMC Infect Dis 2022; 22:603. [PMID: 35799130 PMCID: PMC9263067 DOI: 10.1186/s12879-022-07558-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae strains have been divided into two major categories: classical K. pneumoniae, which are frequently multidrug-resistant and cause hospital-acquired infections in patients with impaired defenses, and hypervirulent K. pneumoniae, which cause severe community-acquired and disseminated infections in normal hosts. Both types of infections may lead to bacteremia and are associated with significant morbidity and mortality. The relative burden of these two types of K. pneumoniae among bloodstream isolates within the United States is not well understood. METHODS We evaluated consecutive K. pneumoniae isolates cultured from the blood of hospitalized patients at Northwestern Memorial Hospital (NMH) in Chicago, Illinois between April 2015 and April 2017. Bloodstream isolates underwent whole genome sequencing, and sequence types (STs), capsule loci (KLs), virulence genes, and antimicrobial resistance genes were identified in the genomes using the bioinformatic tools Kleborate and Kaptive. Patient demographic, comorbidity, and infection information, as well as the phenotypic antimicrobial resistance of the isolates were extracted from the electronic health record. Candidate hypervirulent isolates were tested in a murine model of pneumonia, and their plasmids were characterized using long-read sequencing. We also extracted STs, KLs, and virulence and antimicrobial resistance genes from the genomes of bloodstream isolates submitted from 33 United States institutions between 2007 and 2021 to the National Center for Biotechnology Information (NCBI) database. RESULTS Consecutive K. pneumoniae bloodstream isolates (n = 104, one per patient) from NMH consisted of 75 distinct STs and 51 unique capsule loci. The majority of these isolates (n = 58, 55.8%) were susceptible to all tested antibiotics except ampicillin, but 17 (16.3%) were multidrug-resistant. A total of 32 (30.8%) of these isolates were STs of known high-risk clones, including ST258 and ST45. In particular, 18 (17.3%) were resistant to ceftriaxone (of which 17 harbored extended-spectrum beta-lactamase genes) and 9 (8.7%) were resistant to meropenem (all of which harbored a carbapenemase genes). Four (3.8%) of the 104 isolates were hypervirulent K. pneumoniae, as evidenced by hypermucoviscous phenotypes, high levels of virulence in a murine model of pneumonia, and the presence of large plasmids similar to characterized hypervirulence plasmids. These isolates were cultured from patients who had not recently traveled to Asia. Two of these hypervirulent isolates belonged to the well characterized ST23 lineage and one to the re-emerging ST66 lineage. Of particular concern, two of these isolates contained plasmids with tra conjugation loci suggesting the potential for transmission. We also analyzed 963 publicly available genomes of K. pneumoniae bloodstream isolates from locations within the United States. Of these, 465 (48.3%) and 760 (78.9%) contained extended-spectrum beta-lactamase genes or carbapenemase genes, respectively, suggesting a bias towards submission of antibiotic-resistant isolates. The known multidrug-resistant high-risk clones ST258 and ST307 were the predominant sequence types. A total of 32 (3.3%) of these isolates contained aerobactin biosynthesis genes and 26 (2.7%) contained at least two genetic features of hvKP strains, suggesting elevated levels of virulence. We identified 6 (0.6%) isolates that were STs associated with hvKP: ST23 (n = 4), ST380 (n = 1), and ST65 (n = 1). CONCLUSIONS Examination of consecutive isolates from a single center demonstrated that multidrug-resistant high-risk clones are indeed common, but a small number of hypervirulent K. pneumoniae isolates were also observed in patients with no recent travel history to Asia, suggesting that these isolates are undergoing community spread in the United States. A larger collection of publicly available bloodstream isolate genomes also suggested that hypervirulent K. pneumoniae strains are present but rare in the USA; however, this collection appears to be heavily biased towards highly antibiotic-resistant isolates (and correspondingly away from hypervirulent isolates).
Collapse
Affiliation(s)
- Travis J Kochan
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Sophia H Nozick
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Rachel L Medernach
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Bettina H Cheung
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Samuel W M Gatesy
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Marine Lebrun-Corbin
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Sumitra D Mitra
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Natalia Khalatyan
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Fiorella Krapp
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Chao Qi
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Wareth G, Linde J, Hammer P, Pletz MW, Neubauer H, Sprague LD. WGS-Based Phenotyping and Molecular Characterization of the Resistome, Virulome and Plasmid Replicons in Klebsiella pneumoniae Isolates from Powdered Milk Produced in Germany. Microorganisms 2022; 10:microorganisms10030564. [PMID: 35336140 PMCID: PMC8956024 DOI: 10.3390/microorganisms10030564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
The emergence of Klebsiella pneumoniae (K. pneumoniae) in German healthcare is worrying. It is not well-investigated in the veterinary world and food chains. In the current study, antibiotic susceptibility profiles of 24 K. pneumoniae strains isolated from powdered milk samples produced in Germany were investigated by a microdilution test. Next-generation sequencing (NGS) was applied to identify genomic determinants for antimicrobial resistance (AMR), virulence-associated genes and plasmids replicons. All isolates were susceptible to the majority (14/18) of tested antibiotics. Resistance to colistin, fosfomycin, chloramphenicol and piperacillin was found. The ambler class A ß-lactamase, blaSHV variants were identified in all isolates, of which blaSHV-187 was most prevalent and found in 50% of isolates. Single-nucleotide-variants of oqxA and oqxB conferring resistance to phenicol/quinolone were found in all isolates, and the oqxB17 was the most prevalent found in 46% of isolates. 67% of isolates harbored fosA genes; however, only one was fosfomycin-resistant. Two isolates harbored genes conferring resistance to colistin, despite being susceptible. The majority of identified virulome genes were iron uptake siderophores. Two enterobactins (entB, fepC), six adherence-related genes belonging to E. coli common pilus (ECP) and one secretion system (ompA gene) were found in all isolates. In contrast, yersiniabactin was found in two isolates. One ST23 strain was susceptible to all tested antibiotics, and harbored determinants discriminatory for hypervirulent strains, e.g., aerobactin, salmochelin, yersiniabactin, enterobactin and regulator of mucoid phenotype A genes that are highly associated with hypervirulent K. pneumoniae. The IncF plasmid family was found in all strains, while almost half of the isolates harbored Col440I-type plasmids and nine isolates harbored various Inc-type plasmids. The presence of K. pneumoniae carrying different resistomes and major virulent specific virulomes in powdered milk samples is alarming. This could threaten public health, particularly of neonates and infants consuming dried milk.
Collapse
Affiliation(s)
- Gamal Wareth
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses (IBIZ), Naumburger Str. 96a, 07743 Jena, Germany; (J.L.); (H.N.); (L.D.S.)
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena University, 07743 Jena, Germany;
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
- Correspondence:
| | - Jörg Linde
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses (IBIZ), Naumburger Str. 96a, 07743 Jena, Germany; (J.L.); (H.N.); (L.D.S.)
| | - Philipp Hammer
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany;
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena University, 07743 Jena, Germany;
- Research Campus Infectognostics, Philosophenweg 7, 07743 Jena, Germany
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses (IBIZ), Naumburger Str. 96a, 07743 Jena, Germany; (J.L.); (H.N.); (L.D.S.)
| | - Lisa D. Sprague
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses (IBIZ), Naumburger Str. 96a, 07743 Jena, Germany; (J.L.); (H.N.); (L.D.S.)
| |
Collapse
|
5
|
A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. J Glob Antimicrob Resist 2021; 25:26-34. [PMID: 33667703 DOI: 10.1016/j.jgar.2021.02.020] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hypervirulence and carbapenem resistance have emerged as two distinct evolutionary directions for Klebsiella pneumoniae, which pose a great threat in clinical settings. Multiple virulence factors contribute to hypervirulence, and the mechanisms of carbapenem resistance are complicated. However, more and more K. pneumoniae strains have been identified in recent years integrating both phenotypes, resulting in devastating clinical outcomes. Hypervirulent and carbapenem-resistant K. pneumoniae (CR-hvKP) emerged in the early 2010s and thereafter have become increasingly prevalent. CR-hvKP are primarily prevalent in Asia, especially China, but are reported all over the world. Mechanisms for the emergence of CR-hvKP can be summarised by three patterns: (i) carbapenem-resistant K. pneumoniae (CRKP) acquiring a hypervirulent phenotype; (ii) hypervirulent K. pneumoniae (hvKP) acquiring a carbapenem-resistant phenotype; and (iii) K. pneumoniae acquiring both a carbapenem resistance and hypervirulence hybrid plasmid. With their global dissemination, continued surveillance of the emergence of CR-hvKP should be more highly prioritised.
Collapse
|