1
|
Hirano H, Takahashi N, Amanuma Y, Suzuki N, Takahari D, Kawakami T, Kudo-Saito C, Nagashima K, Boku N, Kato K, Shoji H. Phase II trial of nab-paclitaxel plus ramucirumab in combination with nivolumab for unresectable advanced or recurrent gastric cancer after progression on first-line treatment including fluoropyrimidine, platinum, and anti-PD-1/PD-L1 antibody (PADDLE). BMC Cancer 2025; 25:201. [PMID: 39905373 PMCID: PMC11795988 DOI: 10.1186/s12885-025-13591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Patients with advanced gastric cancer (AGC) have poor survival after first-line treatment containing an anti-programmed death-1/ligand 1 (PD-1/PD-L1) antibody. Accumulating evidence suggests rationales for continuing immunotherapy beyond progression, synergistic effects between immune checkpoint inhibitors and angiogenesis inhibitors, and a preferable combination of steroid-free chemotherapy with immunotherapy. These rationales imply that nanoparticle albumin-bound (nab)-paclitaxel plus ramucirumab in combination with nivolumab (anti-PD-1 antibody) may enhance anti-tumor effects as second-line treatment. Therefore, we hypothesized that this triplet regimen may improve clinical outcomes in patients with AGC who experienced disease progression on first-line treatment including anti-PD-1/PD-L1 antibody. METHODS The PADDLE trial, which is sponsored by Ono Pharmaceutical, is an investigator-initiated, multicenter, open-label, single-arm, prospective phase II trial conducted at six institutions in Japan. Key eligibility criteria are as follows: (1) advanced gastric or esophagogastric junction cancer, (2) histologically confirmed diagnosis of adenocarcinoma, (3) refractory to first-line treatment including fluoropyrimidines, platinum, and an anti-PD-1/PD-L1 antibody, (4) performance status of 0-1, and (5) at least one measurable lesion. Patients are to receive nab-paclitaxel (100 mg/m2 weekly, with a 1-week rest after 3 consecutive weeks), ramucirumab (8 mg/kg every 2 weeks), and nivolumab (240 mg/body every 2 weeks). The primary endpoint is 6-month progression-free survival (PFS) rate. The target number of patients was set at 45 based on threshold and expected 6-month PFS rates of 35% and 60%, respectively, with a one-sided alpha error of 0.05 and power of 0.95. Secondary endpoints include objective response rate, disease control rate, PFS, overall survival, duration of response, time to response, and safety. Biomarker analyses of serial blood and tumor samples are planned to clarify predictive markers and molecular mechanisms underlying treatment resistance by multifaceted analytical methods (e.g., flow cytometry, DNA sequencing [DNAseq]/RNA sequencing [RNAseq]). Recruitment started in November 2022. DISCUSSION The PADDLE trial is expected to clarify the efficacy of nab-paclitaxel plus ramucirumab in combination with nivolumab as second-line treatment in patients with AGC refractory to first-line treatment including an anti-PD-1/PD-L1 antibody and to identify potential biomarkers for predicting clinical responses in patients with AGC undergoing this triplet regimen. TRIAL REGISTRATION jRCT2031220448.
Collapse
Affiliation(s)
- Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoki Takahashi
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Yusuke Amanuma
- Department of Clinical Trial Promotion, Chiba Cancer Center, Chiba, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daisuke Takahari
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Kawakami
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Narikazu Boku
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Oncology and General Medicine, Institute of Medical Science, IMSUT Hospital, University of Tokyo, Tokyo, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
2
|
Hargrove-Wiley E, Obodo D, Bindeman W, Fingleton B. Elucidating Sex-Specific Immune Profiles in a Breast Cancer Model. Int J Mol Sci 2024; 25:13113. [PMID: 39684829 DOI: 10.3390/ijms252313113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer is commonly thought of as a "women's disease". However, men are increasingly diagnosed with the disease, and their mortality rates are disparately higher than those of female patients. The abundance and composition of the immune microenvironment are determinants of breast cancer progression and survival. It is well documented that there are sex-specific differences in the immune response to several diseases, including various cancers. However, the effects of these differences in the context of breast cancer remain to be explored. This study demonstrates sex differences in the hormonal and immune landscape of the MMTV-PyMT transgenic murine model of female and male ER+ breast cancer using single-cell RNA sequencing (scRNA-Seq), whole-slide immunohistochemistry, and flow cytometry. Mammary tumors of transgenic male mice had increased estrogen receptor alpha expression and enriched nuclear binding signatures compared to female tumors. In the tumor immune compartment, male mice had lower intratumoral leukocyte infiltration. Yet, scRNA-Seq analysis reveals a more immunostimulatory microenvironment and increased antitumor immune populations in the primary and metastatic lungs as compared to transgenic females. Despite a more favorable innate immune profile, the metastatic burden was increased in male mice. Our data support a sex-dependent immune response in mammary carcinoma associated with the tumor, and likely host, hormonal environment. With emerging therapeutics targeting the tumor immune microenvironment, characterizing immune profiles is critical for optimizing their use in all breast cancer patients.
Collapse
Affiliation(s)
- Ebony Hargrove-Wiley
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Dora Obodo
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wendy Bindeman
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Barbara Fingleton
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Shoji H, Kudo-Saito C, Nagashima K, Imazeki H, Tsugaru K, Takahashi N, Kawakami T, Amanuma Y, Wakatsuki T, Okano N, Narita Y, Yamamoto Y, Kizawa R, Muro K, Aoki K, Boku N. Myeloid subsets impede the efficacy of anti-PD1 therapy in patients with advanced gastric cancer (WJOG10417GTR study). J Immunother Cancer 2024; 12:e010174. [PMID: 39489543 PMCID: PMC11535716 DOI: 10.1136/jitc-2024-010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common and deadly malignant diseases worldwide. Despite revolutionary advances, the therapeutic efficacy of anti-PD1/PDL1 monoclonal antibodies in advanced GC is still low due to the emergence of innate and acquired resistance to treatment. Myeloid cells represent the majority of human immune cells. Therefore, their increase, decrease, and abnormality could have a significant impact on the patient's immune system and the progression of cancer, and reprogramming, inhibiting, and eliminating the tumor-supportive types may improve the immunological situation and efficacy of immunotherapy. However, the significance of myeloid cells in anti-PD1/PDL1 therapy remains unclear in GC. In the WJOG10417GTR study on GC, we sought to identify myeloid determinants that could predict anti-PD1 therapeutic efficacy and also serve as potential therapeutic targets. METHODS We collected tumor tissues and peripheral blood from 96 patients with advanced GC before and 1 month after anti-PD1 nivolumab monotherapy, and the isolated whole leucocytes were analyzed by flow cytometry for various immune cell populations, including many myeloid subsets. Then, the relationship between the cellular levels and progression-free survival (PFS) or overall survival (OS) was statistically analyzed. RESULTS We found that high levels of several myeloid subsets expressing molecules that have been targeted in drug discovery but not yet approved for clinical use were significantly associated with shorter PFS/OS as compared with low levels: PDL1+ and CTLA4+ myeloid subsets within tumors at baseline, PDL1+, B7H3+ and CD115+ myeloid subsets in peripheral blood at baseline, and LAG3+, CD155+ and CD115+ myeloid subsets in peripheral blood at post-treatment. CONCLUSIONS This study revealed that these myeloid subsets are significant risk factors in nivolumab therapy for advanced GC. Targeting them may be useful as diagnostic biomarkers to predict potential anti-PD1 therapeutic efficacy, and also as therapeutic targets for accelerating the development of new drugs to improve clinical outcomes in immunotherapy for GC.
Collapse
Affiliation(s)
- Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan, Tokyo, Japan
| | - Hiroshi Imazeki
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Kai Tsugaru
- Division of Gastroenterology and Hepatology, Keio University Hospital, Tokyo, Japan, Tokyo, Japan
| | - Naoki Takahashi
- Department of Gastroenterology, Saitama Cancer Center, Saitama, Japan
| | - Takeshi Kawakami
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yusuke Amanuma
- Clinical Trial Promotion Department, Chiba Cancer Center, Chiba, Japan
| | - Takeru Wakatsuki
- Department of Gastrointestinal Medical Oncology, Cancer Institute Hospital of JFCR, Tokyo, Japan
| | - Naohiro Okano
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yoshiyuki Yamamoto
- Department of Gastroenterology, University of Tsukuba Hospital, Tsukuba, Japan
| | - Rika Kizawa
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kazunori Aoki
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Medical Oncology and General Medicine, IMS Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Kudo-Saito C, Imazeki H, Ozawa H, Kawakubo H, Hirano H, Boku N, Kato K, Shoji H. Targeting SNCA in the treatment of malignant ascites in gastrointestinal cancer. Transl Oncol 2024; 48:102075. [PMID: 39098214 PMCID: PMC11345905 DOI: 10.1016/j.tranon.2024.102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
Peritoneal tumor dissemination and subsequent malignant tumor ascites (MTA) occur unexpectedly and repeatedly in patients with gastrointestinal (GI) cancers, and worsen quality of life and prognosis of the patients. Various treatments have been clinically developed for these patients, while most of the MTA cases are refractory to the treatments. Thus, effective treatments are urgently needed to improve the clinical outcomes. In this study, we identified α-synuclein (SNCA) as an immunological determinant of MTA progression in GI cancer through translational research using mouse tumor models and clinical specimens collected from gastric cancer patients. We found that the SNCA+ subsets were significantly increased in CD3+ T cells, CD56+ NK cells, and CD11b+ myeloid cells within MTA and peripheral blood cells (PBCs) of MTA cases, albeit almost absent in PBCs of healthy donors, and spleen of naive mice. Of note, the SNCA+ T-cell subset was rarely seen in patients that intraperitoneal lavage fluid without tumor cells was collected before surgery as a tumor-free control, suggesting a possible cancer-induced product, especially within the peritoneal cavity. In vivo treatment with anti-SNCA blocking mAb significantly induced anti-tumor effects in mouse MTA models, and synergistically improved anti-PD1 therapeutic efficacy, providing a significantly better prognosis. These suggest that SNCA is involved in severe immunosuppression in the MTA cases, and that blocking SNCA is effective in dramatically improving the immune status in the hosts. Targeting SNCA will be a promising strategy to improve clinical outcomes in the treatment of GI cancer patients, especially with MTA.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Imazeki
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hiroki Ozawa
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hidekazu Hirano
- Department of Medical Oncology and General Medicine, IMS Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; Department of Medical Oncology and General Medicine, IMS Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| |
Collapse
|
5
|
Wang Q, Zhang N, Liu L, Ma L, Tan Y, Liu X, Wu J, Chen G, Li X, Liang Y, Zhou F. Comprehensive analysis of clinical prognostic features and tumor microenvironment landscape of CD11b +CD64 + patients with acute myeloid leukemia. Cell Oncol (Dordr) 2023; 46:1253-1268. [PMID: 37071330 DOI: 10.1007/s13402-023-00808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Immunophenotyping surface molecules detected in the clinic are mainly applied in diagnostic confirmation and subtyping. However, the immunomodulatory molecules CD11b and CD64, are highly associated with leukemogenesis. Hence, the prognostic value of them and their potential biological functions merit further investigation. METHODS Flow cytometry was operated to detect immunophenotypic molecules from AML bone marrow samples. Multivariate cox regression, Kaplan-Meier analyses, and nomogram were conducted to predict survival. Transcriptomic data, lymphocyte subsets, and immunohistochemical staining were incorporated to identify potential biological functions of prognostic immunophenotype in acute myeloid leukemia (AML). RESULTS We classified 315 newly diagnosed AML patients of our center based on the expression of CD11b and CD64. The CD11b+CD64+ populations were identified as independent risk factors for overall survival and event-free survival of AML, exhibiting specific clinicopathological features. The predictive models based on CD11b+CD64+ showed high classification performance. In addition, the CD11b+CD64+ subset, characterized by high inhibitory immune checkpoints, M2-macrophage infiltration, low anti-tumor effector cells infiltration, as well as abnormal somatic mutation landscape, presented a distinctive tumor microenvironmental landscape. The CD11b+CD64+ population showd a higher expression of BCL2, and the drug sensitivity indicated that they presented a lower half-maximal inhibitory concentration value for BCL2 inhibitor, and could benefit more from the above medicine. CONCLUSIONS This work might be of benefit to enhanced understanding of CD11b+CD64+ in the prognosis and leukemogenesis, and yielded novel biomarkers to guide immunotherapy and targeted therapy for AML.
Collapse
Affiliation(s)
- Qian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Nan Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Li Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Yuxin Tan
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Jinxian Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Xinqi Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Yuxing Liang
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, No.169 Donghu Road, Wuhan, 430072, China.
| |
Collapse
|
6
|
Zhang Y, Ma S, Li T, Tian Y, Zhou H, Wang H, Huang L. ILC1-derived IFN-γ regulates macrophage activation in colon cancer. Biol Direct 2023; 18:56. [PMID: 37679802 PMCID: PMC10486120 DOI: 10.1186/s13062-023-00401-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are an important subset of innate immune cells in the tumor microenvironment, and they are pivotal regulators of tumor-promoting inflammation and tumor progression. Evidence has proven that TAM numbers are substantially increased in cancers, and most of these TAMs are polarized toward the alternatively activated M2 phenotype; Thus, these TAMs strongly promote the progression of cancer diseases. Type 1 innate lymphocytes (ILC1s) are present in high numbers in intestinal tissues and are characterized by the expression of the transcription factor T-bet and the secretion of interferon (IFN)-γ, which can promote macrophages to polarize toward the classically activated antitumor M1 phenotype. However, the relationship between these two cell subsets in colon cancer remains unclear. METHODS Flow cytometry was used to determine the percentages of M1-like macrophages, M2-like macrophages and ILC1s in colon cancer tissues and paracancerous healthy colon tissues in the AOM/DSS-induced mouse model of colon cancer. Furthermore, ILC1s were isolated and bone marrow-derived macrophages were generated to analyze the crosstalk that occurred between these cells when cocultured in vitro. Moreover, ILC1s were adoptively transferred or inhibited in vivo to explore the effects of ILC1s on tumor-infiltrating macrophages and tumor growth. RESULTS We found that the percentages of M1-like macrophages and ILC1s were decreased in colon cancer tissues, and these populations were positively correlated. ILC1s promoted the polarization of macrophages toward the classically activated M1-like phenotype in vitro, and this effect could be blocked by an anti-IFN-γ antibody. The in vivo results showed that the administration of the Group 1 innate lymphocyte-blocking anti-NK1.1 antibody decreased the number of M1-like macrophages in the tumor tissues of MC38 tumor-bearing mice and promoted tumor growth, and adoptive transfer of ILC1s inhibited tumors and increased the percentage of M1-like macrophages in MC38 tumor-bearing mice. CONCLUSIONS Our studies preliminarily prove for the first time that ILC1s promote the activation of M1-like macrophages by secreting IFN-γ and inhibit the progression of colon cancer, which may provide insight into immunotherapeutic approaches for colon cancer.
Collapse
Affiliation(s)
- Yandong Zhang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Shu Ma
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Tie Li
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yu Tian
- Department of Laboratory Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Huangao Zhou
- Department of emergency medicine, Jiangyin People's Hospital, Wuxi, China.
| | - Hongsheng Wang
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China.
| | - Lan Huang
- Department of Laboratory Medicine, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China.
| |
Collapse
|
7
|
Yang M, Yang C, Ma D, Li Z, Zhao W, Yang D. Single-cell analysis reveals cellular reprogramming in advanced colon cancer following FOLFOX-bevacizumab treatment. Front Oncol 2023; 13:1219642. [PMID: 37576892 PMCID: PMC10421721 DOI: 10.3389/fonc.2023.1219642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction The combination of FOLFOX and bevacizumab (FOLFOX-Bev) is a promising treatment for advanced colorectal cancer (CRC). However, the response of the tumor microenvironment to FOLFOX-Bev is still largely unexplored. Methods We conducted single-cell transcriptomic analysis of CRC samples derived from a patient before and after treatment to gain insights into the cellular changes associated with FOLFOX-Bev treatment. Results We found that cancer cells with high proliferative, metastatic, and pro-angiogenic properties respond better to FOLFOX-Bev treatment. Moreover, FOLFOX-Bev enhances CD8+ T cell cytotoxicity, thereby boosting the anti-tumor immune response. Conversely, FOLFOX-Bev impairs the functionality of tumor-associated macrophages, plasma cells, and cancer-associated fibroblasts, leading to a decrease in VEGFB-mediated angiogenesis. Furthermore, FOLFOX-Bev treatment reset intercellular communication, which could potentially affect the function of non-cancer cells. Discussion Our findings provide valuable insights into the molecular mechanisms underlying the response of advanced CRC to FOLFOX-Bev treatment and highlight potential targets for improving the efficacy of this treatment strategy.
Collapse
Affiliation(s)
- Meiling Yang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ciqiu Yang
- Department of Breast Cancer, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dong Ma
- Medical Oncology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zijun Li
- Guangdong Provincial Institute of Geriatrics, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Wei Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Dongyang Yang
- Medical Oncology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Kumar V, Bauer C, Stewart JH. TIME Is Ticking for Cervical Cancer. BIOLOGY 2023; 12:941. [PMID: 37508372 PMCID: PMC10376148 DOI: 10.3390/biology12070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Cervical cancer (CC) is a major health problem among reproductive-age females and comprises a leading cause of cancer-related deaths. Human papillomavirus (HPV) is the major risk factor associated with CC incidence. However, lifestyle is also a critical factor in CC pathogenesis. Despite HPV vaccination introduction, the incidence of CC is increasing worldwide. Therefore, it becomes critical to understand the CC tumor immune microenvironment (TIME) to develop immune cell-based vaccination and immunotherapeutic approaches. The current article discusses the immune environment in the normal cervix of adult females and its role in HPV infection. The subsequent sections discuss the alteration of different immune cells comprising CC TIME and their targeting as future therapeutic approaches.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
- Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| |
Collapse
|
9
|
Yao S, Zhao L, Chen S, Wang H, Gao Y, Shao NY, Dai M, Cai H. Cervical cancer immune infiltration microenvironment identification, construction of immune scores, assisting patient prognosis and immunotherapy. Front Immunol 2023; 14:1135657. [PMID: 36969161 PMCID: PMC10037308 DOI: 10.3389/fimmu.2023.1135657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundThe immune microenvironment is of great significance in cervical cancer. However, there is still a lack of systematic research on the immune infiltration environment of cervical cancer.MethodsWe obtained cervical cancer transcriptome data and clinical information from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, evaluated the immune microenvironment of cervical cancer, determined immune subsets, constructed an immune cell infiltration scoring system, screened key immune-related genes, and performed single-cell data analysis and cell function analysis of key genes.ResultsWe combined the TCGA and GEO data sets and obtained three different immune cell populations. We obtained two gene clusters, extracted 119 differential genes, and established an immune cell infiltration (ICI) scoring system. Finally, three key genes, IL1B, CST7, and ITGA5, were identified, and single-cell sequencing data were mined to distribute these key genes in different cell types. By up-regulating CST7 and down-regulating IL1B and ITGA5, cervical cancer cells’ proliferation ability and invasion ability were successfully reduced.ConclusionWe conducted a comprehensive assessment of the state of the tumor immune microenvironment in cervical cancer, constructed the ICI scoring system, and identified the ICI scoring system as a potential indicator of susceptibility to immunotherapy for cervical cancer, identifying key genes suggesting that IL1B, CST7, and ITGA5 play an essential role in cervical cancer.
Collapse
Affiliation(s)
- Shijie Yao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Liyang Zhao
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, Macau SAR, China
- Ministry of Education (MoE) Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, Macau SAR, China
| | - Siming Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Ning-Yi Shao
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, Macau SAR, China
- Ministry of Education (MoE) Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, Macau SAR, China
- *Correspondence: Hongbing Cai, ; Mengyuan Dai, ; Ning-Yi Shao,
| | - Mengyuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- *Correspondence: Hongbing Cai, ; Mengyuan Dai, ; Ning-Yi Shao,
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- *Correspondence: Hongbing Cai, ; Mengyuan Dai, ; Ning-Yi Shao,
| |
Collapse
|
10
|
Chen Z, Mei K, Xiao Y, Xiong Y, Long W, Wang Q, Zhong J, Di D, Ge Y, Luo Y, Li Z, Huang Y, Gu R, Wang B. Prognostic Assessment of Oxidative Stress-Related Genes in Colorectal Cancer and New Insights into Tumor Immunity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2518340. [PMID: 36299603 PMCID: PMC9590115 DOI: 10.1155/2022/2518340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
Oxidative stress is crucial to the biology of tumors. Oxidative stress' potential predictive significance in colorectal cancer (CRC) has not been studied; nevertheless here, we developed a forecasting model based on oxidative stress to forecast the result of CRC survival and enhance clinical judgment. The training set was chosen from the transcriptomes of 177 CRC patients in GSE17536. For validation, 65 samples of colon cancer from GSE29621 were utilized. For the purpose of choosing prognostic genes, the expression of oxidative stress-related genes (OXEGs) was found. Prognostic risk models were built using multivariate Cox regression analysis, univariate Cox regression analysis, and LASSO regression analysis. The outcomes of the western blot and transcriptome sequencing tests were finally confirmed. ATF4, CARS2, CRP, GPX1, IL1B, MAPK8, MRPL44, MTFMT, NOS1, OSGIN2, SOD2, AARS2, and FOXO3 were among the 14 OXEGs used to build prognostic characteristics. Patients with CRC were categorized into low-risk and high-risk groups according on their median risk scores. Cox regression analysis using single and multiple variables revealed that OXEG-related signals were independent risk factors for CRC. Additionally, the validation outcomes from western blotting and transcriptome sequencing demonstrated that OXEGs were differently expressed. Using 14 OXEGs, our work creates a predictive signature that may be applied to the creation of new prognostic models and the identification of possible medication candidates for the treatment of CRC.
Collapse
Affiliation(s)
- Zilu Chen
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Kun Mei
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yao Xiao
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Xiong
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Long
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qin Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiang Zhong
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Dongmei Di
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yunxi Ge
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Yi Luo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
- Department of Oncology, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, Jiangsu 210028, China
| | - Ziyun Li
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Huang
- Department of Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Renjun Gu
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
11
|
Kudo-Saito C, Boku N, Hirano H, Shoji H. Targeting myeloid villains in the treatment with immune checkpoint inhibitors in gastrointestinal cancer. Front Immunol 2022; 13:1009701. [PMID: 36211375 PMCID: PMC9539086 DOI: 10.3389/fimmu.2022.1009701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the clinical outcomes being extremely limited, blocking immune inhibitory checkpoint pathways has been in the spotlight as a promising strategy for treating gastrointestinal cancer. However, a distinct strategy for the successful treatment is obviously needed in the clinical settings. Myeloid cells, such as neutrophils, macrophages, dendritic cells, and mast cells, are the majority of cellular components in the human immune system, but have received relatively less attention for the practical implementation than T cells and NK cells in cancer therapy because of concentration of the interest in development of the immune checkpoint blocking antibody inhibitors (ICIs). Abnormality of myeloid cells must impact on the entire host, including immune responses, stromagenesis, and cancer cells, leading to refractory cancer. This implies that elimination and reprogramming of the tumor-supportive myeloid villains may be a breakthrough to efficiently induce potent anti-tumor immunity in cancer patients. In this review, we provide an overview of current situation of the IC-blocking therapy of gastrointestinal cancer, including gastric, colorectal, and esophageal cancers. Also, we highlight the possible oncoimmunological components involved in the mechanisms underlying the resistance to the ICI therapy, particularly focusing on myeloid cells, including unique subsets expressing IC molecules. A deeper understanding of the molecular and cellular determinants may facilitate its practical implementation of targeting myeloid villains, and improve the clinical outcomes in the ICI therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
- *Correspondence: Chie Kudo-Saito,
| | - Narikazu Boku
- Department of Oncology and General Medicine, Institute of Medical Science Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
12
|
MTFR2 shapes a barrier of immune microenvironment in hepatocellular carcinoma. iScience 2022; 26:105095. [PMID: 36713263 PMCID: PMC9881049 DOI: 10.1016/j.isci.2022.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/31/2022] [Accepted: 09/04/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death in the world. Mitochondrial fission regulator 2 (MTFR2) is involved in the development of various cancers. However, the roles of MTFR2 in HCC remain unknown. In this study, we conducted a comprehensive analysis of MTFR2 in HCC, which was generated from integrative MTFR2 analyses of eight HCC cell lines, and three datasets (public dataset, real-world dataset, and immunotherapy dataset) derived from bulk HCC tissues, survival, and immunotherapy data. We demonstrated that the expression level of MTFR2 is upregulated in HCC, leading to poor prognosis. MTFR2 is positively correlated with the level of immune cell infiltration, multiple immune checkpoints and immunotherapy response prediction pathways, and acts as an important role in cancer-immunity cycle. In conclusion, our work indicates that MTFR2 can shape a barrier of immune microenvironment and result in poor prognosis in hepatocellular carcinoma, but the immune barrier may be broken by immunotherapy.
Collapse
|
13
|
Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory Properties of Immune Checkpoint Inhibitors-More than Boosting T-Cell Responses? Cancers (Basel) 2022; 14:1710. [PMID: 35406483 PMCID: PMC8996886 DOI: 10.3390/cancers14071710] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICI) that serve to enhance effector T-cell anti-tumor responses has strongly improved success rates in the treatment of metastatic melanoma and other tumor types. The currently approved ICI constitute monoclonal antibodies blocking cytotoxic T-lymphocyte-associated protein (CTLA)-4 and anti-programmed cell death (PD)-1. By this, the T-cell-inhibitory CTLA-4/CD80/86 and PD-1/PD-1L/2L signaling axes are inhibited. This leads to sustained effector T-cell activity and circumvents the immune evasion of tumor cells, which frequently upregulate PD-L1 expression and modulate immune checkpoint molecule expression on leukocytes. As a result, profound clinical responses are observed in 40-60% of metastatic melanoma patients. Despite the pivotal role of T effector cells for triggering anti-tumor immunity, mounting evidence indicates that ICI efficacy may also be attributable to other cell types than T effector cells. In particular, emerging research has shown that ICI also impacts innate immune cells, such as myeloid cells, natural killer cells and innate lymphoid cells, which may amplify tumoricidal functions beyond triggering T effector cells, and thus improves clinical efficacy. Effects of ICI on non-T cells may additionally explain, in part, the character and extent of adverse effects associated with treatment. Deeper knowledge of these effects is required to further develop ICI treatment in terms of responsiveness of patients to treatment, to overcome resistance to ICI and to alleviate adverse effects. In this review we give an overview into the currently known immunomodulatory effects of ICI treatment in immune cell types other than the T cell compartment.
Collapse
Affiliation(s)
| | | | | | | | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany; (M.K.); (M.H.); (T.J.); (S.G.)
| |
Collapse
|
14
|
Zhou S, Fan C, Zeng Z, Young KH, Li Y. Clinical and Immunological Effects of p53-Targeting Vaccines. Front Cell Dev Biol 2021; 9:762796. [PMID: 34805170 PMCID: PMC8595300 DOI: 10.3389/fcell.2021.762796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy, including immune checkpoint blockade and chimeric antigen receptor T cells, is one of the most promising approaches to treat cancer. Vaccines have been effective in preventing cancers like liver cancer and cervical cancer with a viral etiology. Instead of preventing disease, therapeutic cancer vaccines mobilize the immune system to attack existing cancer. p53 is dysregulated in the majority of human cancers and is a highly promising target for cancer vaccines. Over twenty clinical trials have targeted p53 in malignant diseases using vaccines. In this work, we review the progress of vaccinations with p53 or its peptides as the antigens and summarize the clinical and immunological effects of p53-targeting vaccines from clinical trials. The delivery platforms include p53 peptides, viral vectors, and dendritic cells pulsed with short peptides or transduced by p53-encoding viruses. These studies shed light on the feasibility, safety, and clinical benefit of p53 vaccination in select groups of patients, implicating that p53-targeting vaccines warrant further investigations in experimental animals and human studies.
Collapse
Affiliation(s)
- Shan Zhou
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Chunmei Fan
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
| | - Ken H. Young
- Hematopathology Division, Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Yong Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
15
|
Wei R, Li S, Yu G, Guan X, Liu H, Quan J, Jiang Z, Wang X. Deciphering the Pyroptosis-Related Prognostic Signature and Immune Cell Infiltration Characteristics of Colon Cancer. Front Genet 2021; 12:755384. [PMID: 34712271 PMCID: PMC8546261 DOI: 10.3389/fgene.2021.755384] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Colon cancer (CC) remains one of the most common malignancies with a poor prognosis. Pyroptosis, referred to as cellular inflammatory necrosis, is thought to influence tumor development. However, the potential effects of pyroptosis-related regulators (PRRs) on the CC immune microenvironment remain unknown. Methods: In this study, 27 PRRs reported in the previous study were used to cluster the 1,334 CC samples into three pyroptosis-related molecular patterns. Through subtype pattern differential analysis and structure network mining using Weighted Gene Co-expression Network Analysis (WGCNA), 854 signature genes associated with the PRRs were discovered. Further LASSO-penalized Cox regression of these genes established an eight-gene assessment model for predicting prognosis. Results: The CC patients were subtyped based on three distinct pyroptosis-related molecular patterns. These pyroptosis-related patterns were correlated with different clinical outcomes and immune cell infiltration characteristics in the tumor microenvironment. The pyroptosis-related eight-signature model was established and used to assess the prognosis of CC patients with medium-to-high accuracy by employing the risk scores, which was named “PRM-scores.” Greater inflammatory cell infiltration was observed in tumors with low PRM-scores, indicating a potential benefit of immunotherapy in these patients. Conclusions: This study suggests that PRRs have a significant effect on the tumor immune microenvironment and tumor development. Evaluating the pyroptosis-related patterns and related models will promote our understanding of immune cell infiltration characteristics in the tumor microenvironment and provide a theoretical basis for future research targeting pyroptosis in cancer.
Collapse
Affiliation(s)
- Ran Wei
- Department of Colorectal Cancer Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuofeng Li
- Department of Colorectal Cancer Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanhua Yu
- Department of Colorectal Cancer Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Guan
- Department of Colorectal Cancer Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengchang Liu
- Department of Colorectal Cancer Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jichuan Quan
- Department of Colorectal Cancer Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Jiang
- Department of Colorectal Cancer Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xishan Wang
- Department of Colorectal Cancer Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|