1
|
Zhang Y, Yang Z, Zhang Z, Wang G, Li XD, Hong N. Citrus tristeza virus p20 suppresses antiviral RNA silencing by co-opting autophagy-related protein 8 to mediate the autophagic degradation of SGS3. PLoS Pathog 2025; 21:e1012960. [PMID: 39993018 DOI: 10.1371/journal.ppat.1012960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Viruses exploit autophagy to degrade host immune components for their successful infection. However, how viral factors sequester the autophagic substrates into autophagosomes remains largely unknown. In this study, we showed that p20 protein, a viral suppressor of RNA silencing (VSR) encoded by citrus tristeza virus (CTV), mediated autophagic degradation of SUPPRESSOR OF GENE SILENCING 3 (SGS3), a plant-specific RNA-binding protein that is pivotal in antiviral RNA silencing. CTV infection activated autophagy, and the overexpression of p20 was sufficient to induce autophagy. Silencing of autophagy-related genes NbATG5 and NbATG7 attenuated CTV infection in Nicotiana benthamiana plants. In contrast, knockdown of the autophagy negative-regulated genes NbGAPCs led to virus accumulation, indicating the proviral role of autophagy in CTV infection. Further investigation found that p20 interacted with autophagy-related protein ATG8 through two ATG8-interacting motifs (AIMs) and sequestered SGS3 into autophagosomes by forming the ATG8-p20-SGS3 ternary complex. The mutations of the two AIMs in p20 (p20mAIM1 and p20mAIM5) abolished the interaction of p20 with ATG8, resulting in the deficiency of autophagy induction, SGS3 degradation, and VSR activity. Consistently, N. benthamiana plants infected with mutated CTVmAIM1 and CTVmAIM5 showed milder symptoms and decreased viral accumulation. Taken together, this study uncovers the molecular mechanism underlying how a VSR mediates the interplay between RNA silencing and autophagy to enhance the infection of a closterovirus.
Collapse
Affiliation(s)
- Yongle Zhang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Huazhong Agricultural University, Wuhan, China
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhe Zhang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Huazhong Agricultural University, Wuhan, China
| | - Xiang-Dong Li
- Department of Plant Pathology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, China
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Ji'nan, Shandong, China
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crop, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Chen Q, Yan F, Liu J, Xie Z, Jiang J, Liang J, Chen J, Wang H, Liu J. Citrus transcription factor CsERF1 is involved in the response to citrus tristeza disease. FRONTIERS IN PLANT SCIENCE 2025; 15:1528348. [PMID: 39877743 PMCID: PMC11772405 DOI: 10.3389/fpls.2024.1528348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
Introduction Citrus tristeza virus (CTV) is a threat to the citrus production and causes severe economic losses to the citrus industry. Ethylene response factors (ERFs) play important roles in plant growth and stress responses. Although ERF genes have been widely studied in model plants, little is known about their role in biological stress responses in fruit trees, such as citrus. CsERF1 belongs to the citrus AP2/ERF transcription factor family. Methods To determine the role of CsERF1 on CTV resistance in citrus and the effects of the exongenous hormone application on CsERF1 in citrus, the expression of related genes was quantitatively analyzed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) in this study. Results The expression profile showed that the expression level of CsERF1 in roots was significantly lower under CTV infection than in healthy plants, while the expression level in stems was significantly increased. CsERF1 responded to exogenous salicylic acid (SA) and methyl jasmonate (MeJA) treatments. The CTV titer in RNAi-CsERF1 transgenic sweet orange plants significantly increased. Furthermore, CsERF1-overexpressing and RNAi-CsERF1 transgenic sweet orange plants exhibited differential expression of genes involved in jasmonic acid (JA) and SA signaling. Discussion These results suggest that CsERF1 mediates CTV resistance by regulating the JA and SA signaling pathways. The results of this study provide new clues as to the citrus defence response against CTV. It is of great significance to create citrus germplasm resources resistant to recession disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinxiang Liu
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University/Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Ferreira Sa Antunes T, Huguet-Tapia JC, Elena SF, Folimonova SY. Intra-Host Citrus Tristeza Virus Populations during Prolonged Infection Initiated by a Well-Defined Sequence Variant in Nicotiana benthamiana. Viruses 2024; 16:1385. [PMID: 39339861 PMCID: PMC11437405 DOI: 10.3390/v16091385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Due to the error-prone nature of viral RNA-dependent RNA polymerases, the replication of RNA viruses results in a diversity of viral genomes harboring point mutations, deletions, insertions, and genome rearrangements. Citrus tristeza virus (CTV), a causal agent of diseases of economically important citrus species, shows intrinsic genetic stability. While the virus appears to have some mechanism that limits the accumulation of single-nucleotide variants, the production of defective viral genomes (DVGs) during virus infection has been reported for certain variants of CTV. The intra-host diversity generated during plant infection with variant T36 (CTV-T36) remains unclear. To address this, we analyzed the RNA species accumulated in the initially infected and systemic leaves of Nicotiana benthamiana plants inoculated with an infectious cDNA clone of CTV-T36, which warranted that infection was initiated by a known, well-defined sequence variant of the virus. CTV-T36 limited the accumulation of single-nucleotide mutants during infection. With that, four types of DVGs-deletions, insertions, and copy- and snap-backs-were found in all the samples, with deletions and insertions being the most common types. Hot-spots across the genome for DVG recombination and short direct sequence repeats suggest that sequence complementarity could mediate DVG formation. In conclusion, our study illustrates the formation of diverse DVGs during CTV-T36 infection. To the best of our knowledge, this is the first study that has analyzed the genetic variability and recombination of a well-defined sequence variant of CTV in an herbaceous host.
Collapse
Affiliation(s)
| | - José C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (T.F.S.A.); (J.C.H.-T.)
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, 46980 Valencia, Spain;
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; (T.F.S.A.); (J.C.H.-T.)
| |
Collapse
|
4
|
Shang P, Xu L, Cheng T. Serological and Molecular Detection of Citrus Tristeza Virus: A Review. Microorganisms 2024; 12:1539. [PMID: 39203383 PMCID: PMC11356770 DOI: 10.3390/microorganisms12081539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 09/03/2024] Open
Abstract
Citrus tristeza virus (CTV) is a globally pervasive and economically significant virus that negatively impacts citrus trees, leading to substantial reductions in fruit yield. CTV occurs within the phloem of infected plants, causing a range of disease phenotypes, such as stem pitting (SP), quick decline (QD), and other detrimental diseases. Research on CTV is challenging due to the large size of its RNA genome and the diversity of CTV populations. Comparative genomic analyses have uncovered genetic diversity in multiple regions of CTV isolates' genomes, facilitating the classification of the virus into distinct genotypes. Despite these challenges, notable advancements have been made in identifying and controlling CTV strains through serological and molecular methods. The following review concentrates on the techniques of nucleic acid identification and serological analysis for various CTV isolates, assisting in the comparison and evaluation of various detection methods, which are crucial for the effective management of CTV diseases, and so contributes to the innovation and development of CTV detection methods.
Collapse
Affiliation(s)
- Pengxiang Shang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China;
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Longfa Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China;
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Tong Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China;
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Cao X, Gao B, Lu J, Wang H, Zhao R, Huang X. Areca palm velarivirus 1 infection caused disassembly of chloroplast and reduction of photosynthesis in areca palm. Front Microbiol 2024; 15:1424489. [PMID: 38939190 PMCID: PMC11208678 DOI: 10.3389/fmicb.2024.1424489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
The expansion of betel palm cultivation is driven by rising demand for betel nut, yet this growth is accompanied by challenges such as decreased agricultural biodiversity and the spread of infectious pathogens. Among these, Yellow Leaf Disease (YLD) emerges as a prominent threat to betel palm plantation. Areca Palm Velarivirus 1 (APV1) has been identified as a primary causative agent of YLD, precipitating leaf yellowing, stunted growth, and diminished yield. However, the precise mechanisms underlying APV1-induced damage remain elusive. Our study elucidates that APV1 infiltrates chloroplasts, instigating severe damage and consequential reductions in chlorophyll a/b and carotene levels, alongside notable declines in photosynthetic efficiency. Moreover, APV1 infection exerts broad regulatory effects on gene expression, particularly suppressing key genes implicated in chloroplast function and photosynthesis. These disruptions correlate with growth retardation, yield diminishment, and compromised nut quality. Intriguingly, the paradoxical destruction of the host's photosynthetic machinery by APV1 prompts inquiry into its evolutionary rationale, given the virus's dependence on host resources for replication and proliferation. Our findings reveal that APV1-induced leaf yellowing acts as a beacon for transmission vectors, hinting at a nuanced "host-pathogen-vector co-evolutionary" dynamic.
Collapse
Affiliation(s)
| | | | | | | | - Ruibai Zhao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou, Hainan, China
| | - Xi Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou, Hainan, China
| |
Collapse
|
6
|
Zindović J, Čizmović M, Vučurović A, Margaria P, Škorić D. Increased Diversity of Citrus Tristeza Virus in Europe. PLANT DISEASE 2024; 108:1344-1352. [PMID: 37990525 DOI: 10.1094/pdis-09-23-1718-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
This study investigated the genetic diversity of Citrus tristeza virus (CTV) isolates from Montenegro and Croatia, European countries with the northernmost citrus-growing regions situated on the Eastern Adriatic coast. Fifteen complete or nearly complete CTV genomes were reconstructed by high-throughput sequencing of samples collected in distinct municipalities in Montenegro and Opuzen municipality in Croatia. Phylogenetic analyses assigned some of the sequences to VT and T30 strains, previously recorded in Europe, while remarkably other isolates were placed in S1 and RB groups, which have not been reported in Europe so far. In addition, a new phylogenetic lineage comprising only isolates from Montenegro was delineated and tentatively proposed as the MNE cluster. Recombination analysis revealed evidence of 11 recombination events in the sequences obtained in this study, between isolates of related strains, within isolates of the same strain, and between distant strains. These findings show that CTV diversity in Europe is higher than reported before and calls for the reevaluation of management strategies.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jelena Zindović
- Department for Plant Protection, Biotechnical Faculty, University of Montenegro, 81000 Podgorica, Montenegro
| | - Miroslav Čizmović
- Department for Plant Protection, Biotechnical Faculty, University of Montenegro, 81000 Podgorica, Montenegro
| | - Ana Vučurović
- Department of Biotechnology and Systems Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Paolo Margaria
- Plant Virus Department, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| | - Dijana Škorić
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Scholthof HB, Scholthof KBG. Plant virology: an RNA treasure trove. TRENDS IN PLANT SCIENCE 2023; 28:1277-1289. [PMID: 37495453 DOI: 10.1016/j.tplants.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Key principles pertaining to RNA biology not infrequently have their origins in plant virology. Examples have arisen from studies on viral RNA-intrinsic properties and the infection process from gene expression, replication, movement, and defense evasion to biotechnological applications. Since RNA is at the core of the central dogma in molecular biology, how plant virology assisted in the reinforcement or adaptations of this concept, while at other instances shook up elements of the doctrine, is discussed. Moreover, despite the negative effects of viral diseases in agriculture worldwide, plant viruses can be considered a scientific treasure trove. Today they remain tools of discovery for biotechnology, studying evolution, cell biology, and host-microbe interactions.
Collapse
Affiliation(s)
- Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station TX 77843, USA.
| | - Karen-Beth G Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station TX 77843, USA
| |
Collapse
|
8
|
Licciardello G, Scuderi G, Russo M, Bazzano M, Bar-Joseph M, Catara AF. Minor Variants of Orf1a, p33, and p23 Genes of VT Strain Citrus Tristeza Virus Isolates Show Symptomless Reactions on Sour Orange and Prevent Superinfection of Severe VT Isolates. Viruses 2023; 15:2037. [PMID: 37896814 PMCID: PMC10612028 DOI: 10.3390/v15102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
The control of tristeza quick decline (QD) of citrus is based on the use of rootstocks that are tolerant or resistant to the Citrus tristeza virus (CTV), but some of them show bio-agronomic limits. The application of cross-protection (CP) has been insufficiently explored. The present study examined the possibility of QD control by cross-protection (CP) following reports showing the dependence of the CP strategy on the close genetic relationships between the protective and challenging CTV isolates. Taking advantage of deep sequencing technologies, we located six naturally infected trees harboring no-seedling yellow (no-SY) and no QD decline (mild) VT isolates and used these for challenge inoculation with three QD VT isolates. Symptom monitoring showed that all six Sicilian mild no-SY isolates, based on their genomic relatedness and mild symptoms reactions, provide effective protection against the three severe local VT isolates. The differences between the six mild and three severe isolates were confined to just a few nucleotide variations conserved in eight positions of three CTV genes (p23, p33, and Orf1a). These results confirm that the superinfection exclusion (SIE mechanism) depends on close genetic relatedness between the protective and challenging severe VT strain isolates. Ten years of investigation suggest that CP could turn into an efficient strategy to contain CTV QD infections of sweet orange trees on SO rootstock.
Collapse
Affiliation(s)
- Grazia Licciardello
- CREA—Council for Agricultural Research and Economics, Research Centre for Olive, Citrus and Tree Fruit, 95024 Acireale, Italy
| | - Giuseppe Scuderi
- Agrobiotech Soc. Coop. z.i. Blocco Palma I, Stradale Lancia 57, 95121 Catania, Italy; (G.S.); (M.R.); (M.B.)
| | - Marcella Russo
- Agrobiotech Soc. Coop. z.i. Blocco Palma I, Stradale Lancia 57, 95121 Catania, Italy; (G.S.); (M.R.); (M.B.)
| | - Marina Bazzano
- Agrobiotech Soc. Coop. z.i. Blocco Palma I, Stradale Lancia 57, 95121 Catania, Italy; (G.S.); (M.R.); (M.B.)
| | - Moshe Bar-Joseph
- The S. Tolkowsky Laboratory, Department of Plant Pathology, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel;
| | - Antonino F. Catara
- Formerly, Department of Phytosanitary Science and Technologies, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
9
|
Dandlen SA, Da Silva JP, Miguel MG, Duarte A, Power DM, Marques NT. Quick Decline and Stem Pitting Citrus tristeza virus Isolates Induce a Distinct Metabolomic Profile and Antioxidant Enzyme Activity in the Phloem Sap of Two Citrus Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:1394. [PMID: 36987082 PMCID: PMC10051153 DOI: 10.3390/plants12061394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Susceptibility to the severe Citrus tristeza virus (CTV), T36, is higher for Citrus macrophylla (CM) than for C. aurantium (CA). How host-virus interactions are reflected in host physiology is largely unknown. In this study, the profile of metabolites and the antioxidant activity in the phloem sap of healthy and infected CA and CM plants were evaluated. The phloem sap of quick decline (T36) and stem pitting (T318A) infected citrus, and control plants was collected by centrifugation, and the enzymes and metabolites analyzed. The activity of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), in infected plants increased significantly in CM and decreased in CA, compared to the healthy controls. Using LC-HRMS2 a metabolic profile rich in secondary metabolites was assigned to healthy CA, compared to healthy CM. CTV infection of CA caused a drastic reduction in secondary metabolites, but not in CM. In conclusion, CA and CM have a different response to severe CTV isolates and we propose that the low susceptibility of CA to T36 may be related to the interaction of the virus with the host's metabolism, which reduces significantly the synthesis of flavonoids and antioxidant enzyme activity.
Collapse
Affiliation(s)
- Susana A. Dandlen
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José P. Da Silva
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Maria Graça Miguel
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Amílcar Duarte
- MED—Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M. Power
- Centre of Marine Sciences (CCMAR/CIMAR LA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Natália Tomás Marques
- CEOT—Centro de Eletrónica, Optoeletrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Edif. 8, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
10
|
Aknadibossian V, Huguet-Tapia JC, Golyaev V, Pooggin MM, Folimonova SY. Transcriptomic alterations in the sweet orange vasculature correlate with growth repression induced by a variant of citrus tristeza virus. Front Microbiol 2023; 14:1162613. [PMID: 37138615 PMCID: PMC10150063 DOI: 10.3389/fmicb.2023.1162613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Citrus tristeza virus (CTV, family Closteroviridae) is an economically important pathogen of citrus. CTV resides in the phloem of the infected plants and induces a range of disease phenotypes, including stem pitting and quick decline as well as a number of other deleterious syndromes. To uncover the biological processes underlying the poorly understood damaging symptoms of CTV, we profiled the transcriptome of sweet orange (Citrus sinensis) phloem-rich bark tissues of non-infected, mock-inoculated trees and trees singly infected with two distinct variants of CTV, T36 or T68-1. The T36 and T68-1 variants accumulated in the infected plants at similar titers. With that, young trees infected with T68-1 were markedly repressed in growth, while the growth rate of the trees infected with T36 was comparable to the mock-inoculated trees. Only a small number of differentially expressed genes (DEGs) were identified in the nearly asymptomatic T36-infected trees, whereas almost fourfold the number of DEGs were identified with the growth-restricting T68-1 infection. DEGs were validated using quantitative reverse transcription-PCR. While T36 did not induce many noteworthy changes, T68-1 altered the expression of numerous host mRNAs encoding proteins within significant biological pathways, including immunity and stress response proteins, papain-like cysteine proteases (PLCPs), cell-wall modifying enzymes, vascular development proteins and others. The transcriptomic alterations in the T68-1-infected trees, in particular, the strong and persistent increase in the expression levels of PLCPs, appear to contribute to the observed stem growth repression. On the other hand, analysis of the viral small interfering RNAs revealed that the host RNA silencing-based response to the infection by T36 and that by T68-1 was comparable, and thus, the induction of this antiviral mechanism may not contribute to the difference in the observed symptoms. The DEGs identified in this study promote our understanding of the underlying mechanisms of the yet unexplained growth repression induced by severe CTV isolates in sweet orange trees.
Collapse
Affiliation(s)
- Vicken Aknadibossian
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jose C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Victor Golyaev
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- *Correspondence: Svetlana Y. Folimonova,
| |
Collapse
|
11
|
Killiny N, Jones SE, Gonzalez-Blanco P. Silencing of δ-aminolevulinic acid dehydratase via virus induced gene silencing promotes callose deposition in plant phloem. PLANT SIGNALING & BEHAVIOR 2022; 17:2024733. [PMID: 34994280 PMCID: PMC9176224 DOI: 10.1080/15592324.2021.2024733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 05/27/2023]
Abstract
The δ-aminolevulinic acid dehydratase (ALAD) enzyme is an intermediate in the biosynthetic pathway of tetrapyrroles. It combines two δ-aminolevulinic acid (δ-ALA) molecules to form the pyrrole, porphobilinogen, an important precursor for plant pigments involved in photosynthesis, respiration, light-sensing, and nutrient uptake. Our recent efforts showed that, in citrus, silencing of ALAD gene via Citrus tristeza virus-induced gene silencing, caused yellow spots and necrosis in leaves and in developing new shoots. Silencing of ALAD gene reduced leaf pigments and altered leaf metabolites. Moreover, total phenolic content, H2O2, and reactive oxygen species (ROS) increased, indicating that silencing of ALAD induced severe stress. Herein, we hypothesized that conditions including lower sucrose, elevated ROS, alteration of microRNA involved in RNAi regulatory protein Argonaute 1 (AGO1) and ROS lead to higher deposition of callose in phloem tissues. Using aniline blue staining and gene expression analysis of callose synthases, we showed significant deposition of callose in ALAD-silenced citrus.
Collapse
Affiliation(s)
- Nabil Killiny
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Shelley E. Jones
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Pedro Gonzalez-Blanco
- Citrus Research and Education Center and Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
12
|
Ghosh D, Kokane S, Savita BK, Kumar P, Sharma AK, Ozcan A, Kokane A, Santra S. Huanglongbing Pandemic: Current Challenges and Emerging Management Strategies. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010160. [PMID: 36616289 PMCID: PMC9824665 DOI: 10.3390/plants12010160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/09/2023]
Abstract
Huanglongbing (HLB, aka citrus greening), one of the most devastating diseases of citrus, has wreaked havoc on the global citrus industry in recent decades. The culprit behind such a gloomy scenario is the phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas), which are transmitted via psyllid. To date, there are no effective long-termcommercialized control measures for HLB, making it increasingly difficult to prevent the disease spread. To combat HLB effectively, introduction of multipronged management strategies towards controlling CLas population within the phloem system is deemed necessary. This article presents a comprehensive review of up-to-date scientific information about HLB, including currently available management practices and unprecedented challenges associated with the disease control. Additionally, a triangular disease management approach has been introduced targeting pathogen, host, and vector. Pathogen-targeting approaches include (i) inhibition of important proteins of CLas, (ii) use of the most efficient antimicrobial or immunity-inducing compounds to suppress the growth of CLas, and (iii) use of tools to suppress or kill the CLas. Approaches for targeting the host include (i) improvement of the host immune system, (ii) effective use of transgenic variety to build the host's resistance against CLas, and (iii) induction of systemic acquired resistance. Strategies for targeting the vector include (i) chemical and biological control and (ii) eradication of HLB-affected trees. Finally, a hypothetical model for integrated disease management has been discussed to mitigate the HLB pandemic.
Collapse
Affiliation(s)
- Dilip Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Brajesh Kumar Savita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pranav Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Ali Ozcan
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
- Scientific and Technological Studies Application and Research Center, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
| | - Amol Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Swadeshmukul Santra
- Departments of Chemistry, Nano Science Technology Center, and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| |
Collapse
|
13
|
Identification of Three Viruses Infecting Mulberry Varieties. Viruses 2022; 14:v14112564. [PMID: 36423172 PMCID: PMC9696721 DOI: 10.3390/v14112564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Viruses-mediated genome editing in plants is a powerful strategy to develop plant cultivars with important and novel agricultural traits. Mulberry alba is an important economic tree species that has been cultivated in China for more than 5000 years. So far, only a few viruses have been identified from mulberry trees, and their application potential is largely unknown. Therefore, mining more virus resources from the mulberry tree can pave the way for the establishment of useful engineering tools. In this study, eight old mulberry plants were gathered in seven geographic areas for virome analysis. Based on transcriptome analysis, we discovered three viruses associated with mulberries: Citrus leaf blotch virus isolate mulberry alba 2 (CLBV-ML2), Mulberry-associated virga-like virus (MaVLV), and Mulberry-associated narna-like virus (MaNLV). The genome of CLBV-ML2 was completely sequenced and exhibited high homology with Citriviruses, considered to be members of the genus Citrivirus, while the genomes of MaVLV and MaNLV were nearly completed lacking the 5' and 3' termini sequences. We tentatively consider MaVLV to be members of the family Virgaviridae and MaNLV to be members of the genus Narnavirus based on the results of phylogenetic trees. The infection experiments showed that CLBV-ML2 could be detected in the inoculated seedlings of both N. benthamiana and Morus alba, while MaVLV could only be detected in N. benthamiana. All of the infected seedlings did not show obvious symptoms.
Collapse
|
14
|
Biswas KK, Keremane ML, Marais LJ, Ramadugu C, Lee RF. Population dynamics of Citrus tristeza virus (CTV) in single aphid-transmitted sub-isolates of the South African GFMS12 isolate. FRONTIERS IN PLANT SCIENCE 2022; 13:1024556. [PMID: 36388600 PMCID: PMC9650399 DOI: 10.3389/fpls.2022.1024556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Grapefruit trees in South Africa have been cross protected against severe stem pitting genotypes of Citrus tristeza virus (CTV) since the 1920s using a mild strain initially called 'Nartia' but later referred to as grapefruit mild strain 12 (GFMS12). In the current study, the GFMS12 isolate was used as the source for single aphid transmissions (SAT) using Toxoptera citricida, commonly called the brown citrus aphid (BrCA). The BrCA-transmitted CTV sub-isolates were analyzed by the heteroduplex mobility assay (HMA), serological assays, genetic marker analysis (GMA), and selected sub-isolates were biologically indexed. Reverse transcription PCR of genomic regions was conducted using universal primers followed by cloning the PCR products, HMA and sequence analysis; nine genotypes of CTV were identified in the complex of GFMS12, including both severe and mild genotypes. A single BrCA transmitted up to six CTV genotypes simultaneously in one sub-isolate. The HMA was found to be a rapid, reliable tool for the identification of genotypes and can be useful in the development of CTV management strategies and budwood certification programs.
Collapse
Affiliation(s)
- K. K. Biswas
- Citrus Research and Education Center (CREC), University of Florida, Lake Alfred, FL, United States
- Plant Protection, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - M. L. Keremane
- Citrus Research and Education Center (CREC), University of Florida, Lake Alfred, FL, United States
- Agricultural Research Service, United States Department of Agriculture (USDA), Riverside, CA, United States
| | - L. J. Marais
- Citrus Research and Education Center (CREC), University of Florida, Lake Alfred, FL, United States
| | - C. Ramadugu
- Botany & Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - R. F. Lee
- Citrus Research and Education Center (CREC), University of Florida, Lake Alfred, FL, United States
- Agricultural Research Service, United States Department of Agriculture (USDA), Riverside, CA, United States
| |
Collapse
|
15
|
Folimonova SY, Sun YD. Citrus Tristeza Virus: From Pathogen to Panacea. Annu Rev Virol 2022; 9:417-435. [DOI: 10.1146/annurev-virology-100520-114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Citrus tristeza virus (CTV) is the most destructive viral pathogen of citrus. During the past century, CTV induced grave epidemics in citrus-growing areas worldwide that have resulted in a loss of more than 100 million trees. At present, the virus continues to threaten citrus production in many different countries. Research on CTV is accompanied by distinctive challenges stemming from the large size of its RNA genome, the narrow host range limited to slow-growing Citrus species and relatives, and the complexity of CTV populations. Despite these hurdles, remarkable progress has been made in understanding the CTV-host interactions and in converting the virus into a tool for crop protection and improvement. This review focuses on recent advances that have shed light on the mechanisms underlying CTV infection. Understanding these mechanisms is pivotal for the development of means to control CTV diseases and, ultimately, turn this virus into an ally. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida, USA
| | - Yong-Duo Sun
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Moreno P, López C, Ruiz-Ruiz S, Peña L, Guerri J. From the smallest to the largest subcellular plant pathogen: Citrus tristeza virus and its unique p23 protein. Virus Res 2022; 314:198755. [PMID: 35341876 DOI: 10.1016/j.virusres.2022.198755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
Knowledge on diseases caused by Citrus tristeza virus (CTV) has greatly increased in last decades after their etiology was demonstrated in the past seventies. Professor Ricardo Flores substantially contributed to these advances in topics like: i) improvement of virus purification to obtain biologically active virions, ii) sequencing mild CTV isolates for genetic comparisons with sequences of moderate or severe isolates and genetic engineering, iii) analysis of genetic variation of both CTV genomic RNA ends and features of the highly variable 5' end that allow accommodating this variation within a conserved secondary structure, iv) studies on the structure, subcellular localization and biological functions of the CTV-unique p23 protein, and v) potential use of p23 and other 3'-proximal regions of the CTV genome to develop transgenic citrus resistant to the virus. Here we review his main achievements on these topics and how they contributed to deeper understanding of CTV biology and to new potential measures for disease control.
Collapse
Affiliation(s)
- Pedro Moreno
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113-Valencia, Spain. (Retired).
| | - Carmelo López
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, 46022-Valencia, Spain
| | - Susana Ruiz-Ruiz
- Unidad Mixta de Investigación en Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), 46022-Valencia, Spain
| | - Leandro Peña
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Politécnica de Valencia (UPV), 46022-Valencia, Spain
| | - José Guerri
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, 46113-Valencia, Spain. (Retired)
| |
Collapse
|
17
|
Ramírez-Pool JA, Xoconostle-Cázares B, Calderón-Pérez B, Ibarra-Laclette E, Villafán E, Lira-Carmona R, Ruiz-Medrano R. Transcriptomic Analysis of the Host Response to Mild and Severe CTV Strains in Naturally Infected Citrus sinensis Orchards. Int J Mol Sci 2022; 23:ijms23052435. [PMID: 35269578 PMCID: PMC8910659 DOI: 10.3390/ijms23052435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/03/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
Citrus tristeza virus (CTV) is an important threat to the global citrus industry, causing severe economic losses worldwide. The disease management strategies are focused on vector control, tree culling, and the use of resistant varieties and rootstocks. Sweet orange (Citrus sinensis) trees showing either severe or mild CTV symptoms have been observed in orchards in Veracruz, Mexico, and were probably caused by different virus strains. To understand these symptomatic differences, transcriptomic analyses were conducted using asymptomatic trees. CTV was confirmed to be associated with infected plants, and mild and severe strains were successfully identified by a polymorphism in the coat protein (CP) encoding gene. RNA-Seq analysis revealed more than 900 significantly differentially expressed genes in response to mild and severe strains, with some overlapping genes. Importantly, multiple sequence reads corresponding to Citrus exocortis viroid and Hop stunt viroid were found in severe symptomatic and asymptomatic trees, but not in plants with mild symptoms. The differential gene expression profiling obtained in this work provides an overview of molecular behavior in naturally CTV-infected trees. This work may contribute to our understanding of citrus-virus interaction in more natural settings, which can help develop strategies for integrated crop management.
Collapse
Affiliation(s)
- José Abrahán Ramírez-Pool
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco 07360, Mexico; (J.A.R.-P.); (B.X.-C.); (B.C.-P.)
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco 07360, Mexico; (J.A.R.-P.); (B.X.-C.); (B.C.-P.)
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco 07360, Mexico; (J.A.R.-P.); (B.X.-C.); (B.C.-P.)
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa 91070, Mexico; (E.I.-L.); (E.V.)
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya, Xalapa 91070, Mexico; (E.I.-L.); (E.V.)
| | - Rosalía Lira-Carmona
- Laboratorio de Virología, UIMEIP, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, Av. Cuauhtémoc 330, Col. Doctores, Alcaldía Cuauhtémoc 06720, Mexico;
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco 07360, Mexico; (J.A.R.-P.); (B.X.-C.); (B.C.-P.)
- Correspondence: ; Tel.: +52-5557473800
| |
Collapse
|
18
|
Khalilzadeh M, Weber KC, Dutt M, El-Mohtar CA, Levy A. Comparative transcriptome analysis of Citrus macrophylla tree infected with Citrus tristeza virus stem pitting mutants provides new insight into the role of phloem regeneration in stem pitting disease. FRONTIERS IN PLANT SCIENCE 2022; 13:987831. [PMID: 36267951 PMCID: PMC9577373 DOI: 10.3389/fpls.2022.987831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/24/2022] [Indexed: 05/21/2023]
Abstract
Stem pitting is a complex and economically important virus-associated disease of perennial woody plants. Molecular mechanisms and pathways occurring during virus-plant interaction that result in this phenomenon are still obscure. Previous studies indicated that different Citrus tristeza virus (CTV) mutants induce defined stem pitting phenotypes ranging from mild (CTVΔp13) to severe (CTVΔp33) in Citrus macrophylla trees. In this study, we conducted comparative transcriptome analyses of C. macrophylla trees infected with CTV mutants (CTVΔp13 and CTVΔp33) and a full-length virus in comparison to healthy plants as control. The mild CTV stem pitting mutant had very few differentially expressed genes (DEGs) related to plant defense mechanism and plant growth and development. In contrast, substantial gene expression changes were observed in plants infected with the severe mutant and the full-length virus, indicating that both the p13 and p33 proteins of CTV acted as a regulator of symptom production by activating and modulating plant responses, respectively. The analysis of transcriptome data for CTVΔp33 and the full-length virus suggested that xylem specification has been blocked by detecting several genes encoding xylem, cell wall and lignin degradation, and cell wall loosening enzymes. Furthermore, stem pitting was accompanied by downregulation of transcription factors involved in regulation of xylem differentiation and downregulation of some genes involved in lignin biosynthesis, showing that the xylem differentiation and specification program has been shut off. Upregulation of genes encoding transcription factors associated with phloem and cambium development indicated the activation of this program in stem pitting disease. Furthermore, we detected the induction of several DEGs encoding proteins associated with cell cycle re-entry such as chromatin remodeling factors and cyclin, and histone modification. This kind of expression pattern of genes related to xylem differentiation and specification, phloem and cambium development, and cell cycle re-entry is demonstrated during secondary vascular tissue (SVT) regeneration. The microscopy analysis confirmed that the regeneration of new phloem is associated with stem pitting phenotypes. The findings of this study, thus, provide evidence for the association between stem pitting phenotypes and SVT regeneration, suggesting that the expression of these genes might play important roles in development of stem pitting symptoms. Overall, our findings suggest that phloem regeneration contributes to development of stem pitting symptoms.
Collapse
Affiliation(s)
- Maryam Khalilzadeh
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Kyle Clark Weber
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Manjul Dutt
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Choaa Amine El-Mohtar
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- *Correspondence: Amit Levy
| |
Collapse
|
19
|
Kang SH, Aknadibossian V, Kharel L, Mudiyanselage SDD, Wang Y, Folimonova SY. The Intriguing Conundrum of a Nonconserved Multifunctional Protein of Citrus Tristeza Virus That Interacts with a Viral Long Non-Coding RNA. Viruses 2021; 13:2129. [PMID: 34834936 PMCID: PMC8625556 DOI: 10.3390/v13112129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 01/26/2023] Open
Abstract
Citrus tristeza virus (CTV), the largest non-segmented plant RNA virus, has several peculiar features, among which is the production of a 5'-terminal long non-coding RNA (lncRNA) termed low-molecular-weight tristeza 1 (LMT1). In this study, we found that p33, a unique viral protein that performs multiple functions in the virus infection cycle, specifically binds LMT1, both in vivo and in vitro. These results were obtained through the expression of p33 under the context of the wild type virus infection or along with a mutant CTV variant that does not produce LMT1 as well as via ectopic co-expression of p33 with LMT1 in Nicotiana benthamiana leaves followed by RNA immunoprecipitation and rapid amplification of cDNA ends assays. Further experiments in which a recombinant p33 protein and an in vitro transcribed full-length LMT1 RNA or its truncated fragments were subjected to an electrophoretic mobility shift assay demonstrated that p33 binds to at least two distinct regions within LMT1. To the best of our knowledge, this is the first report of a plant virus protein binding to a lncRNA produced by the same virus. The biological significance of the interaction between these two viral factors is discussed.
Collapse
Affiliation(s)
- Sung-Hwan Kang
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (S.-H.K.); (V.A.)
| | - Vicken Aknadibossian
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (S.-H.K.); (V.A.)
| | - Laxmi Kharel
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (L.K.); (S.D.D.M.); (Y.W.)
| | | | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; (L.K.); (S.D.D.M.); (Y.W.)
| | - Svetlana Y. Folimonova
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA; (S.-H.K.); (V.A.)
| |
Collapse
|
20
|
Liu Q, Zhang S, Mei S, Zhou Y, Wang J, Han GZ, Chen L, Zhou C, Cao M. Viromics unveils extraordinary genetic diversity of the family Closteroviridae in wild citrus. PLoS Pathog 2021; 17:e1009751. [PMID: 34252150 PMCID: PMC8297929 DOI: 10.1371/journal.ppat.1009751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/22/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
Our knowledge of citrus viruses is largely skewed toward virus pathology in cultivated orchards. Little is known about the virus diversity in wild citrus species. Here, we used a metatranscriptomics approach to characterize the virus diversity in a wild citrus habitat within the proposed center of the origin of citrus plants. We discovered a total of 44 virus isolates that could be classified into species Citrus tristeza virus and putative species citrus associated ampelovirus 1, citrus associated ampelovirus 2, and citrus virus B within the family Closteroviridae, providing important information to explore the factors facilitating outbreaks of citrus viruses and the evolutionary history of the family Closteroviridae. We found that frequent horizontal gene transfer, gene duplication, and alteration of expression strategy have shaped the genome complexity and diversification of the family Closteroviridae. Recombination frequently occurred among distinct Closteroviridae members, thereby facilitating the evolution of Closteroviridae. Given the potential emergence of similar wild-citrus-originated novel viruses as pathogens, the need for surveillance of their pathogenic and epidemiological characteristics is of utmost priority for global citrus production. Closterovirids are principal plant pathogens for citrus trees and other plants, as they sometimes cause new or re-emerging diseases. However, the closterovirid diversity in natural plant hosts, especially citrus plants, is unclear. Here, we describe three novel species and Citrus tristeza virus within the family Closteroviridae that were sampled from wild citrus trees growing in their natural habitat in southwestern China. The presence of three different taxon classes of the family Closteroviridae indicates the geographical uniqueness of the sampling region for citrus closterovirid evolution. Our analysis shows that frequent horizontal gene transfer, gene duplication, alteration of expression strategy, and recombination have been important evolutionary processes in the diversification of the family Closteroviridae. Our study also shows the significance of natural reserves as potential sources of disease agents endangering cultivated crop plants.
Collapse
Affiliation(s)
- Qiyan Liu
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, China
| | - Song Zhang
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, China
| | - Shiqiang Mei
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, China
| | - Yan Zhou
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, China
| | - Jianhua Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Lei Chen
- Industrial Crop Workstation of Xinping County, Yuxi, Yunnan, China
| | - Changyong Zhou
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, China
- * E-mail: (CZ); (MC)
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Beibei, Chongqing, China
- * E-mail: (CZ); (MC)
| |
Collapse
|
21
|
Sun Y, Zhang L, Folimonova SY. Citrus miraculin-like protein hijacks a viral movement-related p33 protein and induces cellular oxidative stress in defence against Citrus tristeza virus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:977-991. [PMID: 33283396 PMCID: PMC8131049 DOI: 10.1111/pbi.13523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/26/2020] [Accepted: 11/30/2020] [Indexed: 05/16/2023]
Abstract
To defend against pathogens, plants have developed a complex immune system, which recognizes the pathogen effectors and mounts defence responses. In this study, the p33 protein of Citrus tristeza virus (CTV), a viral membrane-associated effector, was used as a molecular bait to explore virus interactions with host immunity. We discovered that Citrus macrophylla miraculin-like protein 2 (CmMLP2), a member of the soybean Kunitz-type trypsin inhibitor family, targets the viral p33 protein. The expression of CmMLP2 was up-regulated by p33 in the citrus phloem-associated cells. Knock-down of the MLP2 expression in citrus plants resulted in a higher virus accumulation, while the overexpression of CmMLP2 reduced the infectivity of CTV in the plant hosts. Further investigation revealed that, on the one hand, binding of CmMLP2 interrupts the cellular distribution of p33 whose proper function is necessary for the effective virus movement throughout the host. On the other hand, the ability of CmMLP2 to reorganize the endomembrane system, amalgamating the endoplasmic reticulum and the Golgi apparatus, induces cellular stress and accumulation of the reactive oxygen species, which inhibits the replication of CTV. Altogether, our data suggest that CmMLP2 employs a two-way strategy in defence against CTV infection.
Collapse
Affiliation(s)
- Yong‐Duo Sun
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
| | - Lei Zhang
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA
- Present address:
College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhot010018China
| | - Svetlana Y. Folimonova
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA
- Plant Molecular and Cellular Biology ProgramUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
22
|
Ghosh DK, Kokane AD, Kokane SB, Tenzin J, Gubyad MG, Wangdi P, Murkute AA, Sharma AK, Gowda S. Detection and Molecular Characterization of 'C andidatus Liberibacter asiaticus' and Citrus Tristeza Virus Associated with Citrus Decline in Bhutan. PHYTOPATHOLOGY 2021; 111:870-881. [PMID: 33090079 DOI: 10.1094/phyto-07-20-0266-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Citrus, mainly mandarin (Citrus reticulata Blanco), is an economically important fruit crop in Bhutan. Despite having favorable agroclimatic conditions for citrus cultivation, the early decline of fruit-bearing orchards coupled with low crop productivity is a major concern among citrus growers. During a recent survey, an association of 'Candidatus Liberibacter asiaticus' (citrus greening) and citrus tristeza virus (CTV), either singly or as mixed infections in declined citrus trees, was recorded in all four major citrus-growing districts (Tsirang, Dagana, Zhemgang, and Sarpang). Using PCR-based diagnosis, a higher incidence of citrus greening (27.45%) and tristeza (70.58%) was observed in symptomatic field samples. Detection and characterization of 'Ca. L. asiaticus' was performed based on the 16S ribosomal DNA, prophage gene, 50S ribosomal rplA-rplJ gene, and tandem repeats of the CLIBASIA_01645 locus. Similarly, the coat protein, p23, and p18 genes were used as genetic markers for the detection and characterization of Bhutanese CTV. The 'Ca. L. asiaticus' isolates from Bhutan segregated into classes II and III based on the CLIBASIA_01645 locus, analogous to Indian isolates from the northeast region and Term-A based on the CLIBASIA_05610 locus. CTV isolates of Bhutan were observed as closely related to the VT strain, which is considered to be the most devastating. To the best of our knowledge, this is the first study on molecular characterization of 'Ca. L. asiaticus' and CTV isolates and their association with citrus decline in Bhutan.
Collapse
Affiliation(s)
- Dilip Kumar Ghosh
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Amol D Kokane
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Sunil B Kokane
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Jigme Tenzin
- National Citrus Program, Department of Agriculture, Royal Government of Bhutan, Thimphu 11001, Bhutan
| | - Mrugendra G Gubyad
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Phuntsho Wangdi
- National Citrus Repository, Department of Agriculture, Royal Government of Bhutan, Tsirang, Bhutan
| | - Ashutosh A Murkute
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology, Roorkee - 247 667, India
| | - Siddarame Gowda
- University of Florida, Citrus Research and Education Centre, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
23
|
Yang Z, Zhang Y, Wang G, Wen S, Wang Y, Li L, Xiao F, Hong N. The p23 of Citrus Tristeza Virus Interacts with Host FKBP-Type Peptidyl-Prolylcis-Trans Isomerase 17-2 and Is Involved in the Intracellular Movement of the Viral Coat Protein. Cells 2021; 10:934. [PMID: 33920690 PMCID: PMC8073322 DOI: 10.3390/cells10040934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
Citrus tristeza virus is a member of the genus Closterovirus in the family Closteroviridae. The p23 of citrus tristeza virus (CTV) is a multifunctional protein and RNA silencing suppressor. In this study, we identified a p23 interacting partner, FK506-binding protein (FKBP) 17-2, from Citrus aurantifolia (CaFKBP17-2), a susceptible host, and Nicotiana benthamiana (NbFKBP17-2), an experimental host for CTV. The interaction of p23 with CaFKBP17-2 and NbFKBP17-2 were individually confirmed by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Subcellular localization tests showed that the viral p23 translocated FKBP17-2 from chloroplasts to the plasmodesmata of epidermal cells of N. benthamiana leaves. The knocked-down expression level of NbFKBP17-2 mRNA resulted in a decreased CTV titer in N. benthamiana plants. Further, BiFC and Y2H assays showed that NbFKBP17-2 also interacted with the coat protein (CP) of CTV, and the complexes of CP/NbFKBP17-2 rapidly moved in the cytoplasm. Moreover, p23 guided the CP/NbFKBP17-2 complexes to move along the cell wall. To the best of our knowledge, this is the first report of viral proteins interacting with FKBP17-2 encoded by plants. Our results provide insights for further revealing the mechanism of the CTV CP protein movement.
Collapse
Affiliation(s)
- Zuokun Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Yongle Zhang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Shaohua Wen
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yanxiang Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Liu Li
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Feng Xiao
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.Y.); (Y.Z.); (G.W.); (S.W.); (Y.W.); (L.L.); (F.X.)
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
24
|
Pais da Cunha AT, Chiumenti M, Ladeira LC, Abou Kubaa R, Loconsole G, Pantaleo V, Minafra A. High throughput sequencing from Angolan citrus accessions discloses the presence of emerging CTV strains. Virol J 2021; 18:62. [PMID: 33757535 PMCID: PMC7988965 DOI: 10.1186/s12985-021-01535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Citrus industry is worldwide dramatically affected by outbreaks of Citrus tristeza virus (CTV). Controls should be applied to nurseries, which could act as diversity hotspots for CTV. Early detection and characterization of dangerous or emerging strains of this virus greatly help to prevent outbreaks of disease. This is particularly relevant in those growing regions where no dedicated certification programs are currently in use. METHODS Double-stranded RNA extracted from Citrus spp. samples, collected in two locations in Angola, were pooled and submitted to a random-primed RNA-seq. This technique was performed to acquire a higher amount of data in the survey, before the amplification and sequencing of genes from single plants. To confirm the CTV infection in individual plants, as suggested by RNA-seq information from the pooled samples, the analysis was integrated with multiple molecular marker amplification (MMM) for the main known CTV strains (T30, T36, VT and T3). RESULTS From the analysis of HTS data, several assembled contigs were identified as CTV and classified according to their similarity to the established strains. By the MMM amplification, only five individual accessions out of the eleven pooled samples, resulted to be infected by CTV. Amplified coat protein genes from the five positive sources were cloned and sequenced and submitted to phylogenetic analysis, while a near-complete CTV genome was also reconstructed by the fusion of three overlapping contigs. CONCLUSION Phylogenetic analysis of the ORF1b and CP genes, retrieved by de novo assembly and RT-PCR, respectively, revealed the presence of a wide array of CTV strains in the surveyed citrus-growing spots in Angola. Importantly, molecular variants among those identified from HTS showed high similarity with known severe strains as well as to recently described and emerging strains in other citrus-growing regions, such as S1 (California) or New Clade (Uruguay).
Collapse
Affiliation(s)
- Aderito Tomàs Pais da Cunha
- Instituto Superior Politécnico do Kuanza Sul (ISPKS), Rua 12 de Novembro, Sumbe, Angola
- Centro Nacional de Investigação Científica (CNIC), 201 Ho Chi Min Avenue, CP 34, Luanda, Angola
| | - Michela Chiumenti
- Institute for Sustainable Plant Protection - Consiglio Nazionale delle Ricerche (CNR), Via Giovanni Amendola 165/A, Bari, Italy
| | | | - Raied Abou Kubaa
- Institute for Sustainable Plant Protection - Consiglio Nazionale delle Ricerche (CNR), Via Giovanni Amendola 165/A, Bari, Italy
| | - Giuliana Loconsole
- Institute for Sustainable Plant Protection - Consiglio Nazionale delle Ricerche (CNR), Via Giovanni Amendola 165/A, Bari, Italy
| | - Vitantonio Pantaleo
- Institute for Sustainable Plant Protection - Consiglio Nazionale delle Ricerche (CNR), Via Giovanni Amendola 165/A, Bari, Italy
| | - Angelantonio Minafra
- Institute for Sustainable Plant Protection - Consiglio Nazionale delle Ricerche (CNR), Via Giovanni Amendola 165/A, Bari, Italy.
| |
Collapse
|
25
|
Park JW, da Graça JV, Sétamou M, Kunta M. Diversity of Citrus tristeza virus Strains in the Upper Gulf Coast Area of Texas. PLANT DISEASE 2021; 105:592-598. [PMID: 32840435 DOI: 10.1094/pdis-02-20-0410-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Citrus tristeza virus (CTV) in Texas was first reported in the 1950s and has since been sporadically reported in the residential areas in the Upper Gulf Coast region. Because the major rootstock for commercial citriculture in South Texas is sour orange, which is susceptible to CTV decline, the spread of CTV into South Texas can pose a great threat to Texas citrus industry. Thirty-six CTV-positive samples, collected during surveys conducted in the Upper Gulf Coast area of Texas from 2013 to 2018, were first analyzed by strain-specific real-time PCR (RT-PCR) targeting various regions of CTV Open reading frame (Orf) 1a and then by amplicon sequencing derived from p25 and p20 region of CTV genome. Among 36 samples, 33 were successfully genotyped by strain-specific RT-PCR and by amplicon sequencing followed by phylogenetic analysis. Variability in the detection of CTV strains was observed over a 6-year period. In 2013, T3 and T30 were the only strains detected in the Upper Gulf Coast of Texas, but in further surveys until 2018, additional strains were detected, including T36, VT, and RB. Mixed infections were also detected in 14 samples comprising about 42% of CTV samples examined in the study. Although genotyping mixed infection samples by targeting Orf 1a and full-length p25, residing in the 5' and 3' region of the CTV genome, respectively, confirmed the presence of multiple strains in these samples, incongruent genotyping data were observed. These findings suggested that the current status of CTV strain diversity in Texas Upper Gulf Coast region might have been established by multiple introductions of CTV-infected plant materials for propagation and with a potential recombination in planta.
Collapse
Affiliation(s)
- Jong-Won Park
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX 78599
| | - John V da Graça
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX 78599
| | - Mamoudou Sétamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX 78599
| | | |
Collapse
|
26
|
Jones RAC. Global Plant Virus Disease Pandemics and Epidemics. PLANTS (BASEL, SWITZERLAND) 2021; 10:233. [PMID: 33504044 PMCID: PMC7911862 DOI: 10.3390/plants10020233] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The world's staple food crops, and other food crops that optimize human nutrition, suffer from global virus disease pandemics and epidemics that greatly diminish their yields and/or produce quality. This situation is becoming increasingly serious because of the human population's growing food requirements and increasing difficulties in managing virus diseases effectively arising from global warming. This review provides historical and recent information about virus disease pandemics and major epidemics that originated within different world regions, spread to other continents, and now have very wide distributions. Because they threaten food security, all are cause for considerable concern for humanity. The pandemic disease examples described are six (maize lethal necrosis, rice tungro, sweet potato virus, banana bunchy top, citrus tristeza, plum pox). The major epidemic disease examples described are seven (wheat yellow dwarf, wheat streak mosaic, potato tuber necrotic ringspot, faba bean necrotic yellows, pepino mosaic, tomato brown rugose fruit, and cucumber green mottle mosaic). Most examples involve long-distance virus dispersal, albeit inadvertent, by international trade in seed or planting material. With every example, the factors responsible for its development, geographical distribution and global importance are explained. Finally, an overall explanation is given of how to manage global virus disease pandemics and epidemics effectively.
Collapse
Affiliation(s)
- Roger A C Jones
- The UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
27
|
Abstract
The modern view of the mechanism of intercellular movement of viruses is based largely on data from the study of the tobacco mosaic virus (TMV) 30-kDa movement protein (MP). The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-stranded RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic RNA to the plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability, have been used as a reference in the search and analysis of candidate proteins from other plant viruses. Nevertheless, although almost four decades have passed since the introduction of the term “movement protein” into scientific circulation, the mechanism underlying its function remains unclear. It is unclear why, despite the absence of homology, different MPs are able to functionally replace each other in trans-complementation tests. Here, we consider the complexity and contradictions of the approaches for assessment of the ability of plant viral proteins to perform their movement function. We discuss different aspects of the participation of MP and MP/vRNA complexes in intra- and intercellular transport. In addition, we summarize the essential MP properties for their functioning as “conditioners”, creating a favorable environment for viral reproduction.
Collapse
|
28
|
Huang W, Reyes-Caldas P, Mann M, Seifbarghi S, Kahn A, Almeida RPP, Béven L, Heck M, Hogenhout SA, Coaker G. Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions. MOLECULAR PLANT 2020; 13:1379-1393. [PMID: 32835885 PMCID: PMC7769051 DOI: 10.1016/j.molp.2020.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/01/2023]
Abstract
Vector-borne plant diseases have significant ecological and economic impacts, affecting farm profitability and forest composition throughout the world. Bacterial vector-borne pathogens have evolved sophisticated strategies to interact with their hemipteran insect vectors and plant hosts. These pathogens reside in plant vascular tissue, and their study represents an excellent opportunity to uncover novel biological mechanisms regulating intracellular pathogenesis and to contribute to the control of some of the world's most invasive emerging diseases. In this perspective, we highlight recent advances and major unanswered questions in the realm of bacterial vector-borne disease, focusing on liberibacters, phytoplasmas, spiroplasmas, and Xylella fastidiosa.
Collapse
Affiliation(s)
- Weijie Huang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paola Reyes-Caldas
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Marina Mann
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shirin Seifbarghi
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Alexandra Kahn
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Laure Béven
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE, Villenave d'Ornon 33882 France
| | - Michelle Heck
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute, Ithaca, NY 14853, USA; Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, NY 14853, USA
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
29
|
Dolja VV, Krupovic M, Koonin EV. Deep Roots and Splendid Boughs of the Global Plant Virome. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:23-53. [PMID: 32459570 DOI: 10.1146/annurev-phyto-030320-041346] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Land plants host a vast and diverse virome that is dominated by RNA viruses, with major additional contributions from reverse-transcribing and single-stranded (ss) DNA viruses. Here, we introduce the recently adopted comprehensive taxonomy of viruses based on phylogenomic analyses, as applied to the plant virome. We further trace the evolutionary ancestry of distinct plant virus lineages to primordial genetic mobile elements. We discuss the growing evidence of the pivotal role of horizontal virus transfer from invertebrates to plants during the terrestrialization of these organisms, which was enabled by the evolution of close ecological associations between these diverse organisms. It is our hope that the emerging big picture of the formation and global architecture of the plant virome will be of broad interest to plant biologists and virologists alike and will stimulate ever deeper inquiry into the fascinating field of virus-plant coevolution.
Collapse
Affiliation(s)
- Valerian V Dolja
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331-2902, USA;
| | - Mart Krupovic
- Archaeal Virology Unit, Department of Microbiology, Institut Pasteur, 75015 Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
30
|
RNA isolation efficacy of commercial and modified conventional methods for Citrus tristeza virus and mRNA internal control amplification. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-019-00405-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Sanfaçon H. Modulation of disease severity by plant positive-strand RNA viruses: The complex interplay of multifunctional viral proteins, subviral RNAs and virus-associated RNAs with plant signaling pathways and defense responses. Adv Virus Res 2020; 107:87-131. [PMID: 32711736 DOI: 10.1016/bs.aivir.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses induce a range of symptoms of varying intensity, ranging from severe systemic necrosis to mild or asymptomatic infection. Several evolutionary constraints drive virus virulence, including the dependence of viruses on host factors to complete their infection cycle, the requirement to counteract or evade plant antiviral defense responses and the mode of virus transmission. Viruses have developed an array of strategies to modulate disease severity. Accumulating evidence has highlighted not only the multifunctional role that viral proteins play in disrupting or highjacking plant factors, hormone signaling pathways and intracellular organelles, but also the interaction networks between viral proteins, subviral RNAs and/or other viral-associated RNAs that regulate disease severity. This review focusses on positive-strand RNA viruses, which constitute the majority of characterized plant viruses. Using well-characterized viruses with different genome types as examples, recent advances are discussed as well as knowledge gaps and opportunities for further research.
Collapse
Affiliation(s)
- Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada.
| |
Collapse
|
32
|
Folimonova SY. Citrus tristeza virus: A large RNA virus with complex biology turned into a valuable tool for crop protection. PLoS Pathog 2020; 16:e1008416. [PMID: 32353070 PMCID: PMC7192379 DOI: 10.1371/journal.ppat.1008416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Svetlana Y. Folimonova
- University of Florida, Plant Pathology Department, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
33
|
Saponari M, Giampetruzzi A, Selvaraj V, Maheshwari Y, Yokomi R. Identification and Characterization of Resistance-Breaking (RB) Isolates of Citrus tristeza virus. Methods Mol Biol 2020; 2015:105-126. [PMID: 31222699 DOI: 10.1007/978-1-4939-9558-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resistance-breaking (RB) strains constitute a clade of biological and genetically distinct isolates of Citrus tristeza virus (CTV) that replicate and move systemically in Poncirus trifoliata (trifoliate orange), resistant to other known strains of CTV. Molecular markers have been developed by comparative genome analysis to allow quick identification of potential RB isolates. Here, methods are described to identify and characterize RB strains by reverse transcription-polymerase chain reaction (RT-PCR), quantitative real-time RT-PCR (RT-qPCR), full-length genome sequencing, and biological indexing.
Collapse
Affiliation(s)
- Maria Saponari
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy.
| | - Annalisa Giampetruzzi
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Bari, Italy
| | | | - Yogita Maheshwari
- San Joaquin Valley Agricultural Sciences Center, USDA-ARS, Parlier, CA, USA
| | - Raymond Yokomi
- San Joaquin Valley Agricultural Sciences Center, USDA-ARS, Parlier, CA, USA
| |
Collapse
|
34
|
Lessons from One Fastidious Bacterium to Another: What Can We Learn about Liberibacter Species from Xylella fastidiosa. INSECTS 2019; 10:insects10090300. [PMID: 31527458 PMCID: PMC6780969 DOI: 10.3390/insects10090300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Huanglongbing is causing economic devastation to the citrus industry in Florida, and threatens the industry everywhere the bacterial pathogens in the Candidatus Liberibacter genus and their insect vectors are found. Bacteria in the genus cannot be cultured and no durable strategy is available for growers to control plant infection or pathogen transmission. However, scientists and grape growers were once in a comparable situation after the emergence of Pierce’s disease, which is caused by Xylella fastidiosa and spread by its hemipteran insect vector. Proactive quarantine and vector control measures coupled with interdisciplinary data-driven science established control of this devastating disease and pushed the frontiers of knowledge in the plant pathology and vector biology fields. Our review highlights the successful strategies used to understand and control X. fastidiosa and their potential applicability to the liberibacters associated with citrus greening, with a focus on the interactions between bacterial pathogen and insect vector. By placing the study of Candidatus Liberibacter spp. within the current and historical context of another fastidious emergent plant pathogen, future basic and applied research to develop control strategies can be prioritized.
Collapse
|
35
|
Cody WB, Scholthof HB. Plant Virus Vectors 3.0: Transitioning into Synthetic Genomics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:211-230. [PMID: 31185187 DOI: 10.1146/annurev-phyto-082718-100301] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant viruses were first implemented as heterologous gene expression vectors more than three decades ago. Since then, the methodology for their use has varied, but we propose it was the merging of technologies with virology tools, which occurred in three defined steps discussed here, that has driven viral vector applications to date. The first was the advent of molecular biology and reverse genetics, which enabled the cloning and manipulation of viral genomes to express genes of interest (vectors 1.0). The second stems from the discovery of RNA silencing and the development of high-throughput sequencing technologies that allowed the convenient and widespread use of virus-induced gene silencing (vectors 2.0). Here, we briefly review the events that led to these applications, but this treatise mainly concentrates on the emerging versatility of gene-editing tools, which has enabled the emergence of virus-delivered genetic queries for functional genomics and virology (vectors 3.0).
Collapse
Affiliation(s)
- Will B Cody
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA;
- Shriram Center for Biological and Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Herman B Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|
36
|
Freitas TA, Proença CA, Baldo TA, Materón EM, Wong A, Magnani RF, Faria RC. Ultrasensitive immunoassay for detection of Citrus tristeza virus in citrus sample using disposable microfluidic electrochemical device. Talanta 2019; 205:120110. [PMID: 31450419 DOI: 10.1016/j.talanta.2019.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 01/21/2023]
Abstract
Tristeza is a disease that affects citrus crops in general, caused by the Citrus tristeza virus (CTV). It is considered an economically important virus diseases in citrus, which is present in the main citrus producing regions all around the world. Early detection of CTV is crucial to avoid any epidemics and substantial economic losses for the citrus growers. Consequently, the development of rapid, accurate, and sensitive methods capable of detecting the virus in the early stages of the disease is highly desired. Based on that, a low-cost and rapid magneto-immunoassay methodology to detect the capsid protein from CTV (CP-CTV) was proposed. For this, magnetic beads were decorated with antibodies anti-CP-CTV and horseradish peroxidase enzyme (HRP) and applied for the capture and separation of CP-CTV from the sample solutions. The magnetically captured biomarker was detected using a simple disposable microfluidic electrochemical device (DμFED) constructed by rapid prototyping technique and composed by an array of immunosensors. In DμFED, the electrodes were modified with monoclonal antibody anti-CP-CTV and the detection was carried out using amperometry, based on the hydroquinone/H2O2 catalytic redox reaction due to the presence of HRP label in an immune-sandwich structure. The proposed immunoassay presented excellent linearity with a wide linear range of concentration of 1.95-10.0 × 103 fg mL-1 and ultralow detection limit of 0.3 fg mL-1. The disposable device was successfully applied for the detection of Citrus tristeza virus in healthy and infected plant samples, where it showed good agreements with the comparative method of enzyme-linked immunosorbent assay (ELISA). The developed immunoassay methodology showed a sensitive and selective way in the detection of CTV. Hence, it can be considered as a promising analytical alternative for rapid and low-cost diagnosis of Tristeza disease in citrus.
Collapse
Affiliation(s)
- Tayane A Freitas
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Camila A Proença
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Thaísa A Baldo
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Elsa M Materón
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Ademar Wong
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Rodrigo F Magnani
- Departamento de Pesquisa & Desenvolvimento, Fundecitrus, Araraquara, SP, 14807-040, Brazil; Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Ronaldo C Faria
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
37
|
Killiny N. Shrink the giant: scale down the citrus tree to a model system to investigate the RNA interference efficiency. PLANT SIGNALING & BEHAVIOR 2019; 14:1612681. [PMID: 31042121 PMCID: PMC6619960 DOI: 10.1080/15592324.2019.1612681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/22/2019] [Indexed: 05/31/2023]
Abstract
Virus-induced silencing gene technology has been increasingly used; however, a controversy exists among researchers about whether using the sense or antisense orientation of the gene target is more efficient. Herein, instead of using the entire citrus tree, a reduced system consisting of a single leaf, 5 cm of the stem and a few roots was established to fairly compare between the sense or antisense orientation of phytoene desaturase gene (pds) in the Citrus tristeza virus vector, for improved RNAi efficiency. Although the virus titers were similar in the two cases, the gene expression of pds was significantly lower when using the antisense orientation than using the sense orientation. I hypothesize that the extra effect from use of antisense orientation is due to the role of subgenomic RNA as a supplemental source for complementary sequences, thus resulting in more RNAi.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
38
|
Jarugula S, Gowda S, Dawson WO, Naidu RA. Development of infectious cDNA clones of Grapevine leafroll-associated virus 3 and analyses of the 5' non-translated region for replication and virion formation. Virology 2018; 523:89-99. [PMID: 30103103 DOI: 10.1016/j.virol.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 01/28/2023]
Abstract
Infectious cDNA clones were developed for Grapevine leafroll-associated virus 3 (GLRaV-3, genus Ampelovirus, family Closteroviridae). In vitro RNA transcripts generated from cDNA clones showed replication via the production of 3'-coterminal subgenomic (sg) mRNAs in Nicotiana benthamiana protoplasts. The detection of sgRNAs and the recovery of progeny recombinant virions from N. benthamiana leaves agroinfiltrated with full-length cDNA clones confirmed RNA replication and virion formation. The 5' non-translated region (5' NTR) of GLRaV-3 was exchangeable between genetic variants and complement the corresponding cognate RNA functions in trans. Mutational analysis of the 5' NTR in minireplicon cDNA clones showed that the conserved 40 nucleotides at the 5'-terminus were indispensable for replication, compared to downstream variable portion of the 5' NTR. Some of the functional mutations in the 5' NTR were tolerated in full-length cDNA clones and produced sgRNAs and virions in N. benthamiana leaves, whereas other mutations affected replication and virion formation.
Collapse
Affiliation(s)
- Sridhar Jarugula
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, WA 99350, United States
| | - Siddarame Gowda
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - William O Dawson
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Rayapati A Naidu
- Department of Plant Pathology, Irrigated Agriculture Research and Extension Center, Washington State University, WA 99350, United States.
| |
Collapse
|
39
|
Biswas KK, Palchoudhury S, Sharma SK, Saha B, Godara S, Ghosh DK, Keremane ML. Analyses of 3' half genome of citrus tristeza virus reveal existence of distinct virus genotypes in citrus growing regions of India. Virusdisease 2018; 29:308-315. [PMID: 30159365 DOI: 10.1007/s13337-018-0456-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/03/2018] [Indexed: 11/29/2022] Open
Abstract
Citrus tristeza virus (CTV, genus Closterovirus) is one of the most serious pathogens responsible for huge loss of citrus trees worldwide. Four Indian CTV isolates, Kat1 (C. reticulata/Central India), D1 (C. sinensis/North India), B5 (Citrus limettoides/South India) and G28 (C. lemon/Northeast India) collected from different regions of India were characterized based on sequencing of 3' half genome (~ 8.4 kb) comprising 10 open reading frames (ORFs2-11) and 3' UTR and the sequences were submitted to NCBI database as Acc. No KJ914662, HQ912022, HQ912023 and KJ914661, respectively. The present and previously reported Indian isolates Kpg3 and B165 were analyzed and compared with other Asian and international CTV isolates. The Indian CTV isolates had 92-99% nt identities among them. The phylogenetic analysis generated overall ten genogroups/lineages. Of them, all the Asian isolates fell into seven genogroups, whereas the Indian isolates into four. Indian isolates Kat1, D1 and Kpg3 grouped together, termed "Kpg3Gr", along with Florida severe isolate T3. The Indian isolates B5, and G28 were found to be two distinct and separate lineages, indicating that these isolates are two new CTV entities. Based on phylogenetic analysis, Kpg3Gr was identified as "Indian VT" subtype which is distinct from the Asian and the Western VT subtype within diversified VT genotype. The recombination detecting-program, RDP4 detected Indian isolates Kat1, B5, B165 and G28 as recombinants, where G28 as strong recombinant. The present study determined the occurrence of at least four CTV genotypes, B5 (distinct), B165 (T68 type) G28 (distinct) and Kpg3Gr in citrus growing regions of India.
Collapse
Affiliation(s)
- Kajal K Biswas
- 1Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Supratik Palchoudhury
- 1Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Susheel K Sharma
- 1Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India.,2ICAR Research Complex for NEH Region, Manipur Centre, Lamphelpat, Imphal, 795004 India
| | - Bikram Saha
- 1Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Shruti Godara
- 1Division of Plant Pathology, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Dilip K Ghosh
- ICAR-Central Citrus Research Institute, Nagpur, 440033 India
| | - Manjunath L Keremane
- 4USDA-ARS, National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA 92507 USA
| |
Collapse
|
40
|
Yokomi R, Selvaraj V, Maheshwari Y, Chiumenti M, Saponari M, Giampetruzzi A, Weng Z, Xiong Z, Hajeri S. Molecular and biological characterization of a novel mild strain of citrus tristeza virus in California. Arch Virol 2018; 163:1795-1804. [PMID: 29550931 DOI: 10.1007/s00705-018-3799-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/28/2018] [Indexed: 10/17/2022]
Abstract
Strain differentiating marker profiles of citrus tristeza virus (CTV) isolates from California have shown the presence of multiple genotypes. To better define the genetic diversity involved, full-length genome sequences from four California CTV isolates were determined by small-interfering RNA sequencing. Phylogenetic analysis and nucleotide sequence comparisons differentiated these isolates into the genotypes VT (CA-VT-AT39), T30 (CA-T30-AT4), and a new strain called S1 (CA-S1-L and CA-S1-L65). S1 isolates had three common recombination events within portions of genes from VT, T36 and RB strains and were transmissible by Aphis gossypii. Virus indexing showed that CA-VT-AT39 could be classified as a severe strain, whereas CA-T30-AT4, CA-S1-L and CA-S1-L65 were mild. CA-VT-AT39, CA-S1-L, and CA-S1-L65 reacted with monoclonal antibody MCA13, whereas CA-T30-AT4 did not. RT-PCR and RT-qPCR detection assays for the S1 strain were developed and used to screen MCA13-reactive isolates in a CTV collection from central California collected from 1968 to 2011. Forty-two isolates were found to contain the S1 strain, alone or in combinations with other genotypes. BLAST and phylogenetic analysis of the S1 p25 gene region with other extant CTV sequences from the NCBI database suggested that putative S1-like isolates might occur elsewhere (e.g., China, South Korea, Turkey, Bosnia and Croatia). This information is important for CTV evolution, detection of specific strains, and cross-protection.
Collapse
Affiliation(s)
- Raymond Yokomi
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA, 93648-9757, USA.
| | - Vijayanandraj Selvaraj
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA, 93648-9757, USA
| | - Yogita Maheshwari
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA, 93648-9757, USA
| | - Michela Chiumenti
- Institute for Sustainable Plant Protection, Italian National Research Council, Sezione di Bari, Via Amendola 122/D, 70126, Bari, Italy
| | - Maria Saponari
- Institute for Sustainable Plant Protection, Italian National Research Council, Sezione di Bari, Via Amendola 122/D, 70126, Bari, Italy
| | - Annalisa Giampetruzzi
- Department of Soil Plant and Food Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126, Bari, Italy
| | - Ziming Weng
- School of Plant Sciences and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-7186, USA
| | - Zhongguo Xiong
- School of Plant Sciences and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-7186, USA
| | - Subhas Hajeri
- Citrus Pest Detection Program, Central California Tristeza Eradication Agency, 22847 Road 140, Tulare, CA, 93274-9367, USA
| |
Collapse
|
41
|
Gómez‐Muñoz N, Velázquez K, Vives MC, Ruiz‐Ruiz S, Pina JA, Flores R, Moreno P, Guerri J. The resistance of sour orange to Citrus tristeza virus is mediated by both the salicylic acid and RNA silencing defence pathways. MOLECULAR PLANT PATHOLOGY 2017; 18:1253-1266. [PMID: 27588892 PMCID: PMC6638288 DOI: 10.1111/mpp.12488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 05/08/2023]
Abstract
Citrus tristeza virus (CTV) induces in the field the decline and death of citrus varieties grafted on sour orange (SO) rootstock, which has forced the use of alternative decline-tolerant rootstocks in affected countries, despite the highly desirable agronomic features of the SO rootstock. Declining citrus plants display phloem necrosis below the bud union. In addition, SO is minimally susceptible to CTV compared with other citrus varieties, suggesting partial resistance of SO to CTV. Here, by silencing different citrus genes with a Citrus leaf blotch virus-based vector, we have examined the implication of the RNA silencing and salicylic acid (SA) defence pathways in the resistance of SO to CTV. Silencing of the genes RDR1, NPR1 and DCL2/DCL4, associated with these defence pathways, enhanced virus spread and accumulation in SO plants in comparison with non-silenced controls, whereas silencing of the genes NPR3/NPR4, associated with the hypersensitive response, produced a slight decrease in CTV accumulation and reduced stunting of SO grafted on CTV-infected rough lemon plants. We also found that the CTV RNA silencing suppressors p20 and p23 also suppress the SA signalling defence, with the suppressor activity being higher in the most virulent isolates.
Collapse
Affiliation(s)
- Neus Gómez‐Muñoz
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - Karelia Velázquez
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - María Carmen Vives
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - Susana Ruiz‐Ruiz
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - José Antonio Pina
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC), Universidad Politécnica de Valencia, Avenida de los NaranjosValencia46022Spain
| | - Pedro Moreno
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - José Guerri
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| |
Collapse
|
42
|
Fu S, Shao J, Paul C, Zhou C, Hartung JS. Transcriptional analysis of sweet orange trees co-infected with 'Candidatus Liberibacter asiaticus' and mild or severe strains of Citrus tristeza virus. BMC Genomics 2017; 18:837. [PMID: 29089035 PMCID: PMC5664567 DOI: 10.1186/s12864-017-4174-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Citrus worldwide is threatened by huanglongbing (HLB) and tristeza diseases caused by 'Candidatus Liberibacter asiaticus' (CaLas) and Citrus tristeza virus (CTV). Although the pathogens are members of the α-proteobacteria and Closteroviridae, respectively, both are restricted to phloem cells in infected citrus and are transmitted by insect vectors. The response of sweet orange to single infection by either of these two pathogens has been characterized previously by global gene expression analysis. But because of the ubiquity of these pathogens where the diseases occur, co-infection by both pathogens is very common and could lead to increased disease severity based on synergism. We therefore co-inoculated sweet orange trees with CaLas and either a mild or a severe strain of CTV, and measured changes of gene expression in host plants. RESULTS In plants infected with CaLas-B232, the overall alteration in gene expression was much greater in plants co-inoculated with the severe strain of CTV, B6, than when co-infected with the mild strain of CTV, B2. Plants co-infected with CaLas-B232 and either strain of CTV died but trees co-infected with CTV-B2 survived much longer than those co-infected with CTV-B6. Many important pathways were perturbed by both CTV-B2/CaLas-B232 and/or CTV-B6/CaLas-B232, but always more severely by CTV-B6/CaLas-B232. Genes related to cell wall modification and metal transport responded differently to infection by the pathogens in combination than by the same pathogens singly. The expressions of genes encoding phloem proteins and sucrose loading proteins were also differentially altered in response to CTV-B2 or CTV-B6 in combination with CaLas-B232, leading to different phloem environments in plants co-infected by CaLas and mild or severe CTV. CONCLUSIONS Many host genes were expressed differently in response to dual infection as compared to single infections with the same pathogens. Interactions of the pathogens within the host may lead to a better or worse result for the host plant. CTV-B6 may exert a synergistic effect with CaLas-B232 in weakening the plant; on the other hand, the responses activated by the mild strain CTV-B2 may provide some beneficial effects against CaLas-B232 by increasing the defense response of the host.
Collapse
Affiliation(s)
- Shimin Fu
- Citrus Research Institute, Southwest University, Chongqing, China
- United States Department of Agriculture-Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD USA
| | - Jonathan Shao
- United States Department of Agriculture-Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD USA
| | - Cristina Paul
- United States Department of Agriculture-Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD USA
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Chongqing, China
| | - John S. Hartung
- United States Department of Agriculture-Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD USA
| |
Collapse
|
43
|
Mastin AJ, van den Bosch F, Gottwald TR, Alonso Chavez V, Parnell SR. A method of determining where to target surveillance efforts in heterogeneous epidemiological systems. PLoS Comput Biol 2017; 13:e1005712. [PMID: 28846676 PMCID: PMC5591013 DOI: 10.1371/journal.pcbi.1005712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 09/08/2017] [Accepted: 08/02/2017] [Indexed: 12/04/2022] Open
Abstract
The spread of pathogens into new environments poses a considerable threat to human, animal, and plant health, and by extension, human and animal wellbeing, ecosystem function, and agricultural productivity, worldwide. Early detection through effective surveillance is a key strategy to reduce the risk of their establishment. Whilst it is well established that statistical and economic considerations are of vital importance when planning surveillance efforts, it is also important to consider epidemiological characteristics of the pathogen in question-including heterogeneities within the epidemiological system itself. One of the most pronounced realisations of this heterogeneity is seen in the case of vector-borne pathogens, which spread between 'hosts' and 'vectors'-with each group possessing distinct epidemiological characteristics. As a result, an important question when planning surveillance for emerging vector-borne pathogens is where to place sampling resources in order to detect the pathogen as early as possible. We answer this question by developing a statistical function which describes the probability distributions of the prevalences of infection at first detection in both hosts and vectors. We also show how this method can be adapted in order to maximise the probability of early detection of an emerging pathogen within imposed sample size and/or cost constraints, and demonstrate its application using two simple models of vector-borne citrus pathogens. Under the assumption of a linear cost function, we find that sampling costs are generally minimised when either hosts or vectors, but not both, are sampled.
Collapse
Affiliation(s)
- Alexander J. Mastin
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Greater Manchester, United Kingdom
| | - Frank van den Bosch
- Computational and Systems Biology, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Timothy R. Gottwald
- USDA Agricultural Research Service, Fort Pierce, Florida, United States of America
| | - Vasthi Alonso Chavez
- Computational and Systems Biology, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Stephen R. Parnell
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
44
|
Ziebell H, MacDiarmid R. Prospects for engineering and improvement of cross-protective virus strains. Curr Opin Virol 2017; 26:8-14. [PMID: 28743041 DOI: 10.1016/j.coviro.2017.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/21/2017] [Indexed: 11/17/2022]
Abstract
Mild strain cross-protection is currently an important method for the production of high quality plant products; despite challenge from severe virus isolates the initial protecting strain precludes symptom development. The mechanism of cross-protection is not yet resolved as RNA silencing does not sufficiently explain the phenomenon. Six requirements have been put forward to ensure long-lasting protection. We propose two additional requirements for effective and durable mild strain cross-protection; mild strains based on knowledge of the mechanism and consideration of impacts to consumers. Future research on predicting phenotype from genotype and understanding virus-plant and virus-vector interactions will enable improvement of cross-protective strains. Shared international databases of whole ecosystem interactions across a wide range of virus patho- and symbiotic-systems will form the basis for making step-change advances towards our collective ability to engineer and improve mild strain cross-protection.
Collapse
Affiliation(s)
- Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Messeweg 11-12, 38104 Braunschweig, Germany.
| | - Robin MacDiarmid
- New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, New Zealand
| |
Collapse
|
45
|
Yokomi RK, Selvaraj V, Maheshwari Y, Saponari M, Giampetruzzi A, Chiumenti M, Hajeri S. Identification and Characterization of Citrus tristeza virus Isolates Breaking Resistance in Trifoliate Orange in California. PHYTOPATHOLOGY 2017; 107:901-908. [PMID: 28453412 DOI: 10.1094/phyto-01-17-0007-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Most Citrus tristeza virus (CTV) isolates in California are biologically mild and symptomless in commercial cultivars on CTV tolerant rootstocks. However, to better define California CTV isolates showing divergent serological and genetic profiles, selected isolates were subjected to deep sequencing of small RNAs. Full-length sequences were assembled, annotated and trifoliate orange resistance-breaking (RB) isolates of CTV were identified. Phylogenetic relationships based on their full genomes placed three isolates in the RB clade: CA-RB-115, CA-RB-AT25, and CA-RB-AT35. The latter two isolates were obtained by aphid transmission from Murcott and Dekopon trees, respectively, containing CTV mixtures. The California RB isolates were further distinguished into two subclades. Group I included CA-RB-115 and CA-RB-AT25 with 99% nucleotide sequence identity with RB type strain NZRB-G90; and group II included CA-RB-AT35 with 99 and 96% sequence identity with Taiwan Pumelo/SP/T1 and HA18-9, respectively. The RB phenotype was confirmed by detecting CTV replication in graft-inoculated Poncirus trifoliata and transmission from P. trifoliata to sweet orange. The California RB isolates induced mild symptoms compared with severe isolates in greenhouse indexing tests. Further examination of 570 CTV accessions, acquired from approximately 1960 and maintained in planta at the Central California Tristeza Eradication Agency, revealed 16 RB positive isolates based on partial p65 sequences. Six isolates collected from 1992 to 2011 from Tulare and Kern counties were CA-RB-115-like; and 10 isolates collected from 1968 to 2010 from Riverside, Fresno, and Kern counties were CA-RB-AT35-like. The presence of the RB genotype is relevant because P. trifoliata and its hybrids are the most popular rootstocks in California.
Collapse
Affiliation(s)
- Raymond K Yokomi
- First, second, and third authors: U.S. Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757; fourth and sixth authors: Institute for Sustainable Plant Protection, National Research Council, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy; fifth author: Department of Soil Plant and Food Science, University of Bari, Via Amendola 165/A, 70126 Bari, Italy; and seventh author: Citrus Pest Detection Program, Central California Tristeza Eradication Agency, 22847 Road 140, Tulare, CA 93274-9367
| | - Vijayanandraj Selvaraj
- First, second, and third authors: U.S. Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757; fourth and sixth authors: Institute for Sustainable Plant Protection, National Research Council, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy; fifth author: Department of Soil Plant and Food Science, University of Bari, Via Amendola 165/A, 70126 Bari, Italy; and seventh author: Citrus Pest Detection Program, Central California Tristeza Eradication Agency, 22847 Road 140, Tulare, CA 93274-9367
| | - Yogita Maheshwari
- First, second, and third authors: U.S. Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757; fourth and sixth authors: Institute for Sustainable Plant Protection, National Research Council, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy; fifth author: Department of Soil Plant and Food Science, University of Bari, Via Amendola 165/A, 70126 Bari, Italy; and seventh author: Citrus Pest Detection Program, Central California Tristeza Eradication Agency, 22847 Road 140, Tulare, CA 93274-9367
| | - Maria Saponari
- First, second, and third authors: U.S. Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757; fourth and sixth authors: Institute for Sustainable Plant Protection, National Research Council, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy; fifth author: Department of Soil Plant and Food Science, University of Bari, Via Amendola 165/A, 70126 Bari, Italy; and seventh author: Citrus Pest Detection Program, Central California Tristeza Eradication Agency, 22847 Road 140, Tulare, CA 93274-9367
| | - Annalisa Giampetruzzi
- First, second, and third authors: U.S. Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757; fourth and sixth authors: Institute for Sustainable Plant Protection, National Research Council, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy; fifth author: Department of Soil Plant and Food Science, University of Bari, Via Amendola 165/A, 70126 Bari, Italy; and seventh author: Citrus Pest Detection Program, Central California Tristeza Eradication Agency, 22847 Road 140, Tulare, CA 93274-9367
| | - Michela Chiumenti
- First, second, and third authors: U.S. Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757; fourth and sixth authors: Institute for Sustainable Plant Protection, National Research Council, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy; fifth author: Department of Soil Plant and Food Science, University of Bari, Via Amendola 165/A, 70126 Bari, Italy; and seventh author: Citrus Pest Detection Program, Central California Tristeza Eradication Agency, 22847 Road 140, Tulare, CA 93274-9367
| | - Subhas Hajeri
- First, second, and third authors: U.S. Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757; fourth and sixth authors: Institute for Sustainable Plant Protection, National Research Council, Sezione di Bari, Via Amendola 165/A, 70126 Bari, Italy; fifth author: Department of Soil Plant and Food Science, University of Bari, Via Amendola 165/A, 70126 Bari, Italy; and seventh author: Citrus Pest Detection Program, Central California Tristeza Eradication Agency, 22847 Road 140, Tulare, CA 93274-9367
| |
Collapse
|
46
|
Cui H, Wang A. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:344-356. [PMID: 27565765 PMCID: PMC5316922 DOI: 10.1111/pbi.12629] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/23/2016] [Accepted: 08/22/2016] [Indexed: 05/17/2023]
Abstract
RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees.
Collapse
Affiliation(s)
- Hongguang Cui
- London Research and Development CentreAgriculture and Agri‐Food Canada (AAFC)LondonONCanada
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food Canada (AAFC)LondonONCanada
| |
Collapse
|
47
|
Meng B, Martelli GP, Golino DA, Fuchs M. Biotechnology Applications of Grapevine Viruses. GRAPEVINE VIRUSES: MOLECULAR BIOLOGY, DIAGNOSTICS AND MANAGEMENT 2017. [PMCID: PMC7120854 DOI: 10.1007/978-3-319-57706-7_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant virus genomes are engineered as vectors for functional genomics and production of foreign proteins. The application of plant virus vectors is of potential interest to the worldwide, multibillion dollar, grape and wine industries. These applications include grapevine functional genomics, pathogen control, and production of beneficial proteins such as vaccines and enzymes. However, grapevine virus biology exerts certain limitations on the utility of the virus-derived gene expression and RNA interference vectors. As is typical for viruses infecting woody plants, several grapevine viruses exhibit prolonged infection cycles and relatively low overall accumulation levels, mainly because of their phloem-specific pattern of systemic infection. Here we consider the biotechnology potential of grapevine virus vectors with a special emphasis on members of the families Closteroviridae and Betaflexiviridae.
Collapse
Affiliation(s)
- Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario Canada
| | - Giovanni P. Martelli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Deborah A. Golino
- Foundation Plant Services, University of California, Davis, California USA
| | - Marc Fuchs
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, New York USA
| |
Collapse
|
48
|
Fu S, Shao J, Zhou C, Hartung JS. Co-infection of Sweet Orange with Severe and Mild Strains of Citrus tristeza virus Is Overwhelmingly Dominated by the Severe Strain on Both the Transcriptional and Biological Levels. FRONTIERS IN PLANT SCIENCE 2017; 8:1419. [PMID: 28912786 PMCID: PMC5583216 DOI: 10.3389/fpls.2017.01419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/31/2017] [Indexed: 05/18/2023]
Abstract
Citrus tristeza is one of the most destructive citrus diseases and is caused by the phloem-restricted Closterovirus, Citrus tristeza virus. Mild strain CTV-B2 does not cause obvious symptoms on indicators whereas severe strain CTV-B6 causes symptoms, including stem pitting, cupping, yellowing, and stiffening of leaves, and vein corking. Our laboratory has previously characterized changes in transcription in sweet orange separately infected with CTV-B2 and CTV-B6. In the present study, transcriptome analysis of Citrus sinensis in response to double infection by CTV-B2 and CTV-B6 was carried out. Four hundred and eleven transcripts were up-regulated and 356 transcripts were down-regulated prior to the onset of symptoms. Repressed genes were overwhelmingly associated with photosynthesis, and carbon and nucleic acid metabolism. Expression of genes related to the glycolytic, oxidative pentose phosphate (OPP), tricarboxylic acid cycle (TCA) pathways, tetrapyrrole synthesis, redox homeostasis, nucleotide metabolism, protein synthesis and post translational protein modification and folding, and cell organization were all reduced. Ribosomal composition was also greatly altered in response to infection by CTV-B2/CTV-B6. Genes that were induced were related to cell wall structure, secondary and hormone metabolism, responses to biotic stress, regulation of transcription, signaling, and secondary metabolism. Transport systems dedicated to metal ions were especially disturbed and ZIPs (Zinc Transporter Precursors) showed different expression patterns in response to co-infection by CTV-B2/CTV-B6 and single infection by CTV-B2. Host plants experienced root decline that may have contributed to Zn, Fe, and other nutrient deficiencies. Though defense responses, such as, strengthening of the cell wall, alteration of hormone metabolism, secondary metabolites, and signaling pathways, were activated, these defense responses did not suppress the spread of the pathogens and the development of symptoms. The mild strain CTV-B2 did not provide a useful level of cross-protection to citrus against the severe strain CTV-B6.
Collapse
Affiliation(s)
- Shimin Fu
- Citrus Research Institute, Southwest UniversityChongqing, China
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research ServiceBeltsville, MD, United States
| | - Jonathan Shao
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research ServiceBeltsville, MD, United States
| | - Changyong Zhou
- Citrus Research Institute, Southwest UniversityChongqing, China
| | - John S. Hartung
- Molecular Plant Pathology Laboratory, United States Department of Agriculture-Agricultural Research ServiceBeltsville, MD, United States
- *Correspondence: John S. Hartung
| |
Collapse
|
49
|
Understanding superinfection exclusion by complex populations of Citrus tristeza virus. Virology 2016; 499:331-339. [DOI: 10.1016/j.virol.2016.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/28/2016] [Accepted: 10/01/2016] [Indexed: 12/20/2022]
|
50
|
Mascia T, Gallitelli D. Synergies and antagonisms in virus interactions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:176-192. [PMID: 27717453 DOI: 10.1016/j.plantsci.2016.07.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 05/25/2023]
Abstract
Metagenomic surveys and data from next generation sequencing revealed that mixed infections among plant viruses are probably a rule rather than an exception in natural pathosystems. The documented cases may range from synergism to antagonism, which may depend from the spatiotemporal order of arrival of the viruses on the host and upon the host itself. In synergistic interactions, the measurable differences in replication, phenotypic and cytopathological changes, cellular tropism, within host movement, and transmission rate of one of the two viruses or both are increased. Conversely, a decrease in replication, or inhibition of one or more of the above functions by one virus against the other, leads to an antagonistic interaction. Viruses may interact directly and by transcomplementation of defective functions or indirectly, through responses mediated by the host like the defense mechanism based on RNA silencing. Outcomes of these interactions can be applied to the risk assessment of transgenic crops expressing viral proteins, or cross-protected crops for the identification of potential hazards. Prior to experimental evidence, mathematical models may help in forecasting challenges deriving from the great variety of pathways of synergistic and antagonistic interactions. Actually, it seems that such predictions do not receive sufficient credit in the framework of agriculture.
Collapse
Affiliation(s)
- Tiziana Mascia
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; Istituto del CNR per la Protezione sostenibile delle Piante, Unità Operativa di Supporto di Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - Donato Gallitelli
- Dipartimento di Scienze del Suolo della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; Istituto del CNR per la Protezione sostenibile delle Piante, Unità Operativa di Supporto di Bari, Via Amendola 165/A, 70126 Bari, Italy.
| |
Collapse
|