1
|
Castón JR, Luque D. Conventional Electron Microscopy, Cryogenic Electron Microscopy, and Cryogenic Electron Tomography of Viruses. Subcell Biochem 2024; 105:81-134. [PMID: 39738945 DOI: 10.1007/978-3-031-65187-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryogenic electron microscopy (cryo-EM) preserves the native hydrated state. Combined with image processing and three-dimensional reconstruction techniques, cryo-EM provides three-dimensional maps of these macromolecular complexes from projection images, at atomic or near-atomic resolutions. Cryo-EM is also a major technique in structural biology for dynamic studies of functional complexes, which are often unstable, flexible, scarce, or transient in their native environments. State-of-the-art techniques in structural virology now extend beyond purified symmetric capsids and focus on the asymmetric elements such as the packaged genome and minor structural proteins that were previously missed. As a tool, cryo-EM also complements high-resolution techniques such as X-ray diffraction and NMR spectroscopy; these synergistic hybrid approaches provide important new information. Three-dimensional cryogenic electron tomography (cryo-ET), a variation of cryo-EM, goes further, and allows the study of pleomorphic and complex viruses not only in their physiological state but also in their natural environment in the cell, thereby bridging structural studies at the molecular and cellular levels. Cryo-EM and cryo-ET have been applied successfully in basic research, shedding light on fundamental aspects of virus biology and providing insights into threatening viruses, including SARS-CoV-2, responsible for the COVID-19 pandemic.
Collapse
Affiliation(s)
- José R Castón
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, Madrid, Spain.
| | - Daniel Luque
- School of Biomedical Sciences, The University of New South Wales, Sydney, NSW, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
2
|
King J. Using T4 Genetics and Laemmli's Development of High Resolution SDS Gel Electrophoresis to Reveal Structural Protein Interactions Controlling Protein Folding and Phage Self-Assembly. J Biol Chem 2022; 298:102463. [PMID: 36067882 PMCID: PMC9576892 DOI: 10.1016/j.jbc.2022.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/03/2022] Open
Abstract
One of the most transformative experimental techniques in the rise of modern molecular biology and biochemistry was the development of high resolution Sodium Dodecyl Sulfate (SDS) poly acrylamide gel electrophoresis, which allowed separation of proteins - including structural proteins - in complex mixtures according to their molecular weights. Its development was intimately tied to investigations of the control of virus assembly within phage-infected cells. The method was developed by Ulrich K. Laemmli working in the virus structural group led by Aaron Klug at the famed Medical Research Council Laboratory for Molecular Biology (LMB) at Cambridge, UK. While Laemmli was tackling T4 head assembly, I sat at the next bench working on T4 tail assembly. To date, Laemmli's original paper has been cited almost 300,000 times. His gel procedure and our cooperation allowed us to sort out the sequential protein-protein interactions controlling the viral self-assembly pathways. It is still not fully appreciated that this control involved protein conformational change induced by interaction with an edge of the growing structure. Subsequent efforts of my students and I to understand how temperature sensitive mutations interfered with assembly were important in revealing the intracellular off-pathway aggregation processes competing with productive protein folding. These misfolding processes slowed the initial productivity of the biotechnology industry. The article below describes the scientific origin, context and sociology that supported these advances in protein biochemistry, protein expression, and virus assembly. The cooperation and collaboration that was integral to both the LMB culture and phage genetics fields were key to these endeavors.
Collapse
|
3
|
Maciá E. Aperiodic crystals in biology. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:123001. [PMID: 34920447 DOI: 10.1088/1361-648x/ac443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Biological systems display a broad palette of hierarchically ordered designs spanning over many orders of magnitude in size. Remarkably enough, periodic order, which profusely shows up in non-living ordered compounds, plays a quite subsidiary role in most biological structures, which can be appropriately described in terms of the more general aperiodic crystal notion instead. In this topical review I shall illustrate this issue by considering several representative examples, including botanical phyllotaxis, the geometry of cell patterns in tissues, the morphology of sea urchins, or the symmetry principles underlying virus architectures. In doing so, we will realize that albeit the currently adopted quasicrystal notion is not general enough to properly account for the rich structural features one usually finds in biological arrangements of matter, several mathematical tools and fundamental notions belonging to the aperiodic crystals science toolkit can provide a useful modeling framework to this end.
Collapse
Affiliation(s)
- Enrique Maciá
- Dpto. Física de Materiales, Facultad CC. Fisicas, Universidad Complutense de Madrid, E-28040, Spain
| |
Collapse
|
4
|
Hua T, Wang RM, Zhang XC, Zhao BB, Fan SB, Liu DX, Wang W. ZNF76 predicts prognosis and response to platinum chemotherapy in human ovarian cancer. Biosci Rep 2021; 41:BSR20212026. [PMID: 34793589 PMCID: PMC8661506 DOI: 10.1042/bsr20212026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OV) is the most lethal gynecologic malignancy. One major reason of the high mortality of the disease is due to platinum-based chemotherapy resistance. Increasing evidence reveal the important biological functions and clinical significance of zinc finger proteins (ZNFs) in OV. In the present study, the relationship between the zinc finger protein 76 (ZNF76) and clinical outcome and platinum resistance in patients with OV was explored. We further analyzed ZNF76 expression via multiple gene expression databases and identified its functional networks using cBioPortal. RT-qPCR and IHC assay shown that the ZNF76 mRNA and protein expression were significantly lower in OV tumor than that in normal ovary tissues. A strong relationship between ZNF76 expression and platinum resistance was determined in patients with OV. The low expression of ZNF76 was associated with worse survival in OV. Multivariable analysis showed that the low expression of ZNF76 was an independent factor predicting poor outcome in OV. The prognosis value of ZNF76 in pan-cancer was validated from multiple cohorts using the PrognoScan database and GEPIA 2. A gene-clinical nomogram was constructed by multivariate cox regression analysis, combined with clinical characterization and ZNF76 expression in TCGA. Functional network analysis suggested that ZNF76 was involved in several biology progressions which associated with OV. Ten hub genes (CDC5L, DHX16, SNRPC, LSM2, CUL7, PFDN6, VARS, HSD17B8, PPIL1, and RGL2) were identified as positively associated with the expression of ZNF76 in OV. In conclusion, ZNF76 may serve as a promising prognostic-related biomarker and predict the response to platinum in OV patients.
Collapse
Affiliation(s)
- Tian Hua
- Department of Gynaecology, Affiliated Xing Tai People Hospital of Hebei Medial University 399 Shunde Road, Xingtai 054001, China
| | - Rui-min Wang
- Department of Gynaecology, Affiliated Xing Tai People Hospital of Hebei Medial University 399 Shunde Road, Xingtai 054001, China
| | - Xiao-chong Zhang
- Department of Clinical laboratory, Affiliated Xingtai People Hospital of Hebei Medial University, 399 Shunde Road, Xingtai 054001, China
| | - Bei-bei Zhao
- Department of Gynaecology, Affiliated Xing Tai People Hospital of Hebei Medial University 399 Shunde Road, Xingtai 054001, China
| | - Shao-bei Fan
- Department of Gynaecology, Affiliated Xing Tai People Hospital of Hebei Medial University 399 Shunde Road, Xingtai 054001, China
| | - Deng-xiang Liu
- Department of oncology, Affiliated Xingtai People Hospital of Hebei Medial University 399 Shunde Road, Xingtai 054001, China
| | - Wei Wang
- Department of Obstetrics and Gynaecology, Hebei Medical University, Second Hospital, Shijiazhuang 050001, China
| |
Collapse
|
5
|
Solé R, Sardanyés J, Elena SF. Phase transitions in virology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:115901. [PMID: 34584031 DOI: 10.1088/1361-6633/ac2ab0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Viruses have established relationships with almost every other living organism on Earth and at all levels of biological organization: from other viruses up to entire ecosystems. In most cases, they peacefully coexist with their hosts, but in most relevant cases, they parasitize them and induce diseases and pandemics, such as the AIDS and the most recent avian influenza and COVID-19 pandemic events, causing a huge impact on health, society, and economy. Viruses play an essential role in shaping the eco-evolutionary dynamics of their hosts, and have been also involved in some of the major evolutionary innovations either by working as vectors of genetic information or by being themselves coopted by the host into their genomes. Viruses can be studied at different levels of biological organization, from the molecular mechanisms of genome replication, gene expression and encapsidation, to global pandemics. All these levels are different and yet connected through the presence of threshold conditions allowing for the formation of a capsid, the loss of genetic information or epidemic spreading. These thresholds, as occurs with temperature separating phases in a liquid, define sharp qualitative types of behaviour. Thesephase transitionsare very well known in physics. They have been studied by means of simple, but powerful models able to capture their essential properties, allowing us to better understand them. Can the physics of phase transitions be an inspiration for our understanding of viral dynamics at different scales? Here we review well-known mathematical models of transition phenomena in virology. We suggest that the advantages of abstract, simplified pictures used in physics are also the key to properly understanding the origins and evolution of complexity in viruses. By means of several examples, we explore this multilevel landscape and how minimal models provide deep insights into a diverse array of problems. The relevance of these transitions in connecting dynamical patterns across scales and their evolutionary and clinical implications are outlined.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra-PRBB, Dr Aiguader 80, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, United States of America
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Dynamical Systems and Computational Virology, CSIC Associated Unit, Institute for Integrative Systems Biology (I2SysBio)-CRM, Spain
| | - Santiago F Elena
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, United States of America
- Evolutionary Systems Virology Lab (I2SysBio), CSIC-Universitat de València, Catedrático Agustín Escardino 9, Paterna, 46980 València, Spain
| |
Collapse
|
6
|
Wang X, Yan L, Wang B, Qian Y, Wang Z, Wu W. Comparative Proteomic Analysis of Grapevine Rootstock in Response to Waterlogging Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:749184. [PMID: 34777428 PMCID: PMC8589030 DOI: 10.3389/fpls.2021.749184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Waterlogging severely affects global agricultural production. Clarifying the regulatory mechanism of grapevine in response to waterlogging stress will help to improve the waterlogging tolerance of grapevine. In the present study, the physiological and proteomic responses of SO4 grapevine rootstock to different waterlogging tolerances were comparatively assayed. The results showed that the activities of SOD and POD first increased and then decreased, while the change trend of CAT and APX activities was the opposite. In addition, the MDA and H2O2 contents increased after waterlogging treatment, but the chlorophyll a and chlorophyll b contents decreased. A total of 5,578 grapevine proteins were identified by the use of the tandem mass tag (TMT) labeling technique. Among them, 214 (103 and 111 whose expression was upregulated and downregulated, respectively), 314 (129 and 185 whose expression was upregulated and downregulated, respectively), and 529 (248 and 281 whose expression was upregulated and downregulated, respectively) differentially expressed proteins (DEPs) were identified in T0d vs. T10d, T10d vs. T20d, and T0d vs. T20d comparison groups, respectively. Enrichment analysis showed that these DEPs were mainly involved in glutathione metabolism, carbon fixation, amino sugar and nucleotide sugar metabolism, biosynthesis of amino acids, photosynthesis, carbon metabolism, starch, and sucrose metabolism, galactose metabolism, protein processing and ribosomes. To further verify the proteomic data, the expression of corresponding genes that encode eight DEPs was confirmed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). The results of this study presented an important step toward understanding the resistance mechanisms of grapevine in response to waterlogging stress at the proteome level.
Collapse
|
7
|
Liljas A. Crystallography of the past and in the future. CRYSTALLOGR REV 2020. [DOI: 10.1080/0889311x.2020.1758076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Anders Liljas
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Chikhirzhina EV, Starkova TY, Polyanichko AM. The Role of Linker Histones in Chromatin Structural Organization. 2. Interaction with DNA and Nuclear Proteins. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920020049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Hu J, Ren B, Dong S, Liu P, Zhao B, Zhang J. Comparative proteomic analysis reveals that exogenous 6-benzyladenine (6-BA) improves the defense system activity of waterlogged summer maize. BMC PLANT BIOLOGY 2020; 20:44. [PMID: 31996151 PMCID: PMC6988316 DOI: 10.1186/s12870-020-2261-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/20/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Exogenous 6-benzyladenine (6-BA) could improve leaf defense system activity. In order to better understand the regulation mechanism of exogenous 6-benzyladenine (6-BA) on waterlogged summer maize, three treatments including control (CK), waterlogging at the third leaf stage for 6 days (V3-6), and application of 100 mg dm- 3 6-BA after waterlogging for 6 days (V3-6-B), were employed using summer maize hybrid DengHai 605 (DH605) as the experimental material. We used a labeling liquid chromatography-based quantitative proteomics approach with tandem mass tags to determine the changes in leaf protein abundance level at the tasseling stage. RESULTS Waterlogging significantly hindered plant growth and decreased the activities of SOD, POD and CAT. In addition, the activity of LOX was significantly increased after waterlogging. As a result, the content of MDA and H2O2 was significantly increased which incurred serious damages on cell membrane and cellular metabolism of summer maize. And, the leaf emergence rate, plant height and grain yield were significantly decreased by waterlogging. However, application of 6-BA effectively mitigated these adverse effects induced by waterlogging. Compared with V3-6, SOD, POD and CAT activity of V3-6-B were increased by 6.9, 12.4, and 18.5%, LOX were decreased by 13.6%. As a consequence, the contents of MDA and H2O2 in V3-6-B were decreased by 22.1 and 17.2%, respectively, compared to that of V3-6. In addition, the leaf emergence rate, plant height and grain yield were significantly increased by application of 6-BA. Based on proteomics profiling, the proteins involved in protein metabolism, ROS scavenging and fatty acid metabolism were significantly regulated by 6-BA, which suggested that application of 6-BA exaggerated the defensive response of summer maize at proteomic level. CONCLUSIONS These results demonstrated that 6-BA had contrastive effects on waterlogged summer maize. By regulating key proteins related to ROS scavenging and fatty acid metabolism, 6-BA effectively increased the defense system activity of waterlogged summer maize, then balanced the protein metabolism and improved the plant physiological traits and grain yield.
Collapse
Affiliation(s)
- Juan Hu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Baizhao Ren
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Shuting Dong
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Peng Liu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Bin Zhao
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, Shandong 271018 People’s Republic of China
| |
Collapse
|
10
|
Wehner M, Würthner F. Supramolecular polymerization through kinetic pathway control and living chain growth. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0153-8] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Dauter Z, Jaskolski M. On the helical arrangements of protein molecules. Protein Sci 2017; 27:643-652. [PMID: 29194829 DOI: 10.1002/pro.3356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/22/2017] [Accepted: 11/28/2017] [Indexed: 11/09/2022]
Abstract
Helical structures are prevalent in biology. In the PDB, there are many examples where protein molecules are helically arranged, not only according to strict crystallographic screw axes but also according to approximate noncrystallographic screws. The preponderance of such screws is rather striking as helical arrangements in crystals must preserve an integer number of subunits per turn, while intuition and simple packing arguments would seem to favor fractional helices. The article provides insights into such questions, based on stereochemistry, trigonometry, and topology, and illustrates the findings with concrete PDB structures. Updated statistics of Sohncke space groups in the PDB are also presented.
Collapse
Affiliation(s)
- Zbigniew Dauter
- Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, Illinois, 60439
| | - Mariusz Jaskolski
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, 61-614, Poland.,Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| |
Collapse
|
12
|
Zhang H, Li T. Effects of spermidine and ATP on stabilities of chromatosomes and histone H1-depleted chromatosomes. Bioorg Med Chem Lett 2017; 27:1149-1153. [PMID: 28169161 DOI: 10.1016/j.bmcl.2017.01.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 11/15/2022]
Abstract
It is shown in our FRET studies that both chromatosomes and histone H1-depleted chromatosomes exist in their arm-closed forms in the absence of spermidine. In the presence of spermidine, however, these two types of structural assemblies are converted into their arm-open forms. In addition, ATP as polyanion is capable of suppressing the polycationic effect of spermidine, thus facilitating re-formation of arm-closed forms of these two types of structural assemblies. Our studies therefore illustrate that conversion between arm-closed and arm-open forms of chromatosomes and histone H1-depleted chromatosomes can be manipulated by varying concentrations of polycationic spermidine and polyanionic ATP.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
13
|
Abstract
Oxygenic photosynthesis is the principal converter of sunlight into chemical energy on Earth. Cyanobacteria and plants provide the oxygen, food, fuel, fibers, and platform chemicals for life on Earth. The conversion of solar energy into chemical energy is catalyzed by two multisubunit membrane protein complexes, photosystem I (PSI) and photosystem II (PSII). Light is absorbed by the pigment cofactors, and excitation energy is transferred among the antennae pigments and converted into chemical energy at very high efficiency. Oxygenic photosynthesis has existed for more than three billion years, during which its molecular machinery was perfected to minimize wasteful reactions. Light excitation transfer and singlet trapping won over fluorescence, radiation-less decay, and triplet formation. Photosynthetic reaction centers operate in organisms ranging from bacteria to higher plants. They are all evolutionarily linked. The crystal structure determination of photosynthetic protein complexes sheds light on the various partial reactions and explains how they are protected against wasteful pathways and why their function is robust. This review discusses the efficiency of photosynthetic solar energy conversion.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | | |
Collapse
|
14
|
Abstract
About 20 years ago, the first three-dimensional (3D) reconstructions at subnanometer (<10-Å) resolution of an icosahedral virus assembly were obtained by cryogenic electron microscopy (cryo-EM) and single-particle analysis. Since then, thousands of structures have been determined to resolutions ranging from 30 Å to near atomic (<4 Å). Almost overnight, the recent development of direct electron detectors and the attendant improvement in analysis software have advanced the technology considerably. Near-atomic-resolution reconstructions can now be obtained, not only for megadalton macromolecular complexes or highly symmetrical assemblies but also for proteins of only a few hundred kilodaltons. We discuss the developments that led to this breakthrough in high-resolution structure determination by cryo-EM and point to challenges that lie ahead.
Collapse
Affiliation(s)
- Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia;
| | | |
Collapse
|
15
|
Directly from the source: endogenous preparations of molecular machines. Curr Opin Struct Biol 2013; 23:319-25. [DOI: 10.1016/j.sbi.2013.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/06/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
16
|
Conventional electron microscopy, cryo-electron microscopy and cryo-electron tomography of viruses. Subcell Biochem 2013; 68:79-115. [PMID: 23737049 DOI: 10.1007/978-94-007-6552-8_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryo-electron microscopy (cryo-EM) preserves the native hydrated state. Combined with image processing and three-dimensional reconstruction techniques, cryo-EM provides 3D maps of these macromolecular complexes from projection images, at subnanometer to near-atomic resolutions. Cryo-EM is also a major technique in structural biology for dynamic studies of functional complexes, which are often unstable, flexible, scarce or transient in their native environments. As a tool, cryo-EM complements high-resolution techniques such as X-ray diffraction and NMR spectroscopy; these synergistic hybrid approaches provide important new information. Three-dimensional cryo-electron tomography goes further, and allows the study of viruses not only in their physiological state, but also in their natural environment in the cell, thereby bridging structural studies at the molecular and cellular levels.
Collapse
|
17
|
Verzele D, Madder A. Synthetic Progress in cMyc-Max Oncoprotein Miniaturization: Semi-Online Monitoring Gives Solid-Phase Access to Hydrophobic b(-HLH-)ZIP Peptidosteroid Tweezers. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Abstract
Is it possible to meaningfully comprehend the diversity of the viral world? We propose that it is. This is based on the observation that, although there is immense genomic variation, every infective virion is restricted by strict constraints in structure space (i.e., there are a limited number of ways to fold a protein chain, and only a small subset of these have the potential to construct a virion, the hallmark of a virus). We have previously suggested the use of structure for the higher-order classification of viruses, where genomic similarities are no longer observable. Here, we summarize the arguments behind this proposal, describe the current status of structural work, highlighting its power to infer common ancestry, and discuss the limitations and obstacles ahead of us. We also reflect on the future opportunities for a more concerted effort to provide high-throughput methods to facilitate the large-scale sampling of the virosphere.
Collapse
|
19
|
ElSawy KM, Twarock R, Verma CS, Caves LSD. Peptide inhibitors of viral assembly: a novel route to broad-spectrum antivirals. J Chem Inf Model 2012; 52:770-6. [PMID: 22390317 DOI: 10.1021/ci200467s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the potential of small peptide segments to function as broad-spectrum antiviral drug leads. We extracted the α-helical peptide segments that share common secondary-structure environments in the capsid protein-protein interfaces of three unrelated virus classes (PRD1-like, HK97-like, and BTV-like) that encompass different levels of pathogenicity to humans, animals, and plants. The potential for the binding of these peptides to the individual capsid proteins was then investigated using blind docking simulations. Most of the extracted α-helical peptides were found to interact favorably with one or more of the protein-protein interfaces within the capsid in all three classes of virus. Moreover, binding of these peptides to the interface regions was found to block one or more of the putative "hot spot" regions on the protein interface, thereby providing the potential to disrupt virus capsid assembly via competitive interaction with other capsid proteins. In particular, binding of the GDFNALSN peptide was found to block interface "hot spot" regions in most of the viruses, providing a potential lead for broad-spectrum antiviral drug therapy.
Collapse
Affiliation(s)
- Karim M ElSawy
- York Centre for Complex Systems Analysis (YCCSA), University of York, York YO10 5YW, UK
| | | | | | | |
Collapse
|
20
|
Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD. Top 10 plant viruses in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2011; 12:938-54. [PMID: 22017770 PMCID: PMC6640423 DOI: 10.1111/j.1364-3703.2011.00752.x] [Citation(s) in RCA: 609] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10.
Collapse
Affiliation(s)
- Karen-Beth G Scholthof
- Department of Plant Pathology and Microbiology, 2132 TAMU, Texas A&M University, College Station, TX 77843-2132, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Christofferson A, Zhao L, Sun H, Huang Z, Huang N. Theoretical studies of the base pair fidelity of selenium-modified DNA. J Phys Chem B 2011; 115:10041-8. [PMID: 21770426 DOI: 10.1021/jp204204x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The introduction of selenium into DNA in the place of oxygen provides a unique opportunity for studying the fidelity of DNA replication, as well as providing advantages in the growth of DNA crystals and the greater resolution of their structures. However, the atomic mechanisms of the relative stability and base pair recognition of the selenium-modified DNA are poorly understood. In the present study, quantum mechanics calculations were performed on base pairings, base stacking, and base-water interactions for both unmodified thymine and thymine with the 2-exo-oxygen replaced with selenium, and the results were used to develop and validate CHARMM force field parameters for the 2-Se-thymine. Subsequently, molecular dynamics simulations and free-energy perturbation calculations were performed on 11-base DNA sequences containing native thymine and the 2-Se-thymine. The calculated relative free-energy values are in good agreement with experimentally determined relative stability, where the 2-Se-thymine offers similar stability to T-A in cognate DNA, while it dramatically destabilizes the DNA containing the T-G mismatch base pair when 2-Se-thymine is incorporated. Thus, 2-Se-thymine largely increases the native T-A base pair fidelity by discouraging the T-G wobble pair. Insights into the high pairing specificity and the relative stability of selenium-modified DNA were obtained based on detailed structural and energetic analysis of molecular dynamics trajectories. Our studies move one step further toward an understanding of the high base pair fidelity and thermodynamic properties of Se-DNA in solution and in protein-DNA complexes.
Collapse
Affiliation(s)
- Andrew Christofferson
- National Institute of Biological Sciences, Beijing, No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District, Beijing 102206, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Jutz G, Böker A. Bionanoparticles as functional macromolecular building blocks – A new class of nanomaterials. POLYMER 2011. [DOI: 10.1016/j.polymer.2010.11.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|