1
|
Daimiel Naranjo I, Bhowmik A, Basukala D, Lo Gullo R, Mazaheri Y, Kapetas P, Eskreis-Winkler S, Pinker K, Thakur SB. Assessment of Hypoxia in Breast Cancer: Emerging Functional MR Imaging and Spectroscopy Techniques and Clinical Applications. J Magn Reson Imaging 2025; 61:83-96. [PMID: 38703143 DOI: 10.1002/jmri.29424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Breast cancer is one of the most prevalent forms of cancer affecting women worldwide. Hypoxia, a condition characterized by insufficient oxygen supply in tumor tissues, is closely associated with tumor aggressiveness, resistance to therapy, and poor clinical outcomes. Accurate assessment of tumor hypoxia can guide treatment decisions, predict therapy response, and contribute to the development of targeted therapeutic interventions. Over the years, functional magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (MRS) techniques have emerged as promising noninvasive imaging options for evaluating hypoxia in cancer. Such techniques include blood oxygen level-dependent (BOLD) MRI, oxygen-enhanced MRI (OE) MRI, chemical exchange saturation transfer (CEST) MRI, and proton MRS (1H-MRS). These may help overcome the limitations of the routinely used dynamic contrast-enhanced (DCE) MRI and diffusion-weighted imaging (DWI) techniques, contributing to better diagnosis and understanding of the biological features of breast cancer. This review aims to provide a comprehensive overview of the emerging functional MRI and MRS techniques for assessing hypoxia in breast cancer, along with their evolving clinical applications. The integration of these techniques in clinical practice holds promising implications for breast cancer management. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Isaac Daimiel Naranjo
- Department of Radiology, HM Hospitales, Madrid, Spain
- School of Medicine, Universidad CEU San Pablo, Madrid, Spain
| | - Arka Bhowmik
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dibash Basukala
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, New York, USA
| | - Roberto Lo Gullo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Yousef Mazaheri
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Panagiotis Kapetas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Sarah Eskreis-Winkler
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sunitha B Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Simegn GL, Sun PZ, Zhou J, Kim M, Reddy R, Zu Z, Zaiss M, Yadav NN, Edden RA, van Zijl PC, Knutsson L. Motion and magnetic field inhomogeneity correction techniques for chemical exchange saturation transfer (CEST) MRI: A contemporary review. NMR IN BIOMEDICINE 2025; 38:e5294. [PMID: 39532518 PMCID: PMC11606773 DOI: 10.1002/nbm.5294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) has emerged as a powerful imaging technique sensitive to tissue molecular composition, pH, and metabolic processes in situ. CEST MRI uniquely probes the physical exchange of protons between water and specific molecules within tissues, providing a window into physiological phenomena that remain invisible to standard MRI. However, given the very low concentration (millimolar range) of CEST compounds, the effects measured are generally only on the order of a few percent of the water signal. Consequently, a few critical challenges, including correction of motion artifacts and magnetic field (B0 and B1 +) inhomogeneities, have to be addressed in order to unlock the full potential of CEST MRI. Motion, whether from patient movement or inherent physiological pulsations, can distort the CEST signal, hindering accurate quantification. B0 and B1 + inhomogeneities, arising from scanner hardware imperfections, further complicate data interpretation by introducing spurious variations in the signal intensity. Without proper correction of these confounding factors, reliable analysis and clinical translation of CEST MRI remain challenging. Motion correction methods aim to compensate for patient movement during (prospective) or after (retrospective) image acquisition, reducing artifacts and preserving data quality. Similarly, B0 and B1 + inhomogeneity correction techniques enhance the spatial and spectral accuracy of CEST MRI. This paper aims to provide a comprehensive review of the current landscape of motion and magnetic field inhomogeneity correction methods in CEST MRI. The methods discussed apply to saturation transfer (ST) MRI in general, including semisolid magnetization transfer contrast (MTC) and relayed nuclear Overhauser enhancement (rNOE) studies.
Collapse
Affiliation(s)
- Gizeaddis Lamesgin Simegn
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Phillip Zhe Sun
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30329, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30329, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jinyuan Zhou
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mina Kim
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Moritz Zaiss
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nirbhay Narayan Yadav
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Peter C.M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Aisu Y, Oshima N, Hyodo F, Elhelaly AE, Masuo A, Okada T, Hisamori S, Tsunoda S, Hida K, Morimoto T, Miyoshi H, Taketo MM, Matsuo M, Neckers LM, Sakai Y, Obama K. Dual inhibition of oxidative phosphorylation and glycolysis exerts a synergistic antitumor effect on colorectal and gastric cancer by creating energy depletion and preventing metabolic switch. PLoS One 2024; 19:e0309700. [PMID: 39666615 PMCID: PMC11637386 DOI: 10.1371/journal.pone.0309700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/18/2024] [Indexed: 12/14/2024] Open
Abstract
Pyruvate is situated at the intersection of oxidative phosphorylation (OXPHOS) and glycolysis, which are the primary energy-producing pathways in cells. Cancer therapies targeting these pathways have been previously documented, indicating that inhibiting one pathway may lead to functional compensation by the other, resulting in an insufficient antitumor effect. Thus, effective cancer treatment necessitates concurrent and comprehensive suppression of both. However, whether a metabolic switch between the metabolic pathways occurs in colorectal and gastric cancer cells and whether blocking it by inhibiting both pathways has an antitumor effect remain to be determined. In the present study, we used two small molecules, namely OXPHOS and glycolysis inhibitors, to target pyruvate metabolic pathways as a cancer treatment in these cancer cells. OXPHOS and glycolysis inhibition each augmented the other metabolic pathway in vitro and in vivo. OXPHOS inhibition alone enhanced glycolysis and showed antitumor effects on colorectal and gastric cancer cells in vitro and in vivo. Moreover, glycolysis inhibition in addition to OXPHOS inhibition blocked the metabolic switch from OXPHOS to glycolysis, causing an energy depletion and deterioration of the tumor microenvironment that synergistically enhanced the antitumor effect of OXPHOS inhibitors. In addition, using hyperpolarized 13C-magnetic resonance spectroscopic imaging (HP-MRSI), which enables real-time and in vivo monitoring of molecules containing 13C, we visualized how the inhibitors shifted the flux of pyruvate and how this dual inhibition in colorectal and gastric cancer mouse models altered the two pathways. Integrating dual inhibition of OXPHOS and glycolysis with HP-MRSI, this therapeutic model shows promise as a future "cancer theranostics" treatment option.
Collapse
Affiliation(s)
- Yuki Aisu
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobu Oshima
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Surgery, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University Hospital, Gifu, Japan
- Department of Radiology, Frontier Science for Imaging, Gifu University, Gifu, Japan
| | | | - Akihiko Masuo
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoaki Okada
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeo Hisamori
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeru Tsunoda
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koya Hida
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Morimoto
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Miyoshi
- Colon Cancer Project, Kyoto University Hospital-iACT, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makoto M. Taketo
- Colon Cancer Project, Kyoto University Hospital-iACT, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Hospital, Gifu, Japan
| | - Leonard M. Neckers
- National Cancer Institute, Urologic Oncology Branch, Center for Cancer Research, NIH, Bethesda, Maryland, United States of America
| | - Yoshiharu Sakai
- Department of Gastrointestinal Surgery, Osaka Red Cross Hospital, Osaka, Japan
| | - Kazutaka Obama
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Wu Y, Lloveras V, Lope-Piedrafita S, Mulero-Acevedo M, Candiota AP, Vidal-Gancedo J. Synthesis and Relaxivity study of amino acid-branched radical dendrimers as MRI contrast agents for potential brain tumor imaging. Acta Biomater 2024:S1742-7061(24)00715-3. [PMID: 39647652 DOI: 10.1016/j.actbio.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
This study introduces a series of water-soluble radical dendrimers (G0 to G5) as promising magnetic resonance imaging (MRI) contrast agents that could potentially address clinical safety concerns associated with current gadolinium-based contrast agents. By using a simplified synthetic approach based on a cyclotriphosphazene core and lysine-derived branching units, we successfully developed a G5 dendrimer containing up to 192 units of 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) radical. This synthesis offers advantages including ease of preparation, purification, and tunable water solubility through the incorporation of glutamic acid anion residues. Comprehensive characterization using 1H NMR, FT-IR, and SEC-HPLC confirmed the dendrimers' structures and purity. Electron paramagnetic resonance (EPR) spectroscopy revealed that TEMPO groups in higher generation dendrimers exhibited decreased mobility and stronger spin exchange in their local environments. In vitro MRI showed that relaxivity (r1) increased with higher dendrimer generations, with G5 exhibiting an exceptionally high r1 of over 24 mM-1s-1. Molecular dynamics simulations provided crucial insights into structure-property relationships, revealing the importance of water accessibility to TEMPO groups for enhancing relaxivity. Vero cell viability assay demonstrated G3 and G3.5 have good biocompatibility. In vivo MRI experiments in mice demonstrated that G3.5 was excreted through the kidneys and selectively accumulated in glioblastoma tumors. STATEMENT OF SIGNIFICANCE: This study explores a class of MRI contrast agents based on organic radical dendrimers as a potential alternative to gadolinium-based agents. We present a simplified synthesis method for water-soluble dendrimers containing up to 192 TEMPO radical units-the highest number achieved to date for this class of compounds-resulting in record-high relaxivity values. Our approach offers easier preparation, purification, and tunable water solubility, representing an improvement over existing methods. Through combined experimental and computational studies, we provide insights into the structure-property relationships governing relaxivity. In vivo experiments demonstrate the dendrimers' potential for glioblastoma imaging, with predominantly renal excretion. This work represents a step towards developing metal-free MRI contrast agents with promising relaxivity and biocompatibility, potentially opening new avenues for diagnostic imaging research.
Collapse
Affiliation(s)
- Yufei Wu
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain
| | - Vega Lloveras
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain.
| | - Silvia Lope-Piedrafita
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Unitat de Biofísica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marta Mulero-Acevedo
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ana Paula Candiota
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain; Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Edifici Cs, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - José Vidal-Gancedo
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, E-08193 Bellaterra, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08913 Bellaterra, Spain.
| |
Collapse
|
5
|
Stern Q, Verhaeghe G, El Daraï T, Montarnal D, Huu Le N, Veyre L, Thieuleux C, Bocquelet C, Cala O, Jannin S. Dynamic Nuclear Polarization with Conductive Polymers. Angew Chem Int Ed Engl 2024; 63:e202409510. [PMID: 39264818 DOI: 10.1002/anie.202409510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/14/2024]
Abstract
The low sensitivity of liquid-state nuclear magnetic resonance (NMR) can be overcome by hyperpolarizing nuclear spins by dissolution dynamic nuclear polarization (dDNP). It consists of transferring the near-unity polarization of unpaired electron spins of stable radicals to the nuclear spins of interest at liquid helium temperatures, below 2 K, before melting the sample in view of hyperpolarized liquid-state magnetic resonance experiments. Reaching such a temperature is challenging and requires complex instrumentation, which impedes the deployment of dDNP. Here, we propose organic conductive polymers such as polyaniline (PANI) as a new class of polarizing matrices and report 1H polarizations of up to 5 %. We also show that 13C spins of a host solution impregnated in porous conductive polymers can be hyperpolarized by relayed DNP. Such conductive polymers can be synthesized as chiral and display current induced spin selectivity leading to electron spin hyperpolarization close to unity without the need for low temperatures nor high magnetic fields. Our results show the feasibility of solid-state DNP in conductive polymers that are known to exhibit chirality-induced spin selectivity.
Collapse
Affiliation(s)
- Quentin Stern
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| | - Guillaume Verhaeghe
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| | - Théo El Daraï
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Damien Montarnal
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Nghia Huu Le
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Laurent Veyre
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Chloé Thieuleux
- Université de Lyon, Institut de Chimie de Lyon, Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128 CNRS-UCB Lyon 1 CPE Lyon 43 Bd du 11 Novembre 1918, 69616, Villeurbanne, France
| | - Charlotte Bocquelet
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| | - Olivier Cala
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| | - Sami Jannin
- Université Claude Bernard Lyon 1, CRMN UMR-5082, CNRS, ENS Lyon, Villeurbanne, 69100, France
| |
Collapse
|
6
|
Zhang G, Deh K, Park H, Cunningham CH, Bragagnolo ND, Lyashchenko S, Ahmmed S, Leftin A, Coffee E, Kelsen D, Hricak H, Miloushev V, Mayerhoefer M, Keshari KR. Assessment of the Feasibility of Hyperpolarized [1- 13C]pyruvate Whole-Abdomen MRI using D 2O Solvation in Humans. J Magn Reson Imaging 2024; 60:2747-2749. [PMID: 38440941 PMCID: PMC11374927 DOI: 10.1002/jmri.29322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/06/2024] Open
Affiliation(s)
- Guannan Zhang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kofi Deh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hijin Park
- Radiochemistry and Molecular Imaging Probes (RMIP) Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles H. Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nadia D. Bragagnolo
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Serge Lyashchenko
- Radiochemistry and Molecular Imaging Probes (RMIP) Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shake Ahmmed
- Radiochemistry and Molecular Imaging Probes (RMIP) Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Elizabeth Coffee
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Kelsen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vesselin Miloushev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marius Mayerhoefer
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Kayvan R. Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Weigand-Whittier J, Wendland M, Lam B, Velasquez M, Vandsburger MH. Ungated, plug-and-play preclinical cardiac CEST-MRI using radial FLASH with segmented saturation. Magn Reson Med 2024. [PMID: 39607872 DOI: 10.1002/mrm.30382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE Electrocardiography (ECG) and respiratory-gated preclinical cardiac CEST-MRI acquisitions are difficult because of variable saturation recovery with T1, RF interference in the ECG signal, and offset-to-offset variation in Z-magnetization and cardiac phase introduced by changes in cardiac frequency and trigger delays. METHODS The proposed method consists of segmented saturation modules with radial FLASH readouts and golden angle progression. The segmented saturation blocks drive the system to steady-state, and because center k-space is sampled repeatedly, steady-state saturation dominates contrast during gridding and reconstruction. Ten complete Z-spectra were acquired in healthy mice using both ECG and respiratory-gated and ungated methods. Z-spectra were also acquired at multiple saturation B1 values to optimize for amide and Cr contrasts. RESULTS There was no significant difference between CEST contrasts (amide, Cr, magnetization transfer) calculated from images acquired using ECG and respiratory-gated and ungated methods (p = 0.27, 0.11, 0.47). A saturation power of 1.8μT provides optimal contrast amplitudes for both amide and total Cr contrast without significantly complicating CEST contrast quantification because of water direct saturation, magnetization transfer, and RF spillover between amide and Cr pools. Further, variability in CEST contrast measurements was significantly reduced using the ungated radial FLASH acquisition (p = 0.002, 0.006 for amide and Cr, respectively). CONCLUSION This method enables CEST mapping in the murine myocardium without the need for cardiac or respiratory gating. Quantitative CEST contrasts are consistent with those obtained using gated sequences, and per-contrast variance is significantly reduced. This approach makes preclinical cardiac CEST-MRI easily accessible, even for investigators without prior experience in cardiac imaging.
Collapse
Affiliation(s)
- Jonah Weigand-Whittier
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Michael Wendland
- Berkeley Preclinical Imaging Core, University of California Berkeley, Berkeley, California, USA
| | - Bonnie Lam
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Mark Velasquez
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
8
|
Rybalka E, Park HJ, Nalini A, Baskar D, Polavarapu K, Durmus H, Xia Y, Wan L, Shieh PB, Moghadaszadeh B, Beggs AH, Mack DL, Smith AST, Hanna-Rose W, Jinnah HA, Timpani CA, Shen M, Upadhyay J, Brault JJ, Hall MD, Baweja N, Kakkar P. Current insights in ultra-rare adenylosuccinate synthetase 1 myopathy - meeting report on the First Clinical and Scientific Conference. 3 June 2024, National Centre for Advancing Translational Science, Rockville, Maryland, the United States of America. Orphanet J Rare Dis 2024; 19:438. [PMID: 39593137 PMCID: PMC11590305 DOI: 10.1186/s13023-024-03429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
The inaugural Clinical and Scientific Conference on Adenylosuccinate Synthetase 1 (ADSS1) myopathy was held on June 3, 2024, at the National Institutes of Health (NIH) National Center for Advancing Translational Sciences (NCATS) in Rockville, Maryland, USA. ADSS1 myopathy is an ultra-rare, inherited neuromuscular disease. Features of geographical patient clusters in South Korea, Japan, India and the United States of America were characterised and discussed. Pre-clinical animal and cell-based models were discussed, providing unique insight into disease pathogenesis. The biochemical pathogenesis was discussed, and potential therapeutic targets identified. Potential clinical and pre-clinical biomarkers were discussed. An ADSS1 myopathy consortium was established and a roadmap for therapeutic development created.
Collapse
Affiliation(s)
- Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
- Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science, St Albans, VIC, Australia.
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, Yonshei University College of Medicine, Seoul, Republic of Korea
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health And NeuroSciences (NIMHANS), Bengaluru, India
| | - Dipti Baskar
- Department of Neurology, National Institute of Mental Health And NeuroSciences (NIMHANS), Bengaluru, India
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 5B2, Canada
| | - Hacer Durmus
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yang Xia
- Xiangya Hospital, National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, China
| | - Linlin Wan
- Department of Radiology, Xiangya Hospital of Central South University, Changsha, China
| | - Perry B Shieh
- Departments of Neurology and Pediatrics, University of California Los Angeles, Los Angeles, USA
| | - Behzad Moghadaszadeh
- Division of Genetics and Genomics, The Manton Centre for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Centre for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David L Mack
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Alec S T Smith
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Hyder A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory University, Atlanta, USA
| | - Cara A Timpani
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
- Inherited and Acquired Myopathies Program, Australian Institute for Musculoskeletal Science, St Albans, VIC, Australia
| | - Min Shen
- Division of Preclinical Innovation, National Centre for Advancing Translational Science, National Institutes of Health, Rockville, MD, USA
| | - Jaymin Upadhyay
- Department of Anaesthesia, Critical Care and Pain Management, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Jeffrey J Brault
- Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana School of Medicine, Indianapolis, IN, USA
| | - Matthew D Hall
- Division of Preclinical Innovation, National Centre for Advancing Translational Science, National Institutes of Health, Rockville, MD, USA
| | | | | |
Collapse
|
9
|
Sharma G, Duarte S, Shen Q, Khemtong C. Analyses of mitochondrial metabolism in diseases: a review on 13C magnetic resonance tracers. RSC Adv 2024; 14:37871-37885. [PMID: 39606283 PMCID: PMC11600307 DOI: 10.1039/d4ra03605k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic diseases such as obesity, type 2 diabetes, and cardiovascular diseases have become a global health concern due to their widespread prevalence and profound impact on life expectancy, healthcare expenditures, and the overall economy. Devising effective treatment strategies and management plans for these diseases requires an in-depth understanding of the pathophysiology of the metabolic abnormalities associated with each disease. Mitochondrial dysfunction is intricately linked to a wide range of metabolic abnormalities and is considered an important biomarker for diseases. However, assessing mitochondrial functions in viable tissues remains a challenging task, with measurements of oxygen consumption rate (OCR) and ATP production being the most widely accepted approaches for evaluating the health of mitochondria in tissues. Measurements of cellular metabolism using carbon-13 (or 13C) tracers have emerged as a viable method for characterizing mitochondrial metabolism in a variety of organelles ranging from cultured cells to humans. Information on metabolic activities and mitochondrial functions can be obtained from magnetic resonance (MR) analyses of 13C-labeled metabolites in tissues and organs of interest. Combining novel 13C tracer technologies with advanced analytical and imaging tools in nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) offers the potential to detect metabolic abnormalities associated with mitochondrial dysfunction. These capabilities would enable accurate diagnosis of various metabolic diseases and facilitate the assessment of responses to therapeutic interventions, hence improving patient health and optimizing clinical outcomes.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center Dallas Texas USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center Dallas Texas USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center Dallas Texas USA
| | - Sergio Duarte
- Department of Surgery, University of Florida Gainesville FL USA
| | - Qingyang Shen
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| | - Chalermchai Khemtong
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida Gainesville Florida USA +1 (352) 273-8646
- Department of Biochemistry and Molecular Biology, University of Florida Gainesville Florida USA
| |
Collapse
|
10
|
Yeung K, Ng KL, McGing JJ, Axford A, Birkhoelzer S, Shinozaki A, Ricchi M, Sgambelluri N, Zaccagna F, Mills R, Lewis AJM, Rayner JJ, Ravetz Z, Berner L, Jacob K, McIntyre A, Durrant M, Rider OJ, Schulte RF, Gleeson FV, Tyler DJ, Grist JT. Evaluation of an integrated variable flip angle protocol to estimate coil B 1 for hyperpolarized MRI. Magn Reson Med 2024. [PMID: 39552169 DOI: 10.1002/mrm.30378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/03/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE The purpose of this work is to validate a simple and versatile integrated variable flip angle (VFA) method for mapping B1 in hyperpolarized MRI, which can be used to correct signal variations due to coil inhomogeneity. THEORY AND METHODS Simulations were run to assess performance of the VFA B1 mapping method compared to the currently used constant flip angle (CFA) approach. Simulation results were used to inform the design of VFA sequences, validated in four volunteers for hyperpolarized xenon-129 imaging of the lungs and another four volunteers for hyperpolarized carbon-13 imaging of the human brain. B1 maps obtained were used to correct transmit and receive inhomogeneity in the images. RESULTS Simulations showed improved performance of the VFA approach over the CFA approach with reduced sensitivity to T1. For xenon-129, the B1 maps accurately reflected the variation of signal depolarization, but in some cases could not be used to correct for coil receive inhomogeneity due to a lack of transmit-receive reciprocity resulting from suboptimal coil positioning. For carbon-13, the B1 maps showed good agreement with a separately acquired B1 map of a phantom and were effectively used to correct coil-induced signal inhomogeneity. CONCLUSION A simple, versatile, and effective VFA B1 mapping method was implemented and evaluated. Inclusion of the B1 mapping method in hyperpolarized imaging studies can enable more robust signal quantification.
Collapse
Affiliation(s)
- Kylie Yeung
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Radiology, Oxford University Hospitals, Oxford, UK
| | - Kher Lik Ng
- Department of Radiology, Oxford University Hospitals, Oxford, UK
- Oxford Respiratory Service, Oxford University Hospitals, Oxford, UK
| | - Jordan J McGing
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Aaron Axford
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Sarah Birkhoelzer
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Ayaka Shinozaki
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - Mattia Ricchi
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Computer Sciences, University of Pisa, Pisa, Italy
- National Institute of Nuclear Physics (INFN), Division of Bologna, Bologna, Italy
| | - Noemi Sgambelluri
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Alma Mater Studorium, University of Bologna, Bologna, Italy
| | - Fulvio Zaccagna
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Radiology, Cambridge University Hospitals, Cambridge, UK
| | - Rebecca Mills
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Andrew J M Lewis
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Jennifer J Rayner
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Zack Ravetz
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- RRPPS, University Hospitals Birmingham, Birmingham, UK
| | - Lise Berner
- Department of Radiology, Oxford University Hospitals, Oxford, UK
| | - Kenneth Jacob
- Department of Radiology, Oxford University Hospitals, Oxford, UK
| | - Anthony McIntyre
- Department of Radiology, Oxford University Hospitals, Oxford, UK
| | - Marianne Durrant
- Department of Radiology, Oxford University Hospitals, Oxford, UK
| | - Oliver J Rider
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | | | - Fergus V Gleeson
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Radiology, Oxford University Hospitals, Oxford, UK
| | - Damian J Tyler
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| | - James T Grist
- Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Radiology, Oxford University Hospitals, Oxford, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Chowdhury MRH, Oladun C, Ariyasingha NM, Samoilenko A, Bawardi T, Burueva DB, Salnikov OG, Kovtunova LM, Bukhtiyarov VI, Shi Z, Luo K, Tan S, Gelovani JG, Koptyug IV, Goodson BM, Chekmenev EY. Rapid lung ventilation MRI using parahydrogen-induced polarization of propane gas. Analyst 2024. [PMID: 39530397 PMCID: PMC11563306 DOI: 10.1039/d4an01029a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Proton-hyperpolarized contrast agents are attractive because they can be imaged on virtually any clinical MRI scanner, which is typically equipped to scan only protons rather than heteronuclei (i.e., anything besides protons, e.g., 13C, 15N, 129Xe, 23Na, etc.). Even though the lifetime of the proton spin hyperpolarization is only a few seconds, it is sufficient for inhalation and scanning of proton-hyperpolarized gas media. We demonstrate the utility of producing hyperpolarized propane gas via heterogeneous parahydrogen-induced polarization for the purpose of ventilation imaging in an excised rabbit lung model. The magnetization of protons in hyperpolarized propane gas is similar to that of tissue water protons, making it possible to rapidly perform lung ventilation imaging with a 0.35 T clinical MRI scanner. Here, we demonstrate the feasibility of rapid (2 s) lung ventilation MRI in excised rabbit lungs using hyperpolarized propane gas with a 1 × 1 mm2 pixel size using a 50 mm slice thickness, and a 1.7 × 1.7 mm2 pixel size using a 9 mm slice thickness.
Collapse
Affiliation(s)
- Md Raduanul H Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Clementinah Oladun
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Nuwandi M Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Anna Samoilenko
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Tarek Bawardi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| | - Dudari B Burueva
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Oleg G Salnikov
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Larisa M Kovtunova
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., Novosibirsk 630090, Russia
| | - Zhongjie Shi
- Department of Pediatrics, Wayne State University, Detroit, Michigan 48202, USA
| | - Kehuan Luo
- Department of Pediatrics, Wayne State University, Detroit, Michigan 48202, USA
| | - Sidhartha Tan
- Department of Pediatrics, Wayne State University, Detroit, Michigan 48202, USA
| | - Juri G Gelovani
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
- United Arab Emirates University, Al Ain, United Arab Emirates
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Boyd M Goodson
- School of Chemical & Biomolecular Sciences, Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, USA.
| |
Collapse
|
12
|
Damoci CB, Merrill JR, Sun Y, Lyons SK, Olive KP. Addressing Biological Questions with Preclinical Cancer Imaging. Cold Spring Harb Perspect Med 2024; 14:a041378. [PMID: 38503500 PMCID: PMC11529846 DOI: 10.1101/cshperspect.a041378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The broad application of noninvasive imaging has transformed preclinical cancer research, providing a powerful means to measure dynamic processes in living animals. While imaging technologies are routinely used to monitor tumor growth in model systems, their greatest potential lies in their ability to answer fundamental biological questions. Here we present the broad range of potential imaging applications according to the needs of a cancer biologist with a focus on some of the common biological processes that can be used to visualize and measure. Topics include imaging metastasis; biophysical properties such as perfusion, diffusion, oxygenation, and stiffness; imaging the immune system and tumor microenvironment; and imaging tumor metabolism. We also discuss the general ability of each approach and the level of training needed to both acquire and analyze images. The overall goal is to provide a practical guide for cancer biologists interested in answering biological questions with preclinical imaging technologies.
Collapse
Affiliation(s)
- Chris B Damoci
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Joseph R Merrill
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Yanping Sun
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Scott K Lyons
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Kenneth P Olive
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
13
|
Ning Y, Yuwen Zhou I, Caravan P. Quantitative in Vivo Molecular MRI. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407262. [PMID: 39279542 PMCID: PMC11530320 DOI: 10.1002/adma.202407262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Molecular magnetic resonance imaging (MRI) combines chemistry, chemical biology, and imaging techniques to track molecular events non-invasively. Quantitative molecular MRI aims to provide meaningful, reproducible numerical measurements of molecular processes or biochemical targets within the body. In this review, the classifications of molecular MRI probes based on their signal-generating mechanism and functionality are first described. From there, the primary considerations for in vitro characterization and in vivo validation of molecular MRI probes, including how to avoid pitfalls and biases are discussed. Then, recommendations on imaging acquisition protocols and analysis methods to establish quantitative relationships between MRI signal change induced by the probes and the molecular processes of interest are provided. Finally, several representative case studies are highlighted that incorporate these features. Quantitative molecular MRI is a multidisciplinary research area incorporating expertise in chemical biology, inorganic chemistry, molecular probes, imaging physics, drug development, pathobiology, and medicine. The purpose of this review is to provide guidance to chemists developing MR imaging probes and methods in terms of in vitro and in vivo validation to accelerate the translation of these new quantitative tools for non-invasive imaging of biological processes.
Collapse
Affiliation(s)
- Yingying Ning
- Spin-X Institute, School of Chemistry and Chemical Engineering, School of Biomedical Sciences and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
14
|
de Maissin H, Ivantaev V, Mohiuddin O, Berner S, von Elverfeldt D, Zaitsev M, Kiselev V, Schmidt AB. Overcoming the Challenges of Hyperpolarizing Substrates with Parahydrogen-Induced Polarization in an MRI System. Chemistry 2024:e202402911. [PMID: 39470987 DOI: 10.1002/chem.202402911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/01/2024]
Abstract
Hyperpolarization of 13C nuclei in biomolecules and their administration as imaging agents enables in-vivo monitoring of metabolism. This approach has demonstrated potential for deriving imaging biomarkers for cancer detection, differentiation, and therapy efficacy assessment. The in situ generation of polarized substrates using a permanent addition of parahydrogen to an unsaturated precursor inside the bore of an MRI system used for subsequent imaging circumvents the need for a dedicated external polarizer. This approach reduces polarization loss associated with sample transfer, minimizes hardware requirements and cost, and results in reduced spatial requirements. However, performing INEPT-like pulsed sequences for heteronuclear spin-order transfer in the bore of an MRI system is challenged by poor uniformity of static and excitation magnetic field and molecular convection during the polarization transfer. Therefore, here we characterize these effects, implement a robust modification to the pulse sequence, and measure experimentally the polarization improvement upon modification of the sequence. After rigorous optimization of the parameters, we obtained a 13C polarization of 44.5 % for 50 mM of the 1-13C site of ethyl acetate-d6. Our parahydrogen-induced polarization approach enhances the accessibility to hyperpolarized MRI, circumventing the need for an external polarizer.
Collapse
Affiliation(s)
- Henri de Maissin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Vladislav Ivantaev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany
| | - Obaid Mohiuddin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany
| | - Stephan Berner
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany
| | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany
| | - Valerij Kiselev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany
| | - Andreas B Schmidt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Killianstrasse 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| |
Collapse
|
15
|
Aleksis R, Montrazi ET, Frydman L. Heteronuclear Polarization Transfer under Steady-State Conditions: The INEPT-SSFP Experiment. J Phys Chem Lett 2024; 15:10644-10650. [PMID: 39412220 PMCID: PMC11514021 DOI: 10.1021/acs.jpclett.4c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
NMR finds a wide range of applications, ranging from fundamental chemistry to medical imaging. The technique, however, has an inherently low signal-to-noise ratio (SNR)─particularly when dealing with nuclei having low natural abundances and/or low γs. In these cases, sensitivity is often enhanced by methods that, similar to INEPT, transfer polarization from neighboring 1Hs via J-couplings. In 1958, Carr proposed an alternative approach to increase NMR sensitivity, which involves generating and continuously detecting a steady-state transverse magnetization, by applying a train of pulses on an ensemble of noninteracting spins. This study broadens Carr's steady-state free precession (SSFP) framework to encompass the possibility of adding onto it coherent polarization transfers, allowing one to combine the SNR-enhancing benefits of both INEPT and SSFP into a single experiment. Herein, the derivation of the ensuing INEPT-SSFP (ISSFP) sequences is reported. Their use in 13C NMR and MRI experiments leads to ca. 300% improvements in SNR/ unit time over conventional J-driven polarization transfer experiments, and sensitivity gains of over 50% over 13C SSFP performed in combination with 1H decoupling and NOE. These enhancements match well with numerical simulations and analytical evaluations. The conditions needed to optimize these new methods in both spectroscopic and imaging studies are discussed; we also examine their limitations, and the valuable vistas that, in both analytical and molecular imaging NMR, could be opened by this development.
Collapse
Affiliation(s)
- Rihards Aleksis
- Department of Chemical and Biological
Physics, Weizmann Institute, 7610001 Rehovot, Israel
| | - Elton T. Montrazi
- Department of Chemical and Biological
Physics, Weizmann Institute, 7610001 Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological
Physics, Weizmann Institute, 7610001 Rehovot, Israel
| |
Collapse
|
16
|
Kondo Y, Saito Y, Seki T, Takakusagi Y, Koyasu N, Saito K, Morimoto J, Nonaka H, Miyanishi K, Mizukami W, Negoro M, Elhelaly AE, Hyodo F, Matsuo M, Raju N, Swenson RE, Krishna MC, Yamamoto K, Sando S. Directly monitoring the dynamic in vivo metabolisms of hyperpolarized 13C-oligopeptides. SCIENCE ADVANCES 2024; 10:eadp2533. [PMID: 39413185 PMCID: PMC11482307 DOI: 10.1126/sciadv.adp2533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Peptides play essential roles in biological phenomena, and, thus, there is a growing interest in detecting in vivo dynamics of peptide metabolisms. Dissolution-dynamic nuclear polarization (d-DNP) is a state-of-the-art technology that can markedly enhance the sensitivity of nuclear magnetic resonance (NMR), providing metabolic and physiological information in vivo. However, the hyperpolarized state exponentially decays back to the thermal equilibrium, depending on the spin-lattice relaxation time (T1). Because of the limitation in T1, peptide-based DNP NMR molecular probes applicable in vivo have been limited to amino acids or dipeptides. Here, we report the direct detection of in vivo metabolic conversions of hyperpolarized 13C-oligopeptides. Structure-based T1 relaxation analysis suggests that the C-terminal [1-13C]Gly-d2 residue affords sufficient T1 for biological uses, even in relatively large oligopeptides, and allowed us to develop 13C-β-casomorphin-5 and 13C-glutathione. It was found that the metabolic response and perfusion of the hyperpolarized 13C-glutathione in the mouse kidney were significantly altered in a model of cisplatin-induced acute kidney injury.
Collapse
Affiliation(s)
- Yohei Kondo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohiro Seki
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Research Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
- Institute for Quantum Medical Science (iQMS), National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage, Chiba-city 265-8522, Japan
| | - Norikazu Koyasu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keita Saito
- Quantum Hyperpolarized MRI Research Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Nonaka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koichiro Miyanishi
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Osaka 560-8531, Japan
| | - Wataru Mizukami
- Center for Quantum Information and Quantum Biology, Osaka University, Osaka 560-8531, Japan
| | - Makoto Negoro
- Quantum Hyperpolarized MRI Research Team, Quantum Life Spin Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage, Chiba-city 263-8555, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Osaka 560-8531, Japan
- Premium Research Institute for Human Metaverse Medicine, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Abdelazim E. Elhelaly
- Department of Radiology, Frontier Science for Imaging, School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Fuminori Hyodo
- Department of Pharmacology, School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 501-1194, Gifu, Japan
| | - Masayuki Matsuo
- Department of Radiology, School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Natarajan Raju
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Rolf E. Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Murali C. Krishna
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kazutoshi Yamamoto
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
Liu X, Bao Q, Liu Z, Wang J, Otikovs M, Zhang Z, Cheng X, Wang J, Frydman L, Zhou X, Liu M, Liu C. Exploring Metabolic Aberrations after Intracerebral Hemorrhage In Vivo with Deuterium Metabolic Spectroscopy Imaging. Anal Chem 2024; 96:15563-15571. [PMID: 39295127 DOI: 10.1021/acs.analchem.4c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Aberrations in metabolism after intracerebral hemorrhage (ICH), particularly lactate metabolism, play a crucial role in the pathophysiology and patient outcome. To date, the evaluation of metabolism relies heavily on invasive methods such as microdialysis, restricting a comprehensive understanding of the metabolic mechanisms associated with ICH. This study proposes a noninvasive metabolic imaging method based on 2H magnetic resonance spectroscopy and imaging (2H-MRS/MRSI) to detect metabolic changes after ICH in vivo. To overcome the low-sensitivity limitation of 2H, we designed a new 1H-2H double-resonance coil with 2H-channel active detuning and proposed chemical shift imaging based on the balanced steady-state free precession method (CSI-bSSFP). Compared with the volume coil, the signal-to-noise ratio (SNR) of the new coil was increased by 4.5 times. In addition, the SNR of CSI-bSSFP was 1.5 times higher than that of conventional CSI. These two technologies were applied to measure lactate metabolic flux at different phases of ICH. The results show a higher lactate concentration in ICH rats than in control rats, which is in line with the increased expression of lactate dehydrogenase measured via immunohistochemistry staining (AUCLac_area/Glc_area: control, 0.08 ± 0.02 vs ICH-3d, 0.39 ± 0.05 vs ICH-7d, 0.18 ± 0.02, P < 0.01; H-score: control, 126.4 ± 5.03 vs ICH-3d, 168.4 ± 5.71 vs ICH-7d,133.6 ± 7.70, P < 0.05). A higher lactate signal also appeared near the ICH region than in normal brain tissue. In conclusion, 2H-MRS/MRSI shows potential as a useful method for in vivo metabolic imaging and noninvasive assessment of ICH.
Collapse
Affiliation(s)
- Xinjie Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Qingjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Zhuang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Martins Otikovs
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Zhi Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Xin Cheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jiazheng Wang
- Clinical & Technical Support, Philips Healthcare, Beijing 100600, China
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Chaoyang Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100864, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
18
|
Sahin S, Garnæs MF, Bennett A, Dwork N, Tang S, Liu X, Vaidya M, Wang ZJ, Larson PE. A pharmacokinetic model for hyperpolarized 13C-pyruvate MRI when using metabolite-specific bSSFP sequences. Magn Reson Med 2024; 92:1698-1713. [PMID: 38775035 PMCID: PMC11262974 DOI: 10.1002/mrm.30142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
PURPOSE Metabolite-specific balanced SSFP (MS-bSSFP) sequences are increasingly used in hyperpolarized [1-13C]Pyruvate (HP 13C) MRI studies as they improve SNR by refocusing the magnetization each TR. Currently, pharmacokinetic models used to fit conversion rate constants, kPL and kPB, and rate constant maps do not account for differences in the signal evolution of MS-bSSFP acquisitions. METHODS In this work, a flexible MS-bSSFP model was built that can be used to fit conversion rate constants for these experiments. The model was validated in vivo using paired animal (healthy rat kidneys n = 8, transgenic adenocarcinoma of the mouse prostate n = 3) and human renal cell carcinoma (n = 3) datasets. Gradient echo (GRE) acquisitions were used with a previous GRE model to compare to the results of the proposed GRE-bSSFP model. RESULTS Within simulations, the proposed GRE-bSSFP model fits the simulated data well, whereas a GRE model shows bias because of model mismatch. For the in vivo datasets, the estimated conversion rate constants using the proposed GRE-bSSFP model are consistent with a previous GRE model. Jointly fitting the lactate T2 with kPL resulted in less precise kPL estimates. CONCLUSION The proposed GRE-bSSFP model provides a method to estimate conversion rate constants, kPL and kPB, for MS-bSSFP HP 13C experiments. This model may also be modified and used for other applications, for example, estimating rate constants with other hyperpolarized reagents or multi-echo bSSFP.
Collapse
Affiliation(s)
- Sule Sahin
- UC Berkeley – UCSF Graduate Program in Bioengineering
- Radiology and Biomedical Imaging, University of California, San Francisco
| | | | - Anna Bennett
- Radiology and Biomedical Imaging, University of California, San Francisco
| | - Nicholas Dwork
- Biomedical Informatics and Radiology, University of Colorado Anschutz Medical Campus
| | | | - Xiaoxi Liu
- Radiology and Biomedical Imaging, University of California, San Francisco
| | - Manushka Vaidya
- Radiology and Biomedical Imaging, University of California, San Francisco
| | - Zhen Jane Wang
- Radiology and Biomedical Imaging, University of California, San Francisco
| | - Peder E.Z. Larson
- UC Berkeley – UCSF Graduate Program in Bioengineering
- Radiology and Biomedical Imaging, University of California, San Francisco
| |
Collapse
|
19
|
Diaz E, Sriram R, Gordon JW, Sinha A, Liu X, Sahin SI, Crane JC, Olson MP, Chen HY, Bernard JML, Vigneron DB, Wang ZJ, Xu D, Larson PEZ. Data Format Standardization and DICOM Integration for Hyperpolarized 13C MRI. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2627-2634. [PMID: 38710970 PMCID: PMC11522264 DOI: 10.1007/s10278-024-01100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/08/2024]
Abstract
Hyperpolarized (HP) 13C MRI has shown promise as a valuable modality for in vivo measurements of metabolism and is currently in human trials at 15 research sites worldwide. With this growth, it is important to adopt standardized data storage practices as it will allow sites to meaningfully compare data. In this paper, we (1) describe data that we believe should be stored and (2) demonstrate pipelines and methods that utilize the Digital Imaging and Communications in Medicine (DICOM) standard. This includes proposing a set of minimum set of information that is specific to HP 13C MRI studies. We then show where the majority of these can be fit into existing DICOM attributes, primarily via the "Contrast/Bolus" module. We also demonstrate pipelines for utilizing DICOM for HP 13C MRI. DICOM is the most common standard for clinical medical image storage and provides the flexibility to accommodate the unique aspects of HP 13C MRI, including the HP agent information but also spectroscopic and metabolite dimensions. The pipelines shown include creating DICOM objects for studies on human and animal imaging systems with various pulse sequences. We also show a python-based method to efficiently modify DICOM objects to incorporate the unique HP 13C MRI information that is not captured by existing pipelines. Moreover, we propose best practices for HP 13C MRI data storage that will support future multi-site trials, research studies, and technical developments of this imaging technique.
Collapse
Affiliation(s)
- Ernesto Diaz
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Avantika Sinha
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Sule I Sahin
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
| | - Jason C Crane
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Marram P Olson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Jenna M L Bernard
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA.
- UC Berkeley/UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA, USA.
| |
Collapse
|
20
|
Adelabu I, Nantogma S, Fleischer S, Abdulmojeed M, de Maissin H, Schmidt AB, Lehmkuhl S, Rosen MS, Appelt S, Theis T, Qian C, Chekmenev EY. Toward Ultra-High-Quality-Factor Wireless Masing Magnetic Resonance Sensing. Angew Chem Int Ed Engl 2024; 63:e202406551. [PMID: 38822492 PMCID: PMC11463167 DOI: 10.1002/anie.202406551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
It has recently been shown that a bolus of hyperpolarized nuclear spins can yield stimulated emission signals similar in nature to maser signals, potentially enabling new ways of sensing hyperpolarized contrast media, including most notably [1-13C]pyruvate that is under evaluation in over 50 clinical trials for metabolic imaging of cancer. The stimulated NMR signal emissions lasting for minutes do not require radio-frequency excitation, offering unprecedented advantages compared to conventional MR sensing. However, creating nuclear spin maser emission is challenging in practice due to stringent fundamental requirements, making practical in vivo applications hardly possible using conventional passive MR detectors. Here, we demonstrate the utility of a wireless NMR maser detector, the quality factor of which was enhanced 22-fold (to 1,670) via parametric pumping. This active-feedback technique breaks the intrinsic fundamental limit of NMR detector circuit quality factor. We show the use of parametric pumping to reduce the threshold requirement for inducing nuclear spin masing at 300 MHz resonance frequency in a preclinical MRI scanner. Indeed, stimulated emission from hyperpolarized protons was obtained under highly unfavorable conditions of low magnetic field homogeneity (T2* of 3 ms). Greater gains of the quality factor of the MR detector (up to 1 million) were also demonstrated.
Collapse
Affiliation(s)
- Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| | - Simon Fleischer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Mustapha Abdulmojeed
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Andreas B Schmidt
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Soeren Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Matthew S Rosen
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, 02129, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, United States
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056, Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics-Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| |
Collapse
|
21
|
Gierse M, Dagys L, Keim M, Lucas S, Josten F, Plenio MB, Schwartz I, Knecht S, Eills J. Hyperpolarizing Small Molecules using Parahydrogen and Solid-State Spin Diffusion. Angew Chem Int Ed Engl 2024; 63:e202319341. [PMID: 38805673 DOI: 10.1002/anie.202319341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
Parahydrogen-induced polarization (PHIP) is an inexpensive way to produce hyperpolarized molecules with polarization levels of >10 % in the solution-state, but is strongly limited in generality since it requires chemical reactions/ interactions with H2. Here we report a new method to widen the scope of PHIP hyperpolarization: a source molecule is produced via PHIP with high 13C polarization, and precipitated out of solution together with a target species. Spin diffusion within the solid carries the polarization onto 13C spins of the target, which can then be dissolved for solution-state applications. We name this method PHIP-SSD (PHIP with solid-state spin diffusion) and demonstrate it using PHIP-polarized [1-13C]-fumarate as the source molecule, to polarize different 13C-labelled target molecules. 13C polarizations of between 0.01 and 3 % were measured on [1-13C]-benzoic acid, depending on the molar ratio of fumarate:benzoate in the solid state. We also show that PHIP-SSD does not require specific co-crystallization conditions by grinding dry powders of target molecules together with solid fumarate crystals, and obtain 13C signal enhancements of between 100 and 200 on [13C,15N2]-urea, [1-13C]-pyruvate, and [1-13C]-benzoic acid. This approach appears to be a promising new strategy for facile hyperpolarization based on PHIP.
Collapse
Affiliation(s)
- Martin Gierse
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany
| | | | - Michael Keim
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany
| | | | - Felix Josten
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik and IQST, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany
| | | | - James Eills
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
22
|
Beyoğlu D, Popov YV, Idle JR. The Metabolomic Footprint of Liver Fibrosis. Cells 2024; 13:1333. [PMID: 39195223 DOI: 10.3390/cells13161333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Both experimental and clinical liver fibrosis leave a metabolic footprint that can be uncovered and defined using metabolomic approaches. Metabolomics combines pattern recognition algorithms with analytical chemistry, in particular, 1H and 13C nuclear magnetic resonance spectroscopy (NMR), gas chromatography-mass spectrometry (GC-MS) and various liquid chromatography-mass spectrometry (LC-MS) platforms. The analysis of liver fibrosis by each of these methodologies is reviewed separately. Surprisingly, there was little general agreement between studies within each of these three groups and also between groups. The metabolomic footprint determined by NMR (two or more hits between studies) comprised elevated lactate, acetate, choline, 3-hydroxybutyrate, glucose, histidine, methionine, glutamine, phenylalanine, tyrosine and citrate. For GC-MS, succinate, fumarate, malate, ascorbate, glutamate, glycine, serine and, in agreement with NMR, glutamine, phenylalanine, tyrosine and citrate were delineated. For LC-MS, only β-muricholic acid, tryptophan, acylcarnitine, p-cresol, valine and, in agreement with NMR, phosphocholine were identified. The metabolomic footprint of liver fibrosis was upregulated as regards glutamine, phenylalanine, tyrosine, citrate and phosphocholine. Several investigators employed traditional Chinese medicine (TCM) treatments to reverse experimental liver fibrosis, and a commentary is given on the chemical constituents that may possess fibrolytic activity. It is proposed that molecular docking procedures using these TCM constituents may lead to novel therapies for liver fibrosis affecting at least one-in-twenty persons globally, for which there is currently no pharmaceutical cure. This in-depth review summarizes the relevant literature on metabolomics and its implications in addressing the clinical problem of liver fibrosis, cirrhosis and its sequelae.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - Yury V Popov
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jeffrey R Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
23
|
von Morze C, Shaw A, Blazey T. Hyperpolarized 15N caffeine, a potential probe of liver function and perfusion. Magn Reson Med 2024; 92:459-468. [PMID: 38469685 DOI: 10.1002/mrm.30070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE To demonstrate hyperpolarization of 15N-caffeine and report exploratory findings as a potential probe of liver function and perfusion. METHODS An amorphous formulation of [1,3-15N2]caffeine was developed for hyperpolarization via dissolution dynamic nuclear polarization. Polarizer hardware was augmented to support monitoring of solid-state 15N MR signals during the buildup of hyperpolarization. Liquid state hyperpolarized 15N MR signals were obtained in a preclinical 3T magnet by interfacing an external spectrometer console with home-built RF surface coils. 15N signal decay constants were estimated in H2O and in vivo in liver and brain regions of rats at 3 T. Decays were also measured at 9.4 T to assess the effect of B0, and in the presence of albumin to assess the impact of protein binding. RESULTS Polarization levels of 3.5% and aqueous T1 relaxation times of nearly 200 s were attained for both N1 and N3 positions at 3 T. Shorter apparent decay constants were observed in vivo, ranging from 25 s to 43 s, with modest extensions possible by exploiting competitive binding of iophenoxate with plasma albumin. Downstream products of caffeine could not be detected on in vivo 15N-MR spectra of the liver region, even with metabolic stimulation byβ $$ \beta $$ -naphthoflavone treatment. Considering the high perfusion rate of brain, persistence of caffeine signal in this region is consistent with potential value as a perfusion imaging agent. CONCLUSION These results establish the feasibility of hyperpolarization of hyperpolarized 15N-caffeine, but further work is necessary to establish the role of this new agent to probe liver metabolism and perfusion.
Collapse
Affiliation(s)
- Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Ashley Shaw
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Fukazawa J, Mochizuki Y, Kanai S, Miura N, Negoro M, Kagawa A. Real-Time Monitoring of Hydrolysis Reactions of Pyrophosphates with Dissolution Dynamic Nuclear Polarization. J Phys Chem Lett 2024; 15:7288-7294. [PMID: 38980118 DOI: 10.1021/acs.jpclett.4c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Dissolution dynamic nuclear polarization (d-DNP) has enabled applications such as the real-time monitoring of chemical reactions. Such applications are mainly for 13C and 15N spins with long spin-lattice relaxation times in the molecules of interest. However, the only applications for phosphorus using d-DNP are pH imaging and nucleation during crystallization due to the short relaxation times. Here we show that it is possible to observe enzyme reactions using d-DNP with phosphorus. Hyperpolarized 31P spins in pyrophosphate were obtained using bullet-DNP, which requires less dilution of highly polarized solid samples. Real-time monitoring of the hydrolysis reaction of pyrophosphate by inorganic pyrophosphatase from baker's yeast at physiological pH and was successfully achieved and the reaction rate was determined. This is an important reaction for a wide range of applications related to medicine, agriculture, and quantum life science.
Collapse
Affiliation(s)
- Jun Fukazawa
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuuki Mochizuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Sakyo Kanai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Natsuko Miura
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8231, Japan
| | - Makoto Negoro
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan
- Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akinori Kagawa
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Sushentsev N, Hamm G, Flint L, Birtles D, Zakirov A, Richings J, Ling S, Tan JY, McLean MA, Ayyappan V, Horvat Menih I, Brodie C, Miller JL, Mills IG, Gnanapragasam VJ, Warren AY, Barry ST, Goodwin RJA, Barrett T, Gallagher FA. Metabolic imaging across scales reveals distinct prostate cancer phenotypes. Nat Commun 2024; 15:5980. [PMID: 39013948 PMCID: PMC11252279 DOI: 10.1038/s41467-024-50362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 07/07/2024] [Indexed: 07/18/2024] Open
Abstract
Hyperpolarised magnetic resonance imaging (HP-13C-MRI) has shown promise as a clinical tool for detecting and characterising prostate cancer. Here we use a range of spatially resolved histological techniques to identify the biological mechanisms underpinning differential [1-13C]lactate labelling between benign and malignant prostate, as well as in tumours containing cribriform and non-cribriform Gleason pattern 4 disease. Here we show that elevated hyperpolarised [1-13C]lactate signal in prostate cancer compared to the benign prostate is primarily driven by increased tumour epithelial cell density and vascularity, rather than differences in epithelial lactate concentration between tumour and normal. We also demonstrate that some tumours of the cribriform subtype may lack [1-13C]lactate labelling, which is explained by lower epithelial lactate dehydrogenase expression, higher mitochondrial pyruvate carrier density, and increased lipid abundance compared to lactate-rich non-cribriform lesions. These findings highlight the potential of combining spatial metabolic imaging tools across scales to identify clinically significant metabolic phenotypes in prostate cancer.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Gregory Hamm
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Lucy Flint
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Daniel Birtles
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Aleksandr Zakirov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jack Richings
- Predictive AI & Data, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Stephanie Ling
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jennifer Y Tan
- Predictive AI & Data, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Mary A McLean
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Vinay Ayyappan
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ines Horvat Menih
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Cara Brodie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jodi L Miller
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ian G Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Vincent J Gnanapragasam
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| | - Anne Y Warren
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Richard J A Goodwin
- Integrated BioAnalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
26
|
Katz I, Schmidt A, Ben-Shir I, Javitt M, Kouřil K, Capozzi A, Meier B, Lang A, Pokroy B, Blank A. Long-lived enhanced magnetization-A practical metabolic MRI contrast material. SCIENCE ADVANCES 2024; 10:eado2483. [PMID: 38996017 PMCID: PMC11244432 DOI: 10.1126/sciadv.ado2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024]
Abstract
Noninvasive tracking of biochemical processes in the body is paramount in diagnostic medicine. Among the leading techniques is spectroscopic magnetic resonance imaging (MRI), which tracks metabolites with an amplified (hyperpolarized) magnetization signal injected into the subject just before scanning. Traditionally, the brief enhanced magnetization period of these agents limited clinical imaging. We propose a solution based on amalgamating two materials-one having diagnostic-metabolic activity and the other characterized by robust magnetization retention. This combination slows the magnetization decay in the diagnostic metabolic probe, which receives continuously replenished magnetization from the companion material. Thus, it extends the magnetization lifetime in some of our measurements to beyond 4 min, with net magnetization enhanced by more than four orders of magnitude. This could allow the metabolic probes to remain magnetized from injection until they reach the targeted organ, improving tissue signatures in clinical imaging. Upon validation, this metabolic MRI technique promises wide-ranging clinical applications, including diagnostic imaging, therapeutic monitoring, and posttreatment surveillance.
Collapse
Affiliation(s)
- Itai Katz
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Asher Schmidt
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Ira Ben-Shir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Karel Kouřil
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - Andrea Capozzi
- LIFMET, Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| | - Benno Meier
- Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany
| | - Arad Lang
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Boaz Pokroy
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Aharon Blank
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
27
|
Ye Z, Song B, Laustsen C. Hyperpolarized 13 C MRI in hepatocellular carcinoma: Unmet questions during clinical translation. Chin Med J (Engl) 2024; 137:1516-1518. [PMID: 38749771 PMCID: PMC11230757 DOI: 10.1097/cm9.0000000000003120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 07/09/2024] Open
Affiliation(s)
- Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus N 8200, Denmark
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus N 8200, Denmark
| |
Collapse
|
28
|
Han V, Reeder CP, Hernández-Morales M, Liu C. Any-nucleus distributed active programmable transmit coil. Magn Reson Med 2024; 92:389-405. [PMID: 38342981 DOI: 10.1002/mrm.30044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/23/2023] [Accepted: 01/22/2024] [Indexed: 02/13/2024]
Abstract
PURPOSE There are 118 known elements. Nearly all of them have NMR active isotopes and at least 39 different nuclei have biological relevance. Despite this, most of today's MRI is based on only one nucleus-1H. To facilitate imaging all potential nuclei, we present a single transmit coil able to excite arbitrary nuclei in human-scale MRI. THEORY AND METHODS We present a completely new type of RF coil, the Any-nucleus Distributed Active Programmable Transmit Coil (ADAPT Coil), with fast switches integrated into the structure of the coil to allow it to operate at any relevant frequency. This coil eliminates the need for the expensive traditional RF amplifier by directly converting direct current (DC) power into RF magnetic fields with frequencies chosen by digital control signals sent to the switches. Semiconductor switch imperfections are overcome by segmenting the coil. RESULTS Circuit simulations demonstrated the effectiveness of the ADAPT Coil approach, and a 9 cm diameter surface ADAPT Coil was implemented. Using the ADAPT Coil, 1H, 23Na, 2H, and 13C phantom images were acquired, and 1H and 23Na ex vivo images were acquired. To excite different nuclei, only digital control signals were changed, which can be programmed in real time. CONCLUSION The ADAPT Coil presents a low-cost, scalable, and efficient method for exciting arbitrary nuclei in human-scale MRI. This coil concept provides further opportunities for scaling, programmability, lowering coil costs, lowering dead-time, streamlining multinuclear MRI workflows, and enabling the study of dozens of biologically relevant nuclei.
Collapse
Affiliation(s)
- Victor Han
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Charlie P Reeder
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
| | - Miriam Hernández-Morales
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
29
|
von Morze C, Blazey T, Shaw A, Spees WM, Shoghi KI, Ohliger MA. Detection of early-stage NASH using non-invasive hyperpolarized 13C metabolic imaging. Sci Rep 2024; 14:14854. [PMID: 38937567 PMCID: PMC11211431 DOI: 10.1038/s41598-024-65951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/25/2024] [Indexed: 06/29/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized from its early stages by a profound remodeling of the liver microenvironment, encompassing changes in the composition and activities of multiple cell types and associated gene expression patterns. Hyperpolarized (HP) 13C MRI provides a unique view of the metabolic microenvironment, with potential relevance for early diagnosis of liver disease. Previous studies have detected changes in HP 13C pyruvate to lactate conversion, catalyzed by lactate dehydrogenase (LDH), with experimental liver injury. HP ∝ -ketobutyrate ( ∝ KB) is a close molecular analog of pyruvate with modified specificity for LDH isoforms, specifically attenuated activity with their LDHA-expressed subunits that dominate liver parenchyma. Building on recent results with pyruvate, we investigated HP ∝ KB in methionine-choline deficient (MCD) diet as a model of early-stage NASH. Similarity of results between this new agent and pyruvate (~ 50% drop in cytoplasmic reducing capacity), interpreted together with gene expression data from the model, suggests that changes are mediated through broad effects on intermediary metabolism. Plausible mechanisms are depletion of the lactate pool by upregulation of gluconeogenesis (GNG) and pentose phosphate pathway (PPP) flux, and a possible shift toward increased lactate oxidation. These changes may reflect high levels of oxidative stress and/or shifting macrophage populations in NASH.
Collapse
Affiliation(s)
- Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA.
| | - Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - Ashley Shaw
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - William M Spees
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, Washington University, 4525 Scott Ave Rm 2303, St. Louis, MO, 63110, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
30
|
Pan F, Liu X, Wan J, Guo Y, Sun P, Zhang X, Wang J, Bao Q, Yang L. Advances and prospects in deuterium metabolic imaging (DMI): a systematic review of in vivo studies. Eur Radiol Exp 2024; 8:65. [PMID: 38825658 PMCID: PMC11144684 DOI: 10.1186/s41747-024-00464-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/02/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Deuterium metabolic imaging (DMI) has emerged as a promising non-invasive technique for studying metabolism in vivo. This review aims to summarize the current developments and discuss the futures in DMI technique in vivo. METHODS A systematic literature review was conducted based on the PRISMA 2020 statement by two authors. Specific technical details and potential applications of DMI in vivo were summarized, including strategies of deuterated metabolites detection, deuterium-labeled tracers and corresponding metabolic pathways in vivo, potential clinical applications, routes of tracer administration, quantitative evaluations of metabolisms, and spatial resolution. RESULTS Of the 2,248 articles initially retrieved, 34 were finally included, highlighting 2 strategies for detecting deuterated metabolites: direct and indirect DMI. Various deuterated tracers (e.g., [6,6'-2H2]glucose, [2,2,2'-2H3]acetate) were utilized in DMI to detect and quantify different metabolic pathways such as glycolysis, tricarboxylic acid cycle, and fatty acid oxidation. The quantifications (e.g., lactate level, lactate/glutamine and glutamate ratio) hold promise for diagnosing malignancies and assessing early anti-tumor treatment responses. Tracers can be administered orally, intravenously, or intraperitoneally, either through bolus administration or continuous infusion. For metabolic quantification, both serial time point methods (including kinetic analysis and calculation of area under the curves) and single time point quantifications are viable. However, insufficient spatial resolution remains a major challenge in DMI (e.g., 3.3-mL spatial resolution with 10-min acquisition at 3 T). CONCLUSIONS Enhancing spatial resolution can facilitate the clinical translation of DMI. Furthermore, optimizing tracer synthesis, administration protocols, and quantification methodologies will further enhance their clinical applicability. RELEVANCE STATEMENT Deuterium metabolic imaging, a promising non-invasive technique, is systematically discussed in this review for its current progression, limitations, and future directions in studying in vivo energetic metabolism, displaying a relevant clinical potential. KEY POINTS • Deuterium metabolic imaging (DMI) shows promise for studying in vivo energetic metabolism. • This review explores DMI's current state, limits, and future research directions comprehensively. • The clinical translation of DMI is mainly impeded by limitations in spatial resolution.
Collapse
Affiliation(s)
- Feng Pan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xinjie Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiayu Wan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yusheng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Peng Sun
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Xiaoxiao Zhang
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Jiazheng Wang
- MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, 100600, China
| | - Qingjia Bao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
31
|
Deh K, Zhang G, Park AH, Cunningham CH, Bragagnolo ND, Lyashchenko S, Ahmmed S, Leftin A, Coffee E, Hricak H, Miloushev V, Mayerhoefer M, Keshari KR. First in-human evaluation of [1- 13C]pyruvate in D 2O for hyperpolarized MRI of the brain: A safety and feasibility study. Magn Reson Med 2024; 91:2559-2567. [PMID: 38205934 PMCID: PMC11009889 DOI: 10.1002/mrm.30002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE To investigate the safety and value of hyperpolarized (HP) MRI of [1-13C]pyruvate in healthy volunteers using deuterium oxide (D2O) as a solvent. METHODS Healthy volunteers (n = 5), were injected with HP [1-13C]pyruvate dissolved in D2O and imaged with a metabolite-specific 3D dual-echo dynamic EPI sequence at 3T at one site (Site 1). Volunteers were monitored following the procedure to assess safety. Image characteristics, including SNR, were compared to data acquired in a separate cohort using water as a solvent (n = 5) at another site (Site 2). The apparent spin-lattice relaxation time (T1) of [1-13C]pyruvate was determined both in vitro and in vivo from a mono-exponential fit to the image intensity at each time point of our dynamic data. RESULTS All volunteers completed the study safely and reported no adverse effects. The use of D2O increased the T1 of [1-13C]pyruvate from 66.5 ± 1.6 s to 92.1 ± 5.1 s in vitro, which resulted in an increase in signal by a factor of 1.46 ± 0.03 at the time of injection (90 s after dissolution). The use of D2O also increased the apparent relaxation time of [1-13C]pyruvate by a factor of 1.4 ± 0.2 in vivo. After adjusting for inter-site SNR differences, the use of D2O was shown to increase image SNR by a factor of 2.6 ± 0.2 in humans. CONCLUSIONS HP [1-13C]pyruvate in D2O is safe for human imaging and provides an increase in T1 and SNR that may improve image quality.
Collapse
Affiliation(s)
- Kofi Deh
- Radiology, Memorial Sloan Kettering Cancer Center
| | | | - Angela Hijin Park
- Radiochemistry & Imaging Probes Core (RMIP), Memorial Sloan Kettering Cancer Center
| | - Charles H. Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario
| | | | - Serge Lyashchenko
- Radiochemistry & Imaging Probes Core (RMIP), Memorial Sloan Kettering Cancer Center
| | - Shake Ahmmed
- Radiochemistry & Imaging Probes Core (RMIP), Memorial Sloan Kettering Cancer Center
| | | | | | - Hedvig Hricak
- Radiology, Memorial Sloan Kettering Cancer Center
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center
| | | | | | - Kayvan R. Keshari
- Radiology, Memorial Sloan Kettering Cancer Center
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center
| |
Collapse
|
32
|
Hoffmann E, Masthoff M, Kunz WG, Seidensticker M, Bobe S, Gerwing M, Berdel WE, Schliemann C, Faber C, Wildgruber M. Multiparametric MRI for characterization of the tumour microenvironment. Nat Rev Clin Oncol 2024; 21:428-448. [PMID: 38641651 DOI: 10.1038/s41571-024-00891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Our understanding of tumour biology has evolved over the past decades and cancer is now viewed as a complex ecosystem with interactions between various cellular and non-cellular components within the tumour microenvironment (TME) at multiple scales. However, morphological imaging remains the mainstay of tumour staging and assessment of response to therapy, and the characterization of the TME with non-invasive imaging has not yet entered routine clinical practice. By combining multiple MRI sequences, each providing different but complementary information about the TME, multiparametric MRI (mpMRI) enables non-invasive assessment of molecular and cellular features within the TME, including their spatial and temporal heterogeneity. With an increasing number of advanced MRI techniques bridging the gap between preclinical and clinical applications, mpMRI could ultimately guide the selection of treatment approaches, precisely tailored to each individual patient, tumour and therapeutic modality. In this Review, we describe the evolving role of mpMRI in the non-invasive characterization of the TME, outline its applications for cancer detection, staging and assessment of response to therapy, and discuss considerations and challenges for its use in future medical applications, including personalized integrated diagnostics.
Collapse
Affiliation(s)
- Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Bobe
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | | | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
33
|
Feng Q, Bennett Z, Grichuk A, Pantoja R, Huang T, Faubert B, Huang G, Chen M, DeBerardinis RJ, Sumer BD, Gao J. Severely polarized extracellular acidity around tumour cells. Nat Biomed Eng 2024; 8:787-799. [PMID: 38438799 DOI: 10.1038/s41551-024-01178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024]
Abstract
Extracellular pH impacts many molecular, cellular and physiological processes, and hence is tightly regulated. Yet, in tumours, dysregulated cancer cell metabolism and poor vascular perfusion cause the tumour microenvironment to become acidic. Here by leveraging fluorescent pH nanoprobes with a transistor-like activation profile at a pH of 5.3, we show that, in cancer cells, hydronium ions are excreted into a small extracellular region. Such severely polarized acidity (pH <5.3) is primarily caused by the directional co-export of protons and lactate, as we show for a diverse panel of cancer cell types via the genetic knockout or inhibition of monocarboxylate transporters, and also via nanoprobe activation in multiple tumour models in mice. We also observed that such spot acidification in ex vivo stained snap-frozen human squamous cell carcinoma tissue correlated with the expression of monocarboxylate transporters and with the exclusion of cytotoxic T cells. Severely spatially polarized tumour acidity could be leveraged for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zachary Bennett
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony Grichuk
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Raymundo Pantoja
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tongyi Huang
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandon Faubert
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gang Huang
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Baran D Sumer
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinming Gao
- Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pharmacology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
34
|
Hilovsky D, Hartsell J, Young JD, Liu X. Stable Isotope Tracing Analysis in Cancer Research: Advancements and Challenges in Identifying Dysregulated Cancer Metabolism and Treatment Strategies. Metabolites 2024; 14:318. [PMID: 38921453 PMCID: PMC11205609 DOI: 10.3390/metabo14060318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, driving the development of therapies targeting cancer metabolism. Stable isotope tracing has emerged as a widely adopted tool for monitoring cancer metabolism both in vitro and in vivo. Advances in instrumentation and the development of new tracers, metabolite databases, and data analysis tools have expanded the scope of cancer metabolism studies across these scales. In this review, we explore the latest advancements in metabolic analysis, spanning from experimental design in stable isotope-labeling metabolomics to sophisticated data analysis techniques. We highlight successful applications in cancer research, particularly focusing on ongoing clinical trials utilizing stable isotope tracing to characterize disease progression, treatment responses, and potential mechanisms of resistance to anticancer therapies. Furthermore, we outline key challenges and discuss potential strategies to address them, aiming to enhance our understanding of the biochemical basis of cancer metabolism.
Collapse
Affiliation(s)
- Dalton Hilovsky
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; (D.H.); (J.H.)
| | - Joshua Hartsell
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; (D.H.); (J.H.)
| | - Jamey D. Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212, USA
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; (D.H.); (J.H.)
| |
Collapse
|
35
|
Diaz E, Sriram R, Gordon JW, Sinha A, Liu X, Sahin S, Crane J, Olson MP, Chen HY, Bernard J, Vigneron DB, Wang ZJ, Xu D, Larson PEZ. Data Format Standardization and DICOM Integration for Hyperpolarized 13C MRI. ARXIV 2024:arXiv:2405.03147v1. [PMID: 38764595 PMCID: PMC11100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Hyperpolarized (HP) 13C MRI has shown promise as a valuable modality for in vivo measurements of metabolism and is currently in human trials at 15 research sites worldwide. With this growth it is important to adopt standardized data storage practices as it will allow sites to meaningfully compare data. In this paper we (1) describe data that we believe should be stored and (2) demonstrate pipelines and methods that utilize the Digital Imaging and Communications in Medicine (DICOM) standard. This includes proposing a set of minimum set of information that is specific to HP 13C MRI studies. We then show where the majority of these can be fit into existing DICOM Attributes, primarily via the "Contrast/Bolus" module. We also demonstrate pipelines for utilizing DICOM for HP 13C MRI. DICOM is the most common standard for clinical medical image storage and provides the flexibility to accommodate the unique aspects of HP 13C MRI, including the HP agent information but also spectroscopic and metabolite dimensions. The pipelines shown include creating DICOM objects for studies on human and animal imaging systems with various pulse sequences. We also show a python-based method to efficiently modify DICOM objects to incorporate the unique HP 13C MRI information that is not captured by existing pipelines. Moreover, we propose best practices for HP 13C MRI data storage that will support future multi-site trials, research studies and technical developments of this imaging technique.
Collapse
Affiliation(s)
- Ernesto Diaz
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Avantika Sinha
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Xiaoxi Liu
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Sule Sahin
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Jason Crane
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Marram P Olson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Jenna Bernard
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
| |
Collapse
|
36
|
Korzeczek MC, Dagys L, Müller C, Tratzmiller B, Salhov A, Eichhorn T, Scheuer J, Knecht S, Plenio MB, Schwartz I. Towards a unified picture of polarization transfer - pulsed DNP and chemically equivalent PHIP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107671. [PMID: 38614057 DOI: 10.1016/j.jmr.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Nuclear spin hyperpolarization techniques, such as dynamic nuclear polarization (DNP) and parahydrogen-induced polarization (PHIP), have revolutionized nuclear magnetic resonance and magnetic resonance imaging. In these methods, a readily available source of high spin order, either electron spins in DNP or singlet states in hydrogen for PHIP, is brought into close proximity with nuclear spin targets, enabling efficient transfer of spin order under external quantum control. Despite vast disparities in energy scales and interaction mechanisms between electron spins in DNP and nuclear singlet states in PHIP, a pseudo-spin formalism allows us to establish an intriguing equivalence. As a result, the important low-field polarization transfer regime of PHIP can be mapped onto an analogous system equivalent to pulsed-DNP. This establishes a correspondence between key polarization transfer sequences in PHIP and DNP, facilitating the transfer of sequence development concepts. This promises fresh insights and significant cross-pollination between DNP and PHIP polarization sequence developers.
Collapse
Affiliation(s)
- Martin C Korzeczek
- Institute of Theoretical Physics and IQST, Albert-Einstein Allee 11, Ulm University, 89081, Ulm, Germany
| | | | | | - Benedikt Tratzmiller
- Institute of Theoretical Physics and IQST, Albert-Einstein Allee 11, Ulm University, 89081, Ulm, Germany; Carl Zeiss MultiSEM GmbH, 73447, Oberkochen, Germany
| | - Alon Salhov
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany; Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Givat Ram, Israel
| | - Tim Eichhorn
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany
| | | | | | - Martin B Plenio
- Institute of Theoretical Physics and IQST, Albert-Einstein Allee 11, Ulm University, 89081, Ulm, Germany.
| | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany.
| |
Collapse
|
37
|
Agarwal S, Gordon J, Bok RA, von Morze C, Vigneron DB, Kurhanewicz J, Ohliger MA. Distinguishing metabolic signals of liver tumors from surrounding liver cells using hyperpolarized 13 C MRI and gadoxetate. Magn Reson Med 2024; 91:2114-2125. [PMID: 38270193 DOI: 10.1002/mrm.29918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 01/26/2024]
Abstract
PURPOSE To use the hepatocyte-specific gadolinium-based contrast agent gadoxetate combined with hyperpolarized (HP) [1-13 C]pyruvate MRI to selectively suppress metabolic signals from normal hepatocytes while preserving the signals arising from tumors. METHODS Simulations were performed to determine the expected changes in HP 13 C MR signal in liver and tumor under the influence of gadoxetate. CC531 colon cancer cells were implanted into the livers of five Wag/Rij rats. Liver and tumor metabolism were imaged at 3 T using HP [1-13 C] pyruvate chemical shift imaging before and 15 min after injection of gadoxetate. Area under the curve for pyruvate and lactate were measured from voxels containing at least 75% of normal-appearing liver or tumor. RESULTS Numerical simulations predicted a 36% decrease in lactate-to-pyruvate (L/P) ratio in liver and 16% decrease in tumor. In vivo, baseline L/P ratio was 0.44 ± 0.25 in tumors versus 0.21 ± 0.08 in liver (p = 0.09). Following administration of gadoxetate, mean L/P ratio decreased by an average of 0.11 ± 0.06 (p < 0.01) in normal-appearing liver. In tumors, mean L/P ratio post-gadoxetate did not show a statistically significant change from baseline. Compared to baseline levels, the relative decrease in L/P ratio was significantly greater in liver than in tumors (-0.52 ± 0.16 vs. -0.19 ± 0.25, p < 0.05). CONCLUSIONS The intracellular hepatobiliary contrast agent showed a greater effect suppressing HP 13 C MRI metabolic signals (through T1 shortening) in normal-appearing liver when compared to tumors. The combined use of HP MRI with selective gadolinium contrast agents may allow more selective imaging in HP 13 C MRI.
Collapse
Affiliation(s)
- Shubhangi Agarwal
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Liver Center, University of California, San Francisco, San Francisco, California, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Michael A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
- Liver Center, University of California, San Francisco, San Francisco, California, USA
- Department of Radiology, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| |
Collapse
|
38
|
Andelius TCK, Hansen ESS, Bøgh N, Pedersen MV, Kyng KJ, Henriksen TB, Laustsen C. Hyperpolarized 13C magnetic resonance imaging in neonatal hypoxic-ischemic encephalopathy: First investigations in a large animal model. NMR IN BIOMEDICINE 2024; 37:e5110. [PMID: 38317333 DOI: 10.1002/nbm.5110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/03/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Early biomarkers of cerebral damage are essential for accurate prognosis, timely intervention, and evaluation of new treatment modalities in newborn infants with hypoxia and ischemia at birth. Hyperpolarized 13C magnetic resonance imaging (MRI) is a novel method with which to quantify metabolism in vivo with unprecedented sensitivity. We aimed to investigate the applicability of hyperpolarized 13C MRI in a newborn piglet model and whether this method may identify early changes in cerebral metabolism after a standardized hypoxic-ischemic (HI) insult. Six piglets were anesthetized and subjected to a standardized HI insult. Imaging was performed prior to and 2 h after the insult on a 3-T MR scanner. For 13C studies, [1-13C]pyruvate was hyperpolarized in a commercial polarizer. Following intravenous injection, images were acquired using metabolic-specific imaging. HI resulted in a metabolic shift with a decrease in pyruvate to bicarbonate metabolism and an increase in pyruvate to lactate metabolism (lactate/bicarbonate ratio, mean [SD]; 2.28 [0.36] vs. 3.96 [0.91]). This is the first study to show that hyperpolarized 13C MRI can be used in newborn piglets and applied to evaluate early changes in cerebral metabolism after an HI insult.
Collapse
Affiliation(s)
- Ted C K Andelius
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Nikolaj Bøgh
- The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Mette V Pedersen
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper J Kyng
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Tine B Henriksen
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
39
|
Martinez Luque E, Liu Z, Sung D, Goldberg RM, Agarwal R, Bhattacharya A, Ahmed NS, Allen JW, Fleischer CC. An Update on MR Spectroscopy in Cancer Management: Advances in Instrumentation, Acquisition, and Analysis. Radiol Imaging Cancer 2024; 6:e230101. [PMID: 38578207 PMCID: PMC11148681 DOI: 10.1148/rycan.230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 04/06/2024]
Abstract
MR spectroscopy (MRS) is a noninvasive imaging method enabling chemical and molecular profiling of tissues in a localized, multiplexed, and nonionizing manner. As metabolic reprogramming is a hallmark of cancer, MRS provides valuable metabolic and molecular information for cancer diagnosis, prognosis, treatment monitoring, and patient management. This review provides an update on the use of MRS for clinical cancer management. The first section includes an overview of the principles of MRS, current methods, and conventional metabolites of interest. The remainder of the review is focused on three key areas: advances in instrumentation, specifically ultrahigh-field-strength MRI scanners and hybrid systems; emerging methods for acquisition, including deuterium imaging, hyperpolarized carbon 13 MRI and MRS, chemical exchange saturation transfer, diffusion-weighted MRS, MR fingerprinting, and fast acquisition; and analysis aided by artificial intelligence. The review concludes with future recommendations to facilitate routine use of MRS in cancer management. Keywords: MR Spectroscopy, Spectroscopic Imaging, Molecular Imaging in Oncology, Metabolic Reprogramming, Clinical Cancer Management © RSNA, 2024.
Collapse
Affiliation(s)
- Eva Martinez Luque
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Zexuan Liu
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Dongsuk Sung
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rachel M. Goldberg
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Rishab Agarwal
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Aditya Bhattacharya
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Nadine S. Ahmed
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Jason W. Allen
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| | - Candace C. Fleischer
- From the Departments of Radiology and Imaging Sciences (E.M.L., Z.L.,
D.S., J.W.A., C.C.F.) and Neurology (J.W.A.), Emory University School of
Medicine, Atlanta, Ga; Department of Biomedical Engineering (E.M.L., Z.L., D.S.,
J.W.A., C.C.F.), Georgia Institute of Technology and Emory University, Atlanta,
Ga; College of Arts and Sciences, Emory University, Atlanta, Ga (R.M.G.); and
College of Business (R.A.) and College of Sciences (A.B., N.S.A.), Georgia
Institute of Technology, Atlanta, Georgia
| |
Collapse
|
40
|
Nickles TM, Kim Y, Lee PM, Chen HY, Ohliger M, Bok RA, Wang ZJ, Larson PEZ, Vigneron DB, Gordon JW. Hyperpolarized 13 C metabolic imaging of the human abdomen with spatiotemporal denoising. Magn Reson Med 2024; 91:2153-2161. [PMID: 38193310 PMCID: PMC10950515 DOI: 10.1002/mrm.29985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Improving the quality and maintaining the fidelity of large coverage abdominal hyperpolarized (HP) 13 C MRI studies with a patch based global-local higher-order singular value decomposition (GL-HOVSD) spatiotemporal denoising approach. METHODS Denoising performance was first evaluated using the simulated [1-13 C]pyruvate dynamics at different noise levels to determine optimal kglobal and klocal parameters. The GL-HOSVD spatiotemporal denoising method with the optimized parameters was then applied to two HP [1-13 C]pyruvate EPI abdominal human cohorts (n = 7 healthy volunteers and n = 8 pancreatic cancer patients). RESULTS The parameterization of kglobal = 0.2 and klocal = 0.9 denoises abdominal HP data while retaining image fidelity when evaluated by RMSE. The kPX (conversion rate of pyruvate-to-metabolite, X = lactate or alanine) difference was shown to be <20% with respect to ground-truth metabolic conversion rates when there is adequate SNR (SNRAUC > 5) for downstream metabolites. In both human cohorts, there was a greater than nine-fold gain in peak [1-13 C]pyruvate, [1-13 C]lactate, and [1-13 C]alanine apparent SNRAUC . The improvement in metabolite SNR enabled a more robust quantification of kPL and kPA . After denoising, we observed a 2.1 ± 0.4 and 4.8 ± 2.5-fold increase in the number of voxels reliably fit across abdominal FOVs for kPL and kPA quantification maps. CONCLUSION Spatiotemporal denoising greatly improves visualization of low SNR metabolites particularly [1-13 C]alanine and quantification of [1-13 C]pyruvate metabolism in large FOV HP 13 C MRI studies of the human abdomen.
Collapse
Affiliation(s)
- Tanner M Nickles
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Yaewon Kim
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Philip M Lee
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Hsin-Yu Chen
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael Ohliger
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Robert A Bok
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Zhen J Wang
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, California, USA
| |
Collapse
|
41
|
Hyppönen VEA, Rosa J, Kettunen MI. Simultaneous fMRI and metabolic MRS of hyperpolarized [1- 13C]pyruvate during nicotine stimulus in rat. NMR IN BIOMEDICINE 2024; 37:e5108. [PMID: 38273732 DOI: 10.1002/nbm.5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
Functional MRI (fMRI) and MRS (fMRS) can be used to noninvasively map cerebral activation and metabolism. Recently, hyperpolarized 13C spectroscopy and metabolic imaging have provided an alternative approach to assess metabolism. In this study, we combined 1H fMRI and hyperpolarized [1-13C]pyruvate MRS to compare cerebral blood oxygenation level-dependent (BOLD) response and real-time cerebral metabolism, as assessed with lactate and bicarbonate labelling, during nicotine stimulation. Simultaneous 1H fMRI (multislice gradient echo echo-planar imaging) and 13C spectroscopic (single slice pulse-acquire) data were collected in urethane-anaesthetized female Sprague-Dawley rats (n = 12) at 9.4 T. Animals received an intravenous (i.v.) injection of either nicotine (stimulus; 88 μg/kg, n = 7, or 300 μg/kg, n = 5) or 0.9% saline (matching volume), followed by hyperpolarized [1-13C]pyruvate injection 60 s later. Three hours later, a second injection was administered: the animals that had previously received saline were injected with nicotine and vice versa, both followed by another hyperpolarized [1-13C]pyruvate i.v. injection 60 s later. The low-dose (88 μg/kg) nicotine injection led to a 12% ± 4% (n = 7, t-test, p ~ 0.0006 (t-value -5.8, degrees of freedom 6), Wilcoxon p ~ 0.0078 (test statistic 0)) increase in BOLD signal. At the same time, an increase in 13C-bicarbonate signal was seen in four out of six animals. Bicarbonate-to-total carbon ratios were 0.010 ± 0.004 and 0.018 ± 0.010 (n = 6, t-test, p ~ 0.03 (t-value -2.3, degrees of freedom 5), Wilcoxon p ~ 0.08 (test statistic 3)) for saline and nicotine experiments, respectively. No increase in the lactate signal was seen; lactate-to-total carbon was 0.16 ± 0.02 after both injections. The high (300 μg/kg) nicotine dose (n = 5) caused highly variable BOLD and metabolic responses, possibly due to the apparent respiratory distress. Simultaneous detection of 1H fMRI and hyperpolarized 13C-MRS is feasible. A comparison of metabolic response between control and stimulated states showed differences in bicarbonate signal, implying that the hyperpolarization technique could offer complimentary information on brain activation.
Collapse
Affiliation(s)
- Viivi-Elina A Hyppönen
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jessica Rosa
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko I Kettunen
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
42
|
Christensen NV, Holm R, Sanchez JD, Hansen ESS, Lerche MH, Ardenkjær-Larsen JH, Laustsen C, Bertelsen LB. A continuous flow bioreactor system for high-throughput hyperpolarized metabolic flux analysis. NMR IN BIOMEDICINE 2024; 37:e5107. [PMID: 38279190 DOI: 10.1002/nbm.5107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024]
Abstract
Hyperpolarized carbon-13 labeled compounds are increasingly being used in medical MR imaging (MRI) and MR imaging (MRI) and spectroscopy (MRS) research, due to its ability to monitor tissue and cell metabolism in real-time. Although radiological biomarkers are increasingly being considered as clinical indicators, biopsies are still considered the gold standard for a large variety of indications. Bioreactor systems can play an important role in biopsy examinations because of their ability to provide a physiochemical environment that is conducive for therapeutic response monitoring ex vivo. We demonstrate here a proof-of-concept bioreactor and microcoil receive array setup that allows for ex vivo preservation and metabolic NMR spectroscopy on up to three biopsy samples simultaneously, creating an easy-to-use and robust way to simultaneously run multisample carbon-13 hyperpolarization experiments. Experiments using hyperpolarized [1-13C]pyruvate on ML-1 leukemic cells in the bioreactor setup were performed and the kinetic pyruvate-to-lactate rate constants ( k PL ) extracted. The coefficient of variation of the experimentally found k PL s for five repeated experiments was C V = 35 % . With this statistical power, treatment effects of 30%-40% change in lactate production could be easily differentiable with only a few hyperpolarization dissolutions on this setup. Furthermore, longitudinal experiments showed preservation of ML-1 cells in the bioreactor setup for at least 6 h. Rat brain tissue slices were also seen to be preserved within the bioreactor for at least 1 h. This validation serves as the basis for further optimization and upscaling of the setup, which undoubtedly has huge potential in high-throughput studies with various biomarkers and tissue types.
Collapse
Affiliation(s)
| | - Rikke Holm
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Esben S S Hansen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mathilde H Lerche
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lotte Bonde Bertelsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
43
|
Lin G, Hsieh CY, Lai YC, Wang CC, Lin Y, Lu KY, Chai WY, Chen AP, Yen TC, Ng SH, Lai CH. Hyperpolarized [1- 13C]-pyruvate MRS evaluates immune potential and predicts response to radiotherapy in cervical cancer. Eur Radiol Exp 2024; 8:46. [PMID: 38594558 PMCID: PMC11003947 DOI: 10.1186/s41747-024-00445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/23/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Monitoring pyruvate metabolism in the spleen is important for assessing immune activity and achieving successful radiotherapy for cervical cancer due to the significance of the abscopal effect. We aimed to explore the feasibility of utilizing hyperpolarized (HP) [1-13C]-pyruvate magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) to evaluate pyruvate metabolism in the human spleen, with the aim of identifying potential candidates for radiotherapy in cervical cancer. METHODS This prospective study recruited six female patients with cervical cancer (median age 55 years; range 39-60) evaluated using HP [1-13C]-pyruvate MRI/MRS at baseline and 2 weeks after radiotherapy. Proton (1H) diffusion-weighted MRI was performed in parallel to estimate splenic cellularity. The primary outcome was defined as tumor response to radiotherapy. The Student t-test was used for comparing 13C data between the groups. RESULTS The splenic HP [1-13C]-lactate-to-total carbon (tC) ratio was 5.6-fold lower in the responders than in the non-responders at baseline (p = 0.009). The splenic [1-13C]-lactate-to-tC ratio revealed a 1.7-fold increase (p = 0.415) and the splenic [1-13C]-alanine-to-tC ratio revealed a 1.8-fold increase after radiotherapy (p = 0.482). The blood leukocyte differential count revealed an increased proportion of neutrophils two weeks following treatment, indicating enhanced immune activity (p = 0.013). The splenic apparent diffusion coefficient values between the groups were not significantly different. CONCLUSIONS This exploratory study revealed the feasibility of HP [1-13C]-pyruvate MRS of the spleen for evaluating baseline immune potential, which was associated with clinical outcomes of cervical cancer after radiotherapy. TRIAL REGISTRATION ClinicalTrials.gov NCT04951921 , registered 7 July 2021. RELEVANCE STATEMENT This prospective study revealed the feasibility of using HP 13C MRI/MRS for assessing pyruvate metabolism of the spleen to evaluate the patients' immune potential that is associated with radiotherapeutic clinical outcomes in cervical cancer. KEY POINTS • Effective radiotherapy induces abscopal effect via altering immune metabolism. • Hyperpolarized 13C MRS evaluates patients' immune potential non-invasively. • Pyruvate-to-lactate conversion in the spleen is elevated following radiotherapy.
Collapse
Affiliation(s)
- Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Ching-Yi Hsieh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Chieh Lai
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chun-Chieh Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yenpo Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuan-Ying Lu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wen-Yen Chai
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | | | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chyong-Huey Lai
- Division of Gynecologic Oncology, Gynecologic Oncology Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
44
|
Chaumeil MM, Bankson JA, Brindle KM, Epstein S, Gallagher FA, Grashei M, Guglielmetti C, Kaggie JD, Keshari KR, Knecht S, Laustsen C, Schmidt AB, Vigneron D, Yen YF, Schilling F. New Horizons in Hyperpolarized 13C MRI. Mol Imaging Biol 2024; 26:222-232. [PMID: 38147265 PMCID: PMC10972948 DOI: 10.1007/s11307-023-01888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023]
Abstract
Hyperpolarization techniques significantly enhance the sensitivity of magnetic resonance (MR) and thus present fascinating new directions for research and applications with in vivo MR imaging and spectroscopy (MRI/S). Hyperpolarized 13C MRI/S, in particular, enables real-time non-invasive assessment of metabolic processes and holds great promise for a diverse range of clinical applications spanning fields like oncology, neurology, and cardiology, with a potential for improving early diagnosis of disease, patient stratification, and therapy response assessment. Despite its potential, technical challenges remain for achieving clinical translation. This paper provides an overview of the discussions that took place at the international workshop "New Horizons in Hyperpolarized 13C MRI," in March 2023 at the Bavarian Academy of Sciences and Humanities, Munich, Germany. The workshop covered new developments, as well as future directions, in topics including polarization techniques (particularly focusing on parahydrogen-based methods), novel probes, considerations related to data acquisition and analysis, and emerging clinical applications in oncology and other fields.
Collapse
Affiliation(s)
- Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - James A Bankson
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Ferdia A Gallagher
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Martin Grashei
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Joshua D Kaggie
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Weill Cornell Graduate School, New York City, NY, USA
| | | | - Christoffer Laustsen
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Andreas B Schmidt
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI, 48202, USA
| | - Daniel Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Franz Schilling
- Department of Nuclear Medicine, TUM School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Partner Site Freiburg and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
45
|
von Witte G, Himmler A, Kozerke S, Ernst M. Relaxation enhancement by microwave irradiation may limit dynamic nuclear polarization. Phys Chem Chem Phys 2024; 26:9578-9585. [PMID: 38462920 PMCID: PMC10954235 DOI: 10.1039/d3cp06025j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Dynamic nuclear polarization enables the hyperpolarization of nuclear spins beyond the thermal-equilibrium Boltzmann distribution. However, it is often unclear why the experimentally measured hyperpolarization is below the theoretically achievable maximum polarization. We report a (near-) resonant relaxation enhancement by microwave (MW) irradiation, leading to a significant increase in the nuclear polarization decay compared to measurements without MW irradiation. For example, the increased nuclear relaxation limits the achievable polarization levels to around 35% instead of hypothetical 60%, measured in the DNP material TEMPO in 1H glassy matrices at 3.3 K and 7 T. Applying rate-equation models to published build-up and decay data indicates that such relaxation enhancement is a common issue in many samples when using different radicals at low sample temperatures and high Boltzmann polarizations of the electrons. Accordingly, quantification and a better understanding of the relaxation processes under MW irradiation might help to design samples and processes towards achieving higher nuclear hyperpolarization levels.
Collapse
Affiliation(s)
- Gevin von Witte
- Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| | - Aaron Himmler
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich, Switzerland
| | - Matthias Ernst
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
46
|
Montrazi ET, Sasson K, Agemy L, Scherz A, Frydman L. Molecular imaging of tumor metabolism: Insight from pyruvate- and glucose-based deuterium MRI studies. SCIENCE ADVANCES 2024; 10:eadm8600. [PMID: 38478615 PMCID: PMC10936946 DOI: 10.1126/sciadv.adm8600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024]
Abstract
Cancer diagnosis by metabolic MRI proposes to follow the fate of glycolytic precursors such as pyruvate or glucose, and their in vivo conversion into lactate. This study compares the 2H MRI outlooks afforded by these metabolites when targeting a pancreatic cancer model. Exogenously injected [3,3',3″-2H3]-pyruvate was visible only briefly; it generated a deuterated lactate signal throughout the body that faded after ~5 min, showing a minor concentration bias at the rims of the tumors. [6,6'-2H2]-glucose by contrast originated a lactate signal that localized clearly within the tumors, persisting for over an hour. Investigations alternating deuterated and nondeuterated glucose injections revealed correlations between the lactate generation and the glucose available at the tumor, evidencing a continuous and avid glucose consumption generating well-localized lactate signatures as driven by the Warburg effect. This is by contrast to the transient and more promiscuous pyruvate-to-lactate transformation, which seemed subject to transporter and kinetics effects. The consequences of these observations within metabolic MRI are briefly discussed.
Collapse
Affiliation(s)
- Elton T Montrazi
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Sasson
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lilach Agemy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Avigdor Scherz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
47
|
Nantogma S, Chowdhury MRH, Kabir MSH, Adelabu I, Joshi SM, Samoilenko A, de Maissin H, Schmidt AB, Nikolaou P, Chekmenev YA, Salnikov OG, Chukanov NV, Koptyug IV, Goodson BM, Chekmenev EY. MATRESHCA: Microtesla Apparatus for Transfer of Resonance Enhancement of Spin Hyperpolarization via Chemical Exchange and Addition. Anal Chem 2024; 96:4171-4179. [PMID: 38358916 PMCID: PMC10939749 DOI: 10.1021/acs.analchem.3c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We present an integrated, open-source device for parahydrogen-based hyperpolarization processes in the microtesla field regime with a cost of components of less than $7000. The device is designed to produce a batch of 13C and 15N hyperpolarized (HP) compounds via hydrogenative or non-hydrogenative parahydrogen-induced polarization methods that employ microtesla magnetic fields for efficient polarization transfer of parahydrogen-derived spin order to X-nuclei (e.g., 13C and 15N). The apparatus employs a layered structure (reminiscent of a Russian doll "Matryoshka") that includes a nonmagnetic variable-temperature sample chamber, a microtesla magnetic field coil (operating in the range of 0.02-75 microtesla), a three-layered mu-metal shield (to attenuate the ambient magnetic field), and a magnetic shield degaussing coil placed in the overall device enclosure. The gas-handling manifold allows for parahydrogen-gas flow and pressure control (up to 9.2 bar of total parahydrogen pressure). The sample temperature can be varied either using a water bath or a PID-controlled heat exchanger in the range from -12 to 80 °C. This benchtop device measures 62 cm (length) × 47 cm (width) × 47 cm (height), weighs 30 kg, and requires only connections to a high-pressure parahydrogen gas supply and a single 110/220 VAC power source. The utility of the device has been demonstrated using an example of parahydrogen pairwise addition to form HP ethyl [1-13C]acetate (P13C = 7%, [c] = 1 M). Moreover, the Signal Amplification By Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) technique was employed to demonstrate efficient hyperpolarization of 13C and 15N spins in a wide range of biologically relevant molecules, including [1-13C]pyruvate (P13C = 14%, [c] = 27 mM), [1-13C]-α-ketoglutarate (P13C = 17%), [1-13C]ketoisocaproate (P13C = 18%), [15N3]metronidazole (P15N = 13%, [c] = 20 mM), and others. While the vast majority of the utility studies have been performed in standard 5 mm NMR tubes, the sample chamber of the device can accommodate a wide range of sample container sizes and geometries of up to 1 L sample volume. The device establishes an integrated, simple, inexpensive, and versatile equipment gateway needed to facilitate parahydrogen-based hyperpolarization experiments ranging from basic science to preclinical applications; indeed, detailed technical drawings and a bill of materials are provided to support the ready translation of this design to other laboratories.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Md Raduanul H. Chowdhury
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Mohammad S. H. Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Sameer M. Joshi
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Anna Samoilenko
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
| | - Henri de Maissin
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Andreas B. Schmidt
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | | | | | - Oleg G. Salnikov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Nikita V. Chukanov
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry, Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
48
|
Ohliger MA. Hyperpolarized 13C Pyruvate MRI: An Important Window into Tumor Metabolism. Radiol Imaging Cancer 2024; 6:e240004. [PMID: 38426886 PMCID: PMC10988342 DOI: 10.1148/rycan.240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Michael A. Ohliger
- From the Department of Radiology and Biomedical Imaging, University
of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143
| |
Collapse
|
49
|
Babenko SV, Sviyazov SV, Burueva DB, Koptyug IV. Hyperpolarized long-lived spin state of methylene protons of 2-bromoethanol obtained from ethylene with non-equilibrium nuclear spin order. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 360:107648. [PMID: 38401476 DOI: 10.1016/j.jmr.2024.107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
In this work we achieve a significant overpopulation (PLLS≈1%) of the long-lived spin state (LLS) of methylene protons in 2-bromoethan(2H)ol (BrEtOD) obtained in a reaction between ethylene with non-equilibrium nuclear spin order and bromine water. Given all protons in ethylene are magnetically equivalent, its nuclear states are classified into nuclear spin isomers (NSIM) with total spin I = 2,1,0. Addition of parahydrogen to acetylene produces ethylene with a population of only those NSIMs with I = 1,0. As a result of the reaction with bromine water the non-equilibrium spin order of ethylene is partly transferred to the singlet LLS involving the two methylene groups of BrEtOD. The 1H NMR signal enhancement (SE≈200) obtained as a result of the LLS readout is approximately equal to the SE of the hyperpolarized BrEtOD obtained with a single π/4 pulse. The LLS relaxation time (TLLS) was shown to be approximately 40 s (≈8T1) in the argon-bubbled sample.
Collapse
Affiliation(s)
- Simon V Babenko
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia; V.V. Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, Novosibirsk 630090, Russia.
| | - Sergey V Sviyazov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dudari B Burueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia
| | - Igor V Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
50
|
Chen HY, Gordon JW, Dwork N, Chung BT, Riselli A, Sivalokanathan S, Bok RA, Slater JB, Vigneron DB, Abraham MR, Larson PEZ. Probing human heart TCA cycle metabolism and response to glucose load using hyperpolarized [2- 13 C]pyruvate MRS. NMR IN BIOMEDICINE 2024; 37:e5074. [PMID: 38054254 DOI: 10.1002/nbm.5074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION The healthy heart has remarkable metabolic flexibility that permits rapid switching between mitochondrial glucose oxidation and fatty acid oxidation to generate ATP. Loss of metabolic flexibility has been implicated in the genesis of contractile dysfunction seen in cardiomyopathy. Metabolic flexibility has been imaged in experimental models, using hyperpolarized (HP) [2-13 C]pyruvate MRI, which enables interrogation of metabolites that reflect tricarboxylic acid (TCA) cycle flux in cardiac myocytes. This study aimed to develop methods, demonstrate feasibility for [2-13 C]pyruvate MRI in the human heart for the first time, and assess cardiac metabolic flexibility. METHODS Good manufacturing practice [2-13 C]pyruvic acid was polarized in a 5 T polarizer for 2.5-3 h. Following dissolution, quality control parameters of HP pyruvate met all safety and sterility criteria for pharmacy release, prior to administration to study subjects. Three healthy subjects each received two HP injections and MR scans, first under fasting conditions, followed by oral glucose load. A 5 cm axial slab-selective spectroscopy approach was prescribed over the left ventricle and acquired at 3 s intervals on a 3 T clinical MRI scanner. RESULTS The study protocol, which included HP substrate injection, MR scanning, and oral glucose load, was performed safely without adverse events. Key downstream metabolites of [2-13 C]pyruvate metabolism in cardiac myocytes include the glycolytic derivative [2-13 C]lactate, TCA-associated metabolite [5-13 C]glutamate, and [1-13 C]acetylcarnitine, catalyzed by carnitine acetyltransferase (CAT). After glucose load, 13 C-labeling of lactate, glutamate, and acetylcarnitine from 13 C-pyruvate increased by an average of 39.3%, 29.5%, and 114% respectively in the three subjects, which could result from increases in lactate dehydrogenase, pyruvate dehydrogenase, and CAT enzyme activity as well as TCA cycle flux (glucose oxidation). CONCLUSIONS HP [2-13 C]pyruvate imaging is safe and permits noninvasive assessment of TCA cycle intermediates and the acetyl buffer, acetylcarnitine, which is not possible using HP [1-13 C]pyruvate. Cardiac metabolite measurement in the fasting/fed states provides information on cardiac metabolic flexibility and the acetylcarnitine pool.
Collapse
Affiliation(s)
- Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Nicholas Dwork
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Brian T Chung
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Andrew Riselli
- School of Pharmacy, University of California, San Francisco, California, USA
| | | | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - M Roselle Abraham
- Division of Cardiology, University of California, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|