1
|
|
2
|
Nowakowski AB, Meeusen JW, Menden H, Tomasiewicz H, Petering DH. Chemical–Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes. Inorg Chem 2015; 54:11637-47. [DOI: 10.1021/acs.inorgchem.5b01535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Andrew B. Nowakowski
- Department of Chemistry
and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Jeffrey W. Meeusen
- Department of Chemistry
and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Heather Menden
- Department of Chemistry
and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | | | - David H. Petering
- Department of Chemistry
and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
3
|
Jeong J, Walker JM, Wang F, Park JG, Palmer AE, Giunta C, Rohrbach M, Steinmann B, Eide DJ. Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers-Danlos syndrome. Proc Natl Acad Sci U S A 2012; 109:E3530-8. [PMID: 23213233 PMCID: PMC3529093 DOI: 10.1073/pnas.1211775110] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zinc is essential but potentially toxic, so intracellular zinc levels are tightly controlled. A key strategy used by many organisms to buffer cytosolic zinc is to store it within vesicles and organelles.It is yet unknown whether vesicular or organellar sites perform this function in mammals. Human ZIP13, a member of the Zrt/Irt-like protein (ZIP) metal transporter family, might provide an answer to this question. Mutations in the ZIP13 gene, SLC39A13, previously were found to cause the spondylocheiro dysplastic form of Ehlers–Danlos syndrome (SCD-EDS), a heritable connective tissue disorder.Those previous studies suggested that ZIP13 transports excess zinc out of the early secretory pathway and that zinc overload in the endoplasmic reticulum (ER) occurs in SCD-EDS patients. In contrast,this study indicates that ZIP13’s role is to release labile zinc from vesicular stores for use in the ER and other compartments. We propose that SCD-EDS is the result of vesicular zinc trapping and ER zinc deficiency rather than overload.
Collapse
Affiliation(s)
- Jeeyon Jeong
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhao RY, Liang D, Li G, Larrimore CW, Mirkin BL. Anti-cancer effect of HIV-1 viral protein R on doxorubicin resistant neuroblastoma. PLoS One 2010; 5:e11466. [PMID: 20628645 PMCID: PMC2898807 DOI: 10.1371/journal.pone.0011466] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 06/08/2010] [Indexed: 01/21/2023] Open
Abstract
Several unique biological features of HIV-1 Vpr make it a potentially powerful agent for anti-cancer therapy. First, Vpr inhibits cell proliferation by induction of cell cycle G2 arrest. Second, it induces apoptosis through multiple mechanisms, which could be significant as it may be able to overcome apoptotic resistance exhibited by many cancerous cells, and, finally, Vpr selectively kills fast growing cells in a p53-independent manner. To demonstrate the potential utility of Vpr as an anti-cancer agent, we carried out proof-of-concept studies in vitro and in vivo. Results of our preliminary studies demonstrated that Vpr induces cell cycle G2 arrest and apoptosis in a variety of cancer types. Moreover, the same Vpr effects could also be detected in some cancer cells that are resistant to anti-cancer drugs such as doxorubicin (DOX). To further illustrate the potential value of Vpr in tumor growth inhibition, we adopted a DOX-resistant neuroblastoma model by injecting SK-N-SH cells into C57BL/6N and C57BL/6J-scid/scid mice. We hypothesized that Vpr is able to block cell proliferation and induce apoptosis regardless of the drug resistance status of the tumors. Indeed, production of Vpr via adenoviral delivery to neuroblastoma cells caused G2 arrest and apoptosis in both drug naïve and DOX-resistant cells. In addition, pre-infection or intratumoral injection of vpr-expressing adenoviral particles into neuroblastoma tumors in SCID mice markedly inhibited tumor growth. Therefore, Vpr could possibly be used as a supplemental viral therapeutic agent for selective inhibition of tumor growth in anti-cancer therapy especially when other therapies stop working.
Collapse
Affiliation(s)
- Richard Y Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
5
|
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine & Community Health, The University of Texas Medical Branch, Galveston, Texas 77555-1109, USA.
| | | |
Collapse
|
6
|
Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. Biometals 2009; 22:149-57. [DOI: 10.1007/s10534-008-9186-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/07/2008] [Indexed: 11/27/2022]
|
7
|
Smith PJ, Wiltshire M, Errington RJ. DRAQ5 labeling of nuclear DNA in live and fixed cells. ACTA ACUST UNITED AC 2008; Chapter 7:Unit 7.25. [PMID: 18770802 DOI: 10.1002/0471142956.cy0725s28] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This unit describes the use of a novel DNA-detecting far-red-fluorescing dye, DRAQ5, a modified anthraquinone, which has a unique combination of properties exploitable by cytometry. These include a high capacity to permeate the cell membrane, a high DNA binding affinity and selectivity, a fluorescence emission spectrum beyond that of fluorescein, phycoerythrin, Texas Red, Cy3, and EGFP, and excitation characteristics separate from those of propidium iodide. In this unit, methods are presented for preparation and analysis of both live and fixed cells stained with DRAQ5. While the focus is on flow cytometric assays, typical imaging applications are also indicated because the staining protocols share the same essential features.
Collapse
Affiliation(s)
- Paul J Smith
- University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom
| | | | | |
Collapse
|
8
|
Smith PJ, Wiltshire M, Furon E, Beattie JH, Errington RJ. Impact of overexpression of metallothionein-1 on cell cycle progression and zinc toxicity. Am J Physiol Cell Physiol 2008; 295:C1399-408. [PMID: 18815222 DOI: 10.1152/ajpcell.00342.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metallothioneins (MTs) have an important role in zinc homeostasis and may counteract the impact of oversupply. Both intracellular zinc and MT expression have been implicated in proliferation control and resistance to cellular stress, although the interdependency is unclear. The study addresses the consequences of a steady-state overexpression of MT-1 for intracellular zinc levels, cell cycle progression, and protection from zinc toxicity using a panel of cell lines with differential expression of MT-1. The panel comprised parental Chinese hamster ovary-K1 cells with low endogenous expression of MT and transfectants with enhanced expression of mouse MT-1 on an autonomously replicating expression vector with a noninducible promoter. Cell cycle progression, determined by flow cytometry and time-lapse microscopy, revealed that enhanced cytoplasmic expression of MT-1 does not impact on normal cell cycle operation, suggesting that basal levels of MT-1 expression are not limiting for background levels of oxidative stress. MT-1 overexpression correlated with a steady-state increase in cytoplasmic free Zn(2+), assessed using the fluorescent zinc-sensor Zinquin, particularly at high levels of overexpression, further suggesting that zinc availability is normally not limiting for cell cycle progression. Enhanced MT-1 expression, over a 10-fold range, had a clear impact on resistance to Cd(2+) and Zn(2+) toxicity. In the case of Zn(2+), the degree of protection afforded was less, indicating that MT-1 has a limited range and saturable capacity for effecting resistance. The results have implications for the use of cellular stress responses to exogenously supplied zinc and zinc-based systemic therapies.
Collapse
Affiliation(s)
- Paul J Smith
- Dept. of Pathology, Tenovus Bldg., School of Medicine, Cardiff Univ., Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | |
Collapse
|
9
|
Donadelli M, Dalla Pozza E, Costanzo C, Scupoli MT, Scarpa A, Palmieri M. Zinc depletion efficiently inhibits pancreatic cancer cell growth by increasing the ratio of antiproliferative/proliferative genes. J Cell Biochem 2008; 104:202-12. [PMID: 17979179 DOI: 10.1002/jcb.21613] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated the ability of the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) to reduce pancreatic cancer cell viability. TPEN was much more efficient to inhibit pancreatic adenocarcinoma cell growth than a panel of anti-cancer drugs, including 5-fluorouracil, irinotecan, cisplatin, edelfosine, trichostatin A, mitomycin C, and gemcitabine, the gold standard chemotherapeutic agent for pancreatic cancer. Moreover, TPEN showed a dose- and time-dependent anti-proliferative effect significantly higher on pancreatic cancer cells than on normal primary fibroblasts. This effect may be explained by a significantly higher zinc depletion by TPEN in pancreatic cancer cells as compared to fibroblasts. Cell viability reduction by TPEN was associated to both G1-phase cell cycle arrest and apoptosis, and to the increased ratio of the expression level of cyclin-Cdk inhibitor versus cyclin genes and apoptotic versus anti-apoptotic genes. Finally, we show that apoptotic cell death induced by TPEN involved mitochondrial injury and caspase 3 and caspase 8 activation. In this study, we suggest that zinc depletion may be an efficient strategy in the treatment of pancreatic cancer because of its reduced antiproliferative effect on normal cells.
Collapse
Affiliation(s)
- M Donadelli
- Department of Morphological and Biomedical Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Maret W. Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp Gerontol 2008; 43:363-9. [DOI: 10.1016/j.exger.2007.11.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
|
11
|
Rana U, Kothinti R, Meeusen J, Tabatabai NM, Krezoski S, Petering DH. Zinc binding ligands and cellular zinc trafficking: apo-metallothionein, glutathione, TPEN, proteomic zinc, and Zn-Sp1. J Inorg Biochem 2008; 102:489-99. [PMID: 18171589 PMCID: PMC2323593 DOI: 10.1016/j.jinorgbio.2007.10.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/16/2007] [Accepted: 10/29/2007] [Indexed: 11/26/2022]
Abstract
Many cell types contain metal-ion unsaturated metallothionein (MT). Considering the Zn(2+) binding affinity of metallothionein, the existence of this species in the intracellular environment constitutes a substantial "thermodynamic sink". Indeed, the mM concentration of glutathione may be thought of in the same way. In order to understand how apo-MT and the rest of the Zn-proteome manage to co-exist, experiments examined the in vitro reactivity of Zn-proteome with apo-MT, glutathione (GSH), and a series of common Zn(2+) chelating agents including N,N,N',N'-(2-pyridylethyl)ethylenediammine (TPEN), EDTA, and [(2,2'-oxyproplylene-dinitrilo]tetraacetic acid (EGTA). Less than 10% of Zn-proteome from U87mg cells reacted with apo-MT or GSH. In contrast, each of the synthetic chelators was 2-3 times more reactive. TPEN, a cell permeant reagent, also reacted rapidly with both Zn-proteome and Zn-MT in LLC-PK(1) cells. Taking a specific zinc finger protein for further study, apo-MT, GSH, and TPEN inhibited the binding of Zn(3)-Sp1 with its cognate DNA site (GC-1) in the sodium-glucose co-transporter promoter of mouse kidney. In contrast, preformation of Zn(3)-Sp1-(GC-1) prevented reaction with apo-MT and GSH; TPEN remained active but at a higher concentration. Whereas, Zn(3)-Sp1 is active in cells containing apo-MT and GSH, exposure of LLC-PK(1) cells to TPEN for 24h largely inactivated its DNA binding activity. The results help to rationalize the steady state presence of cellular apo-MT in the midst of the many, diverse members of the Zn-proteome. They also show that TPEN is a robust intracellular chelator of proteomic Zn(2+).
Collapse
Affiliation(s)
- Ujala Rana
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, United States
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Zinc/cysteine coordination environments in proteins are redox-active. Oxidation of the sulfur ligands mobilizes zinc, while reduction of the oxidized ligands enhances zinc binding, providing redox control over the availability of zinc ions. Some zinc proteins are redox sensors, in which zinc release is coupled to conformational changes that control varied functions such as enzymatic activity, binding interactions, and molecular chaperone activity. Whereas the released zinc ion in redox sensors has no known function, the redox signal is transduced to specific and sensitive zinc signals in redox transducers. Released zinc can bind to sites on other proteins and modulate signal transduction, generation of metabolic energy, mitochondrial function, and gene expression. The paradigm of such redox transducers is the zinc protein metallothionein, which, together with its apoprotein, thionein, functions at a central node in cellular signaling by redistributing cellular zinc, presiding over the availability of zinc, and interconverting redox and zinc signals. In this regard, the transduction of nitric oxide (NO) signals into zinc signals by metallothionein has received particular attention. It appears that redox-inert zinc has been chosen to control some aspects of cellular thiol/disulfide redox metabolism. Tight control of zinc is essential for redox homeostasis because both increases and decreases of cellular zinc elicit oxidative stress. Depending on its availability, zinc can be cytoprotective as a pro-antioxidant or cytotoxic as a pro-oxidant. Any condition with acute or chronic oxidative stress is expected to perturb zinc homeostasis.
Collapse
Affiliation(s)
- Wolfgang Maret
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, 77555, USA.
| |
Collapse
|
13
|
Eide DJ. Zinc transporters and the cellular trafficking of zinc. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:711-22. [PMID: 16675045 DOI: 10.1016/j.bbamcr.2006.03.005] [Citation(s) in RCA: 565] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 03/08/2006] [Accepted: 03/16/2006] [Indexed: 11/19/2022]
Abstract
Zinc is an essential nutrient for all organisms because this metal serves as a catalytic or structural cofactor for many different proteins. Zinc-dependent proteins are found in the cytoplasm and within many organelles of the eukaryotic cell including the nucleus, the endoplasmic reticulum, Golgi, secretory vesicles, and mitochondria. Thus, cells require zinc transport mechanisms to allow cells to efficiently accumulate the metal ion and distribute it within the cell. Our current knowledge of these transport systems in eukaryotes is the focus of this review.
Collapse
Affiliation(s)
- David J Eide
- Department of Nutritional Sciences, University of Wisconsin-Madison, 1415 Linden Drive, Room 340B, Madison, WI 53706-1571, USA.
| |
Collapse
|
14
|
Colvin RA, Laskowski M, Fontaine CP. Zinquin identifies subcellular compartmentalization of zinc in cortical neurons. Relation to the trafficking of zinc and the mitochondrial compartment. Brain Res 2006; 1085:1-10. [PMID: 16581038 DOI: 10.1016/j.brainres.2006.02.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 01/31/2006] [Accepted: 02/07/2006] [Indexed: 11/20/2022]
Abstract
Zinquin (Zn(2+) selective fluorophore), when used to visualize intracellular Zn(2+), typically shows brightly fluorescent perinuclear endosome-like structures, presumably identifying Zn(2+) containing organelles. In this study, zinquin identified numerous and widespread sites of Zn(2+) compartmentalization in primary cultures of embryonic rat cortical neurons. Nuclear fluorescence, however, was absent. We labeled neuronal mitochondria with MitoTracker Green in the presence of zinquin and show that the fluorescent patterns of MitoTracker Green and zinquin were distinct and clearly different in both the perinuclear region and in processes. The mitochondrial compartment was much larger than the sum of the areas of zinquin fluorescence, as indicated by the small amount (<10% MitoTracker Green over zinquin) of overlap of MitoTracker Green on zinquin. Zinquin fluorescence was unaffected by carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) treatment. The zinquin fluorescent objects were generally spherical in shape with a average diameter of about 0.6 mum. Most fluorescent objects, nearly two thirds on average, appeared to be docked, but both anterograde and retrograde movements were observed by time lapse image analysis. Although some fluorescent objects moved as much as 1 mum in 5 min, typical movements were smaller, usually 0.5 mum or less. Colchicine treatment caused striking aggregation of MitoTracker Green most noticeable in the perinuclear region. Zinquin fluorescence similarly showed reduced distribution throughout the cytoplasm, suggesting that zinquin fluorescent structures were associated with microtubules. Treatment with cytochalasin D had little noticeable effect on either the pattern of zinquin and MitoTracker Green fluorescence or their coincidence. Thus, numerous Zn(2+) sequestering organelles/structures are present in perinuclear regions and processes of cultured neurons and are sometimes found coincident with mitochondria. We demonstrated real time trafficking of sequestered Zn(2+), using zinquin fluorescence, apparently associated with an endosome-like compartment or protein complexes in the cytosol.
Collapse
Affiliation(s)
- Robert A Colvin
- Department of Biological Sciences, Program in Neuroscience, Ohio University, Athens, OH 45701, USA.
| | | | | |
Collapse
|
15
|
Haase H, Maret W. Fluctuations of cellular, available zinc modulate insulin signaling via inhibition of protein tyrosine phosphatases. J Trace Elem Med Biol 2005; 19:37-42. [PMID: 16240670 DOI: 10.1016/j.jtemb.2005.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Extracellular zinc ions are effectors of many signaling pathways in mammalian cells, including the insulin/IGF-1 pathway. Molecular targets of zinc are intracellular, however, because otherwise ineffective zinc concentrations alter the extent of protein phosphorylation only in the presence of the ionophore pyrithione. The tight inhibition of protein tyrosine phosphatases by zinc (nanomolar inhibition constants) is likely responsible for the known insulinomimetic effects of zinc ions, which increase net phosphorylation of the insulin/IGF-1-receptors and activate their signaling cascades. More importantly, not only do extracellular zinc ions affect signal transduction, but growth factors induce cellular zinc fluctuations that are of sufficient magnitude to inhibit protein tyrosine phosphatases. In conclusion, a pool of cellular, available zinc participates in phosphorylation/dephosphorylation cascades, suggesting the existence of a cellular signaling system based on zinc as a second messenger.
Collapse
Affiliation(s)
- Hajo Haase
- Center for Biochemical and Biophysical Sciences and Medicine, Department of Pathology, Harvard Medical School, Cambridge, MA 02115, USA.
| | | |
Collapse
|
16
|
Allman R, Errington RJ, Smith PJ. Delayed expression of apoptosis in human lymphoma cells undergoing low-dose taxol-induced mitotic stress. Br J Cancer 2003; 88:1649-58. [PMID: 12771935 PMCID: PMC2377125 DOI: 10.1038/sj.bjc.6600905] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The links between low-dose range taxol-induced mitotic arrest and the subsequent engagement of apoptosis are important for identifying the routes to therapeutic action. Here we have investigated the timing of cell-cycle perturbation and cell death responses following continuous exposure to clinically relevant drug concentrations (1-20 nM). Following 8 h of exposure to taxol, the cell line DoHH2 (p53 wild type) exhibited mitotic arrest and engagement of apoptosis, whereas the cell line SU-DHL-4 (p53 mutant) breached cell-cycle arrest with progression to an abnormal cycle and a 24 h delay in the engagement of apoptosis. Imaging showed equivalent dysfunction of mitotic spindles in both cell lines. The results of kinetic analyses indicated that although cell death may occur at different stages of progression through mitosis and subsequent cell cycles, the overall kinetics of cell death relate to the rate of arrival at a critical event window in the cell cycle. We propose a simple model of low-dose taxol-induced cell death for cycling populations in which mitotic stress acts as a primary trigger for apoptosis with equivalent but potentially delayed outcomes. This view provides a rationale for the clinical effectiveness of this agent, independent of the initial capacity of the tumour cell to engage apoptosis due, for example, to mutant p53 expression. The results provide a perspective for the design of combination regimens that include low-dose taxol and a component that may disturb mitotic delivery.
Collapse
Affiliation(s)
- R Allman
- Cancer Research Wales Laboratories, Velindre NHS Trust, Whitchurch, Cardiff CF14 2TL, Wales, UK.
| | | | | |
Collapse
|
17
|
Sauer GR, Smith DM, Cahalane M, Wu LNY, Wuthier RE. Intracellular zinc fluxes associated with apoptosis in growth plate chondrocytes. J Cell Biochem 2003; 88:954-69. [PMID: 12616534 DOI: 10.1002/jcb.10446] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Matrix vesicles released by epiphyseal growth plate chondrocytes are known to contain a significant quantity of labile Zn(2+). Zonal analysis of chicken metatarsal bones showed that the resting/proliferative region of the growth plate contained high levels of Zn(2+) with significantly lower levels in the hypertrophic cartilage suggesting a loss of cellular Zn(2+) as the chondrocytes mature. Intracellular labile Zn(2+) was measured in primary cultures of growth plate chondrocytes by assay with the fluorescent Zn-chelator toluenesulfonamidoquinoline (TSQ) and imaged by multi-photon laser scanning microscopy (MPLSM) with the TSQ derivative zinquin. Short-term exposure to Zn(2+), both in the presence and absence of pyrithione resulted in significant increases in cytosolic Zn(2+). Treatment with the membrane-permeant Zn(2+) chelator TPEN rapidly reduced the levels of labile Zn(2+) and triggered apoptosis. Cytosolic Zn(2+) levels were significantly reduced following 24-h incubations with known inducers of chondrocyte apoptosis. The loss of intracellular Zn(2+) was accompanied by a significant reduction in the cytosolic metal-binding protein metallothionein. Examination of Zn(2+)-treated cells with MPLSM showed uniformly higher zinquin fluorescence. Treatment of Zn(2+)-loaded cells with TPEN quenched zinquin fluorescence confirming that the observed fluorescence in chondrocytes is due to the presence of intracellular Zn(2+). A dose-dependent increase in zinquin fluorescence was observed in cells treated with a range of Zn(2+) concentrations. Short-term treatment of cultured chondrocytes with apoptosis-inducing chemicals resulted in transient increases in intracellular labile Zn(2+). These results indicate that Zn(2+) is mobilized from intracellular binding sites in the early stages of chondrocyte apoptosis and is subsequently lost from the cells. The early mobilization of Zn(2+) provides a mechanism for its movement to matrix vesicles and the extracellular matrix.
Collapse
Affiliation(s)
- Glenn R Sauer
- Biology Department, Fairfield University, Fairfield, Connecticut 06430, USA.
| | | | | | | | | |
Collapse
|