1
|
Gao Z, Su Q, Raza SHA, Piras C, BinMowyna MN, Al-Zahrani M, Mavromatis C, Makhlof RTM, Senna MM, Gui L. Identification and Co-expression Analysis of Differentially Expressed LncRNAs and mRNAs Regulate Intramuscular Fat Deposition in Yaks at Two Developmental Stages. Biochem Genet 2025:10.1007/s10528-025-11046-x. [PMID: 39971835 DOI: 10.1007/s10528-025-11046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
Intramuscular fat (IMF) content is a key indicator of yak meat quality. This study aimed to identify lncRNAs that regulate IMF deposition in yaks. Three male calf yaks (3 months) and three male adult yaks (3 years) were used in the current study. After slaughter, the tissue morphology of the longissimus dorsi (LD) muscle was assessed using a cry-sectioning technique and differentially expressed lncRNAs and mRNAs (DELs and DEMs) were identified using RNA-Seq technology. The diameter and volume of fat droplets were significantly larger and bigger, respectively, in adults than in calves (P < 0.001). A total of 37,790 genes and 16,400 lncRNAs that regulate fat deposition were identified. Among them, 2327 mRNAs and 474 lncRNAs were differentially expressed between calves and adult yaks. DEGs stearoyl-CoA desaturase (SCD), fatty acid synthase (FASN), fatty acid binding protein 4 (FABP4) and fibronectin 1 (FN1) and DELs MSTRG.15795.4 and MSTRG.35028.6 were screened. The enrichment and pathway analysis regulated by the DMEs and DELs were predicted. We found significantly enriched biological processes and pathways involved in fat deposition, including the biosynthesis of unsaturated fatty acids, fatty acid biosynthesis, fatty acid elongation, and the mTOR signaling pathway. Co-expression network of the DELs and related genes, including MSTRG.10268.1-placenta associated 8 (PLAC8), MSTRG.16223.1-galectin 3 (LGALS3), MSTRG.34732.1-glycerol-3-phosphate acyltransferase, mitochondrial (GPAM), MSTRG.11907.11-fibroblast growth factor 1 (FGF1), MSTRG.34342.1-lipase A, lysosomal acid type (LIPA), and MSTRG.1667.2-integrin subunit beta 2 (ITGB2) was constructed. RT-qPCR verified the sequence results. The molecular regulatory mechanisms of lncRNAs on intramuscular fat deposition in yak were further explored.
Collapse
Affiliation(s)
- Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, People's Republic of China
| | - Quyangangmao Su
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, People's Republic of China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, PR China
| | - Cristian Piras
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy
| | - Mona N BinMowyna
- College of Education, Shaqra University, 11911, Shaqra, Saudi Arabia
| | - Majid Al-Zahrani
- Department of Biological Sciences, College of Science and Arts, King Abdulaziz University, P.O. Box 344, 21911 Rabigh, Saudi Arabia
| | - Charalampos Mavromatis
- Department of Biological Sciences, College of Science and Arts, King Abdulaziz University, P.O. Box 344, 21911 Rabigh, Saudi Arabia
| | - Raafat T M Makhlof
- Department of Parasitology, Faculty of Medicine, Umm Al Qura University, P.O. Box 715, 21955, Makkah, Saudi Arabia
- Department of Parasitology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Mustafa M Senna
- Department of Anatomy, Faculty of Medicine, Umm-Alqura University, Makkah, Saudi Arabia
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, People's Republic of China.
| |
Collapse
|
2
|
Lopes FCPS, Schroeder C, Patel B, Levy ML. Review of encephalocraniocutaneous lipomatosis. Semin Pediatr Neurol 2024; 52:101166. [PMID: 39622606 DOI: 10.1016/j.spen.2024.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Encephalocraniocutaneous lipomatosis (ECCL), also known as Haberland syndrome, is a sporadic tumor predisposition neurocutaneous disorder, included in the oculoectodermal syndrome group of mosaic RASopathies. ECCL primarily affects the skin, central nervous system and eyes. Key diagnostic features include nevus psiloliparus, a hallmark subcutaneous lipomatous hamartoma associated with alopecia, along with subcutaneous lipomas, focal skin aplasia, and patchy alopecia. Neurologically, intracranial lipomas, particularly in the cerebellopontine angle, are prevalent, along with cortical dysplasia, ventriculomegaly, and vascular malformations. Ocular findings commonly involve choristomas, lipodermoids, and dermoids, which may impair vision. Diagnosis can be made clinically, but further confirmatory genetic testing can in some cases identify a pathogenic variant in the FGFR1 or KRAS genes. Molecular testing aids diagnosis but is not always conclusive. Management is multidisciplinary with focus on symptomatic management, typically involving dermatological, neurological, and ophthalmologic evaluations with consideration of brain and spine neuroimaging and surgical management of tumors. The prognosis varies, with most individuals leading generally normal lives, though there is a risk of developmental delay, seizures, and low-grade gliomas. The severity of CNS involvement does not consistently correlate with cutaneous or ocular abnormalities.
Collapse
Affiliation(s)
| | - Camryn Schroeder
- Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Bhairav Patel
- Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Moise L Levy
- Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
3
|
Wang L, Luo W, Zhang S, Zhang J, He L, Shi Y, Gao L, Wu B, Nie X, Hu C, Han X, He C, Xu B, Liang G. Macrophage-derived FGFR1 drives atherosclerosis through PLCγ-mediated activation of NF-κB inflammatory signalling pathway. Cardiovasc Res 2024; 120:1385-1399. [PMID: 38842387 DOI: 10.1093/cvr/cvae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024] Open
Abstract
AIMS Atherosclerosis (AS) is a leading cause of cardiovascular morbidity and mortality. Atherosclerotic lesions show increased levels of proteins associated with the fibroblast growth factor receptor (FGFR) pathway. However, the functional significance and mechanisms governed by FGFR signalling in AS are not known. In the present study, we investigated fibroblast growth factor receptor 1 (FGFR1) signalling in AS development and progression. METHODS AND RESULTS Examination of human atherosclerotic lesions and aortas of Apoe-/- mice fed a high-fat diet (HFD) showed increased levels of FGFR1 in macrophages. We deleted myeloid-expressed Fgfr1 in Apoe-/- mice and showed that Fgfr1 deficiency reduces atherosclerotic lesions and lipid accumulations in both male and female mice upon HFD feeding. These protective effects of myeloid Fgfr1 deficiency were also observed when mice with intact FGFR1 were treated with FGFR inhibitor AZD4547. To understand the mechanistic basis of this protection, we harvested macrophages from mice and show that FGFR1 is required for macrophage inflammatory responses and uptake of oxidized LDL. RNA sequencing showed that FGFR1 activity is mediated through phospholipase-C-gamma (PLCγ) and the activation of nuclear factor-κB (NF-κB) but is independent of FGFR substrate 2. CONCLUSION Our study provides evidence of a new FGFR1-PLCγ-NF-κB axis in macrophages in inflammatory AS, supporting FGFR1 as a potentially therapeutic target for AS-related diseases.
Collapse
MESH Headings
- Animals
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/genetics
- Phospholipase C gamma/metabolism
- Phospholipase C gamma/genetics
- NF-kappa B/metabolism
- Signal Transduction
- Macrophages/metabolism
- Male
- Female
- Disease Models, Animal
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Aortic Diseases/immunology
- Humans
- Plaque, Atherosclerotic
- Mice, Knockout, ApoE
- Mice, Inbred C57BL
- Lipoproteins, LDL/metabolism
- Diet, High-Fat
- Pyrazoles/pharmacology
- Inflammation Mediators/metabolism
- Benzamides/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Piperazines
Collapse
Affiliation(s)
- Lintao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu 210008, China
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Wu Luo
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
- Department of Cardiology, The Affiliated First Hospital of Wenzhou Medical University, Nanbaixiang Street, Wenzhou, Zhejiang 325035, China
| | - Suya Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Junsheng Zhang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
- Department of Pathology, Anhui Public Health Clinical Center, Hefei, Anhui 230032, China
| | - Lu He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Yifan Shi
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu 210008, China
| | - Li Gao
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Baochuan Wu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu 210008, China
| | - Xiaoyan Nie
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Chenghong Hu
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
- Department of Cardiology, The Affiliated First Hospital of Wenzhou Medical University, Nanbaixiang Street, Wenzhou, Zhejiang 325035, China
| | - Xue Han
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
| | - Chaoyong He
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Longmian Avenue 639, Nanjing, Jiangsu 210009, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu 210008, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Shangtang Road 158, Hangzhou, Zhejiang 310014, China
- Department of Cardiology, The Affiliated First Hospital of Wenzhou Medical University, Nanbaixiang Street, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
4
|
Zhang Z, Chang L, Wang B, Wei Y, Li X, Li X, Zhang Y, Wang K, Qiao R, Yang F, Yu T, Han X. Differential chromatin accessibility and Gene Expression Associated with Backfat Deposition in pigs. BMC Genomics 2024; 25:902. [PMID: 39349998 PMCID: PMC11441165 DOI: 10.1186/s12864-024-10805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Backfat serves as a vital fat reservoir in pigs, and its excessive accumulation will adversely impact pig growth performance, farming efficiency, and pork quality. The aim of this research is to integrate assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing (RNA-seq) to explore the molecular mechanisms underlying porcine backfat deposition. RESULTS ATAC-seq analysis identified 568 genes originating from 698 regions exhibiting differential accessibility, which were significantly enriched in pathways pertinent to adipocyte differentiation and lipid metabolism. Besides, a total of 283 transcription factors (TFs) were identified by motif analysis. RNA-seq analysis revealed 978 differentially expressed genes (DEGs), which were enriched in pathways related to energy metabolism, cell cycle and signal transduction. The integration of ATAC-seq and RNA-seq data indicates that DEG expression levels are associated with chromatin accessibility. This comprehensive study highlights the involvement of critical pathways, including the Wnt signaling pathway, Jak-STAT signaling pathway, and fatty acid degradation, in the regulation of backfat deposition. Through rigorous analysis, we identified several candidate genes (LEP, CTBP2, EHHADH, OSMR, TCF7L2, BCL2, FGF1, UCP2, CCND1, TIMP1, and VDR) as potentially significant contributors to backfat deposition. Additionally, we constructed TF-TF and TF-target gene regulatory networks and identified a series of potential TFs related to backfat deposition (FOS, STAT3, SMAD3, and ESR1). CONCLUSIONS This study represents the first application of ATAC-seq and RNA-seq, affording a novel perspective into the mechanisms underlying backfat deposition and providing invaluable resources for the enhancement of pig breeding programs.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lebin Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bingjie Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Sanya Institute, Hainan Academy of Agricultural Science, Sanya, 572025, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongqian Zhang
- Henan Yifa Animal Husbandry Co., Ltd, Hebi, 458000, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Tong Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Cheng MF, Abdullah FS, Buechler MB. Essential growth factor receptors for fibroblast homeostasis and activation: Fibroblast Growth Factor Receptor (FGFR), Platelet Derived Growth Factor Receptor (PDGFR), and Transforming Growth Factor β Receptor (TGFβR). F1000Res 2024; 13:120. [PMID: 38988879 PMCID: PMC11234085 DOI: 10.12688/f1000research.143514.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/12/2024] Open
Abstract
Fibroblasts are cells of mesenchymal origin that are found throughout the body. While these cells have several functions, their integral roles include maintaining tissue architecture through the production of key extracellular matrix components, and participation in wound healing after injury. Fibroblasts are also key mediators in disease progression during fibrosis, cancer, and other inflammatory diseases. Under these perturbed states, fibroblasts can activate into inflammatory fibroblasts or contractile myofibroblasts. Fibroblasts require various growth factors and mitogenic molecules for survival, proliferation, and differentiation. While the activity of mitogenic growth factors on fibroblasts in vitro was characterized as early as the 1970s, the proliferation and differentiation effects of growth factors on these cells in vivo are unclear. Recent work exploring the heterogeneity of fibroblasts raises questions as to whether all fibroblast cell states exhibit the same growth factor requirements. Here, we will examine and review existing studies on the influence of fibroblast growth factor receptors (FGFRs), platelet-derived growth factor receptors (PDGFRs), and transforming growth factor β receptor (TGFβR) on fibroblast cell states.
Collapse
Affiliation(s)
- Maye F. Cheng
- Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | | |
Collapse
|
6
|
Kaster N, Khan R, Ahmad I, Zhigerbayevich KN, Seisembay I, Nurbolat A, Hamitovna SK, Mirambekovna OK, Bekbolatovna MA, Amangaliyev TG, Bolatbek A, Yeginbaevich TZ, Ahmad S, Linsen Z, Baibolsynovna BA. RNA-Seq explores the functional role of the fibroblast growth factor 10 gene in bovine adipocytes differentiation. Anim Biosci 2024; 37:929-943. [PMID: 37946430 PMCID: PMC11065710 DOI: 10.5713/ab.23.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE The present study was executed to explore the molecular mechanism of fibroblast growth factor 10 (FGF10) gene in bovine adipogenesis. METHODS The bovine FGF10 gene was overexpressed through Ad-FGF10 or inhibited through siFGF10 and their negative control (NC) in bovine adipocytes, and the multiplicity of infection, transfection efficiency, interference efficiency were evaluated through quantitative real-time polymerase chain reaction, western blotting and fluorescence microscopy. The lipid droplets, triglycerides (TG) content and the expression levels of adipogenic marker genes were measured during preadipocytes differentiation. The differentially expressed genes were explored through deep RNA sequencing. RESULTS The highest mRNA level was found in omasum, subcutaneous fat, and intramuscular fat. Moreover, the highest mRNA level was found in adipocytes at day 4 of differentiation. The results of red-oil o staining showed that overexpression (Ad-FGF10) of the FGF10 gene significantly (p<0.05) reduced the lipid droplets and TG content, and their downregulation (siFGF10) increased the measurement of lipid droplets and TG in differentiated bovine adipocytes. Furthermore, the overexpression of the FGF10 gene down regulated the mRNA levels of adipogenic marker genes such as CCAAT enhancer binding protein alpha (C/EBPα), fatty acid binding protein (FABP4), peroxisome proliferator-activated receptor-γ (PPARγ), lipoprotein lipase (LPL), and Fas cell surface death receptor (FAS), similarly, down-regulation of the FGF10 gene enriched the mRNA levels of C/EBPα, PPARγ, FABP4, and LPL genes (p<0.01). Additionally, the protein levels of PPARγ and FABP4 were reduced (p<0.05) in adipocytes infected with Ad-FGF10 gene and enriched in adipocytes transfected with siFGF10. Moreover, a total of 1,774 differentially expressed genes (DEGs) including 157 up regulated and 1,617 down regulated genes were explored in adipocytes infected with Ad-FGF10 or Ad-NC through deep RNA-sequencing. The top Kyoto encyclopedia of genes and genomes pathways regulated through DEGs were the PPAR signaling pathway, cell cycle, base excision repair, DNA replication, apoptosis, and regulation of lipolysis in adipocytes. CONCLUSION Therefore, we can conclude that the FGF10 gene is a negative regulator of bovine adipogenesis and could be used as a candidate gene in marker-assisted selection.
Collapse
Affiliation(s)
- Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Kazhgaliyev Nurlybay Zhigerbayevich
- Candidate of Sciences in Agriculture, Researcher of Scientific and Production Centre for Animal Husbandry and Veterinary Limited Liability Partnership, Astana 010000,
Kazakhstan
| | - Imbay Seisembay
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Akhmetbekov Nurbolat
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Shaikenova Kymbat Hamitovna
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | - Omarova Karlygash Mirambekovna
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana 010000,
Kazakhstan
| | | | | | - Ateikhan Bolatbek
- Faculty of Agricultural Sciences, Toraighyrov University, Pavlodar 140000,
Kazakhstan
| | | | - Shakoor Ahmad
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture Peshawar, 25130,
Pakistan
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100,
China
| | | |
Collapse
|
7
|
Tarapongpun T, Onlamoon N, Tabu K, Chuthapisith S, Taga T. The optimized priming effect of FGF-1 and FGF-2 enhances preadipocyte lineage commitment in human adipose-derived mesenchymal stem cells. Genes Cells 2024; 29:231-253. [PMID: 38253356 DOI: 10.1111/gtc.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
The cell-assisted lipotransfer technique, integrating adipose-derived mesenchymal stem cells (ADMSCs), has transformed lipofilling, enhancing fat graft viability. However, the multipotent nature of ADMSCs poses challenges. To improve safety and graft vitality and to reduce unwanted lineage differentiation, this study refines the methodology by priming ADMSCs into preadipocytes-unipotent, self-renewing cells. We explored the impact of fibroblast growth factor-1 (FGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF), either alone or in combination, on primary human ADMSCs during the proliferative phase. FGF-2 emerged as a robust stimulator of cell proliferation, preserving stemness markers, especially when combined with EGF. Conversely, FGF-1, while not significantly affecting cell growth, influenced cell morphology, transitioning cells to a rounded shape with reduced CD34 expression. Furthermore, co-priming with FGF-1 and FGF-2 enhanced adipogenic potential, limiting osteogenic and chondrogenic tendencies, and possibly promoting preadipocyte commitment. These preadipocytes exhibited unique features: rounded morphology, reduced CD34, decreased preadipocyte factor 1 (Pref-1), and elevated C/EBPα and PPARγ, alongside sustained stemness markers (CD73, CD90, CD105). Mechanistically, FGF-1 and FGF-2 activated key adipogenic transcription factors-C/EBPα and PPARγ-while inhibiting GATA3 and Notch3, which are adipogenesis inhibitors. These findings hold the potential to advance innovative strategies for ADMSC-mediated lipofilling procedures.
Collapse
Affiliation(s)
- Tanakorn Tarapongpun
- Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nattawat Onlamoon
- Department of Research, Faculty of Medicine Siriraj Hospital, Siriraj Research Group in Immunobiology and Therapeutic Sciences, Mahidol University, Bangkok, Thailand
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Suebwong Chuthapisith
- Division of Head Neck and Breast Surgery, Faculty of Medicine Siriraj Hospital, Department of Surgery, Mahidol University, Bangkok, Thailand
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Ye RZ, Montastier E, Frisch F, Noll C, Allard-Chamard H, Gévry N, Tchernof A, Carpentier AC. Adipocyte hypertrophy associates with in vivo postprandial fatty acid metabolism and adipose single-cell transcriptional dynamics. iScience 2024; 27:108692. [PMID: 38226167 PMCID: PMC10788217 DOI: 10.1016/j.isci.2023.108692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
Adipocyte hypertrophy is associated with metabolic complications independent of obesity. We aimed to determine: 1) the association between adipocyte size and postprandial fatty acid metabolism; 2) the potential mechanisms driving the obesity-independent, hypertrophy-associated dysmetabolism in vivo and at a single-cell resolution. Tracers with positron emission tomography were used to measure fatty acid metabolism in 40 men and women with normal or impaired glucose tolerance (NCT02808182), and single nuclei RNA-sequencing (snRNA-seq) to determine transcriptional dynamics of subcutaneous adipose tissue (AT) between individuals with AT hypertrophy vs. hyperplasia matched for sex, ethnicity, glucose-tolerance status, BMI, total and percent body fat, and waist circumference. Adipocyte size was associated with high postprandial total cardiac fatty acid uptake and higher visceral AT dietary fatty acid uptake, but lower lean tissue dietary fatty acid uptake. We found major shifts in cell transcriptomal dynamics with AT hypertrophy that were consistent with in vivo metabolic changes.
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Emilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Hugues Allard-Chamard
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Nicolas Gévry
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - André Tchernof
- Québec Heart and Lung Research Institute, Laval University, Québec, QC G1V 4G5, Canada
| | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
9
|
Otsuka T, Kan HM, Mengsteab PY, Tyson B, Laurencin CT. Fibroblast growth factor 8b (FGF-8b) enhances myogenesis and inhibits adipogenesis in rotator cuff muscle cell populations in vitro. Proc Natl Acad Sci U S A 2024; 121:e2314585121. [PMID: 38147545 PMCID: PMC10769839 DOI: 10.1073/pnas.2314585121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
Fatty expansion is one of the features of muscle degeneration due to muscle injuries, and its presence interferes with muscle regeneration. Specifically, poor clinical outcomes have been linked to fatty expansion in rotator cuff tears and repairs. Our group recently found that fibroblast growth factor 8b (FGF-8b) inhibits adipogenic differentiation and promotes myofiber formation of mesenchymal stem cells in vitro. This led us to hypothesize that FGF-8b could similarly control the fate of muscle-specific cell populations derived from rotator cuff muscle involved in muscle repair following rotator cuff injury. In this study, we isolate fibro-adipogenic progenitor cells (FAPs) and satellite stem cells (SCs) from rat rotator cuff muscle tissue and analyzed the effects of FGF-8b supplementation. Utilizing a cell plating protocol, we successfully isolate FAPs-rich fibroblasts (FIBs) and SCs-rich muscle progenitor cells (MPCs). Subsequently, we demonstrate that FIB adipogenic differentiation can be inhibited by FGF-8b, while MPC myogenic differentiation can be enhanced by FGF-8b. We further demonstrate that phosphorylated ERK due to FGF-8b leads to the inhibition of adipogenesis in FIBs and SCs maintenance and myofiber formation in MPCs. Together, these findings demonstrate the powerful potential of FGF-8b for rotator cuff repair by altering the fate of muscle undergoing degeneration.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Ho-Man Kan
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT06030
| | - Paulos Y. Mengsteab
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT06030
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT06269
| | - Breajah Tyson
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, Storrs, CT06269
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences, University of Connecticut Health Center, Farmington, CT06030
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT06269
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT06269
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT06269
| |
Collapse
|
10
|
Liu J, Zhang M, Dong H, Liu J, Mao A, Ning G, Cao Y, Zhang Y, Wang Q. Chemokine signaling synchronizes angioblast proliferation and differentiation during pharyngeal arch artery vasculogenesis. Development 2022; 149:285824. [PMID: 36468454 PMCID: PMC10114070 DOI: 10.1242/dev.200754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/14/2022] [Indexed: 12/09/2022]
Abstract
Developmentally, the great vessels of the heart originate from the pharyngeal arch arteries (PAAs). During PAA vasculogenesis, PAA precursors undergo sequential cell fate decisions that are accompanied by proliferative expansion. However, how these two processes are synchronized remains poorly understood. Here, we find that the zebrafish chemokine receptor Cxcr4a is expressed in PAA precursors, and genetic ablation of either cxcr4a or the ligand gene cxcl12b causes PAA stenosis. Cxcr4a is required for the activation of the downstream PI3K/AKT cascade, which promotes not only PAA angioblast proliferation, but also differentiation. AKT has a well-known role in accelerating cell-cycle progression through the activation of cyclin-dependent kinases. Despite this, we demonstrate that AKT phosphorylates Etv2 and Scl, the key regulators of angioblast commitment, on conserved serine residues, thereby protecting them from ubiquitin-mediated proteasomal degradation. Altogether, our study reveals a central role for chemokine signaling in PAA vasculogenesis through orchestrating angioblast proliferation and differentiation.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingming Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Haojian Dong
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Jingwen Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Aihua Mao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Guozhu Ning
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Cao
- State Key Laboratory of Membrane Biology, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Jing Y, Cheng B, Wang H, Bai X, Zhang Q, Wang N, Li H, Wang S. The landscape of the long non-coding RNAs and circular RNAs of the abdominal fat tissues in the chicken lines divergently selected for fatness. BMC Genomics 2022; 23:790. [PMID: 36456907 PMCID: PMC9714206 DOI: 10.1186/s12864-022-09045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Excessive deposition of abdominal fat poses serious problems in broilers owing to rapid growth. Recently, the evolution of the existing knowledge on long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have established their indispensable roles in multiple physiological metabolic processes, including adipogenesis and fat deposition. However, not much has been explored on their profiles in the abdominal fat tissues of broilers to date. In the study, we aimed to characterize the vital candidates of lncRNAs and circRNAs and their underlying regulations for abdominal fat deposition in broilers. RESULTS The present study sequenced the lncRNAs and circRNAs expression profiles in the abdominal fat tissues isolated from 7-week-old broilers, who were divergently selected for their fatness. It identified a total of 3359 lncRNAs and 176 circRNAs, demonstrating differential expressed (DE) 30 lncRNAs and 17 circRNAs between the fat- and lean-line broilers (|log2FC| ≥ 1, P < 0.05). Subsequently, the 20 cis-targets and 48 trans-targets of the candidate DE lncRNAs were identified for depositing abdominal fat by adjacent gene analysis and co-expression analysis, respectively. In addition, the functional enrichment analysis showed the DE lncRNAs targets and DE circRNAs host genes to be mainly involved in the cellular processes, amino/fatty acid metabolism, and immune inflammation-related pathways and GO terms. Finally, the vital 16 DE lncRNAs located in cytoplasm and specifically expressed in fat/lean line and their targets were used to construct the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) regulatory network, comprising 7 DE lncRNAs, 28 miRNAs, 11 DE mRNAs. Notably, three lncRNAs including XR_001468036.2, XR_003077610.1 and XR_001466431.2 with the most connected degrees might play hub regulatory roles in abdominal fat deposition of broilers. CONCLUSIONS This study characterized the whole expression difference of lncRNAs and circRNAs between the two lines broilers with divergently ability of abdominal fat. The vital candidate DE lncRNAs/circRNAs and ceRNA regulations were identified related to the deposition of abdominal fat in chicken. These results might further improve our understanding of regulating the non-coding RNAs in obesity.
Collapse
Affiliation(s)
- Yang Jing
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Bohan Cheng
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Haoyu Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Xue Bai
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Qi Zhang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Ning Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Hui Li
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Shouzhi Wang
- grid.418524.e0000 0004 0369 6250Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030 People’s Republic of China ,grid.453075.0Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030 People’s Republic of China ,grid.412243.20000 0004 1760 1136College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| |
Collapse
|
12
|
The Potential to Fight Obesity with Adipogenesis Modulating Compounds. Int J Mol Sci 2022; 23:ijms23042299. [PMID: 35216415 PMCID: PMC8879274 DOI: 10.3390/ijms23042299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is an increasingly severe public health problem, which brings huge social and economic burdens. Increased body adiposity in obesity is not only tightly associated with type 2 diabetes, but also significantly increases the risks of other chronic diseases including cardiovascular diseases, fatty liver diseases and cancers. Adipogenesis describes the process of the differentiation and maturation of adipocytes, which accumulate in distributed adipose tissue at various sites in the body. The major functions of white adipocytes are to store energy as fat during periods when energy intake exceeds expenditure and to mobilize this stored fuel when energy expenditure exceeds intake. Brown/beige adipocytes contribute to non-shivering thermogenesis upon cold exposure and adrenergic stimulation, and thereby promote energy consumption. The imbalance of energy intake and expenditure causes obesity. Recent interest in epigenetics and signaling pathways has utilized small molecule tools aimed at modifying obesity-specific gene expression. In this review, we discuss compounds with adipogenesis-related signaling pathways and epigenetic modulating properties that have been identified as potential therapeutic agents which cast some light on the future treatment of obesity.
Collapse
|
13
|
Milan G, Conci S, Sanna M, Favaretto F, Bettini S, Vettor R. ASCs and their role in obesity and metabolic diseases. Trends Endocrinol Metab 2021; 32:994-1006. [PMID: 34625375 DOI: 10.1016/j.tem.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 01/04/2023]
Abstract
We describe adipose stromal/stem cells (ASCs) in the structural/functional context of the adipose tissue (AT) stem niche (adiponiche), including cell-cell interactions and the microenvironment, and emphasize findings obtained in humans and in lineage-tracing models. ASCs have distinctive markers, 'colors', and anatomical 'locations' which influence their functions. Each adiponiche component can become impaired, thereby contributing to the pathological AT alterations seen in obesity and metabolic diseases. We discuss adiposopathy with a focus on adiponiche dysfunction, and underline the mechanisms that control AT expansion and energy balance. Better understanding of adiponiche regulation and ASC features could help to identify therapeutic targets that favor weight loss and counteract weight regain, and also contribute to innovative strategies for regenerative medicine.
Collapse
Affiliation(s)
- Gabriella Milan
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy.
| | - Scilla Conci
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| | - Marta Sanna
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| | - Francesca Favaretto
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| | - Silvia Bettini
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| | - Roberto Vettor
- Department of Medicine, University of Padua, Internal Medicine 3, 35128 Padua, Italy; Center for the Study and the Integrated Treatment of Obesity, Padua Hospital, 35128 Padua, Italy
| |
Collapse
|
14
|
Otsuka T, Mengsteab PY, Laurencin CT. Control of mesenchymal cell fate via application of FGF-8b in vitro. Stem Cell Res 2021; 51:102155. [PMID: 33445073 PMCID: PMC8027992 DOI: 10.1016/j.scr.2021.102155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 01/01/2021] [Indexed: 12/29/2022] Open
Abstract
In order to develop strategies to regenerate complex tissues in mammals, understanding the role of signaling in regeneration competent species and mammalian development is of critical importance. Fibroblast growth factor 8 (FGF-8) signaling has an essential role in limb morphogenesis and blastema outgrowth. Therefore, we aimed to study the effect of FGF-8b on the proliferation and differentiation of mesenchymal stem cells (MSCs), which have tremendous potential for therapeutic use of cell-based therapy. Rat adipose derived stem cells (ADSCs) and muscle progenitor cells (MPCs) were isolated and cultured in growth medium and various types of differentiation medium (osteogenic, chondrogenic, adipogenic, tenogenic, and myogenic medium) with or without FGF-8b supplementation. We found that FGF-8b induced robust proliferation regardless of culture medium. Genes related to limb development were upregulated in ADSCs by FGF-8b supplementation. Moreover, FGF-8b enhanced chondrogenic differentiation and suppressed adipogenic and tenogenic differentiation in ADSCs. Osteogenic differentiation was not affected by FGF-8b supplementation. FGF-8b was found to enhance myofiber formation in rat MPCs. Overall, this study provides foundational knowledge on the effect of FGF-8b in the proliferation and fate determination of MSCs and provides insight in its potential efficacy for musculoskeletal therapies.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | - Paulos Y Mengsteab
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA; Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
15
|
Liu L, Cao P, Zhang L, Qi M, Wang L, Li Z, Shao G, Ding L, Zhao X, Zhao X, Xu S, Zhang H, Chai J, Yue M, Wang G, Liu D, Sun F. Comparisons of adipogenesis- and lipid metabolism-related gene expression levels in muscle, adipose tissue and liver from Wagyu-cross and Holstein steers. PLoS One 2021; 16:e0247559. [PMID: 33626085 PMCID: PMC7904217 DOI: 10.1371/journal.pone.0247559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
The intramuscular fat (IMF) content and fatty acid composition are important meat quality traits that are mostly affected by the cattle breed. Muscle, adipose tissue and liver are important organs involved in the development of intramuscular adipose tissue. Thus, we hypothesized that there were marked differences in the adipogenesis and lipid metabolism of these tissues between Wagyu-cross and Holstein steers during the finishing phases. To test this hypothesis, we analyzed the expression levels of adipogenesis- and lipid metabolism-related genes in longissimus muscle (LM), subcutaneous fat (SCF) and liver from Wagyu-cross and Holstein steers at 26 months of age. The IMF content and fatty acid profile of LM were determined. Wagyu-cross steers had a higher IMF content and MUFA percentages in the LM than Holstein steers (P<0.05). The relative expression of FGF2, COL1A1, SREBP1c, SCD1, GRP78 and LEP was greater in the LM of Wagyu-cross steers than in Holstein steers (P<0.05). In contrast, Holstein steer SCF had higher (P<0.05) mRNA expression levels of FABP4 and ADIPOQ than Wagyu-cross steers. In the liver, the expression of SREBP1c and GRP78 in Wagyu-cross steers was significantly higher than that in Holstein steers (P<0.05). The results demonstrate that both intramuscular adipogenesis and fibrogenesis are enhanced in Wagyu-cross steers compared with Holstein steers during the finishing phase and that IMF deposition is positively correlated with the maturity of SCF and hepatic lipid accumulation in Wagyu-cross steers.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Peili Cao
- Heilongjiang Journal Press of Agricultural Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiyu Qi
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Liang Wang
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhongqiu Li
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guang Shao
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Liyan Ding
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Xiuhua Zhao
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xiaochuan Zhao
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shanshan Xu
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haifeng Zhang
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jinbao Chai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mengmeng Yue
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Genlin Wang
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Fang Sun
- Key Laboratory of Combining Farming and Animal Husbandry of Ministry of Agriculture, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
16
|
Guo Q, Guo Q, Xiao Y, Li C, Huang Y, Luo X. Regulation of bone marrow mesenchymal stem cell fate by long non-coding RNA. Bone 2020; 141:115617. [PMID: 32853852 DOI: 10.1016/j.bone.2020.115617] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Bone mesenchymal stem cells (BMSCs) are progenitor cells isolated from bone marrow, which keep potential to differentiate into several kinds of cells including osteoblasts and adipocytes. A dynamic mutual regulation exists between osteogenesis and adipogenesis processes. Long non-coding RNA (lncRNA) performs diverse functions in biological activities including regulation of BMSCs commitment. Evidence has shown that lncRNA regulates key signaling pathways including TGFβ/BMP, Wnt and Notch pathways, and several transcription factors in BMSCs differention. Dysregulation of lncRNA in BMSCs leads to disruption of osteo-adipogenesis difffrentiation and results in impairment of bone homeostasis. In this review, we focus on the role of lncRNA in several critical signaling pathways that involved in regulation of osteo-adipogenesis of BMSC and prospects the potential clinical application of lncRNA.
Collapse
Affiliation(s)
- Qiaoyue Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China.
| |
Collapse
|
17
|
Onogi Y, Khalil AEMM, Ussar S. Identification and characterization of adipose surface epitopes. Biochem J 2020; 477:2509-2541. [PMID: 32648930 PMCID: PMC7360119 DOI: 10.1042/bcj20190462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
Adipose tissue is a central regulator of metabolism and an important pharmacological target to treat the metabolic consequences of obesity, such as insulin resistance and dyslipidemia. Among the various cellular compartments, the adipocyte cell surface is especially appealing as a drug target as it contains various proteins that when activated or inhibited promote adipocyte health, change its endocrine function and eventually maintain or restore whole-body insulin sensitivity. In addition, cell surface proteins are readily accessible by various drug classes. However, targeting individual cell surface proteins in adipocytes has been difficult due to important functions of these proteins outside adipose tissue, raising various safety concerns. Thus, one of the biggest challenges is the lack of adipose selective surface proteins and/or targeting reagents. Here, we discuss several receptor families with an important function in adipogenesis and mature adipocytes to highlight the complexity at the cell surface and illustrate the problems with identifying adipose selective proteins. We then discuss that, while no unique adipocyte surface protein might exist, how splicing, posttranslational modifications as well as protein/protein interactions can create enormous diversity at the cell surface that vastly expands the space of potentially unique epitopes and how these selective epitopes can be identified and targeted.
Collapse
Affiliation(s)
- Yasuhiro Onogi
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ahmed Elagamy Mohamed Mahmoud Khalil
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Siegfried Ussar
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
18
|
Ren F, Fang Q, Xi H, Feng T, Wang L, Hu J. Platelet-derived growth factor-BB and epidermal growth factor promote dairy goat spermatogonial stem cells proliferation via Ras/ERK1/2 signaling pathway. Theriogenology 2020; 155:205-212. [PMID: 32721699 DOI: 10.1016/j.theriogenology.2020.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 06/02/2020] [Accepted: 06/13/2020] [Indexed: 02/09/2023]
Abstract
Spermatogonial stem cells (SSCs) have been used for the production of transgenic animals and for the recovery of male fertility. However, the proliferation of SSCs in vitro is still immature, and the mechanisms and pathways involved in the proliferation of SSCs are not clear. Here, the effects of platelet-derived growth factor-BB (PDGF-BB) and epidermal growth factor (EGF) on the proliferation of dairy goat SSCs in vitro were detected. The results showed that 20 ng/ml PDGF-BB or 25 ng/ml EGF was the optimum concentration, and that the BCL2 in the experimental groups was significantly higher than that in the control (P < 0.05), while BAX and BAD were dramatically downregulated (P < 0.05). The pERK1/2 in the experimental groups was about 3-5 times higher than that in the control. After the specific MEK1/2 inhibitor was added, BCL2 was reduced significantly (P < 0.001), while BAX and BAD were upregulated (P < 0.001). The expression of pERK1/2 decreased by 10%-30%. We speculated that these two growth factors may be mediated through the Ras/ERK1/2 signaling pathway to regulate the expression of pERK1/2 protein, and thus enhance the resistance of SSCs to apoptosis. However, further studies are needed to verify this hypothesis.
Collapse
Affiliation(s)
- Fa Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Qian Fang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Huaming Xi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Tianyu Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Liqiang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
19
|
González-Casanova JE, Pertuz-Cruz SL, Caicedo-Ortega NH, Rojas-Gomez DM. Adipogenesis Regulation and Endocrine Disruptors: Emerging Insights in Obesity. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7453786. [PMID: 32149131 PMCID: PMC7049431 DOI: 10.1155/2020/7453786] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Endocrine disruptors (EDs) are defined as environmental pollutants capable of interfering with the functioning of the hormonal system. They are environmentally distributed as synthetic fertilizers, electronic waste, and several food additives that are part of the food chain. They can be considered as obesogenic compounds since they have the capacity to influence cellular events related to adipose tissue, altering lipid metabolism and adipogenesis processes. This review will present the latest scientific evidence of different EDs such as persistent organic pollutants (POPs), heavy metals, "nonpersistent" phenolic compounds, triclosan, polybrominated diphenyl ethers (PBDEs), and smoke-derived compounds (benzo -alpha-pyrene) and their influence on the differentiation processes towards adipocytes in both in vitro and in vivo models.
Collapse
Affiliation(s)
| | - Sonia Liliana Pertuz-Cruz
- Programa de Nutrición y Dietética, Departamento de Nutrición Humana, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | |
Collapse
|
20
|
Roman J, Taylor NA, Oza VS, Kim RH. Nevus psiloliparus: Newly described histopathological features from transverse sections. J Cutan Pathol 2020; 47:633-637. [PMID: 32034785 DOI: 10.1111/cup.13663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 12/01/2022]
Abstract
Nevus psiloliparus is a rare fatty tissue nevus that is a marker for encephalocraniocutaneous lipomatosis, a neurocutaneous syndrome with ocular and central nervous system anomalies. Clinically, nevus psiloliparus is often described as a congenital alopecia and appears as an irregularly shaped, circumscribed area of alopecia on the scalp. Histopathology demonstrates a near-complete absence of mature hair follicles with preservation of arrector pili muscles and mature adipocytes within the dermis. The pathogenesis of nevus psiloliparus may be related to mosaic mutations in fibroblast growth factor receptor 1. Herein we report the histopathological features of a nevus psiloliparus in an 11-year-old girl diagnosed from transverse sections, which show "shadow" follicular units characterized by columns of loosely arranged collagen and a relative paucity of elastic fibers.
Collapse
Affiliation(s)
- Jorge Roman
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Nicholas A Taylor
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Vikash S Oza
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| | - Randie H Kim
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, New York
| |
Collapse
|
21
|
Shih SR, Liao SL, Shih CW, Wei YH, Lu TX, Chou CH, Yen EY, Chang YC, Lin CC, Chi YC, Yang WS, Tsai FC. Fibroblast Growth Factor Receptor Inhibitors Reduce Adipogenesis of Orbital Fibroblasts and Enhance Myofibroblastic Differentiation in Graves' Orbitopathy. Ocul Immunol Inflamm 2019; 29:193-202. [PMID: 31657648 DOI: 10.1080/09273948.2019.1672196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Orbital fibroblasts are involved in pathogenesis of Graves' orbitopathy (GO). Fibroblast growth factor (FGF) affects fibroblasts of GO. This study aims to investigate the roles of FGF and FGF receptor (FGFR) in GO.Methods: Serum FGF proteins and orbital fibroblast FGFR proteins and mRNAs were measured in GO patients and controls. Orbital fibroblasts of GO were cultured and accessed for changes in proliferation (by nuclei number and MTT), myofibroblastic differentiation (by α-SMA), and adipogenesis (by oil droplets using Oil Red O stain) under FGF1 with or without FGFR inhibitors (FGFRi).Results: Serum FGF1 and FGF2 were increased in GO patients. FGFR1 was the most abundantly expressed FGFR in GO orbital fibroblasts. FGF1 increased GO fibroblast proliferation/adipogenesis and suppressed myofibroblastic differentiation, while FGFRi reversed these effects.Conclusion: FGF signaling may be involved in GO pathogenesis. Manipulation of FGF-FGFR pathway for GO treatment is worthy of further investigation.Registration number on Clinicaltrials.gov: NCT03324022.
Collapse
Affiliation(s)
- Shyang-Rong Shih
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Center of Anti-Aging and Health Consultation, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Lang Liao
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Ophthalmology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Wei Shih
- Department of Ophthalmology, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Yi-Hsuan Wei
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-Xuan Lu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chien-Hsiang Chou
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Er-Yen Yen
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Cheng Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chiao Chi
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Shiung Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Center for Obesity, Lifestyle, and Metabolic Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Feng-Chiao Tsai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
22
|
Kordacka J, Zakrzewski K, Gruszka R, Witusik-Perkowska M, Taha J, Sikorska B, Liberski PP, Zakrzewska M. Sensitive detection of FGFR1 N546K mosaic mutation in patient with encephalocraniocutaneous lipomatosis and pilocytic astrocytoma. Am J Med Genet A 2019; 179:1622-1627. [PMID: 31173478 DOI: 10.1002/ajmg.a.61256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/28/2019] [Accepted: 05/21/2019] [Indexed: 11/12/2022]
Abstract
Encephalocraniocutaneous lipomatosis (ECCL) is a rare neurocutaneous disorder, with only about 100 cases reported worldwide. It is characterized by congenital lesions of the eye, skin, and central nervous system. Only recently, potential causative FGFR1 point mutations have been identified in brain tumors and cultured skin biopsies from patients with this condition. Here, we analyzed the molecular status of a patient with ECCL and a coexisting pilocytic astrocytoma with detected FGFR1 N546K mutation. The presence of the alteration in both affected and unaffected tissues has been evaluated using Sanger sequencing and droplet digital polymerase chain reaction (ddPCR) technique. The ddPCR analysis showed differential distribution of the alteration in all specimens, including unaffected and untreated samples. Therefore, we confirm that FGFR1 N546K is a plausible causative mutation of ECCL patients and could be associated with a risk of brain tumor development. We also show the usefulness of sensitive ddPCR method for detection of low levels of autosomal mosaic mutation in blood or swabs. We suggest that utilization of this method may improve the diagnostic process, especially when targeted therapies are considered.
Collapse
Affiliation(s)
- Joanna Kordacka
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Krzysztof Zakrzewski
- Department of Neurosurgery, Polish Mother Memorial Hospital Research Institute in Lodz, Lodz, Poland
| | - Renata Gruszka
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | | | - Joanna Taha
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Paweł P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Magdalena Zakrzewska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
23
|
Tian JJ, Lei CX, Ji H, Zhou JS, Yu HB, Li Y, Yu EM, Xie J. Dietary arachidonic acid decreases the expression of transcripts related to adipocyte development and chronic inflammation in the adipose tissue of juvenile grass carp, Ctenopharyngodon idella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:122-132. [DOI: 10.1016/j.cbd.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/30/2022]
|
24
|
Injectable Allograft Adipose Matrix Supports Adipogenic Tissue Remodeling in the Nude Mouse and Human. Plast Reconstr Surg 2019; 143:299e-309e. [PMID: 30688888 PMCID: PMC6358185 DOI: 10.1097/prs.0000000000005269] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Adipose tissue reaches cellular stasis after puberty, leaving adipocytes unable to significantly expand or renew under normal physiologic conditions. This is problematic in progressive lipodystrophies, in instances of scarring, and in soft-tissue damage resulting from lumpectomy and traumatic deformities, because adipose tissue will not self-renew once damaged. This yields significant clinical necessity for an off-the-shelf de novo soft-tissue replacement mechanism. Methods: A process comprising separate steps of removing lipid and cellular materials from adipose tissue has been developed, creating an ambient temperature-stable allograft adipose matrix. Growth factors and matrix proteins relevant to angiogenesis and adipogenesis were identified by enzyme-linked immunosorbent assay and immunohistochemistry, and subcutaneous soft-tissue integration of the allograft adipose matrix was investigated in vivo in both the athymic mouse and the dorsum of the human wrist. Results: Allograft adipose matrix maintained structural components and endogenous growth factors. In vitro, adipose-derived stem cells cultured on allograft adipose matrix underwent adipogenesis in the absence of media-based cues. In vivo, animal modeling showed vasculature formation followed by perilipin A–positive tissue segments. Allograft adipose matrix maintained soft-tissue volume in the dorsal wrist in a 4-month investigation with no severe adverse events, becoming palpably consistent with subcutaneous adipose. Conclusions: Subcutaneous implantation of allograft adipose matrix laden with retained angiogenic and adipogenic factors served as an inductive scaffold for sustaining adipogenesis. Tissue incorporation assessed histologically from both the subcutaneous injection site of the athymic nude mouse over 6 months and human dorsal wrist presented adipocyte morphology residing within the injected scaffold.
Collapse
|
25
|
Keeley T, Kirov A, Koh WY, Demambro V, Bergquist I, Cotter J, Caradonna P, Siviski ME, Best B, Henderson T, Rosen CJ, Liaw L, Prudovsky I, Small DJ. Resistance to visceral obesity is associated with increased locomotion in mice expressing an endothelial cell-specific fibroblast growth factor 1 transgene. Physiol Rep 2019; 7:e14034. [PMID: 30972920 PMCID: PMC6458108 DOI: 10.14814/phy2.14034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Overdevelopment of visceral adipose is positively correlated with the etiology of obesity-associated pathologies including cardiovascular disease and insulin resistance. However, identification of genetic, molecular, and physiological factors regulating adipose development and function in response to nutritional stress is incomplete. Fibroblast Growth Factor 1 (FGF1) is a cytokine expressed and released by both adipocytes and endothelial cells under hypoxia, thermal, and oxidative stress. Expression of Fibroblast Growth Factor 1 (FGF1) in adipose is required for normal depot development and remodeling. Loss of FGF1 leads to deleterious changes in adipose morphology, metabolism, and insulin resistance. Conversely, diabetic and obese mice injected with recombinant FGF1 display improvements in insulin sensitivity and a reduction in adiposity. We report in this novel, in vivo study that transgenic mice expressing an endothelial-specific FGF1 transgene (FGF1-Tek) are resistant to high-fat diet-induced abdominal adipose accretion and are more glucose-tolerant than wild-type control animals. Metabolic chamber analyses indicate that suppression of the development of visceral adiposity and insulin resistance was not associated with alterations in appetite or resting metabolic rate in the FGF1-Tek strain. Instead, FGF1-Tek mice display increased locomotor activity that likely promotes the utilization of dietary fatty acids before they can accumulate in adipose and liver. This study provides insight into the impact that genetic differences dictating the production of FGF1 has on the risk for developing obesity-related metabolic disease in response to nutritional stress.
Collapse
Affiliation(s)
- Tyler Keeley
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Aleksandr Kirov
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Woon Yuen Koh
- Department of Mathematical SciencesCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Victoria Demambro
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Ivy Bergquist
- Center for Excellence in NeuroscienceCollege of MedicineUniversity of New EnglandBiddefordMaine
| | - Jessica Cotter
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Peter Caradonna
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Matthew E. Siviski
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Bradley Best
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| | - Terry Henderson
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Clifford J. Rosen
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Lucy Liaw
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Igor Prudovsky
- Center for Molecular MedicineMaine Medical Center Research InstituteScarboroughMaine
| | - Deena J. Small
- Department of Chemistry and PhysicsCollege of Arts and SciencesUniversity of New EnglandBiddefordMaine
| |
Collapse
|
26
|
Smith OJ, Jell G, Mosahebi A. The use of fat grafting and platelet-rich plasma for wound healing: A review of the current evidence. Int Wound J 2018; 16:275-285. [PMID: 30460739 DOI: 10.1111/iwj.13029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Fat grafting is becoming a common procedure in regenerative medicine because of its high content of growth factors and adipose derived stem cells (ADSCs) and the ease of harvest, safety, and low cost. The high concentration of ADSCs found in fat has the potential to differentiate into a wide range of wound-healing cells including fibroblasts and keratinocytes as well as demonstrating proangiogenic qualities. This suggests that fat could play an important role in wound healing. However retention rates of fat grafts are highly variable due in part to inconsistent vascularisation of the transplanted fat. Furthermore, conditions such as diabetes, which have a high prevalence of chronic wounds, reduce the potency and regenerative potential of ADSCs. Platelet-rich plasma (PRP) is an autologous blood product rich in growth factors, cell adhesion molecules, and cytokines. It has been hypothesised that PRP may have a positive effect on the survival and retention of fat grafts because of improved proliferation and differentiations of ADSCs, reduced inflammation, and improved vascularisation. There is also increasing interest in a possible synergistic effect that PRP may have on the healing potential of fat, although the evidence for this is very limited. In this review, we evaluate the evidence in both in vitro and animal studies on the mechanistic relationship between fat and PRP and how this translates to a benefit in wound healing. We also discuss future directions for both research and clinical practice on how to enhance the regenerative potential of the combination of PRP and fat.
Collapse
Affiliation(s)
- Oliver J Smith
- Department of Plastic Surgery, Royal Free Hospital, London, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Gavin Jell
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Ash Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, London, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
27
|
Abstract
Adipogenesis is a complex process whereby the multipotent adipose-derived stem cell is converted to a preadipocyte before terminal differentiation into the mature adipocyte. Preadipocytes are present throughout adult life, exhibit adipose fat depot specificity, and differentiate and proliferate from distinct progenitor cells. The mechanisms that promote preadipocyte commitment and maturation involve numerous protein factor regulators, epigenetic factors, and miRNAs. Detailed characterization of this process is currently an area of intense research and understanding the roles of preadipocytes in tissue plasticity may provide insight into novel approaches for tissue engineering, regenerative medicine and treating a host of obesity-related conditions. In the current study, we analyzed the current literature and present a review of the characteristics of transitioning adipocytes and detail how local microenvironments influence their progression towards terminal differentiation and maturation. Specifically, we detail the characterization of preadipocyte via surface markers, examine the signaling cascades and regulation behind adipogenesis and cell maturation, and survey their role in tissue plasticity and health and disease.
Collapse
|
28
|
Zhang R, Li R, Feng Q, Zhi L, Li Z, Xu YO, Lin Y. Expression profiles and associations of FGF1 and FGF10 with intramuscular fat in Tibetan chicken. Br Poult Sci 2018; 59:613-617. [PMID: 30259763 DOI: 10.1080/00071668.2018.1507018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- R. Zhang
- College of Life Sciences, Hubei Normal University, Huangshi, China
| | - R. Li
- Reproductive and Endocrine Laboratory, Chengdu Woman-Child Central Hospital, Chengdu, China
| | - Q. Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Hospital of Guangxi Medical University, Nanning, China
| | - L. Zhi
- College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Z. Li
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Y.-O. Xu
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| | - Y. Lin
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, China
| |
Collapse
|
29
|
Mahoney CM, Imbarlina C, Yates CC, Marra KG. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations. Front Pharmacol 2018; 9:507. [PMID: 29867506 PMCID: PMC5966552 DOI: 10.3389/fphar.2018.00507] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/27/2018] [Indexed: 01/01/2023] Open
Abstract
Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG) is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.
Collapse
Affiliation(s)
- Christopher M Mahoney
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cayla Imbarlina
- Department of Biology, Carlow University, Pittsburgh, PA, United States
| | - Cecelia C Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - Kacey G Marra
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
30
|
Neuropilin 1 Mediates Keratinocyte Growth Factor Signaling in Adipose-Derived Stem Cells: Potential Involvement in Adipogenesis. Stem Cells Int 2018. [PMID: 29535768 PMCID: PMC5845512 DOI: 10.1155/2018/1075156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adipogenesis is regulated by a complex network of molecules, including fibroblast growth factors. Keratinocyte growth factor (KGF) has been previously reported to promote proliferation on rat preadipocytes, although the expression of its specific receptor, FGFR2-IIIb/KGFR, is not actually detected in mesenchymal cells. Here, we demonstrate that human adipose-derived stem cells (ASCs) show increased expression of KGF during adipogenic differentiation, especially in the early steps. Moreover, KGF is able to induce transient activation of ERK and p38 MAPK pathways in these cells. Furthermore, KGF promotes ASC differentiation and supports the activation of differentiation pathways, such as those of PI3K/Akt and the retinoblastoma protein (Rb). Notably, we observed only a low amount of FGFR2-IIIb in ASCs, which seems not to be responsible for KGF activity. Here, we demonstrate for the first time that Neuropilin 1 (NRP1), a transmembrane glycoprotein expressed in ASCs acting as a coreceptor for some growth factors, is responsible for KGF-dependent pathway activation in these cells. Our study contributes to clarify the molecular bases of human adipogenesis, demonstrating a role of KGF in the early steps of this process, and points out a role of NRP1 as a previously unknown mediator of KGF action in ASCs.
Collapse
|
31
|
Kähkönen TE, Ivaska KK, Jiang M, Büki KG, Väänänen HK, Härkönen PL. Role of fibroblast growth factor receptors (FGFR) and FGFR like-1 (FGFRL1) in mesenchymal stromal cell differentiation to osteoblasts and adipocytes. Mol Cell Endocrinol 2018; 461:194-204. [PMID: 28923346 DOI: 10.1016/j.mce.2017.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/16/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factors (FGF) and their receptors (FGFRs) regulate many developmental processes including differentiation of mesenchymal stromal cells (MSC). We developed two MSC lines capable of differentiating to osteoblasts and adipocytes and studied the role of FGFRs in this process. We identified FGFR2 and fibroblast growth factor receptor like-1 (FGFRL1) as possible actors in MSC differentiation with gene microarray and qRT-PCR. FGFR2 and FGFRL1 mRNA expression strongly increased during MSC differentiation to osteoblasts. FGF2 treatment, resulting in downregulation of FGFR2, or silencing FGFR2 expression with siRNAs inhibited osteoblast differentiation. During adipocyte differentiation expression of FGFR1 and FGFRL1 increased and was down-regulated by FGF2. FGFR1 knockdown inhibited adipocyte differentiation. Silencing FGFR2 and FGFR1 in MSCs was associated with decreased FGFRL1 expression in osteoblasts and adipocytes, respectively. Our results suggest that FGFR1 and FGFR2 regulate FGFRL1 expression. FGFRL1 may mediate or modulate FGFR regulation of MSC differentiation together with FGFR2 in osteoblastic and FGFR1 in adipocytic lineage.
Collapse
Affiliation(s)
- T E Kähkönen
- University of Turku, Institute of Biomedicine, Turku, Finland.
| | - K K Ivaska
- University of Turku, Institute of Biomedicine, Turku, Finland
| | - M Jiang
- University of Turku, Institute of Biomedicine, Turku, Finland
| | - K G Büki
- University of Turku, Institute of Biomedicine, Turku, Finland
| | - H K Väänänen
- University of Turku, Institute of Biomedicine, Turku, Finland
| | - P L Härkönen
- University of Turku, Institute of Biomedicine, Turku, Finland
| |
Collapse
|
32
|
Mo D, Yu K, Chen H, Chen L, Liu X, He Z, Cong P, Chen Y. Transcriptome Landscape of Porcine Intramuscular Adipocytes during Differentiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6317-6328. [PMID: 28673084 DOI: 10.1021/acs.jafc.7b02039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The adipocyte differentiation process, controlled by a tightly regulated transcriptional cascade, contributes partly to determine intramuscular adipose tissue (IMAT) mass, which is associated with meat quality in food animals, as well as obesity and related metabolic complications in human. Thus, this study aimed to characterize genes critical for intramuscular preadipocyte differentiation. Primary intramuscular preadipocytes were isolated from pigs, and mRNA profiles were performed at several key points (0 h, 4 h, 8 h, 1 day, 2 days, and 6 days) during adipogenesis using microarrays. By gene functional analysis, we identified numerous differentially expressed genes among distinct stages of intramuscular preadipocyte differentiation, which included numbers of transcription factors in the early stages. We obtained 4 clusters of differential gene expression pattern, including crucial candidate genes associated with adipogenesis of intramuscular adipocytes. Further, we demonstrated that POSTN and FGFR4 suppressed, whereas AKR1CL1 promoted, the expression of adipogenic marker PPARγ and C/EBPα. Taken together, our data delineated the transcriptome landscape during porcine intramuscular preadipocyte differentiation, which provided a valuable resource for finding the genes responsible for IMAT formation.
Collapse
Affiliation(s)
- Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Kaifan Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Hu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, China
| |
Collapse
|
33
|
DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients. Sci Rep 2017; 7:41903. [PMID: 28211912 PMCID: PMC5314866 DOI: 10.1038/srep41903] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
The characterization of the epigenetic changes within the obesity-related adipose tissue will provide new insights to understand this metabolic disorder, but adipose tissue is not easy to sample in population-based studies. We aimed to evaluate the capacity of circulating leukocytes to reflect the adipose tissue-specific DNA methylation status of obesity susceptibility. DNA samples isolated from subcutaneous adipose tissue and circulating leukocytes were hybridized in the Infinium HumanMethylation 450 BeadChip. Data were compared between samples from obese (n = 45) and non-obese (n = 8–10) patients by Wilcoxon-rank test, unadjusted for cell type distributions. A global hypomethylation of the differentially methylated CpG sites (DMCpGs) was observed in the obese subcutaneous adipose tissue and leukocytes. The overlap analysis yielded a number of genes mapped by the common DMCpGs that were identified to reflect the obesity state in the leukocytes. Specifically, the methylation levels of FGFRL1, NCAPH2, PNKD and SMAD3 exhibited excellent and statistically significant efficiencies in the discrimination of obesity from non-obesity status (AUC > 0.80; p < 0.05) and a great correlation between both tissues. Therefore, the current study provided new and valuable DNA methylation biomarkers of obesity-related adipose tissue pathogenesis through peripheral blood analysis, an easily accessible and minimally invasive biological material instead of adipose tissue.
Collapse
|
34
|
Baker NA, Muir LA, Lumeng CN, O'Rourke RW. Differentiation and Metabolic Interrogation of Human Adipocytes. Methods Mol Biol 2017; 1566:61-76. [PMID: 28244041 DOI: 10.1007/978-1-4939-6820-6_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Adipocytes differentiated from preadipocytes provide a valuable model for the study of human adipocyte metabolism. We describe methods for isolation of human stromal vascular cells, expansion of preadipocytes, differentiation into mature adipocytes, and in vitro metabolic interrogation of adipocytes.
Collapse
Affiliation(s)
- Nicki A Baker
- Section of General Surgery, Department of Surgery, University of Michigan Medical School, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, USA
| | - Lindsey A Muir
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert W O'Rourke
- Section of General Surgery, Department of Surgery, University of Michigan Medical School, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, USA. .,Department of Surgery, Ann Arbor Veteran's Administration Hospital, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
He J, Chen DL, Samocha-Bonet D, Gillinder KR, Barclay JL, Magor GW, Perkins AC, Greenfield JR, Yang G, Whitehead JP. Fibroblast growth factor-1 (FGF-1) promotes adipogenesis by downregulation of carboxypeptidase A4 (CPA4) - a negative regulator of adipogenesis implicated in the modulation of local and systemic insulin sensitivity. Growth Factors 2016; 34:210-216. [PMID: 28209092 DOI: 10.1080/08977194.2017.1285764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor-1 (FGF-1) promotes differentiation of human preadipocytes into mature adipocytes via modulation of a BMP and Activin Membrane-Bound Inhibitor (BAMBI)/Peroxisome proliferator-activated receptor (PPARγ)-dependent network. Here, we combined transcriptomic and functional investigations to identify novel downstream effectors aligned with complementary analyses of gene expression in human adipose tissue to explore relationships with insulin sensitivity. RNA-Seq and qRT-PCR analysis revealed significant down-regulation of carboxypeptidase A4 (CPA4) following FGF-1 treatment or induction of differentiation of human preadipocytes in a BAMBI/PPARγ-independent manner. siRNA-mediated knockdown of CPA4 resulted in enhanced differentiation of human preadipocytes. Furthermore, expression of CPA4 in subcutaneous adipose tissue correlated negatively with indices of local and systemic (liver and muscle) insulin sensitivity. These results identify CPA4 as a negative regulator of adipogenesis that is down-regulated by FGF-1 and a putative deleterious modulator of local and systemic insulin sensitivity. Further investigations are required to define the molecular mechanism(s) involved and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Jingjing He
- a Laboratory of Animal Fat Deposition and Muscle Development , College of Animal Science and Technology, Northwest A&F University , Yangling , P.R. China
- b Mater Research Institute-University of Queensland, Translational Research Institute , Brisbane , Australia
| | - Daniel L Chen
- c Garvan Institute of Medical Research , Sydney , Australia
| | - Dorit Samocha-Bonet
- c Garvan Institute of Medical Research , Sydney , Australia
- d Faculty of Medicine , University of New South Wales , Randwick , Australia
| | - Kevin R Gillinder
- b Mater Research Institute-University of Queensland, Translational Research Institute , Brisbane , Australia
| | - Johanna L Barclay
- b Mater Research Institute-University of Queensland, Translational Research Institute , Brisbane , Australia
| | - Graham W Magor
- b Mater Research Institute-University of Queensland, Translational Research Institute , Brisbane , Australia
| | - Andrew C Perkins
- b Mater Research Institute-University of Queensland, Translational Research Institute , Brisbane , Australia
| | - Jerry R Greenfield
- c Garvan Institute of Medical Research , Sydney , Australia
- d Faculty of Medicine , University of New South Wales , Randwick , Australia
- e Department of Endocrinology and Diabetes , St Vincent's Hospital , Sydney , Australia , and
| | - Gongshe Yang
- a Laboratory of Animal Fat Deposition and Muscle Development , College of Animal Science and Technology, Northwest A&F University , Yangling , P.R. China
| | - Jonathan P Whitehead
- b Mater Research Institute-University of Queensland, Translational Research Institute , Brisbane , Australia
- f School of Life Sciences , University of Lincoln , Lincolnshire , UK
| |
Collapse
|
36
|
Liao HT, James IB, Marra KG, Rubin JP. The Effects of Platelet-Rich Plasma on Cell Proliferation and Adipogenic Potential of Adipose-Derived Stem Cells. Tissue Eng Part A 2016; 21:2714-22. [PMID: 26416350 DOI: 10.1089/ten.tea.2015.0159] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP) contains multiple growth factors and has been shown to enhance fat graft survival after lipotransfer. However, the molecular mechanisms mediating this effect remain unknown. Adipose-derived stem cells (ASCs) play an important role in fat graft survival and are a likely target for PRP-mediated effects. This study seeks to investigate the impact of PRP on ASC proliferation and adipogenic differentiation. METHODS Human ASCs were isolated using our laboratory protocol. The experiments were divided into four arms: (1) ASCs cultured in general culture medium alone; (2) ASCs in general culture medium + 5%, 10%, 15%, or 20% PRP; (3) ASCs cultured in adipogenic differentiation medium alone; (4) ASCs cultured in adipogenic medium + 5%, 10%, 15%, or 20% PRP. Cell proliferation was analyzed and comparative m-RNA expression of adipogenic genes was assessed by quantitative PCR. Protein expression was determined by western blot. RESULTS PRP significantly enhanced proliferation of ASCs, even in the presence of antiproliferative, proadipogenic media. In contrast, PRP inhibited adipogenic differentiation in adipogenic media, evidenced by decreased intracellular lipid accumulation and reduced adipogenic gene expression (PPAR-γ and FABP4). Inhibition appears to occur through downregulation of bone morphogenetic protein receptor IA (BMPRIA) and fibroblast growth factor receptor 1 (FGFR1). Interestingly, PRP elicited these effects across the entire range of doses studied. CONCLUSIONS PRP appears to modulate ASC function primarily by enhancing cell proliferation. The consequences of its impact on adipogenesis are less clear. Enhanced proliferation initially might set the stage for more robust regeneration and adipogenesis at later time points, providing an important target for ongoing research.
Collapse
Affiliation(s)
- Han Tsung Liao
- 1 Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania .,2 Division of Trauma Plastic Surgery, Department of Plastic and Reconstructive Surgery, Craniofacial Research Center, Chang Gung Memorial Hospital, Chang Gung University , Taiwan, Republic of China
| | - Isaac B James
- 1 Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania .,3 University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Kacey G Marra
- 1 Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania .,4 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania .,5 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - J Peter Rubin
- 1 Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania .,4 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania .,5 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Jia R, Luo XQ, Wang G, Lin CX, Qiao H, Wang N, Yao T, Barclay JL, Whitehead JP, Luo X, Yan JQ. Characterization of cold-induced remodelling reveals depot-specific differences across and within brown and white adipose tissues in mice. Acta Physiol (Oxf) 2016; 217:311-24. [PMID: 27064138 DOI: 10.1111/apha.12688] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/12/2015] [Accepted: 04/08/2016] [Indexed: 12/11/2022]
Abstract
AIM Brown and beige adipose tissues dissipate energy in the form of heat via mitochondrial uncoupling protein 1, defending against hypothermia and potentially obesity. The latter has prompted renewed interest in understanding the processes involved in browning to realize the potential therapeutic benefits. To characterize the temporal profile of cold-induced changes and browning of brown and white adipose tissues in mice. METHODS Male C57BL/6J mice were singly housed in conventional cages under cold exposure (4 °C) for 1, 2, 3, 4, 5 and 7 days. Food intake and body weight were measured daily. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous (sWAT) and epididymal white adipose tissue (eWAT) were harvested for histological, immunohistochemical, gene and protein expression analysis. RESULTS Upon cold exposure, food intake increased, whilst body weight and adipocyte size were found to be transiently reduced. iBAT mass was found to be increased, whilst sWAT and eWAT were found to be transiently decreased. A combination of morphological, genetic (Ucp-1, Pgc-1α and Elov13) and biochemical (UCP-1, PPARγ and aP2) analyses demonstrated the depot-specific remodelling in response to cold exposure. CONCLUSION Our results demonstrate the differential responses to cold-induced changes across discrete BAT and WAT depots and support the notion that the effects of short-term cold exposure are achieved by expansion, activation and increasing thermogenic capacity of iBAT, as well as browning of sWAT and, to a lesser extent, eWAT.
Collapse
Affiliation(s)
- R. Jia
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
- Department of Prosthodontics; College of Stomatology, Stomatological Hospital; Xi'an Jiaotong University; Xi'an China
| | - X.-Q. Luo
- Department of Medicine; School of Public Health; Xi'an Jiaotong University Health Science Center; Xi'an China
| | - G. Wang
- Department of Biology; Boston University; Boston MA USA
| | - C.-X. Lin
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
| | - H. Qiao
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
| | - N. Wang
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
| | - T. Yao
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
| | - J. L. Barclay
- Mater Research Institute; University of Queensland; Brisbane QLD Australia
- Translational Research Institute; Brisbane QLD Australia
| | - J. P. Whitehead
- Mater Research Institute; University of Queensland; Brisbane QLD Australia
- Translational Research Institute; Brisbane QLD Australia
| | - X. Luo
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
| | - J.-Q. Yan
- Department of Physiology and Pathophysiology; School of Basic Medical Sciences; Xi'an Jiaotong University Health Science Center; Xi'an China
- Key Laboratory of Environment and Genes Related to Diseases; Ministry of Education of China; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
38
|
Wang S, Yang Q, Yu S, Pan R, Jiang D, Liu Y, Hu H, Sun W, Hong X, Xue H, Qian W, Wang D, Zhou L, Mao C, Yuan G. Fibroblast growth factor 1 levels are elevated in newly diagnosed type 2 diabetes compared to normal glucose tolerance controls. Endocr J 2016; 63:359-65. [PMID: 26806193 DOI: 10.1507/endocrj.ej15-0627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fibroblast growth factor 1 (FGF1) has been recently characterized as a potent insulin sensitizer that regulates adipose tissue remodeling, but the physiological role of FGF1 remains unclear. This study measured serum FGF1 levels for the first time in patients with newly diagnosed type 2 diabetes mellitus (T2DM), and further explored the correlations between FGF1 levels and various metabolic parameters in T2DM. Serum FGF1 levels were determined using ELISA in age-, sex- and BMI- matched subjects with normal glucose tolerance (NGT) (n=80) and newly diagnosed T2DM (n=80). Oral glucose tolerance test (OGTT), glycosylated hemoglobin (HbA1C), blood lipids, and insulin secretion were also measured. Insulin resistance and pancreatic β-cell function were assessed by homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of beta cell function (HOMA-β), respectively. Serum FGF1 levels were significantly higher in T2DM patients than in normal glucose tolerance subjects (74.52 [55.91∼101.34] vs. 60.31 [48.99∼83.91] pg/mL; P<0.05). In addition, serum FGF1 level positively correlated with body mass index (BMI), waist circumference (WC), waist to hip ratio (WHR), fasting plasma glucose (FPG), 2-h post-OGTT glucose (2h PG), and HbA1C (all P values <0.05) in T2DM subjects. Multivariate regression analyses showed that BMI and HbA1C were the independent factors influencing serum FGF1 levels. Logistic regression analyses demonstrated that serum FGF1 was significantly associated with type 2 diabetes (P<0.01). Circulating concentrations of FGF1 are significantly increased in T2DM patients. Our results suggest that FGF1 may play a role in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Su Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim YH, Barclay JL, He J, Luo X, O'Neill HM, Keshvari S, Webster JA, Ng C, Hutley LJ, Prins JB, Whitehead JP. Identification of carboxypeptidase X (CPX)-1 as a positive regulator of adipogenesis. FASEB J 2016; 30:2528-40. [PMID: 27006448 DOI: 10.1096/fj.201500107r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/10/2016] [Indexed: 01/13/2023]
Abstract
Adipose tissue expansion occurs through a combination of hypertrophy of existing adipocytes and generation of new adipocytes via the process of hyperplasia, which involves the proliferation and subsequent differentiation of preadipocytes. Deficiencies in hyperplasia contribute to adipose tissue dysfunction and the association of obesity with chronic cardiometabolic diseases. Thus, increased understanding of hyperplastic pathways may be expected to afford novel therapeutic strategies. We have reported that fibroblast growth factor (FGF)-1 promotes proliferation and differentiation of human preadipocytes and recently demonstrated that bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) is a central, proximal effector. Herein, we describe the identification and characterization of carboxypeptidase X (CPX)-1, a secreted collagen-binding glycoprotein, as a novel downstream effector in human primary and Simpson-Golabi-Behmel syndrome preadipocytes. CPX-1 expression increased after treatment of preadipocytes with FGF-1, BAMBI knockdown, or induction of differentiation. CPX-1 knockdown compromised preadipocyte differentiation coincident with reduced collagen expression. Furthermore, preadipocytes differentiated on matrix derived from CPX-1 knockdown cells exhibited reduced Glut4 expression and insulin-stimulated glucose uptake. Finally, CPX-1 expression was increased in adipose tissue from obese mice and humans. Collectively, these findings establish CPX-1 as a positive regulator of adipogenesis situated downstream of FGF-1/BAMBI that may contribute to hyperplastic adipose tissue expansion via affecting extracellular matrix remodeling.-Kim, Y.-H., Barclay, J. L., He, J., Luo, X., O'Neill, H. M., Keshvari, S., Webster, J. A., Ng, C., Hutley, L. J., Prins, J. B., Whitehead, J. P. Identification of carboxypeptidase X (CPX)-1 as a positive regulator of adipogenesis.
Collapse
Affiliation(s)
- Yu-Hee Kim
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Johanna L Barclay
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jingjing He
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Xiao Luo
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Hayley M O'Neill
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Julie A Webster
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Choaping Ng
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Louise J Hutley
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Johannes B Prins
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Jonathan P Whitehead
- Metabolic Medicine Group, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
40
|
Bennett JT, Tan TY, Alcantara D, Tétrault M, Timms AE, Jensen D, Collins S, Nowaczyk MJM, Lindhurst MJ, Christensen KM, Braddock SR, Brandling-Bennett H, Hennekam RCM, Chung B, Lehman A, Su J, Ng S, Amor DJ, Majewski J, Biesecker LG, Boycott KM, Dobyns WB, O'Driscoll M, Moog U, McDonell LM. Mosaic Activating Mutations in FGFR1 Cause Encephalocraniocutaneous Lipomatosis. Am J Hum Genet 2016; 98:579-587. [PMID: 26942290 PMCID: PMC4800051 DOI: 10.1016/j.ajhg.2016.02.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/09/2016] [Indexed: 12/16/2022] Open
Abstract
Encephalocraniocutaneous lipomatosis (ECCL) is a sporadic condition characterized by ocular, cutaneous, and central nervous system anomalies. Key clinical features include a well-demarcated hairless fatty nevus on the scalp, benign ocular tumors, and central nervous system lipomas. Seizures, spasticity, and intellectual disability can be present, although affected individuals without seizures and with normal intellect have also been reported. Given the patchy and asymmetric nature of the malformations, ECCL has been hypothesized to be due to a post-zygotic, mosaic mutation. Despite phenotypic overlap with several other disorders associated with mutations in the RAS-MAPK and PI3K-AKT pathways, the molecular etiology of ECCL remains unknown. Using exome sequencing of DNA from multiple affected tissues from five unrelated individuals with ECCL, we identified two mosaic mutations, c.1638C>A (p.Asn546Lys) and c.1966A>G (p.Lys656Glu) within the tyrosine kinase domain of FGFR1, in two affected individuals each. These two residues are the most commonly mutated residues in FGFR1 in human cancers and are associated primarily with CNS tumors. Targeted resequencing of FGFR1 in multiple tissues from an independent cohort of individuals with ECCL identified one additional individual with a c.1638C>A (p.Asn546Lys) mutation in FGFR1. Functional studies of ECCL fibroblast cell lines show increased levels of phosphorylated FGFRs and phosphorylated FRS2, a direct substrate of FGFR1, as well as constitutive activation of RAS-MAPK signaling. In addition to identifying the molecular etiology of ECCL, our results support the emerging overlap between mosaic developmental disorders and tumorigenesis.
Collapse
Affiliation(s)
- James T Bennett
- Department of Pediatrics (Genetics), University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Diana Alcantara
- Genome Damage and Stability Centre, University of Sussex, Brighton BN19RQ, UK
| | - Martine Tétrault
- Department of Human Genetics, McGill University, Montreal, QC H3A0G4 Canada
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Dana Jensen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sarah Collins
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Malgorzata J M Nowaczyk
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4J9, Canada
| | - Marjorie J Lindhurst
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine M Christensen
- Department of Pediatrics, Cardinal Glennon Children's Medical Center, St. Louis, MO 63104, USA
| | - Stephen R Braddock
- Department of Pediatrics, Cardinal Glennon Children's Medical Center, St. Louis, MO 63104, USA
| | - Heather Brandling-Bennett
- Departments of Pediatrics and Medicine (Dermatology), University of Washington, Seattle, WA 98195, USA
| | - Raoul C M Hennekam
- Department of Pediatrics, Academic Medical Centre, University of Amsterdam, 1105AZ Amsterdam, Netherlands
| | - Brian Chung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H3N1, Canada
| | - John Su
- Monash University, Eastern Health, Department of Dermatology, Box Hill, VIC 3128, Australia
| | - SuYuen Ng
- Monash University, Eastern Health, Department of Dermatology, Box Hill, VIC 3128, Australia
| | - David J Amor
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC H3A0G4 Canada
| | - Les G Biesecker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H5B2, Canada
| | - William B Dobyns
- Department of Pediatrics (Genetics), University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, Brighton BN19RQ, UK.
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, 69120 Heidelberg, Germany.
| | - Laura M McDonell
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H5B2, Canada
| |
Collapse
|
41
|
Choi Y, Jang S, Choi MS, Ryoo ZY, Park T. Increased expression of FGF1-mediated signaling molecules in adipose tissue of obese mice. J Physiol Biochem 2016; 72:157-67. [DOI: 10.1007/s13105-016-0468-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 01/29/2016] [Indexed: 01/17/2023]
|
42
|
Pietiläinen KH, Ismail K, Järvinen E, Heinonen S, Tummers M, Bollepalli S, Lyle R, Muniandy M, Moilanen E, Hakkarainen A, Lundbom J, Lundbom N, Rissanen A, Kaprio J, Ollikainen M. DNA methylation and gene expression patterns in adipose tissue differ significantly within young adult monozygotic BMI-discordant twin pairs. Int J Obes (Lond) 2015; 40:654-61. [PMID: 26499446 DOI: 10.1038/ijo.2015.221] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 08/29/2015] [Accepted: 09/21/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Little is known about epigenetic alterations associated with subcutaneous adipose tissue (SAT) in obesity. Our aim was to study genome-wide DNA methylation and gene expression differences in SAT in monozygotic (MZ) twin pairs who are discordant for body mass index (BMI). This design completely matches lean and obese groups for genetic background, age, gender and shared environment. METHODS 14We analyzed DNA methylome and gene expression from SAT, together with body composition (magnetic resonance imaging/spectroscopy) and glucose tolerance test, lipids and C-reactive protein from 26 rare BMI-discordant (intrapair difference in BMI ⩾3 kg m(-2)) MZ twin pairs identified from 10 birth cohorts of young adult Finnish twins. RESULTS We found 17 novel obesity-associated genes that were differentially methylated across the genome between heavy and lean co-twins. Nine of them were also differentially expressed. Pathway analyses indicated that dysregulation of SAT in obesity includes a paradoxical downregulation of lipo/adipogenesis and upregulation of inflammation and extracellular matrix remodeling. Furthermore, CpG sites whose methylation correlated with metabolically harmful fat depots (intra-abdominal and liver fat) also correlated with measures of insulin resistance, dyslipidemia and low-grade inflammation, thus suggesting that epigenetic alterations in SAT are associated with the development of unhealthy obesity. CONCLUSION This is the first study in BMI-discordant MZ twin pairs reporting genome-wide DNA methylation and expression profiles in SAT. We found a number of novel genes and pathways whose methylation and expression patterns differ within the twin pairs, suggesting that the pathological adaptation of SAT to obesity is, at least in part, epigenetically regulated.
Collapse
Affiliation(s)
- K H Pietiläinen
- Obesity Research Unit, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Central Hospital, and University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - K Ismail
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - E Järvinen
- Obesity Research Unit, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - S Heinonen
- Obesity Research Unit, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - M Tummers
- Obesity Research Unit, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - S Bollepalli
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R Lyle
- Oslo University Hospital and University of Oslo, Department of Medical Genetics, Oslo, Norway
| | - M Muniandy
- Obesity Research Unit, Research Programs Unit, University of Helsinki, Helsinki, Finland.,Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - E Moilanen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
| | - A Hakkarainen
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - J Lundbom
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - N Lundbom
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - A Rissanen
- Obesity Research Unit, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - J Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland.,Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,National Institute for Health and Welfare, Helsinki, Finland
| | - M Ollikainen
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
43
|
Markan KR, Potthoff MJ. Metabolic fibroblast growth factors (FGFs): Mediators of energy homeostasis. Semin Cell Dev Biol 2015; 53:85-93. [PMID: 26428296 DOI: 10.1016/j.semcdb.2015.09.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/25/2015] [Indexed: 01/07/2023]
Abstract
The metabolic fibroblast growth factors (FGFs), FGF1, FGF15/19, and FGF21 differ from classic FGFs in that they modulate energy homeostasis in response to fluctuating nutrient availability. These unique mediators of metabolism regulate a number of physiological processes which contribute to their potent pharmacological properties. Administration of pharmacological doses of these FGFs causes weight loss, increases energy expenditure, and improves carbohydrate and lipid metabolism in obese animal models. However, many questions remain regarding the precise molecular and physiological mechanisms governing the effects of individual metabolic FGFs. Here we review the metabolic actions of FGF1, FGF15/19, and FGF21 while providing insights into their pharmacological effects by examining known biological functions.
Collapse
Affiliation(s)
- Kathleen R Markan
- Department of Pharmacology and University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Pharmacology and University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
44
|
Le Blanc S, Simann M, Jakob F, Schütze N, Schilling T. Fibroblast growth factors 1 and 2 inhibit adipogenesis of human bone marrow stromal cells in 3D collagen gels. Exp Cell Res 2015; 338:136-48. [PMID: 26384550 DOI: 10.1016/j.yexcr.2015.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/24/2015] [Accepted: 09/13/2015] [Indexed: 01/22/2023]
Abstract
Multipotent human bone marrow stromal cells (hBMSCs) are the common progenitors of osteoblasts and adipocytes. A shift in hBMSC differentiation in favor of adipogenesis may contribute to the bone loss and marrow fat accumulation observed in aging and osteoporosis. Hence, the identification of factors modulating marrow adipogenesis is of great therapeutic interest. Fibroblast growth factors 1 (FGF1) and 2 (FGF2) play important roles in several cellular processes including differentiation. Their role in adipogenesis is, however, still unclear given the contradictory reports found in the literature. In this work, we investigated the effect of FGF signaling on hBMSC adipogenesis in a 3D collagen gel system to mimic the natural microenvironment. We successfully established adipogenic differentiation of hBMSC embedded in type I collagen gels. We found that exogenous FGF1 and FGF2 exerted an inhibitory effect on lipid droplet accumulation and gene expression of adipogenic markers, which was abolished by pharmacological blocking of FGF receptor (FGFR) signaling. FGF treatment also affected the expression of the matrix metalloproteinase 13 (MMP13) and the tissue inhibitor of metalloproteinases 1 (TIMP1), altering the MMP/TIMP balance, which modulates collagen processing and turnover. FGF1- and FGF2-mediated inhibition of differentiation was, however, not restricted to adipogenesis since FGF1 and FGF2 treatment also resulted in the inhibition of the osteogenic differentiation in collagen gels. We conclude that FGFR signaling inhibits the in vitro adipogenic commitment of hBMSCs, downregulating core differentiation markers and altering ECM composition.
Collapse
Affiliation(s)
- Solange Le Blanc
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| | - Meike Simann
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| | - Tatjana Schilling
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Wuerzburg, Brettreichstr. 11, 97074 Wuerzburg, Germany.
| |
Collapse
|
45
|
Yang M, Kimura M, Ng C, He J, Keshvari S, Rose FJ, Barclay JL, Whitehead JP. Induction of heme-oxygenase-1 (HO-1) does not enhance adiponectin production in human adipocytes: Evidence against a direct HO-1 - Adiponectin axis. Mol Cell Endocrinol 2015; 413:209-16. [PMID: 26143632 DOI: 10.1016/j.mce.2015.06.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/11/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Adiponectin is a salutary adipokine and hypoadiponectinemia is implicated in the aetiology of obesity-related inflammation and cardiometabolic disease making therapeutic strategies to increase adiponectin attractive. Emerging evidence, predominantly from preclinical studies, suggests induction of heme-oxygenase-1 (HO-1) increases adiponectin production and reduces inflammatory tone. Here, we aimed to test whether induction of HO-1 enhanced adiponectin production from mature adipocytes. Treatment of human adipocytes with cobalt protoporphyrin (CoPP) or hemin for 24-48 h increased HO-1 expression and activity without affecting adiponectin expression and secretion. Treatment of adipocytes with TNFα reduced adiponectin secretion and increased expression and secretion of additional pro-inflammatory cytokines, IL-6 and MCP-1, as well as expression of sXBP-1, a marker of ER stress. HO-1 induction failed to reverse these effects. These results demonstrate that induction of HO-1 does not directly enhance adiponectin production or ameliorate the pro-inflammatory effects of TNFα and argue against a direct HO-1 - adiponectin axis.
Collapse
Affiliation(s)
- Mengliu Yang
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia
| | - Masaki Kimura
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia; Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Choaping Ng
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia
| | - Jingjing He
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia
| | - Sahar Keshvari
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia
| | - Felicity J Rose
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia
| | - Johanna L Barclay
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia
| | - Jonathan P Whitehead
- Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
46
|
Nakano SI, Nakamura K, Teramoto N, Yamanouchi K, Nishihara M. Basic fibroblast growth factor is pro-adipogenic in rat skeletal muscle progenitor clone, 2G11 cells. Anim Sci J 2015; 87:99-108. [DOI: 10.1111/asj.12397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/14/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Shin-ichi Nakano
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Katsuyuki Nakamura
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Naomi Teramoto
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| |
Collapse
|
47
|
Ciaccio MF, Chen VC, Jones RB, Bagheri N. The DIONESUS algorithm provides scalable and accurate reconstruction of dynamic phosphoproteomic networks to reveal new drug targets. Integr Biol (Camb) 2015; 7:776-91. [PMID: 26057728 PMCID: PMC4511116 DOI: 10.1039/c5ib00065c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many drug candidates fail in clinical trials due to an incomplete understanding of how small-molecule perturbations affect cell phenotype. Cellular responses can be non-intuitive due to systems-level properties such as redundant pathways caused by co-activation of multiple receptor tyrosine kinases. We therefore created a scalable algorithm, DIONESUS, based on partial least squares regression with variable selection to reconstruct a cellular signaling network in a human carcinoma cell line driven by EGFR overexpression. We perturbed the cells with 26 diverse growth factors and/or small molecules chosen to activate or inhibit specific subsets of receptor tyrosine kinases. We then quantified the abundance of 60 phosphosites at four time points using a modified microwestern array, a high-confidence assay of protein abundance and modification. DIONESUS, after being validated using three in silico networks, was applied to connect perturbations, phosphorylation, and cell phenotype from the high-confidence, microwestern dataset. We identified enhancement of STAT1 activity as a potential strategy to treat EGFR-hyperactive cancers and PTEN as a target of the antioxidant, N-acetylcysteine. Quantification of the relationship between drug dosage and cell viability in a panel of triple-negative breast cancer cell lines validated proposed therapeutic strategies.
Collapse
Affiliation(s)
- Mark F Ciaccio
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|
48
|
Saucedo L, Buffa GN, Rosso M, Guillardoy T, Góngora A, Munuce MJ, Vazquez-Levin MH, Marín-Briggiler C. Fibroblast Growth Factor Receptors (FGFRs) in Human Sperm: Expression, Functionality and Involvement in Motility Regulation. PLoS One 2015; 10:e0127297. [PMID: 25970615 PMCID: PMC4430232 DOI: 10.1371/journal.pone.0127297] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/13/2015] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factors receptors (FGFRs) have been widely characterized in somatic cells, but there is scarce evidence of their expression and function in mammalian gametes. The objective of the present study was to evaluate the expression of FGFRs in human male germ cells, to determine sperm FGFR activation by the FGF2 ligand and their participation in the regulation of sperm motility. The expression of FGFR1, 2, 3 and 4 mRNAs and proteins in human testis and localization of these receptors in germ cells of the seminiferous epithelium was demonstrated. In ejaculated sperm, FGFRs were localized to the acrosomal region and flagellum. Sperm exposure to FGF2 caused an increase in flagellar FGFR phosphorylation and activation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB or Akt) signaling pathways. Incubation with FGF2 led to a significant increase in the percentage of total and progressive sperm motility, as well as in sperm kinematics. All responses were prevented by sperm preincubation with BGJ398, a specific inhibitor of FGFR tyrosine kinase activity. In addition to confirming the expression of FGFRs in germ cells of the human testis, our study describes for the first time the presence, localization and functionality of human sperm FGFRs, and provides evidence of the beneficial effect of FGF2 upon sperm motility.
Collapse
Affiliation(s)
- Lucía Saucedo
- Instituto de Biología y Medicina Experimental (IBYME), CONICET-FIBYME, Buenos Aires, Argentina
| | - Gabriela N. Buffa
- Instituto de Biología y Medicina Experimental (IBYME), CONICET-FIBYME, Buenos Aires, Argentina
| | - Marina Rosso
- Instituto de Biología y Medicina Experimental (IBYME), CONICET-FIBYME, Buenos Aires, Argentina
| | - Tomás Guillardoy
- Instituto de Biología y Medicina Experimental (IBYME), CONICET-FIBYME, Buenos Aires, Argentina
| | - Adrian Góngora
- Instituto de Biología y Medicina Experimental (IBYME), CONICET-FIBYME, Buenos Aires, Argentina
| | - María J. Munuce
- Laboratorio de Medicina Reproductiva, Area de Bioquímica Clínica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- Reprolab, Sanatorio Británico de Rosario, Rosario, Santa Fe, Argentina
| | - Mónica H. Vazquez-Levin
- Instituto de Biología y Medicina Experimental (IBYME), CONICET-FIBYME, Buenos Aires, Argentina
| | - Clara Marín-Briggiler
- Instituto de Biología y Medicina Experimental (IBYME), CONICET-FIBYME, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
49
|
Kim S, Ahn C, Bong N, Choe S, Lee DK. Biphasic effects of FGF2 on adipogenesis. PLoS One 2015; 10:e0120073. [PMID: 25790378 PMCID: PMC4366188 DOI: 10.1371/journal.pone.0120073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Although stem cells from mice deficient of FGF2 have been reported to display enhanced capacity for adipogenesis, the literature using in vitro cell culture system has so far reported conflicting results on the role of FGF2 in adipogenesis. We here demonstrate that FGF2, depending on concentration, can function as either a positive or negative factor of in vitro adipogenesis by regulating activation of the ERK signaling pathway. FGF2 at concentrations lower than 2 ng/ml enhanced in vitro adipogenesis of human adipose-derived stem cells (hASCs). However, FGF2 at concentrations higher than 10 ng/ml was able to suppress adipogenesis by maintaining sustained phosphorylation of ERK and function as a dominant negative adipogenic factor toward BMP ligands. Expression levels of FGF2 in the fat tissues from high fat diet induced obese C57BL/6 mice were lower than those from normal chow diet mice, indicating that expression levels of FGF2 in the fat tissues might be in reverse correlation with the size of fat tissues. Our observation of concentration dependent biphasic effect as well as dominant negative effect of FGF2 on adipogenesis provides a mechanistic basis to understand roles of FGF2 in adipogenesis and development of fat tissues.
Collapse
Affiliation(s)
- Sooho Kim
- Laboratory of Genome to Drug Medicine, joint Center for Biosciences, Incheon, Korea
| | - Chihoon Ahn
- Laboratory of Synthetic Biology, joint Center for Biosciences, Incheon, Korea
| | - Naeun Bong
- Laboratory of Genome to Drug Medicine, joint Center for Biosciences, Incheon, Korea
| | - Senyon Choe
- Laboratory of Synthetic Biology, joint Center for Biosciences, Incheon, Korea
| | - Dong Kun Lee
- Laboratory of Genome to Drug Medicine, joint Center for Biosciences, Incheon, Korea
- * E-mail:
| |
Collapse
|
50
|
Regassa A, Kim WK. Transcriptome analysis of hen preadipocytes treated with an adipogenic cocktail (DMIOA) with or without 20(S)-hydroxylcholesterol. BMC Genomics 2015; 16:91. [PMID: 25765115 PMCID: PMC4347561 DOI: 10.1186/s12864-015-1231-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/12/2015] [Indexed: 11/17/2022] Open
Abstract
Background 20(S)-hydroxycholesterol (20(S)) potentially reduces adipogenesis in mammalian cells. The role of this oxysterol and molecular mechanisms underlying the adipogenesis of preadipocytes from laying hens have not been investigated. This study was conducted to 1. Analyze genes differentially expressed between preadipocytes treated with an adipogenic cocktail (DMIOA) containing 500 nM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine, 20 μg/mL insulin and 300 μM oleic acid (OA) and control cells and 2. Analyze genes differentially expressed between preadipocytes treated with DMIOA and those treated with DMIOA + 20(S) using Affymetrix GeneChip® Chicken Genome Arrays. Results In experiment one, where we compared the gene expression profile of non-treated (control) cells with those treated with DMIOA, out of 1,221 differentially expressed genes, 755 were over-expressed in control cells, and 466 were over-expressed in cells treated with DMIOA. In experiment two, where we compared the gene expression profile of DMIOA treated cells with those treated with DMIOA+20(S), out of 212 differentially expressed genes, 90 were over-expressed in cells treated with DMIOA, and 122 were over-expressed in those treated with DMIOA+20(S). Genes over-expressed in control cells compared to those treated with DMIOA include those involved in cell-to-cell signaling and interaction (IL6, CNN2, ITGB3), cellular assembly and organization (BMP6, IGF1, ACTB), and cell cycle (CD4, 9, 38). Genes over-expressed in DMIOA compared to control cells include those involved in cellular development (ADAM22, ADAMTS9, FIGF), lipid metabolism (FABP3, 4 and 5), and molecular transport (MAP3K8, PDK4, AGTR1). Genes over-expressed in cells treated with DMIOA compared with those treated with DMIOA+20(S) include those involved in lipid metabolism (ENPP2, DHCR7, DHCR24), molecular transport (FADS2, SLC6A2, CD36), and vitamin and mineral metabolism (BCMO1, AACS, AR). Genes over-expressed in cells treated with DMIOA+20(S) compared with those treated with DMIOA include those involved in cellular growth and proliferation (CD44, CDK6, IL1B), cellular development (ADORA2B, ATP6VOD2, TNFAIP3), and cell-to-cell signaling and interaction (VCAM1, SPON2, VLDLR). Conclusion We identified important adipogenic regulators and key pathways that would help to understand the molecular mechanism of the in vitro adipogenesis in laying hens and demonstrated that 20(S) is capable of suppressing DMIOA-induced adipogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1231-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alemu Regassa
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Woo Kyun Kim
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada. .,Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA, 30602, U.S.A.
| |
Collapse
|