1
|
Mills RD, Mita M, Walsh MP. A role for the Ca2+-dependent tyrosine kinase Pyk2 in tonic depolarization-induced vascular smooth muscle contraction. J Muscle Res Cell Motil 2015; 36:479-89. [DOI: 10.1007/s10974-015-9416-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2015] [Accepted: 06/27/2015] [Indexed: 10/24/2022]
|
2
|
Hutcheson R, Terry R, Hutcheson B, Jadhav R, Chaplin J, Smith E, Barrington R, Proctor SD, Rocic P. miR-21-mediated decreased neutrophil apoptosis is a determinant of impaired coronary collateral growth in metabolic syndrome. Am J Physiol Heart Circ Physiol 2015; 308:H1323-35. [PMID: 25840830 DOI: 10.1152/ajpheart.00654.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/10/2014] [Accepted: 03/21/2015] [Indexed: 11/22/2022]
Abstract
Coronary collateral growth (CCG) is impaired in metabolic syndrome. microRNA-21 (miR-21) is a proproliferative and antiapoptotic miR, which we showed to be elevated in metabolic syndrome. Here we investigate whether impaired CCG in metabolic syndrome involved miR-21-mediated aberrant apoptosis. Normal Sprague-Dawley (SD) and metabolic syndrome [J. C. Russel (JCR)] rats underwent transient, repetitive coronary artery occlusion [repetitive ischemia (RI)]. Antiapoptotic Bcl-2, phospho-Bad, and Bcl-2/Bax dimers were increased on days 6 and 9 RI, and proapoptotic Bax and Bax/Bax dimers and cytochrome-c release concurrently decreased in JCR versus SD rats. Active caspases were decreased in JCR versus SD rats (~50%). Neutrophils increased transiently on day 3 RI in the collateral-dependent zone of SD rats but remained elevated in JCR rats, paralleling miR-21 expression. miR-21 downregulation by anti-miR-21 induced neutrophil apoptosis and decreased Bcl-2 and Bcl-2/Bax dimers (~75%) while increasing Bax/Bax dimers, cytochrome-c release, and caspase activation (~70, 400, and 400%). Anti-miR-21 also improved CCG in JCR rats (~60%). Preventing neutrophil infiltration with blocking antibodies resulted in equivalent CCG recovery, confirming a major role for deregulated neutrophil apoptosis in CCG impairment. Neutrophil and miR-21-dependent CCG inhibition was in significant part mediated by increased oxidative stress. We conclude that neutrophil apoptosis is integral to normal CCG and that inappropriate prolonged miR-21-mediated survival of neutrophils plays a major role in impaired CCG, in part via oxidative stress generation.
Collapse
Affiliation(s)
- Rebecca Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Russell Terry
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, Alabama
| | - Brenda Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Rashmi Jadhav
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, Alabama
| | - Jennifer Chaplin
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, Alabama
| | - Erika Smith
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, Alabama
| | - Robert Barrington
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama; and
| | - Spencer D Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, New York;
| |
Collapse
|
3
|
Adaptors for disorders of the brain? The cancer signaling proteins NEDD9, CASS4, and PTK2B in Alzheimer's disease. Oncoscience 2014; 1:486-503. [PMID: 25594051 PMCID: PMC4278314 DOI: 10.18632/oncoscience.64] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2014] [Accepted: 07/23/2014] [Indexed: 12/19/2022] Open
Abstract
No treatment strategies effectively limit the progression of Alzheimer's disease (AD), a common and debilitating neurodegenerative disorder. The absence of viable treatment options reflects the fact that the pathophysiology and genotypic causes of the disease are not well understood. The advent of genome-wide association studies (GWAS) has made it possible to broadly investigate genotypic alterations driving phenotypic occurrences. Recent studies have associated single nucleotide polymorphisms (SNPs) in two paralogous scaffolding proteins, NEDD9 and CASS4, and the kinase PTK2B, with susceptibility to late-onset AD (LOAD). Intriguingly, NEDD9, CASS4, and PTK2B have been much studied as interacting partners regulating oncogenesis and metastasis, and all three are known to be active in the brain during development and in cancer. However, to date, the majority of studies of these proteins have emphasized their roles in the directly cancer relevant processes of migration and survival signaling. We here discuss evidence for roles of NEDD9, CASS4 and PTK2B in additional processes, including hypoxia, vascular changes, inflammation, microtubule stabilization and calcium signaling, as potentially relevant to the pathogenesis of LOAD. Reciprocally, these functions can better inform our understanding of the action of NEDD9, CASS4 and PTK2B in cancer.
Collapse
|
4
|
Giachini FRC, Carneiro FS, Lima VV, Carneiro ZN, Carvalho MHC, Fortes ZB, Webb RC, Tostes RC. Pyk2 mediates increased adrenergic contractile responses in arteries from DOCA-salt mice - VASOACTIVE PEPTIDE SYMPOSIUM. ACTA ACUST UNITED AC 2012; 2:431-8. [PMID: 19884968 DOI: 10.1016/j.jash.2008.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The calcium-dependent proline-rich tyrosine kinase (Pyk2), a nonreceptor protein activated by tyrosine phosphorylation, links G protein-coupled receptors to vascular responses. We tested the hypothesis that enhanced vascular reactivity in DOCA-salt hypertensive mice are due to increased activation of Pyk2. METHODS AND RESULTS Aorta and small mesenteric arteries from DOCA-salt and uninephrectomized (UNI) male C57Bl/6 mice were used. Systolic blood pressure (mmHg) was higher in DOCA (126+/-3) vs. UNI (100+/-4) mice. Vascular responses to phenylephrine (1nM to 100muM) were greater both in aorta and small mesenteric arteries from DOCA-salt than UNI, but treatment with Tyrphostin A-9 (0.1muM, Pyk2 inhibitor) abolished the difference among the groups. Pyk2 levels, as well as phospho-Pyk2(Tyr402), paxillin and phospho-paxillin(Tyr118) were increased in DOCA-salt aorta. Incubation of vessels with Tyrphostin A-9 restored phosphorylation of Pyk2 and paxillin. CONCLUSION Increased activation of Pyk2 contributes to increased vascular contractile-responses in DOCA-salt mice.
Collapse
|
5
|
Perez J, Torres RA, Rocic P, Cismowski MJ, Weber DS, Darley-Usmar VM, Lucchesi PA. PYK2 signaling is required for PDGF-dependent vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol 2011; 301:C242-51. [PMID: 21451101 DOI: 10.1152/ajpcell.00315.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023]
Abstract
Aberrant vascular smooth muscle cell (VSMC) growth is associated with many vascular diseases including atherosclerosis, hypertension, and restenosis. Platelet-derived growth factor-BB (PDGF) induces VSMC proliferation through control of cell cycle progression and protein and DNA synthesis. Multiple signaling cascades control VSMC growth, including members of the mitogen-activated protein kinase (MAPK) family as well as phosphatidylinositol 3-kinase (PI3K) and its downstream effector AKT/protein kinase B (PKB). Little is known about how these signals are integrated by mitogens and whether there are common receptor-proximal signaling control points that synchronize the execution of physiological growth functions. The nonreceptor proline-rich tyrosine kinase 2 (PYK2) is activated by a variety of growth factors and G protein receptor agonists in VSMC and lies upstream of both PI3K and MAPK cascades. The present study investigated the role of PYK2 in PDGF signaling in cultured rat aortic VSMC. PYK2 downregulation attenuated PDGF-dependent protein and DNA synthesis, which correlated with inhibition of AKT and extracellular signal-regulated kinases 1 and 2 (ERK1/2) but not p38 MAPK activation. Inhibition of PDGF-dependent protein kinase B (AKT) and ERK1/2 signaling by inhibitors of upstream kinases PI3K and MEK, respectively, as well as downregulation of PYK2 resulted in modulation of the G(1)/S phase of the cell cycle through inhibition of retinoblastoma protein (Rb) phosphorylation and cyclin D(1) expression, as well as p27(Kip) upregulation. Cell division kinase 2 (cdc2) phosphorylation at G(2)/M was also contingent on PDGF-dependent PI3K-AKT and ERK1/2 signaling. These data suggest that PYK2 is an important upstream mediator in PDGF-dependent signaling cascades that regulate VSMC proliferation.
Collapse
Affiliation(s)
- Jessica Perez
- Department of Cell Biology, University of Alabama at Birmingham, Alabama, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Sugimura K, Fukumoto Y, Nawata J, Wang H, Onoue N, Tada T, Shirato K, Shimokawa H. Hypertension promotes phosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 in rats: implication for the pathogenesis of hypertensive vascular disease. TOHOKU J EXP MED 2011; 222:201-10. [PMID: 21068519 DOI: 10.1620/tjem.222.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
Abstract
Atherosclerosis is initiated by adhesion and infiltration of inflammatory leukocytes into the intima, where non-receptor protein tyrosine kinases, such as focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2), play important roles as intracellular messengers of mechanical and biochemical signals. In the present study, we examined whether FAK and PYK2 are up-regulated by elevated blood pressure or circulating humoral factors in hypertension. We used a rat model of abdominal aortic banding that allows separate evaluation of elevated blood pressure (upper body) and circulating humoral factors (lower body). We obtained the proximal and distal aortas of the banding site, 6 hours, 3 days, and 1 and 4 weeks after the banding procedure, for evaluation of phosphorylation of FAK and PYK2 by Western blotting. Arterial pressure was significantly elevated only in the upper body throughout the experimental period. The expression of FAK and the FAK phosphorylation were significantly increased at 1 and 4 weeks only in the proximal aorta. This was also the case for the expression of total PYK2 and the PYK2 phosphorylation. In contrast, there was no significant change in FAK or PYK2 phosphorylation in the distal aorta, whereas plasma levels of angiotensin II were systemically elevated. In sham-operated rats, no change in FAK or PYK2 phoshorylation was noted in the proximal and distal aortas. These results indicate that phosphorylation of FAK and PYK2 is upregulated by elevated blood pressure but not by humoral factors in the rat aorta, demonstrating novel aspects of atherogenesis in hypertension.
Collapse
Affiliation(s)
- Koichiro Sugimura
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ying Z, Giachini FRC, Tostes RC, Webb RC. PYK2/PDZ-RhoGEF links Ca2+ signaling to RhoA. Arterioscler Thromb Vasc Biol 2009; 29:1657-63. [PMID: 19759375 DOI: 10.1161/atvbaha.109.190892] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Ras homolog gene family member A (RhoA)/Rho-kinase-mediated Ca(2+) sensitization is a critical component of constrictor responses. The present study investigates how angiotensin II activates RhoA. METHODS AND RESULTS Adenoviral vectors were used to manipulate the expression of regulator of G protein signaling (RGS) domain containing Rho-specific guanine exchange factors (RhoGEFs) and proline-rich tyrosine kinase 2 (PYK2), a nonreceptor tyrosine kinase, in primary rat vascular smooth muscle cells. As an evidence of RhoA activation, RhoA translocation and MYPT1 (the regulatory subunit of myosin light chain phosphatase) phosphorylation were analyzed by Western blot. Results showed that overexpression of PDZ-RhoGEF, but not p115-RhoGEF or leukemia-associated RhoGEF (LARG), enhanced RhoA activation by angiotensin II. Knockdown of PDZ-RhoGEF decreased RhoA activation by angiotensin II. PDZ-RhoGEF was phosphorylated and activated by PYK2 in vitro, and knockdown of PDZ-RhoGEF reduced RhoA activation by constitutively active PYK2, indicating that PDZ-RhoGEF links PYK2 to RhoA. Knockdown of PYK2 or PDZ-RhoGEF markedly decreased RhoA activation by A23187, a Ca(2+) ionophore, demonstrating that PYK2/PDZ-RhoGEF couples RhoA activation to Ca(2+). CONCLUSIONS PYK2 and PDZ-RhoGEF are necessary for angiotensin II-induced RhoA activation and for Ca(2+) signaling to RhoA.
Collapse
Affiliation(s)
- Zhekang Ying
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA.
| | | | | | | |
Collapse
|
8
|
Ying Z, Giachini FRC, Tostes RC, Webb RC. Salicylates dilate blood vessels through inhibiting PYK2-mediated RhoA/Rho-kinase activation. Cardiovasc Res 2009; 83:155-62. [PMID: 19276129 DOI: 10.1093/cvr/cvp084] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Compared with other non-steroid anti-inflammatory drugs (NSAIDs), aspirin is not correlated to hypertension. It has been shown that aspirin has unique vasodilator action in vivo, offering an explanation for the unique blood pressure effect of aspirin. In the present study, we investigate the mechanism whereby salicylates (aspirin and sodium salicylate) dilate blood vessels. METHODS AND RESULTS Rat aortic or mesenteric arterial rings were used to test the vascular effect of salicylates and other NSAIDs. RhoA translocation and the phosphorylation of MYPT1, the regulatory subunit of myosin light chain phosphatase, were measured by western blot, as evidenced for RhoA/Rho-kinase activation. Salicylates, but not other NSAIDs, relaxed contraction induced by most tested constrictors except for calyculin A, indicating that RhoA/Rho-kinase-mediated calcium sensitization is involved. The involvement of RhoA/Rho kinase in vasodilation by salicylates was confirmed by measurements of RhoA translocation and MYPT1 phosphorylation. The calculated half maximal inhibitory concentration (IC(50)) of vasodilation was apparently higher than that of cyclooxygenase inhibition, but comparable to that of proline-rich tyrosine kinase 2 (PYK2) inhibition. Over-expression of PYK2 induced RhoA translocation and MYPT1 phosphorylation, and these effects were markedly inhibited by sodium salicylate treatment. Consistent with the ex vitro vascular effects, sodium salicylate acutely decreased blood pressure in spontaneous hypertensive rats but not in Wistar Kyoto rats. CONCLUSION Salicylates dilate blood vessels through inhibiting PYK2-mediated RhoA/Rho-kinase activation and thus lower blood pressure.
Collapse
Affiliation(s)
- Zhekang Ying
- Department of Physiology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
Protein tyrosine kinase 2beta (PTK2B) is a member of the focal adhesion kinase family and is activated by angiotensin II through Ca2+-dependent pathways. An evidence exists that PTK2B is involved in cell growth, vascular contraction, inflammatory responses, and salt and water retention through activation of the angiotensin II type 1 receptor. To examine the contribution of PTK2B, we sequenced the PTK2B gene using 48 patients with hypertension, identified 62 genetic polymorphisms, and genotyped six representative single nucleotide polymorphisms in population-based case-control samples from 3655 Japanese individuals (1520 patients with hypertension and 2135 controls). Multivariate logistic regression analysis after adjustments for age, body mass index, present illness (hyperlipidemia and diabetes mellitus), and lifestyle (smoking and drinking) showed -22A>G to have an association with hypertension in men (AA vs. AG+GG: odds ratio=1.27; 95% confidence interval: 1.02-1.57; P=0.030). Another polymorphism, 53484A>C (K838T), in linkage disequilibrium with -22A>G showed a marginal association with hypertension in men (AA vs. AC+CC: odds ratio=1.25; 95% confidence interval: 0.99-1.57; P=0.059). Diastolic blood pressure was 1.6 mmHg higher in men with the AC+CC genotype of 53484A>C than those with the AA genotype (P=0.003), after adjustments for the same factors. These polymorphisms are in linkage disequilibrium with others in a range of 113 kb in PTK2B. The intracellular distribution of the recombinant PTK2B protein and that of the mutant protein with T838 were indistinguishable even after angiotensin II stimulation, both proteins localizing at a focal point in the peripheral area in the cells. Thus, a haplotype in PTK2B may play a role in essential hypertension in Japanese.
Collapse
|
10
|
Clark MA, Gonzalez N. Src and Pyk2 mediate angiotensin II effects in cultured rat astrocytes. ACTA ACUST UNITED AC 2007; 143:47-55. [PMID: 17391778 DOI: 10.1016/j.regpep.2007.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2006] [Revised: 02/15/2007] [Accepted: 02/18/2007] [Indexed: 12/01/2022]
Abstract
Angiotensin II (Ang II)-induced proliferation of rat astrocytes is mediated by multiple signaling pathways. In the present study, we investigated the role of non-receptor tyrosine kinases on Ang II-signaling and proliferation of astrocytes cultured from neonatal rat pups. Ang II stimulated astrocyte growth, ERK1/2 phosphorylation and the phosphorylation of Src and proline-rich tyrosine kinase-2 (Pyk2), in astrocytes obtained from brainstem and cerebellum. Pretreatment with 10 microM PP2, a selective Src inhibitor, inhibited Ang II stimulated ERK1/2 phosphorylation by 59% to 91% both in brainstem and cerebellum astrocytes. PP2 also inhibited Ang II induction of brainstem (76% inhibition) and cerebellar (64% inhibition) astrocyte growth. Similarly, pretreatment with 25 microM dantrolene, the Pyk2 inhibitor, attenuated ERK1/2 activity in brainstem (62% inhibition) and in cerebellum astrocytes (44% inhibition). Interestingly, inhibition of Pyk2 inhibited Ang II-induced Src activation suggesting that these two non-receptor tyrosine kinases may be acting in concert to mediate Ang II effects in astrocytes. In summary, we found that Ang II stimulates the non-receptor tyrosine kinases Src and Pyk2 which mediate Ang II-induced ERK1/2 activation leading to stimulation of astrocyte growth. In addition, these two tyrosine kinases may be interacting to regulate effects of the peptide in these cells.
Collapse
Affiliation(s)
- Michelle A Clark
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, USA.
| | | |
Collapse
|
11
|
Syrbe U, Moebes A, Scholze J, Swidsinski A, Dörffel Y. Effects of the Angiotensin II Type 1 Receptor Antagonist Telmisartan on Monocyte Adhesion and Activation in Patients with Essential Hypertension. Hypertens Res 2007; 30:521-8. [PMID: 17664855 DOI: 10.1291/hypres.30.521] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Circulating monocytes from hypertensive patients show elevated secretion patterns of pro-inflammatory cytokines, an increased expression of adhesion molecules, and an increased adhesion to vascular endothelial cells. We tested the hypothesis that telmisartan, an angiotensin II type 1 (AT(1)) receptor antagonist, reduces the activation of circulating monocytes from hypertensive patients and diminishes the monocyte-endothelial cell adhesion. Monocytes of 20 hypertensive patients and 20 normotensive controls were isolated by density gradient centrifugation and Dynabeads, and the monocyte adhesion to human aortic endothelial cell monolayers was measured by adhesion assays. To characterize monocyte activation we assessed the expression of activity-related cell surface markers that are also involved in monocyte adhesion to endothelial cells, such as CD11a/b and CD54, as well as the chemokine receptors CCR1, CCR2 and CCR5 before and after telmisartan therapy using flow cytometry. Spontaneous adhesion of monocytes from hypertensive patients and the adhesion after stimulation with angiotensin II were significantly increased compared with those in normotensive controls (p<0.05). Treatment of hypertensive patients with the AT(1) receptor antagonist telmisartan significantly diminished the adhesion of circulating monocytes to human endothelial cells (p=0.02) despite the increase in the expressions of CD11b, CD54 and CCR5 after telmisartan therapy. Reducing monocyte adhesion may be a novel beneficial effect of the AT(1) receptor antagonist telmisartan helping to prevent vascular alterations in hypertension. The mechanism of action remains to be elucidated, since reduction in monocyte adhesion was not attributable to changes in adhesion molecule expression.
Collapse
Affiliation(s)
- Uta Syrbe
- Medical Clinic for Gastroenterology, Infectious Disease and Rheumatology, Charité, Medical Faculty, Humboldt University, Berlin, Germany
| | | | | | | | | |
Collapse
|
12
|
Koshida R, Rocic P, Saito S, Kiyooka T, Zhang C, Chilian WM. Role of Focal Adhesion Kinase in Flow-Induced Dilation of Coronary Arterioles. Arterioscler Thromb Vasc Biol 2005; 25:2548-53. [PMID: 16195476 DOI: 10.1161/01.atv.0000188511.84138.9b] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
Backgound—
Flow-induced regulation of endothelial NO synthase (eNOS) depends on integrin signaling and tyrosine kinase activation. Integrins cluster in focal adhesion complexes, where the extracellular matrix is connected to the cytoskeleton and where focal adhesion kinase (FAK) is located. FAK plays a central role in integrin signaling and Src activation. Accordingly, we hypothesized that FAK plays an important role in flow-induced dilation (FID).
Methods and Results—
To inactivate FAK-dependent signaling, anti-FAK, phosphospecific (Tyr
397
) antibody (FAKab), which binds against the FAK autophosphorylation site, was incorporated into endothelium of rat coronary arterioles using liposomal transfection. The responses to flow, acetylcholine (Ach), or the NO donor MAHAMANONOate (NOC-9) were observed before and after FAKab. In control and vehicles (denatured antibody or transfecting reagent alone), flow produced progressive dilation to a maximal value of 35% increase in diameter, which was inhibited by
N
ω
-nitro-
l
-arginine methyl ester (
l
-NAME). However, FAKab prevented FID (
P
<0.01 versus control). Combined treatment with FAKab and
l
-NAME did not produce inhibition greater than FAKab alone. FAKab did not blunt Ach- or NOC-9–induced dilation. Western analysis demonstrated that FAKab prevented flow-induced phosphorylation of FAK (pY397-FAK), Akt (pS473-Akt), and eNOS (pS1179-eNOS).
Conclusion—
Our study demonstrates the pivotal role of FAK in NO-mediated FID. Inhibition of FAK signaling with FAKab impaired FID and phosphorylation of Akt and eNOS. Our data suggest that the activation of FAK is central to the mechanotransduction of FID via regulation of activation of Akt and eNOS.
Collapse
Affiliation(s)
- Ryoji Koshida
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Sekimoto H, Eipper-Mains J, Pond-Tor S, Boney CM. (alpha)v(beta)3 integrins and Pyk2 mediate insulin-like growth factor I activation of Src and mitogen-activated protein kinase in 3T3-L1 cells. Mol Endocrinol 2005; 19:1859-67. [PMID: 15761030 DOI: 10.1210/me.2004-0481] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022] Open
Abstract
IGF-I stimulates cell growth through interaction of the IGF receptor with multiprotein signaling complexes. However, the mechanisms of IGF-I receptor-mediated signaling are not completely understood. We have previously shown that IGF-I-stimulated 3T3-L1 cell proliferation is dependent on Src activation of the ERK-1/2 MAPK pathway. We hypothesized that IGF-I activation of the MAPK pathway is mediated through integrin activation of Src-containing signaling complexes. The disintegrin echistatin decreased IGF-I phosphorylation of Src and MAPK, and blocking antibodies to (alpha)v and beta3 integrin subunits inhibited IGF-I activation of MAPK, suggesting that (alpha)v(beta)3 integrins mediate IGF-I mitogenic signaling. IGF-I increased ligand binding to (alpha)v(beta)3 as detected by immunofluorescent staining of ligand-induced binding site antibody and stimulated phosphorylation of the beta3 subunit, consistent with inside-out activation of (alpha)v(beta)3 integrins. IGF-I increased tyrosine phosphorylation of the focal adhesion kinase (FAK) Pyk2 (calcium-dependent proline-rich tyrosine kinase-2) to a much greater extent than FAK, and increased association of Src with Pyk2 but not FAK. The intracellular calcium chelator BAPTA prevented IGF-I phosphorylation of Pyk2, Src, and MAPK, suggesting that IGF-I activation of Pyk2 is calcium dependent. Transient transfection with a dominant-negative Pyk2, which lacks the autophosphorylation and Src binding site, decreased IGF-I activation of MAPK, but no inhibition was seen with transfected wild-type Pyk2. These results indicate that IGF-I signaling to MAPK is dependent on inside-out activation of (alpha)v(beta)3 integrins and integrin-facilitated multiprotein complex formation involving Pyk2 activation and association with Src.
Collapse
Affiliation(s)
- Hiroko Sekimoto
- Rhode Island Hospital, Department of Pediatrics, 593 Eddy Street, MPS-2, Providence, RI 02903, USA
| | | | | | | |
Collapse
|
14
|
Lucchesi PA, Sabri A, Belmadani S, Matrougui K. Involvement of metalloproteinases 2/9 in epidermal growth factor receptor transactivation in pressure-induced myogenic tone in mouse mesenteric resistance arteries. Circulation 2004; 110:3587-93. [PMID: 15557365 DOI: 10.1161/01.cir.0000148780.36121.47] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) transactivation is a mediator of angiotensin II (Ang II) signaling in cultured vascular smooth muscle cells isolated from large arteries. The present study used mouse mesenteric resistance arteries (MRAs) to investigate the role of EGFR transactivation under pressure-induced myogenic tone (MT). METHODS AND RESULTS Isolated MRAs were mounted in an arteriograph and stimulated by 25 to 125 mm Hg or with Ang II and KCl. Stepwise increases in pressure resulted in MT development associated with increased EGFR phosphorylation and release of heparin-binding EGF (HB-EGF), a membrane-bound growth factor that is shed on cleavage by metalloproteinases. EGF (50 ng/mL) potentiated MT (59+/-1% to 51+/-0.6% of passive diameter at 75 mm Hg). Pretreatment with the EGFR inhibitors AG1478 (5 micromol/L) or PD153035 (1 micromol/L) significantly decreased MT. However, EGFR inhibitors had no effect on Ang II- and KCl-induced contraction. MT was potentiated by HB-EGF, 50 ng/mL, which is bound to the cell membrane and released on cleavage by metalloproteinases. Neutralizing HB-EGF antibodies or heparin treatment to sequester HB-EGF resulted in significant inhibition of pressure-induced MT. MT increased matrix metalloproteinase (MMP) 2 and MMP-9 gelatinase activity assessed by zymography, and specific MMP 2/9 inhibitors significantly decreased MT. CONCLUSIONS These novel findings suggest that the mechanism of pressure-induced MT involves metalloproteinases 2/9 activation with subsequent HB-EGF release and EGFR transactivation.
Collapse
Affiliation(s)
- Pamela A Lucchesi
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, USA
| | | | | | | |
Collapse
|
15
|
Nilssen LS, Odegård J, Thoresen GH, Molven A, Sandnes D, Christoffersen T. G protein-coupled receptor agonist-stimulated expression of ATF3/LRF-1 and c-myc and comitogenic effects in hepatocytes do not require EGF receptor transactivation. J Cell Physiol 2004; 201:349-58. [PMID: 15389557 DOI: 10.1002/jcp.20075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Abstract
Several agonists acting on G protein-coupled receptors (GPCR) enhance the mitogenic effect of epidermal growth factor (EGF) in rat hepatocytes, through mechanisms that have only partially been clarified. Results in various cells have led to the idea that a major mechanism for GPCR-mediated stimulation of cell growth is transactivation of receptor tyrosine kinases, particularly the EGF receptor (EGFR), leading to rapid phosphorylation of the EGFR and activation of downstream signaling pathways. In the present study cultured rat hepatocytes were exposed to various GPCR agonists, including vasopressin, angiotensin II (Ang.II), norepinephrine, or prostaglandin F(2 alpha) (PGF(2 alpha)). None of these agents increased the phosphorylation of the EGFR or the docking protein Shc. Furthermore, we examined the effect of the GPCR agonists on the expression of two early response genes believed to be involved in growth activation. The GPCR agonists increased the mRNA expression of c-myc, and also of activating transcription factor 3 (ATF3)/liver regeneration factor-1 (LRF-1), which is a novel finding. Finally, the selective EGFR inhibitor AG1478 did not suppress the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) or the induction of c-myc or ATF3/LRF-1 by the GPCR agonists, and did not prevent the comitogenic effects induced by these agents, while it blocked the effect of EGF on these responses. The results suggest that GPCR agonists induce expression of ATF3/LRF-1 and c-myc and exert comitogenic effects through mechanisms that do not require EGFR transactivation.
Collapse
Affiliation(s)
- Laila S Nilssen
- Department of Pharmacology, Faculty of Medicine, University of Oslo, N-0316 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
16
|
Muscella A, Greco S, Elia MG, Storelli C, Marsigliante S. PKC-zeta is required for angiotensin II-induced activation of ERK and synthesis of C-FOS in MCF-7 cells. J Cell Physiol 2003; 197:61-8. [PMID: 12942541 DOI: 10.1002/jcp.10336] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023]
Abstract
We examined the signalling pathways responsible for the Ang II induction of growth in MCF-7 human breast cancer cells. Ang II in MCF-7 cells induced: (a) the translocation from the cytosol to membrane and nucleus of atypical protein kinase C-zeta (PKC-zeta) but not of PKC-alpha, -delta, - epsilon and -eta; (b) the expression of c-fos mRNA and protein; (c) the phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). All these effects were due to the activation of the Ang II type I receptor (AT1) since they were blocked by the AT1 antagonist losartan. The Ang II-stimulated ERK1/2 phosphorylation was blocked by (a) high doses of staurosporine, inhibitor of PKC-zeta, and by a synthetic myristoylated peptide with sequences based on the endogenous PKC-zeta pseudosubstrate region (zeta-PS); (b) PD098059, a mitogen-activated protein kinase kinase inhibitor (MAPKK/MEK); and, moreover, (c) the inhibitors of phosphoinositide 3-kinases (PI3K), LY294002 and wortmannin, thus indicating that PI3K may act upstream of ERK1/2. The Ang II-evoked c-fos induction was blocked only by high doses of staurosporine and by zeta-PS whilst PD098059, LY294002 and wortmannin were ineffective, thus indicating that c-fos induction is not due to ERK1/2 activity. When the epidermal growth factor-receptor (EGFR) tyrosine kinase activity was inhibited by the use of its inhibitor AG1478, Ang II was still able to induce ERK1/2 phosphorylation and c-fos expression, therefore proving that the transactivation of EGFR was not required for these Ang II effects in MCF-7 cells. The previously reported proliferation of MCF-7 cells induced by Ang II was blocked by PD098059 and by wortmannin in a dose-dependent manner, thereby indicating that in MCF-7 cells the PI3K and ERK pathways mediate the mitogenic signalling of AT1. Our results suggest that in MCF-7 cells Ang II activates multiple signalling pathways involving PKC-zeta, PI3K and MAPK; of these pathways only PKC-zeta appears responsible for the induction of c-fos.
Collapse
Affiliation(s)
- Antonella Muscella
- Laboratory of Cell Physiology, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, University of Lecce, Ecotekne, Lecce, Italy
| | | | | | | | | |
Collapse
|