1
|
Li Y, Prakash YS, Tan Q, Tschumperlin D. Defining signals that promote human alveolar type I differentiation. Am J Physiol Lung Cell Mol Physiol 2024; 326:L409-L418. [PMID: 38349124 PMCID: PMC11281788 DOI: 10.1152/ajplung.00191.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2023] [Revised: 10/23/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
Alveolar type I (ATI) cells cover >95% of the lung's distal surface and facilitate gas exchange through their exceptionally thin shape. ATI cells in vivo are replenished by alveolar type II cell division and differentiation, but a detailed understanding of ATI biology has been hampered by the challenges in direct isolation of these cells due to their fragility and incomplete understanding of the signaling interactions that promote differentiation of ATII to ATI cells. Here, we explored the signals that maintain ATII versus promote ATI fates in three-dimensional (3-D) organoid cultures and developed a human alveolar type I differentiation medium (hATIDM) suitable for generating ATI cells from either mixed distal human lung cells or purified ATII cells. This media adds bone morphogenetic protein 4 (BMP4) and removes epidermal growth factor (EGF), Wnt agonist CHIR99021, and transforming growth factor-beta (TGF-β) inhibitor SB431542 from previously developed alveolar organoid culture media. We demonstrate that BMP4 promotes expression of the ATI marker gene AGER and HOPX, whereas CHIR99021 and SB431542 maintain expression of the ATII marker gene SFTPC. The human ATI spheroids generated with hATIDM express multiple molecular and morphological features reminiscent of human ATI cells. Our results demonstrate that signaling interactions among BMP, TGF-β, and Wnt signaling pathways in alveolar spheroids and distal lung organoids including IPF-organoids coordinate human ATII to ATI differentiation.NEW & NOTEWORTHY Alveolar type I (ATI) epithelial cells perform essential roles in maintaining lung function but have been challenging to study. We explored the signals that promote ATI fate in 3-D organoid cultures generated from either mixed distal human lung cells or purified alveolar type II (ATII) cells. This work fills an important void in our experimental repertoire for studying alveolar epithelial cells and identifies signals that promote human ATII to ATI cell differentiation.
Collapse
Affiliation(s)
- Yong Li
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Qi Tan
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States
| | - Daniel Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
2
|
Jung JH, Yang SR, Kim WJ, Rhee CK, Hong SH. Human Pluripotent Stem Cell-Derived Alveolar Organoids: Cellular Heterogeneity and Maturity. Tuberc Respir Dis (Seoul) 2024; 87:52-64. [PMID: 37993994 PMCID: PMC10758311 DOI: 10.4046/trd.2023.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023] Open
Abstract
Chronic respiratory diseases such as idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and respiratory infections injure the alveoli; the damage evoked is mostly irreversible and occasionally leads to death. Achieving a detailed understanding of the pathogenesis of these fatal respiratory diseases has been hampered by limited access to human alveolar tissue and the differences between mice and humans. Thus, the development of human alveolar organoid (AO) models that mimic in vivo physiology and pathophysiology has gained tremendous attention over the last decade. In recent years, human pluripotent stem cells (hPSCs) have been successfully employed to generate several types of organoids representing different respiratory compartments, including alveolar regions. However, despite continued advances in three-dimensional culture techniques and single-cell genomics, there is still a profound need to improve the cellular heterogeneity and maturity of AOs to recapitulate the key histological and functional features of in vivo alveolar tissue. In particular, the incorporation of immune cells such as macrophages into hPSC-AO systems is crucial for disease modeling and subsequent drug screening. In this review, we summarize current methods for differentiating alveolar epithelial cells from hPSCs followed by AO generation and their applications in disease modeling, drug testing, and toxicity evaluation. In addition, we review how current hPSC-AOs closely resemble in vivo alveoli in terms of phenotype, cellular heterogeneity, and maturity.
Collapse
Affiliation(s)
- Ji-hye Jung
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
- KW-Bio Co., Ltd., Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Jain KG, Xi NM, Zhao R, Ahmad W, Ali G, Ji HL. Alveolar Type 2 Epithelial Cell Organoids: Focus on Culture Methods. Biomedicines 2023; 11:3034. [PMID: 38002035 PMCID: PMC10669847 DOI: 10.3390/biomedicines11113034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lung diseases rank third in terms of mortality and represent a significant economic burden globally. Scientists have been conducting research to better understand respiratory diseases and find treatments for them. An ideal in vitro model must mimic the in vivo organ structure, physiology, and pathology. Organoids are self-organizing, three-dimensional (3D) structures originating from adult stem cells, embryonic lung bud progenitors, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). These 3D organoid cultures may provide a platform for exploring tissue development, the regulatory mechanisms related to the repair of lung epithelia, pathophysiological and immunomodulatory responses to different respiratory conditions, and screening compounds for new drugs. To create 3D lung organoids in vitro, both co-culture and feeder-free methods have been used. However, there exists substantial heterogeneity in the organoid culture methods, including the sources of AT2 cells, media composition, and feeder cell origins. This article highlights the currently available methods for growing AT2 organoids and prospective improvements to improve the available culture techniques/conditions. Further, we discuss various applications, particularly those aimed at modeling human distal lung diseases and cell therapy.
Collapse
Affiliation(s)
- Krishan Gopal Jain
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Nan Miles Xi
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Runzhen Zhao
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Waqas Ahmad
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Gibran Ali
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Hong-Long Ji
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
4
|
Shen H, Chen W, Liu Y, Castaldi A, Castillo J, Horie M, Flodby P, Sundar S, Li C, Ji Y, Minoo P, Marconett CN, Zhou B, Borok Z. GRAMD2 + alveolar type I cell plasticity facilitates cell state transitions in organoid culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.560801. [PMID: 37905051 PMCID: PMC10614891 DOI: 10.1101/2023.10.17.560801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/02/2023]
Abstract
Alveolar epithelial regeneration is critical for normal lung function and becomes dysregulated in disease. While alveolar type 2 (AT2) and club cells are known distal lung epithelial progenitors, determining if alveolar epithelial type 1 (AT1) cells also contribute to alveolar regeneration has been hampered by lack of highly specific mouse models labeling AT1 cells. To address this, the Gramd2 CreERT2 transgenic strain was generated and crossed to Rosa mTmG mice. Extensive cellular characterization, including distal lung immunofluorescence and cytospin staining, confirmed that GRAMD2 + AT1 cells are highly enriched for green fluorescent protein (GFP). Interestingly, Gramd2 CreERT2 GFP + cells were able to form organoids in organoid co-culture with Mlg fibroblasts. Temporal scRNAseq revealed that Gramd2 + AT1 cells transition through numerous intermediate lung epithelial cell states including basal, secretory and AT2 cell in organoids while acquiring proliferative capacity. Our results indicate that Gramd2 + AT1 cells are highly plastic suggesting they may contribute to alveolar regeneration.
Collapse
|
5
|
Galenza A, Moreno-Roman P, Su YH, Acosta-Alvarez L, Debec A, Guichet A, Knapp JM, Kizilyaprak C, Humbel BM, Kolotuev I, O'Brien LE. Basal stem cell progeny establish their apical surface in a junctional niche during turnover of an adult barrier epithelium. Nat Cell Biol 2023; 25:658-671. [PMID: 36997641 PMCID: PMC10317055 DOI: 10.1038/s41556-023-01116-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2021] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
Barrier epithelial organs face the constant challenge of sealing the interior body from the external environment while simultaneously replacing the cells that contact this environment. New replacement cells-the progeny of basal stem cells-are born without barrier-forming structures such as a specialized apical membrane and occluding junctions. Here, we investigate how new progeny acquire barrier structures as they integrate into the intestinal epithelium of adult Drosophila. We find they gestate their future apical membrane in a sublumenal niche created by a transitional occluding junction that envelops the differentiating cell and enables it to form a deep, microvilli-lined apical pit. The transitional junction seals the pit from the intestinal lumen until differentiation-driven, basal-to-apical remodelling of the niche opens the pit and integrates the now-mature cell into the barrier. By coordinating junctional remodelling with terminal differentiation, stem cell progeny integrate into a functional, adult epithelium without jeopardizing barrier integrity.
Collapse
Affiliation(s)
- Anthony Galenza
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paola Moreno-Roman
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Foldscope Instruments, Inc., Palo Alto, CA, USA
| | - Yu-Han Su
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lehi Acosta-Alvarez
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alain Debec
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institute of Ecology and Environmental Sciences, iEES, Sorbonne University, UPEC, CNRS, IRD, INRA, Paris, France
| | - Antoine Guichet
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Caroline Kizilyaprak
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Bruno M Humbel
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Provost's Office, Okinawa Institute of Science and Technology, Tancha, Japan
| | - Irina Kolotuev
- Université de Lausanne, Bâtiment Biophore, Quartier Sorge, Lausanne, Switzerland
| | - Lucy Erin O'Brien
- Department of Molecular & Cellular Physiology and Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
6
|
Zyrianova T, Lopez B, Zou K, Gu C, Pham D, Talapaneni S, Waters CM, Olcese R, Schwingshackl A. Activation of TREK-1 ( K2P2.1) potassium channels protects against influenza A-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 324:L64-L75. [PMID: 36410022 PMCID: PMC9829483 DOI: 10.1152/ajplung.00116.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2022] [Revised: 10/05/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Influenza-A virus (IAV) infects yearly an estimated one billion people worldwide, resulting in 300,000-650,000 deaths. Preventive vaccination programs and antiviral medications represent the mainstay of therapy, but with unacceptably high morbidity and mortality rates, new targeted therapeutic approaches are urgently needed. Since inflammatory processes are commonly associated with measurable changes in the cell membrane potential (Em), we investigated whether Em hyperpolarization via TREK-1 (K2P2.1) K+ channel activation can protect against influenza-A virus (IAV)-induced pneumonia. We infected mice with IAV, which after 5 days caused 10-15% weight loss and a decrease in spontaneous activity, representing a clinically relevant infection. We then started a 3-day intratracheal treatment course with the novel TREK-1 activating compounds BL1249 or ML335. We confirmed TREK-1 activation with both compounds in untreated and IAV-infected primary human alveolar epithelial cells (HAECs) using high-throughput fluorescent imaging plate reader (FLIPR) assays. In mice, TREK-1 activation with BL1249 and ML335 counteracted IAV-induced histological lung injury and decrease in lung compliance and improved BAL fluid total protein levels, cell counts, and inflammatory IL-6, IP-10/CXCL-10, MIP-1α, and TNF-α levels. To determine whether these anti-inflammatory effects were mediated by activation of alveolar epithelial TREK-1 channels, we studied the effects of BL1249 and ML335 in IAV-infected HAEC, and found that TREK-1 activation decreased IAV-induced inflammatory IL-6, IP-10/CXCL10, and CCL-2 secretion. Dissection of TREK-1 downstream signaling pathways and construction of protein-protein interaction (PPI) networks revealed NF-κB1 and retinoic acid-inducible gene-1 (RIG-1) cascades as the most likely targets for TREK-1 protection. Therefore, TREK-1 activation may represent a novel therapeutic approach against IAV-induced lung injury.
Collapse
Affiliation(s)
- Tatiana Zyrianova
- Department of Pediatrics, University of California, Los Angeles, California
| | - Benjamin Lopez
- Department of Pediatrics, University of California, Los Angeles, California
| | - Kathlyn Zou
- Department of Pediatrics, University of California, Los Angeles, California
| | - Charles Gu
- Department of Pediatrics, University of California, Los Angeles, California
| | - Dayna Pham
- Department of Pediatrics, University of California, Los Angeles, California
| | | | | | - Riccardo Olcese
- Department of Anesthesiology & Perioperative Medicine, University of California, Los Angeles, California
- Department of Physiology, University of California, Los Angeles, California
| | | |
Collapse
|
7
|
Petrosyan A, Montali F, Peloso A, Citro A, Byers LN, La Pointe C, Suleiman M, Marchetti A, Mcneill EP, Speer AL, Ng WH, Ren X, Bussolati B, Perin L, Di Nardo P, Cardinale V, Duisit J, Monetti AR, Savino JR, Asthana A, Orlando G. Regenerative medicine technologies applied to transplant medicine. An update. Front Bioeng Biotechnol 2022; 10:1015628. [PMID: 36263358 PMCID: PMC9576214 DOI: 10.3389/fbioe.2022.1015628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Regenerative medicine (RM) is changing how we think and practice transplant medicine. In regenerative medicine, the aim is to develop and employ methods to regenerate, restore or replace damaged/diseased tissues or organs. Regenerative medicine investigates using tools such as novel technologies or techniques, extracellular vesicles, cell-based therapies, and tissue-engineered constructs to design effective patient-specific treatments. This review illustrates current advancements in regenerative medicine that may pertain to transplant medicine. We highlight progress made and various tools designed and employed specifically for each tissue or organ, such as the kidney, heart, liver, lung, vasculature, gastrointestinal tract, and pancreas. By combing both fields of transplant and regenerative medicine, we can harbor a successful collaboration that would be beneficial and efficacious for the repair and design of de novo engineered whole organs for transplantations.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Filippo Montali
- Department of General Surgery, di Vaio Hospital, Fidenza, Italy
| | - Andrea Peloso
- Visceral Surgery Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lori N. Byers
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | | | - Mara Suleiman
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alice Marchetti
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Eoin P. Mcneill
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Allison L Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Wai Hoe Ng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Paolo Di Nardo
- Centro Interdipartimentale per la Medicina Rigenerativa (CIMER), Università Degli Studi di Roma Tor Vergata, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Jerome Duisit
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
| | | | | | - Amish Asthana
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
8
|
Ali M, Zhang X, LaCanna R, Tomar D, Elrod JW, Tian Y. MICU1-dependent mitochondrial calcium uptake regulates lung alveolar type 2 cell plasticity and lung regeneration. JCI Insight 2022; 7:154447. [PMID: 35050901 PMCID: PMC8876408 DOI: 10.1172/jci.insight.154447] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
Lung alveolar type 2 (AT2) cells are progenitors for alveolar type 1 (AT1) cells. Although many factors regulate AT2 cell plasticity, the role of mitochondrial calcium (mCa2+) uptake in controlling AT2 cells remains unclear. We previously identified that the miR-302 family supports lung epithelial progenitor cell proliferation and less differentiated phenotypes during development. Here, we report that a sustained elevation of miR-302 in adult AT2 cells decreases AT2-to-AT1 cell differentiation during the Streptococcus pneumoniae–induced lung injury repair. We identified that miR-302 targets and represses the expression of mitochondrial Ca2+ uptake 1 (MICU1), which regulates mCa2+ uptake through the mCa2+ uniporter channel by acting as a gatekeeper at low cytosolic Ca2+ levels. Our results reveal a marked increase in MICU1 protein expression and decreased mCa2+ uptake during AT2-to-AT1 cell differentiation in the adult lung. Deletion of Micu1 in AT2 cells reduces AT2-to-AT1 cell differentiation during steady-state tissue maintenance and alveolar epithelial regeneration after bacterial pneumonia. These studies indicate that mCa2+ uptake is extensively modulated during AT2-to-AT1 cell differentiation and that MICU1-dependent mCa2+ uniporter channel gating is a prominent mechanism modulating AT2-to-AT1 cell differentiation.
Collapse
Affiliation(s)
- Mir Ali
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - Xiaoying Zhang
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - Ryan LaCanna
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - Dhanendra Tomar
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - John W Elrod
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| | - Ying Tian
- Department of Cardiovascular Sciences, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, United States of America
| |
Collapse
|
9
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
10
|
Yun JH, Lee C, Liu T, Liu S, Kim EY, Xu S, Curtis JL, Pinello L, Bowler RP, Silverman EK, Hersh CP, Zhou X. Hedgehog interacting protein-expressing lung fibroblasts suppress lymphocytic inflammation in mice. JCI Insight 2021; 6:e144575. [PMID: 34375314 PMCID: PMC8492352 DOI: 10.1172/jci.insight.144575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2020] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is mainly caused by cigarette smoking and characterized by chronic inflammation in vulnerable individuals. However, it is unknown how genetic factors may shape chronic inflammation in COPD. To understand how hedgehog interacting protein, encoded by HHIP gene identified in the genome-wide association study in COPD, plays a role in inflammation, we utilized Hhip+/– mice that present persistent inflammation and emphysema upon aging similar to that observed in human COPD. By performing single-cell RNA sequencing of the whole lung from mice at different ages, we found that Hhip+/– mice developed a cytotoxic immune response with a specific increase in killer cell lectin-like receptor G1–positive CD8+ T cells with upregulated Ifnγ expression recapitulating human COPD. Hhip expression was restricted to a lung fibroblast subpopulation that had increased interaction with CD8+ T lymphocytes in Hhip+/– compared with Hhip+/+ during aging. Hhip-expressing lung fibroblasts had upregulated IL-18 pathway genes in Hhip+/– lung fibroblasts, which was sufficient to drive increased levels of IFN-γ in CD8+ T cells ex vivo. Our finding provides insight into how a common genetic variation contributes to the amplified lymphocytic inflammation in COPD.
Collapse
Affiliation(s)
- Jeong H Yun
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - ChangHee Lee
- Department of Genetics, Harvard Medical School, Boston, United States of America
| | - Tao Liu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Siqi Liu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Edy Y Kim
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Shuang Xu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Jeffrey L Curtis
- VA Center, University of Michigan Medical School, Ann Arbor, United States of America
| | - Luca Pinello
- Department of Pathology, Massachusetts General Hospital, Boston, United States of America
| | - Russell P Bowler
- Department of Medicine, National Jewish Health, Denver, United States of America
| | - Edwin K Silverman
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Craig P Hersh
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Xiaobo Zhou
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| |
Collapse
|
11
|
Do DC, Zhang Y, Tu W, Hu X, Xiao X, Chen J, Hao H, Liu Z, Li J, Huang SK, Wan M, Gao P. Type II alveolar epithelial cell-specific loss of RhoA exacerbates allergic airway inflammation through SLC26A4. JCI Insight 2021; 6:e148147. [PMID: 34101619 PMCID: PMC8410088 DOI: 10.1172/jci.insight.148147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
The small GTPase RhoA and its downstream effectors are critical regulators in the pathophysiological processes of asthma. The underlying mechanism, however, remains undetermined. Here, we generated an asthma mouse model with RhoA–conditional KO mice (Sftpc-cre;RhoAfl/fl) in type II alveolar epithelial cells (AT2) and demonstrated that AT2 cell–specific deletion of RhoA leads to exacerbation of allergen-induced airway hyperresponsiveness and airway inflammation with elevated Th2 cytokines in bronchoalveolar lavage fluid (BALF). Notably, Sftpc-cre;RhoAfl/fl mice showed a significant reduction in Tgf-β1 levels in BALF and lung tissues, and administration of recombinant Tgf-β1 to the mice rescued Tgf-β1 and alleviated the increased allergic airway inflammation observed in Sftpc-cre;RhoAfl/fl mice. Using RNA sequencing technology, we identified Slc26a4 (pendrin), a transmembrane anion exchange, as the most upregulated gene in RhoA-deficient AT2 cells. The upregulation of SLC26A4 was further confirmed in AT2 cells of asthmatic patients and mouse models and in human airway epithelial cells expressing dominant-negative RHOA (RHOA-N19). SLA26A4 was also elevated in serum from asthmatic patients and negatively associated with the percentage of forced expiratory volume in 1 second (FEV1%). Furthermore, SLC26A4 inhibition promoted epithelial TGF-β1 release and attenuated allergic airway inflammation. Our study reveals a RhoA/SLC26A4 axis in AT2 cells that functions as a protective mechanism against allergic airway inflammation.
Collapse
Affiliation(s)
- Danh C Do
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yan Zhang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinyue Hu
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaojun Xiao
- Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jingsi Chen
- Children's Hospital, Chongqing Medical University, Chongqing, China
| | - Haiping Hao
- JHMI Deep Sequencing and Microarray Core Facility, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhigang Liu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China.,Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shau-Ku Huang
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Zhou Z, Hua Y, Ding Y, Hou Y, Yu T, Cui Y, Nie H. Conditioned Medium of Bone Marrow Mesenchymal Stem Cells Involved in Acute Lung Injury by Regulating Epithelial Sodium Channels via miR-34c. Front Bioeng Biotechnol 2021; 9:640116. [PMID: 34368091 PMCID: PMC8336867 DOI: 10.3389/fbioe.2021.640116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2020] [Accepted: 05/17/2021] [Indexed: 01/01/2023] Open
Abstract
Background One of the characteristics of acute lung injury (ALI) is severe pulmonary edema, which is closely related to alveolar fluid clearance (AFC). Mesenchymal stem cells (MSCs) secrete a wide range of cytokines, growth factors, and microRNA (miRNAs) through paracrine action to participate in the mechanism of pulmonary inflammatory response, which increase the clearance of edema fluid and promote the repair process of ALI. The epithelial sodium channel (ENaC) is the rate-limiting step in the sodium–water transport and edema clearance in the alveolar cavity; the role of bone marrow-derived MSC-conditioned medium (BMSC-CM) in edema clearance and how miRNAs affect ENaC are still seldom known. Methods CCK-8 cell proliferation assay was used to detect the effect of BMSC-CM on the survival of alveolar type 2 epithelial (AT2) cells. Real-time polymerase chain reaction (RT-PCR) and western blot were used to detect the expression of ENaC in AT2 cells. The effects of miR-34c on lung fluid absorption were observed in LPS-treated mice in vivo, and the transepithelial short-circuit currents in the monolayer of H441 cells were examined by the Ussing chamber setup. Dual luciferase reporter gene assay was used to detect the target gene of miR-34c. Results BMSC-CM could increase the viability of mouse AT2 cells. RT-PCR and western blot results showed that BMSC-CM significantly increased the expression of the γ-ENaC subunit in mouse AT2 cells. MiR-34c could restore the AFC and lung wet/dry weight ratio in the ALI animal model, and Ussing chamber assay revealed that miR-34c enhanced the amiloride-sensitive currents associated with ENaC activity in intact H441 cell monolayers. In addition, we observed a higher expression of miR-34c in mouse AT2 cells administrated with BMSC-CM, and the overexpression or inhibition of miR-34c could regulate the expression of ENaC protein and alter the function of ENaC. Finally, we detected that myristoylated alanine-rich C kinase substrate (MARCKS) may be one of the target genes of miR-34c. Conclusion Our results indicate that BMSC-CM may alleviate LPS-induced ALI through miR-34c targeting MARCKS and regulate ENaC indirectly, which further explores the benefit of paracrine effects of bone marrow-derived MSCs on edematous ALI.
Collapse
Affiliation(s)
- Zhiyu Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Hua
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Okunishi K, Wang H, Suzukawa M, Ishizaki R, Kobayashi E, Kihara M, Abe T, Miyazaki JI, Horie M, Saito A, Saito H, Nakae S, Izumi T. Exophilin-5 regulates allergic airway inflammation by controlling IL-33-mediated Th2 responses. J Clin Invest 2021; 130:3919-3935. [PMID: 32240120 DOI: 10.1172/jci127839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2019] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
A common variant in the RAB27A gene in adults was recently found to be associated with the fractional exhaled nitric oxide level, a marker of eosinophilic airway inflammation. The small GTPase Rab27 is known to regulate intracellular vesicle traffic, although its role in allergic responses is unclear. We demonstrated that exophilin-5, a Rab27-binding protein, was predominantly expressed in both of the major IL-33 producers, lung epithelial cells, and the specialized IL-5 and IL-13 producers in the CD44hiCD62LloCXCR3lo pathogenic Th2 cell population in mice. Exophilin-5 deficiency increased stimulant-dependent damage and IL-33 secretion by lung epithelial cells. Moreover, it enhanced IL-5 and IL-13 production in response to TCR and IL-33 stimulation from a specific subset of pathogenic Th2 cells that expresses a high level of IL-33 receptor, which exacerbated allergic airway inflammation in a mouse model of asthma. Mechanistically, exophilin-5 regulates extracellular superoxide release, intracellular ROS production, and phosphoinositide 3-kinase activity by controlling intracellular trafficking of Nox2-containing vesicles, which seems to prevent the overactivation of pathogenic Th2 cells mediated by IL-33. This is the first report to our knowledge to establish the significance of the Rab27-related protein exophilin-5 in the development of allergic airway inflammation, and provides insights into the pathophysiology of asthma.
Collapse
Affiliation(s)
- Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Maho Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Ray Ishizaki
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Eri Kobayashi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Miho Kihara
- Laboratory for Animal Resource Development and
| | - Takaya Abe
- Laboratory for Animal Resource Development and.,Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Jun-Ichi Miyazaki
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
14
|
Ozaki M, Kagawa S, Ishii M, Hegab AE. Optimizing the in vitro colony-forming assay for more efficient delineation of the interaction between lung epithelial stem cells and their niche. J Stem Cells Regen Med 2021; 16:50-62. [PMID: 33414581 DOI: 10.46582/jsrm.1602009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2020] [Accepted: 08/31/2020] [Indexed: 11/19/2022]
Abstract
The use of in vitro 3D organoid/colony forming assay (CFA); which mimics the in vivo environment have provided insight into the mechanisms by which lung stem cells maintain and repair the lung. In recent years, the use of CFA has markedly expanded. However, variations among laboratories in lung cell isolation methods, media used, type, origin, and processing methods of mesenchymal cells used as feeders for the epithelial colonies, and terms utilized to describe and quantify the growing colonies, have caused difficulty in reproducing results among different labs. In this study, we compared several previously described methods for lung cell isolation and culture media, to identify their influence on retrieved cells and growing colonies. We also characterized the effect of freeze/thaw, and propagation of fibroblasts on their ability to support epithelial colonies. Importantly, we suggested markers to identify fibroblast subtypes that offer the best support to alveolar stem cell proliferation. Then, we used our optimized assay to confirm the in vitro identity of recently described epithelial progenitors. We also tested the effect of hyperoxia on lung stem cells, and examined the expression of the receptors for the SARS-COV-2 virus's entry into epithelial cells, on our organoids. In summary, our findings facilitate CFA standardization, help understand how niche cell variations influence growing colonies, and confirm some of the recently described lung stem cells.
Collapse
Affiliation(s)
- Mari Ozaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Saito M, Mitani A, Ishimori T, Miyashita N, Isago H, Mikami Y, Noguchi S, Tarui M, Nagase T. Active mTOR in Lung Epithelium Promotes Epithelial-Mesenchymal Transition and Enhances Lung Fibrosis. Am J Respir Cell Mol Biol 2020; 62:699-708. [PMID: 32208980 DOI: 10.1165/rcmb.2019-0255oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
The mTOR pathway is one of the key signal cascades in the pathogenesis of idiopathic pulmonary fibrosis. Previous studies have mainly focused on this pathway in the fibroblasts and/or myofibroblasts, but not in the epithelial cells. In this study, we sought to investigate the role of the mTOR pathway in lung epithelial cells in lung fibrosis. Using Sftpc-mTORSL1+IT transgenic mice, in which active mTOR is conditionally expressed in lung epithelial cells, we assessed the effects of chronically activated mTOR in lung epithelial cells on lung phenotypes as well as bleomycin-induced lung fibrosis. Furthermore, we isolated alveolar epithelial cell type 2 from mice and performed RNA sequencing. Sftpc-mTORSL1+IT transgenic mice had no obvious abnormal findings, but, after bleomycin administration, showed more severe fibrotic changes and lower lung compliance than control mice. RNA sequencing revealed Angptl4 (angiopoietin-like protein 4) as a candidate downstream gene of the mTOR pathway. In vitro studies revealed that ANGPTL4, as well as mTOR, promoted tight junction vulnerability and epithelial-mesenchymal transition. mTOR activation in lung epithelial cells promoted lung fibrosis and the expression of ANGPTL4, a novel downstream target of the mTOR pathway, which could be related to the etiology of fibrosis.
Collapse
Affiliation(s)
- Minako Saito
- Department of Respiratory Medicine, the University of Tokyo, Tokyo, Japan
| | - Akihisa Mitani
- Department of Respiratory Medicine, the University of Tokyo, Tokyo, Japan
| | - Taro Ishimori
- Department of Respiratory Medicine, the University of Tokyo, Tokyo, Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, the University of Tokyo, Tokyo, Japan
| | - Hideaki Isago
- Department of Respiratory Medicine, the University of Tokyo, Tokyo, Japan
| | - Yu Mikami
- Department of Respiratory Medicine, the University of Tokyo, Tokyo, Japan
| | - Satoshi Noguchi
- Department of Respiratory Medicine, the University of Tokyo, Tokyo, Japan
| | - Megumi Tarui
- Department of Respiratory Medicine, the University of Tokyo, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Tsutsumi A, Ozaki M, Chubachi S, Irie H, Sato M, Kameyama N, Sasaki M, Ishii M, Hegab AE, Betsuyaku T, Fukunaga K. Exposure to Cigarette Smoke Enhances the Stemness of Alveolar Type 2 Cells. Am J Respir Cell Mol Biol 2020; 63:293-305. [PMID: 32338993 DOI: 10.1165/rcmb.2019-0188oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2019] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic exposure to cigarette smoke (CS) causes chronic inflammation, oxidative stress, and apoptosis of epithelial cells, which results in destruction of the lung matrix. However, the mechanism by which the lung fails to repair the CS-induced damage, thereby succumbing to emphysema, remains unclear. Alveolar type 2 (AT2) cells comprise the stem cells of the alveolar compartments and are responsible for repairing and maintaining lung tissues. In this study, we examined the effect of chronic CS on AT2 stem cells. Adult mice expressing GFP in their AT2 cells were exposed to CS for > 3 months. Histological assessment showed that CS not only induced emphysematous changes but also increased the number of AT2 cells compared with that of air-exposed lungs. Assessment of sorted GFP+/AT2 cells via the stem cell three-dimensional organoid/colony-forming assay revealed that the number and size of the colonies formed by the CS-exposed AT2 stem cells were significantly higher than those of air-exposed control AT2 cells. Although CS-exposed lungs had more apoptotic cells, examination of the surviving AT2 stem cells in two-dimensional in vitro culture revealed that they developed a higher ability to resist apoptosis. Microarray analysis of CS-exposed AT2 stem cells revealed the upregulation of genes related to circadian rhythm and inflammatory pathways. In conclusion, we provide evidence that AT2 stem cells respond to chronic CS exposure by activating their stem cell function, thereby proliferating and differentiating faster and becoming more resistant to apoptosis. Disturbances in expression levels of several circadian rhythm-related genes might be involved in these changes.
Collapse
Affiliation(s)
- Akihiro Tsutsumi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mari Ozaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hidehiro Irie
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Minako Sato
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naofumi Kameyama
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Sasaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Lin WC, Gowdy KM, Madenspacher JH, Zemans RL, Yamamoto K, Lyons-Cohen M, Nakano H, Janardhan K, Williams CJ, Cook DN, Mizgerd JP, Fessler MB. Epithelial membrane protein 2 governs transepithelial migration of neutrophils into the airspace. J Clin Invest 2020; 130:157-170. [PMID: 31550239 DOI: 10.1172/jci127144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
Whether respiratory epithelial cells regulate the final transit of extravasated neutrophils into the inflamed airspace or are a passive barrier is poorly understood. Alveolar epithelial type 1 (AT1) cells, best known for solute transport and gas exchange, have few established immune roles. Epithelial membrane protein 2 (EMP2), a tetraspan protein that promotes recruitment of integrins to lipid rafts, is highly expressed in AT1 cells but has no known function in lung biology. Here, we show that Emp2-/- mice exhibit reduced neutrophil influx into the airspace after a wide range of inhaled exposures. During bacterial pneumonia, Emp2-/- mice had attenuated neutrophilic lung injury and improved survival. Bone marrow chimeras, intravital neutrophil labeling, and in vitro assays suggested that defective transepithelial migration of neutrophils into the alveolar lumen occurs in Emp2-/- lungs. Emp2-/- AT1 cells had dysregulated surface display of multiple adhesion molecules, associated with reduced raft abundance. Epithelial raft abundance was dependent upon putative cholesterol-binding motifs in EMP2, whereas EMP2 supported adhesion molecule display and neutrophil transmigration through suppression of caveolins. Taken together, we propose that EMP2-dependent membrane organization ensures proper display on AT1 cells of a suite of proteins required to instruct paracellular neutrophil traffic into the alveolus.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kymberly M Gowdy
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jennifer H Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Rachel L Zemans
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kazuko Yamamoto
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA.,Second Department of Internal Medicine, Nagasaki University Hospital, Nagasaki, Japan.,Department of Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Miranda Lyons-Cohen
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kyathanahalli Janardhan
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.,Integrated Laboratory Systems Inc., Research Triangle Park, North Carolina, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
18
|
Castaldi A, Horie M, Rieger ME, Dubourd M, Sunohara M, Pandit K, Zhou B, Offringa IA, Marconett CN, Borok Z. Genome-wide integration of microRNA and transcriptomic profiles of differentiating human alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 319:L173-L184. [PMID: 32432919 DOI: 10.1152/ajplung.00519.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
The alveolar epithelium is comprised of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells, the latter being capable of self-renewal and transdifferentiation into AT1 cells for normal maintenance and restoration of epithelial integrity following injury. MicroRNAs (miRNAs) are critical regulators of several biological processes, including cell differentiation; however, their role in establishment/maintenance of cellular identity in adult alveolar epithelium is not well understood. To investigate this question, we performed genome-wide analysis of sequential changes in miRNA and gene expression profiles using a well-established model in which human AT2 (hAT2) cells transdifferentiate into AT1-like cells over time in culture that recapitulates many aspects of transdifferentiation in vivo. We defined three phases of miRNA expression during the transdifferentiation process as "early," "late," and "consistently" changed, which were further subclassified as up- or downregulated. miRNAs with altered expression at all time points during transdifferentiation were the largest subgroup, suggesting the need for consistent regulation of signaling pathways to mediate this process. Target prediction analysis and integration with previously published gene expression data identified glucocorticoid signaling as the top pathway regulated by miRNAs. Serum/glucocorticoid-regulated kinase 1 (SGK1) emerged as a central regulatory factor, whose downregulation correlated temporally with gain of hsa-miR-424 and hsa-miR-503 expression. Functional validation demonstrated specific targeting of these miRNAs to the 3'-untranslated region of SGK1. These data demonstrate the time-related contribution of miRNAs to the alveolar transdifferentiation process and suggest that inhibition of glucocorticoid signaling is necessary to achieve the AT1-like cell phenotype.
Collapse
Affiliation(s)
- Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Masafumi Horie
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Megan E Rieger
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mickael Dubourd
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mitsuhiro Sunohara
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kusum Pandit
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Beiyun Zhou
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ite A Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Crystal N Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Zea Borok
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
19
|
Zhao R, Ali G, Nie HG, Chang Y, Bhattarai D, Su X, Zhao X, Matthay MA, Ji HL. Plasmin improves blood-gas barrier function in oedematous lungs by cleaving epithelial sodium channels. Br J Pharmacol 2020; 177:3091-3106. [PMID: 32133621 DOI: 10.1111/bph.15038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2019] [Revised: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Lung oedema in association with suppressed fibrinolysis is a hallmark of lung injury. Here, we have tested whether plasmin cleaves epithelial sodium channels (ENaC) to resolve lung oedema fluid. EXPERIMENTAL APPROACH Human lungs and airway acid-instilled mice were used for analysing fluid resolution. In silico prediction, mutagenesis, Xenopus oocytes, immunoblotting, voltage clamp, mass spectrometry, and protein docking were combined for identifying plasmin cleavage sites. KEY RESULTS Plasmin improved lung fluid resolution in both human lungs ex vivo and injured mice. Plasmin activated αβγENaC channels in oocytes in a time-dependent manner. Deletion of four consensus proteolysis tracts (αΔ432-444, γΔ131-138, γΔ178-193, and γΔ410-422) eliminated plasmin-induced activation significantly. Further, immunoblotting assays identified 7 cleavage sites (K126, R135, K136, R153, K168, R178, K179) for plasmin to trim both furin-cleaved C-terminal fragments and full-length human γENaC proteins. In addition, 9 new sites (R122, R137, R138, K150, K170, R172, R180, K181, K189) in synthesized peptides were found to be cleaved by plasmin. These cleavage sites were located in the finger and the thumb, particularly the GRIP domain of human ENaC 3D model composed of two proteolytic centres for plasmin. Novel uncleaved sites beyond the GRIP domain in both α and γ subunits were identified to interrupt the plasmin cleavage-induced conformational change in ENaC channel complexes. Additionally, plasmin could regulate ENaC activity via the G protein signal. CONCLUSION AND IMPLICATIONS Plasmin can cleave ENaC to improve blood-gas exchange by resolving oedema fluid and could be a potent therapy for oedematous lungs.
Collapse
Affiliation(s)
- Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas
| | - Gibran Ali
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas
| | - Hong-Guang Nie
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas.,College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Yongchang Chang
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | - Deepa Bhattarai
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas
| | - Xuefeng Su
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Michael A Matthay
- Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California
| | - Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, Texas.,Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, Texas
| |
Collapse
|
20
|
Lipopolysaccharide Inhibits Alpha Epithelial Sodium Channel Expression via MiR-124-5p in Alveolar Type 2 Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8150780. [PMID: 32190682 PMCID: PMC7072113 DOI: 10.1155/2020/8150780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/13/2019] [Revised: 01/19/2020] [Accepted: 01/30/2020] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSCs) have been a potential strategy in the pretreatment of pulmonary diseases, while the mechanisms of MSCs-conditioned medium (MSCs-CM) involved with microRNAs on the regulation of lung ion transport are seldom reported. We investigated the role of miR-124-5p in lipopolysaccharide-involved epithelial sodium channel (ENaC) dysfunction and explored the potential target of miR-124-5p. We observed the lower expression of miR-124-5p after the administration of MSCs-CM, and the overexpression or inhibition of miR-124-5p regulated epithelial sodium channel α-subunit (α-ENaC) expression at protein levels in mouse alveolar type 2 epithelial (AT2) cells. We confirmed that α-ENaC is one of the target genes of miR-124-5p through dual luciferase assay and Ussing chamber assay revealed that miR-124-5p inhibited amiloride-sensitive currents associated with ENaC activity in intact H441 monolayers. Our results demonstrate that miR-124-5p can decrease the expression and function of α-ENaC in alveolar epithelial cells by targeting the 3'-UTR. The involvement of MSCs-CM in lipopolysaccharide-induced acute lung injury cell model could be related to the downregulation of miR-124-5p on α-ENaC, which may provide a new target for the treatment of acute lung injury.
Collapse
|
21
|
Zhao R, Ali G, Chang J, Komatsu S, Tsukasaki Y, Nie HG, Chang Y, Zhang M, Liu Y, Jain K, Jung BG, Samten B, Jiang D, Liang J, Ikebe M, Matthay MA, Ji HL. Proliferative regulation of alveolar epithelial type 2 progenitor cells by human Scnn1d gene. Am J Cancer Res 2019; 9:8155-8170. [PMID: 31754387 PMCID: PMC6857051 DOI: 10.7150/thno.37023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2019] [Accepted: 09/16/2019] [Indexed: 01/03/2023] Open
Abstract
Lung epithelial sodium channel (ENaC) encoded by Scnn1 genes is essential for maintaining transepithelial salt and fluid homeostasis in the airway and the lung. Compared to α, β, and γ subunits, the role of respiratory δ-ENaC has not been studied in vivo due to the lack of animal models. Methods: We characterized full-length human δ802-ENaC expressed in both Xenopus oocytes and humanized transgenic mice. AT2 proliferation and differentiation in 3D organoids were analysed with FACS and a confocal microscope. Both two-electrode voltage clamp and Ussing chamber systems were applied to digitize δ802-ENaC channel activity. Immunoblotting was utilized to analyse δ802-ENaC protein. Transcripts of individual ENaC subunits in human lung tissues were quantitated with qPCR. Results: The results indicate that δ802-ENaC functions as an amiloride-inhibitable Na+ channel. Inhibitory peptide α-13 distinguishes δ802- from α-type ENaC channels. Modified proteolysis of γ-ENaC by plasmin and aprotinin did not alter the inhibition of amiloride and α-13 peptide. Expression of δ802-ENaC at the apical membrane of respiratory epithelium was detected with biophysical features similar to those of heterologously expressed channels in oocytes. δ802-ENaC regulated alveologenesis through facilitating the proliferation of alveolar type 2 epithelial cells. Conclusion: The humanized mouse line conditionally expressing human δ802-ENaC is a novel model for studying the expression and function of this protein in vivo .
Collapse
|
22
|
Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis. Sci Rep 2018; 8:12983. [PMID: 30154568 PMCID: PMC6113210 DOI: 10.1038/s41598-018-31214-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2018] [Accepted: 08/14/2018] [Indexed: 01/29/2023] Open
Abstract
Mechanisms of injury and repair in alveolar epithelial cells (AECs) are critically involved in the progression of various lung diseases including idiopathic pulmonary fibrosis (IPF). Homeobox only protein x (HOPX) contributes to the formation of distal lung during development. In adult lung, alveolar epithelial type (AT) I cells express HOPX and lineage-labeled Hopx+ cells give rise to both ATI and ATII cells after pneumonectomy. However, the cell function of HOPX-expressing cells in adult fibrotic lung diseases has not been investigated. In this study, we have established a flow cytometry-based method to evaluate HOPX-expressing cells in the lung. HOPX expression in cultured ATII cells increased over culture time, which was accompanied by a decrease of proSP-C, an ATII marker. Moreover, HOPX expression was increased in AECs from bleomycin-instilled mouse lungs in vivo. Small interfering RNA-based knockdown of Hopx resulted in suppressing ATII-ATI trans-differentiation and activating cellular proliferation in vitro. In IPF lungs, HOPX expression was decreased in whole lungs and significantly correlated to a decline in lung function and progression of IPF. In conclusion, HOPX is upregulated during early alveolar injury and repair process in the lung. Decreased HOPX expression might contribute to failed regenerative processes in end-stage IPF lungs.
Collapse
|
23
|
Sapich S, Hittinger M, Hendrix-Jastrzebski R, Repnik U, Griffiths G, May T, Wirth D, Bals R, Schneider-Daum N, Lehr CM. Murine alveolar epithelial cells and their lentivirus-mediated immortalisation. Altern Lab Anim 2018; 46:73-89. [PMID: 29856645 DOI: 10.1177/026119291804600207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
In this study, we describe the isolation and immortalisation of primary murine alveolar epithelial cells (mAEpC), as well as their epithelial differentiation and barrier properties when grown on Transwell® inserts. Like human alveolar epithelial cells (hAEpC), mAEpC transdifferentiate in vitro from an alveolar type II (ATII) phenotype to an ATI-like phenotype and exhibit features of the air-blood barrier, such as the establishment of a thin monolayer with functional tight junctions (TJs). This is demonstrated by the expression of TJ proteins (ZO-1 and occludin) and the development of high transepithelial electrical resistance (TEER), peaking at 1800Ω ·cm². Transport across the air-blood barrier, for general toxicity assessments or preclinical drug development, is typically studied in mice. The aim of this work was the generation of novel immortalised murine lung cell lines, to help meet Three Rs requirements in experimental testing and research. To achieve this goal, we lentivirally transduced mAEpC of two different mouse strains with a library of 33 proliferation-promoting genes. With this immortalisation approach, we obtained two murine alveolar epithelial lentivirus-immortalised (mAELVi) cell lines. Both showed similar TJ protein localisation, but exhibited less prominent barrier properties (TEERmax ~250Ω·cm²) when compared to their primary counterparts. While mAEpC demonstrated their suitability for use in the assessment of paracellular transport rates, mAELVi cells could potentially replace mice for the prediction of acute inhalation toxicity during early ADMET studies.
Collapse
Affiliation(s)
- Sandra Sapich
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI ), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | | | - Remi Hendrix-Jastrzebski
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI ), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Dagmar Wirth
- Research Group Model Systems for Infection and Immunity (MSYS), Helmholtz-Centre for Infection Research (HZI), Braunschweig, Germany; Institute of Experimental Haematology, Medical School Hannover, Hannover, Germany
| | - Robert Bals
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg (Saar), Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI ), Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI ), Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany; PharmBioTec GmbH, Saarbrücken, Germany
| |
Collapse
|
24
|
Zhou B, Flodby P, Luo J, Castillo DR, Liu Y, Yu FX, McConnell A, Varghese B, Li G, Chimge NO, Sunohara M, Koss MN, Elatre W, Conti P, Liebler JM, Yang C, Marconett CN, Laird-Offringa IA, Minoo P, Guan K, Stripp BR, Crandall ED, Borok Z. Claudin-18-mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis. J Clin Invest 2018; 128:970-984. [PMID: 29400695 DOI: 10.1172/jci90429] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2016] [Accepted: 12/05/2017] [Indexed: 12/19/2022] Open
Abstract
Claudins, the integral tight junction (TJ) proteins that regulate paracellular permeability and cell polarity, are frequently dysregulated in cancer; however, their role in neoplastic progression is unclear. Here, we demonstrated that knockout of Cldn18, a claudin family member highly expressed in lung alveolar epithelium, leads to lung enlargement, parenchymal expansion, increased abundance and proliferation of known distal lung progenitors, the alveolar epithelial type II (AT2) cells, activation of Yes-associated protein (YAP), increased organ size, and tumorigenesis in mice. Inhibition of YAP decreased proliferation and colony-forming efficiency (CFE) of Cldn18-/- AT2 cells and prevented increased lung size, while CLDN18 overexpression decreased YAP nuclear localization, cell proliferation, CFE, and YAP transcriptional activity. CLDN18 and YAP interacted and colocalized at cell-cell contacts, while loss of CLDN18 decreased YAP interaction with Hippo kinases p-LATS1/2. Additionally, Cldn18-/- mice had increased propensity to develop lung adenocarcinomas (LuAd) with age, and human LuAd showed stage-dependent reduction of CLDN18.1. These results establish CLDN18 as a regulator of YAP activity that serves to restrict organ size, progenitor cell proliferation, and tumorigenesis, and suggest a mechanism whereby TJ disruption may promote progenitor proliferation to enhance repair following injury.
Collapse
Affiliation(s)
- Beiyun Zhou
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Per Flodby
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Jiao Luo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Dan R Castillo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Yixin Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Fa-Xing Yu
- Department of Pharmacology and Moores Cancer Center, UCSD, La Jolla, California, USA.,Childrens Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Alicia McConnell
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Guanglei Li
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Nyam-Osor Chimge
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Mitsuhiro Sunohara
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | | | | | | | - Janice M Liebler
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and
| | - Chenchen Yang
- Department of Surgery.,Department of Biochemistry and Molecular Medicine, and
| | - Crystal N Marconett
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Surgery
| | - Ite A Laird-Offringa
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Surgery.,Department of Biochemistry and Molecular Medicine, and
| | - Parviz Minoo
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kunliang Guan
- Department of Pharmacology and Moores Cancer Center, UCSD, La Jolla, California, USA
| | - Barry R Stripp
- Lung and Regenerative Medicine Institutes, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Edward D Crandall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and.,Department of Pathology.,Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,Hastings Center for Pulmonary Research.,Will Rogers Institute Pulmonary Research Center, and.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.,Department of Biochemistry and Molecular Medicine, and
| |
Collapse
|
25
|
Jansing NL, McClendon J, Kage H, Sunohara M, Alvarez JR, Borok Z, Zemans RL. Isolation of Rat and Mouse Alveolar Type II Epithelial Cells. Methods Mol Biol 2018; 1809:69-82. [PMID: 29987783 DOI: 10.1007/978-1-4939-8570-8_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
The gas exchange surface of the lungs is lined by an epithelium consisting of alveolar type (AT) I and ATII cells. ATII cells function to produce surfactant, play a role in host defense and fluid and ion transport, and serve as progenitors. ATI cells are important for gas exchange and fluid and ion transport. Our understanding of the biology of these cells depends on the investigation of isolated cells. Here, we present methods for the isolation of mouse and rat ATII cells.
Collapse
Affiliation(s)
- Nicole L Jansing
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Jazalle McClendon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Hidenori Kage
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, Los Angeles, CA, USA
| | - Mitsuhiro Sunohara
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, Los Angeles, CA, USA
| | - Juan R Alvarez
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, Los Angeles, CA, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Hastings Center for Pulmonary Research, Los Angeles, CA, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rachel L Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, USA. .,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA. .,Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
The Role of PGE 2 in Alveolar Epithelial and Lung Microvascular Endothelial Crosstalk. Sci Rep 2017; 7:7923. [PMID: 28801643 PMCID: PMC5554158 DOI: 10.1038/s41598-017-08228-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2017] [Accepted: 07/06/2017] [Indexed: 12/26/2022] Open
Abstract
Disruption of the blood-air barrier, which is formed by lung microvascular endothelial and alveolar epithelial cells, is a hallmark of acute lung injury. It was shown that alveolar epithelial cells release an unidentified soluble factor that enhances the barrier function of lung microvascular endothelial cells. In this study we reveal that primarily prostaglandin (PG) E2 accounts for this endothelial barrier-promoting activity. Conditioned media from alveolar epithelial cells (primary ATI-like cells) collected from BALB/c mice and A549 cells increased the electrical resistance of pulmonary human microvascular endothelial cells, respectively. This effect was reversed by pretreating alveolar epithelial cells with a cyclooxygenase-2 inhibitor or by blockade of EP4 receptors on endothelial cells, and in A549 cells also by blocking the sphingosine-1-phosphate1 receptor. Cyclooxygenase-2 was constitutively expressed in A549 cells and in primary ATI-like cells, and was upregulated by lipopolysaccharide treatment. This was accompanied by enhanced PGE2 secretion into conditioned media. Therefore, we conclude that epithelium-derived PGE2 is a key regulator of endothelial barrier integrity via EP4 receptors under physiologic and inflammatory conditions. Given that pharmacologic treatment options are still unavailable for diseases with compromised air-blood barrier, like acute lung injury, our data thus support the therapeutic potential of selective EP4 receptor agonists.
Collapse
|
27
|
Beers MF, Moodley Y. When Is an Alveolar Type 2 Cell an Alveolar Type 2 Cell? A Conundrum for Lung Stem Cell Biology and Regenerative Medicine. Am J Respir Cell Mol Biol 2017; 57:18-27. [PMID: 28326803 DOI: 10.1165/rcmb.2016-0426ps] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Generating mature, differentiated, adult lung cells from pluripotent cells, such as induced pluripotent stem cells and embryonic stem cells, offers the hope of both generating disease-specific in vitro models and creating definitive and personalized therapies for a host of debilitating lung parenchymal and airway diseases. With the goal of advancing lung-regenerative medicine, several groups have developed and reported on protocols using defined media, coculture with mesenchymal components, or sequential treatments mimicking lung development, to obtain distal lung epithelial cells from stem cell precursors. However, there remains significant controversy about the degree of differentiation of these cells compared with their primary counterparts, coupled with a lack of consistency or uniformity in assessing the resultant phenotypes. Given the inevitable, exponential expansion of these approaches and the probable, but yet-to-emerge second and higher generation techniques to create such assets, we were prompted to pose the question, what makes a lung epithelial cell a lung epithelial cell? More specifically for this Perspective, we also posed the question, what are the minimum features that constitute an alveolar type (AT) 2 epithelial cell? In addressing this, we summarize a body of work spanning nearly five decades, amassed by a series of "lung epithelial cell biology pioneers," which carefully describes well characterized molecular, functional, and morphological features critical for discriminately assessing an AT2 phenotype. Armed with this, we propose a series of core criteria to assist the field in confirming that cells obtained following a differentiation protocol are indeed mature and functional AT2 epithelial cells.
Collapse
Affiliation(s)
- Michael F Beers
- 1 Lung Epithelial Biology Laboratories, Penn Center for Pulmonary Biology, Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Yuben Moodley
- 2 University of Western Australia, Harry Perkins Research Institute, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
28
|
Receptor for advanced glycation endproducts (RAGE) maintains pulmonary structure and regulates the response to cigarette smoke. PLoS One 2017; 12:e0180092. [PMID: 28678851 PMCID: PMC5497997 DOI: 10.1371/journal.pone.0180092] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2016] [Accepted: 06/09/2017] [Indexed: 12/15/2022] Open
Abstract
The receptor for advanced glycation endproducts (RAGE) is highly expressed in the lung but its physiological functions in this organ is still not completely understood. To determine the contribution of RAGE to physiological functions of the lung, we analyzed pulmonary mechanics and structure of wildtype and RAGE deficient (RAGE-/-) mice. RAGE deficiency spontaneously resulted in a loss of lung structure shown by an increased mean chord length, increased respiratory system compliance, decreased respiratory system elastance and increased concentrations of serum protein albumin in bronchoalveolar lavage fluids. Pulmonary expression of RAGE was mainly localized on alveolar epithelial cells and alveolar macrophages. Primary murine alveolar epithelial cells isolated from RAGE-/- mice revealed an altered differentiation and defective barrier formation under in vitro conditions. Stimulation of interferone-y (IFNy)-activated alveolar macrophages deficient for RAGE with Toll-like receptor (TLR) ligands resulted in significantly decreased release of proinflammatory cytokines and chemokines. Exposure to chronic cigarette smoke did not affect emphysema-like changes in lung parenchyma in RAGE-/- mice. Acute cigarette smoke exposure revealed a modified inflammatory response in RAGE-/- mice that was characterized by an influx of macrophages and a decreased keratinocyte-derived chemokine (KC) release. Our data suggest that RAGE regulates the differentiation of alveolar epithelial cells and impacts on the development and maintenance of pulmonary structure. In cigarette smoke-induced lung pathology, RAGE mediates inflammation that contributes to lung damage.
Collapse
|
29
|
Flodby P, Kim YH, Beard LL, Gao D, Ji Y, Kage H, Liebler JM, Minoo P, Kim KJ, Borok Z, Crandall ED. Knockout Mice Reveal a Major Role for Alveolar Epithelial Type I Cells in Alveolar Fluid Clearance. Am J Respir Cell Mol Biol 2017; 55:395-406. [PMID: 27064541 DOI: 10.1165/rcmb.2016-0005oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
Active ion transport by basolateral Na-K-ATPase (Na pump) creates an Na(+) gradient that drives fluid absorption across lung alveolar epithelium. The α1 and β1 subunits are the most highly expressed Na pump subunits in alveolar epithelial cells (AEC). The specific contribution of the β1 subunit and the relative contributions of alveolar epithelial type II (AT2) versus type I (AT1) cells to alveolar fluid clearance (AFC) were investigated using two cell type-specific mouse knockout lines in which the β1 subunit was knocked out in either AT1 cells or both AT1 and AT2 cells. AFC was markedly decreased in both knockout lines, revealing, we believe for the first time, that AT1 cells play a major role in AFC and providing insights into AEC-specific roles in alveolar homeostasis. AEC monolayers derived from knockout mice demonstrated decreased short-circuit current and active Na(+) absorption, consistent with in vivo observations. Neither hyperoxia nor ventilator-induced lung injury increased wet-to-dry lung weight ratios in knockout lungs relative to control lungs. Knockout mice showed increases in Na pump β3 subunit expression and β2-adrenergic receptor expression. These results demonstrate a crucial role for the Na pump β1 subunit in alveolar ion and fluid transport and indicate that both AT1 and AT2 cells make major contributions to these processes and to AFC. Furthermore, they support the feasibility of a general approach to altering alveolar epithelial function in a cell-specific manner that allows direct insights into AT1 versus AT2 cell-specific roles in the lung.
Collapse
Affiliation(s)
- Per Flodby
- 1 Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Yong Ho Kim
- 1 Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - LaMonta L Beard
- 1 Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Danping Gao
- 1 Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Yanbin Ji
- 1 Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Hidenori Kage
- 1 Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Janice M Liebler
- 1 Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | - Parviz Minoo
- 2 Division of Neonatology, Department of Pediatrics, and
| | - Kwang-Jin Kim
- 1 Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,3 Departments of Physiology and Biophysics.,4 Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy; and.,5 Department of Biomedical Engineering, and
| | - Zea Borok
- 1 Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,6 Biochemistry and Molecular Biology, and
| | - Edward D Crandall
- 1 Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine.,7 Pathology, Keck School of Medicine.,8 Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| |
Collapse
|
30
|
Impact of bone marrow-derived mesenchymal stem cells on remodeling the lung injury induced by lipopolysaccharides in mice. Future Sci OA 2017; 3:FSO162. [PMID: 28344826 PMCID: PMC5351512 DOI: 10.4155/fsoa-2016-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2016] [Accepted: 11/08/2016] [Indexed: 12/17/2022] Open
Abstract
AIM This study evaluated the potential of bone marrow derived mesenchymal stem cells (MSCs) to regulate cytokines and remodel the lung induced by lipopolysaccharide (LPS; O-antigen). MATERIALS & METHODS A group of mice (n = 21) was inoculated intraperitoneally with one dose 0.1 ml containing 0.025 mg LPS/mouse, and another treated intravenously with one dose of labeling bone marrow derived MSCs at 7.5 × 105 cell/mouse 4 h after LPS injection. All animals were sacrificed on the 1st, 7th and 14th days post-injection. RESULTS MSCs increased the level of IL-10 with suppression of TNF-α, decrease of collagen fibers and renewal of alveolar type I cells, together with lung tissue remodeling. CONCLUSION MSCs were shown to modulate inflammatory cytokines (TNF-α and IL-10) and to differentiate into alveolar type I cells, which prevented fibrosis in lung tissue from LPS-treated mice.
Collapse
|
31
|
Flodby P, Liebler JM, Sunohara M, Castillo DR, McConnell AM, Krishnaveni MS, Banfalvi A, Li M, Stripp B, Zhou B, Crandall ED, Minoo P, Borok Z. Region-specific role for Pten in maintenance of epithelial phenotype and integrity. Am J Physiol Lung Cell Mol Physiol 2016; 312:L131-L142. [PMID: 27864284 PMCID: PMC5283927 DOI: 10.1152/ajplung.00005.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2015] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 01/12/2023] Open
Abstract
Previous studies have demonstrated resistance to naphthalene-induced injury in proximal airways of mice with lung epithelial-specific deletion of the tumor-suppressor gene Pten, attributed to increased proliferation of airway progenitors. We tested effects of Pten loss following bleomycin injury, a model typically used to study distal lung epithelial injury, in conditional PtenSFTPC-cre knockout mice. Pten-deficient airway epithelium exhibited marked hyperplasia, particularly in small bronchioles and at bronchoalveolar duct junctions, with reduced E-cadherin and β-catenin expression between cells toward the luminal aspect of the hyperplastic epithelium. Bronchiolar epithelial and alveolar epithelial type II (AT2) cells in PtenSFTPC-cre mice showed decreased expression of epithelial markers and increased expression of mesenchymal markers, suggesting at least partial epithelial-mesenchymal transition at baseline. Surprisingly, and in contrast to previous studies, mutant mice were exquisitely sensitive to bleomycin, manifesting rapid weight loss, respiratory distress, increased early mortality (by day 5), and reduced dynamic lung compliance. This was accompanied by sloughing of the hyperplastic airway epithelium with occlusion of small bronchioles by cellular debris, without evidence of increased parenchymal lung injury. Increased airway epithelial cell apoptosis due to loss of antioxidant defenses, reflected by decreased expression of superoxide dismutase 3, in combination with deficient intercellular adhesion, likely predisposed to airway sloughing in knockout mice. These findings demonstrate an important role for Pten in maintenance of airway epithelial phenotype integrity and indicate that responses to Pten deletion in respiratory epithelium following acute lung injury are highly context-dependent and region-specific.
Collapse
Affiliation(s)
- Per Flodby
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Janice M Liebler
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mitsuhiro Sunohara
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dan R Castillo
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alicia M McConnell
- Departments of Medicine and Biomedical Sciences, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, California
| | - Manda S Krishnaveni
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Agnes Banfalvi
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Min Li
- Division of Neonatalogy, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Barry Stripp
- Departments of Medicine and Biomedical Sciences, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, California
| | - Beiyun Zhou
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Edward D Crandall
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California; and
| | - Parviz Minoo
- Division of Neonatalogy, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; .,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
32
|
Wolf L, Sapich S, Honecker A, Jungnickel C, Seiler F, Bischoff M, Wonnenberg B, Herr C, Schneider-Daum N, Lehr CM, Bals R, Beisswenger C. IL-17A-mediated expression of epithelial IL-17C promotes inflammation during acute Pseudomonas aeruginosa pneumonia. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1015-L1022. [PMID: 27694471 DOI: 10.1152/ajplung.00158.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022] Open
Abstract
Lung epithelial cells are suggested to promote pathogen-induced pulmonary inflammation by the release of chemokines, resulting in enhanced recruitment of circulating leukocytes. Recent studies have shown that the interleukin-17C (IL-17C) regulates innate immune functions of epithelial cells in an autocrine manner. The aim of this study was to investigate the contribution of IL-17C to pulmonary inflammation in a mouse model of acute Pseudomonas aeruginosa pneumonia. Infection with P. aeruginosa resulted in an increased expression of IL-17C in lung tissue of wild-type mice. Numbers of neutrophils and the expression of the neutrophil-recruiting chemokines keratinocyte-derived chemokine and macrophage inflammatory protein 2 were significantly decreased in lungs of IL-17C-deficient (IL-17C-/-) mice infected with P. aeruginosa at 24 h. Systemic concentrations of interleukin-6 (IL-6) were significantly decreased in infected IL-17C-/- mice at 24 h and the survival of IL-17C-/- mice was significantly increased at 48 h. The expression of IL-17C was reduced in infected mice deficient for interleukin-17A (IL-17A), whereas pulmonary concentrations of IL-17A were not affected by the deficiency for IL-17C. Stimulation of primary alveolar epithelial cells with IL-17A resulted in a significantly increased expression of IL-17C in vitro. Our data suggest that IL-17A-mediated expression of epithelial IL-17C amplifies the release of chemokines by epithelial cells and thereby contributes to the recruitment of neutrophils and systemic inflammation during acute P. aeruginosa pneumonia.
Collapse
Affiliation(s)
- Lisa Wolf
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Sandra Sapich
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany; and
| | - Anja Honecker
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Christopher Jungnickel
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Frederik Seiler
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Bodo Wonnenberg
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany; and
| | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany; and.,Biopharmaceutics and Pharmaceutical Technology, Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany
| | - Christoph Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University, Homburg, Germany;
| |
Collapse
|
33
|
Rieger ME, Zhou B, Solomon N, Sunohara M, Li C, Nguyen C, Liu Y, Pan JH, Minoo P, Crandall ED, Brody SL, Kahn M, Borok Z. p300/β-Catenin Interactions Regulate Adult Progenitor Cell Differentiation Downstream of WNT5a/Protein Kinase C (PKC). J Biol Chem 2016; 291:6569-82. [PMID: 26833564 DOI: 10.1074/jbc.m115.706416] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2015] [Indexed: 12/31/2022] Open
Abstract
Maintenance of stem/progenitor cell-progeny relationships is required for tissue homeostasis during normal turnover and repair. Wnt signaling is implicated in both maintenance and differentiation of adult stem/progenitor cells, yet how this pathway serves these dichotomous roles remains enigmatic. We previously proposed a model suggesting that specific interaction of β-catenin with either of the homologous Kat3 co-activators, p300 or CREB-binding protein, differentially regulates maintenance versus differentiation of embryonic stem cells. Limited knowledge of endogenous mechanisms driving differential β-catenin/co-activator interactions and their role in adult somatic stem/progenitor cell maintenance versus differentiation led us to explore this process in defined models of adult progenitor cell differentiation. We focused primarily on alveolar epithelial type II (AT2) cells, progenitors of distal lung epithelium, and identified a novel axis whereby WNT5a/protein kinase C (PKC) signaling regulates specific β-catenin/co-activator interactions to promote adult progenitor cell differentiation. p300/β-catenin but not CBP/β-catenin interaction increases as AT2 cells differentiate to a type I (AT1) cell-like phenotype. Additionally, p300 transcriptionally activates AT1 cell-specific gene Aqp-5. IQ-1, a specific inhibitor of p300/β-catenin interaction, prevents differentiation of not only primary AT2 cells, but also tracheal epithelial cells, and C2C12 myoblasts. p300 phosphorylation at Ser-89 enhances p300/β-catenin interaction, concurrent with alveolar epithelial cell differentiation. WNT5a, a traditionally non-canonical WNT ligand regulates Ser-89 phosphorylation and p300/β-catenin interactions in a PKC-dependent manner, likely involving PKCζ. These studies identify a novel intersection of canonical and non-canonical Wnt signaling in adult progenitor cell differentiation that has important implications for targeting β-catenin to modulate adult progenitor cell behavior in disease.
Collapse
Affiliation(s)
- Megan E Rieger
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Beiyun Zhou
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Nicola Solomon
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Mitsuhiro Sunohara
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Changgong Li
- the Departments of Pediatrics, Division of Neonatology
| | - Cu Nguyen
- Biochemistry and Molecular Biology, and
| | - Yixin Liu
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Jie-hong Pan
- the Department of Medicine, School of Medicine, Washington University, St. Louis, Missouri 63110, and
| | - Parviz Minoo
- the Departments of Pediatrics, Division of Neonatology
| | - Edward D Crandall
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Pathology, the Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089
| | - Steven L Brody
- the Department of Medicine, School of Medicine, Washington University, St. Louis, Missouri 63110, and
| | - Michael Kahn
- Biochemistry and Molecular Biology, and the Center for Molecular Pathways and Drug Discovery, and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Zea Borok
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Biochemistry and Molecular Biology, and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033,
| |
Collapse
|
34
|
HDAC3-Dependent Epigenetic Pathway Controls Lung Alveolar Epithelial Cell Remodeling and Spreading via miR-17-92 and TGF-β Signaling Regulation. Dev Cell 2016; 36:303-15. [PMID: 26832331 DOI: 10.1016/j.devcel.2015.12.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2015] [Revised: 12/04/2015] [Accepted: 12/28/2015] [Indexed: 01/15/2023]
Abstract
The terminal stages of pulmonary development, called sacculation and alveologenesis, involve both differentiation of distal lung endoderm progenitors and extensive cellular remodeling of the resultant epithelial lineages. These processes are coupled with dramatic expansion of distal airspace and surface area. Despite the importance of these late developmental processes and their relation to neonatal respiratory diseases, little is understood about the molecular and cellular pathways critical for their successful completion. We show that a histone deacetylase 3 (Hdac3)-mediated epigenetic pathway is critical for the proper remodeling and expansion of the distal lung saccules into primitive alveoli. Loss of Hdac3 in the developing lung epithelium leads to a reduction of alveolar type 1 cell spreading and a disruption of lung sacculation. Hdac3 represses miR-17-92 expression, a microRNA cluster that regulates transforming growth factor β (TGF-β) signaling. De-repression of miR-17-92 in Hdac3-deficient lung epithelium results in decreased TGF-β signaling activity. Importantly, inhibition of TGF-β signaling and overexpression of miR-17-92 can phenocopy the defects observed in Hdac3 null lungs. Conversely, loss of miR-17-92 expression rescues many of the defects caused by loss of Hdac3 in the lung. These studies reveal an intricate epigenetic pathway where Hdac3 is required to repress miR-17-92 expression to allow for proper TGF-β signaling during lung sacculation.
Collapse
|
35
|
Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones. Stem Cells Int 2015; 2015:165867. [PMID: 26167183 PMCID: PMC4488158 DOI: 10.1155/2015/165867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2015] [Revised: 04/10/2015] [Accepted: 04/21/2015] [Indexed: 01/11/2023] Open
Abstract
Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII) cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12) were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC), an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5), an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1) expression levels were enhanced. After treatment with dexamethasone (DEX), 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine (IBMX), and keratinocyte growth factor (KGF), surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.
Collapse
|
36
|
Mutze K, Vierkotten S, Milosevic J, Eickelberg O, Königshoff M. Enolase 1 (ENO1) and protein disulfide-isomerase associated 3 (PDIA3) regulate Wnt/β-catenin-driven trans-differentiation of murine alveolar epithelial cells. Dis Model Mech 2015; 8:877-90. [PMID: 26035385 PMCID: PMC4527283 DOI: 10.1242/dmm.019117] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2014] [Accepted: 05/12/2015] [Indexed: 12/30/2022] Open
Abstract
The alveolar epithelium represents a major site of tissue destruction during lung injury. It consists of alveolar epithelial type I (ATI) and type II (ATII) cells. ATII cells are capable of self-renewal and exert progenitor function for ATI cells upon alveolar epithelial injury. Cell differentiation pathways enabling this plasticity and allowing for proper repair, however, are poorly understood. Here, we applied proteomics, expression analysis and functional studies in primary murine ATII cells to identify proteins and molecular mechanisms involved in alveolar epithelial plasticity. Mass spectrometry of cultured ATII cells revealed a reduction of carbonyl reductase 2 (CBR2) and an increase in enolase 1 (ENO1) and protein disulfide-isomerase associated 3 (PDIA3) protein expression during ATII-to-ATI cell trans-differentiation. This was accompanied by increased Wnt/β-catenin signaling, as analyzed by qRT-PCR and immunoblotting. Notably, ENO1 and PDIA3, along with T1α (podoplanin; an ATI cell marker), exhibited decreased protein expression upon pharmacological and molecular Wnt/β-catenin inhibition in cultured ATII cells, whereas CBR2 levels were stabilized. Moreover, we analyzed primary ATII cells from mice with bleomycin-induced lung injury, a model exhibiting activated Wnt/β-catenin signaling in vivo. We observed reduced CBR2 significantly correlating with surfactant protein C (SFTPC), whereas ENO1 and PDIA3 along with T1α were increased in injured ATII cells. Finally, siRNA-mediated knockdown of ENO1, as well as PDIA3, in primary ATII cells led to reduced T1α expression, indicating diminished cell trans-differentiation. Our data thus identified proteins involved in ATII-to-ATI cell trans-differentiation and suggest a Wnt/β-catenin-driven functional role of ENO1 and PDIA3 in alveolar epithelial cell plasticity in lung injury and repair. Summary: The authors identified proteins involved in Wnt/β-catenin-driven alveolar epithelial plasticity in lung injury and repair.
Collapse
Affiliation(s)
- Kathrin Mutze
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, University Hospital, Ludwig-Maximilians University, 81377 Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Sarah Vierkotten
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, University Hospital, Ludwig-Maximilians University, 81377 Munich, Member of the German Center for Lung Research (DZL), Germany
| | | | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, University Hospital, Ludwig-Maximilians University, 81377 Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, University Hospital, Ludwig-Maximilians University, 81377 Munich, Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
37
|
|
38
|
Brune K, Frank J, Schwingshackl A, Finigan J, Sidhaye VK. Pulmonary epithelial barrier function: some new players and mechanisms. Am J Physiol Lung Cell Mol Physiol 2015; 308:L731-45. [PMID: 25637609 DOI: 10.1152/ajplung.00309.2014] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
The pulmonary epithelium serves as a barrier to prevent access of the inspired luminal contents to the subepithelium. In addition, the epithelium dictates the initial responses of the lung to both infectious and noninfectious stimuli. One mechanism by which the epithelium does this is by coordinating transport of diffusible molecules across the epithelial barrier, both through the cell and between cells. In this review, we will discuss a few emerging paradigms of permeability changes through altered ion transport and paracellular regulation by which the epithelium gates its response to potentially detrimental luminal stimuli. This review is a summary of talks presented during a symposium in Experimental Biology geared toward novel and less recognized methods of epithelial barrier regulation. First, we will discuss mechanisms of dynamic regulation of cell-cell contacts in the context of repetitive exposure to inhaled infectious and noninfectious insults. In the second section, we will briefly discuss mechanisms of transcellular ion homeostasis specifically focused on the role of claudins and paracellular ion-channel regulation in chronic barrier dysfunction. In the next section, we will address transcellular ion transport and highlight the role of Trek-1 in epithelial responses to lung injury. In the final section, we will outline the role of epithelial growth receptor in barrier regulation in baseline, acute lung injury, and airway disease. We will then end with a summary of mechanisms of epithelial control as well as discuss emerging paradigms of the epithelium role in shifting between a structural element that maintains tight cell-cell adhesion to a cell that initiates and participates in immune responses.
Collapse
Affiliation(s)
- Kieran Brune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - James Frank
- The Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco VA Medical Center, and NCIRE/Veterans Health Research Institute, San Francisco, California
| | - Andreas Schwingshackl
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee
| | - James Finigan
- Division of Oncology, Cancer Center, National Jewish Health, Denver, Colorado
| | - Venkataramana K Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland;
| |
Collapse
|
39
|
Tanaka K, Fujita T, Umezawa H, Namiki K, Yoshioka K, Hagihara M, Sudo T, Kimura S, Tatsumi K, Kasuya Y. Therapeutic effect of lung mixed culture-derived epithelial cells on lung fibrosis. J Transl Med 2014; 94:1247-59. [PMID: 25199053 DOI: 10.1038/labinvest.2014.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2013] [Revised: 06/08/2014] [Accepted: 07/22/2014] [Indexed: 12/24/2022] Open
Abstract
Cell-based therapy is recognized as one of potential therapeutic options for lung fibrosis. However, preparing stem/progenitor cells is complicated and not always efficient. Here, we show easily prepared cell populations having therapeutic capacity for lung inflammatory disease that are named as 'lung mixed culture-derived epithelial cells' (LMDECs). LMDECs expressed surfactant protein (SP)-C and gave rise to type I alveolar epithelial cells (AECs) in vitro and in vivo that partly satisfied type II AEC-like characteristics. An intratracheal delivery of not HEK 293 cells but LMDECs to the lung ameliorated bleomycin (BLM)-induced lung injury. A comprehensive analysis of bronchoalveolar fluid by western blot array revealed that LMDEC engraftment could improve the microenvironment in the BLM-instilled lung in association with stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 signaling axis. SDF-1 enhanced both migration activity and differentiating efficiency of LMDECs. Further classification of LMDECs by flow cytometric study showed that a major population of LMDECs (LMDEC(Maj), 84% of total LMDECs) was simultaneously SP-C(+), CD44(+), CD45(+), and hematopoietic cell lineage(+) and that LMDECs included bronchioalveolar stem cells (BASCs) showing SP-C(+)Clara cell secretory protein(+)stem cell antigen (Sca)1(+) as a small population (1.8% of total LMDECs). CD44(+)-sorted LMDEC(Maj) and Sca1(+)-sorted LMDECs equally ameliorated fibrosis induced by BLM like LMDECs did. However, infiltrated neutrophils were observed in Sca1(+)-sorted LMDEC-treated alveoli that was not typical in LMDEC(Maj)- or LMDEC-treated alveoli. These findings suggest that the protective effect of LMDECs against BLM-induced lung injury depends greatly on that of LMDEC(Maj). Furthermore, the cells expressing both alveolar epithelial and hematopoietic cell lineage markers (SP-C(+)CD45(+)) that have characteristics corresponding to LMDEC(Maj) were observed in the alveoli of lung and increased approximately threefold in response to BLM instillation. Taken together, LMDECs newly classified in the present study are easily culture expanded and have a potential role in future regenerative cell therapy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Kensuke Tanaka
- 1] Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan [2] Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuo Fujita
- 1] Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan [2] Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroki Umezawa
- 1] Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan [2] Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kana Namiki
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kento Yoshioka
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Tatsuhiko Sudo
- Chemical Biology Core Facility and Antibiotics Laboratory, RIKEN Advanced Science Institute, Wako, Japan
| | - Sadao Kimura
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
40
|
Li G, Flodby P, Luo J, Kage H, Sipos A, Gao D, Ji Y, Beard LL, Marconett CN, DeMaio L, Kim YH, Kim KJ, Laird-Offringa IA, Minoo P, Liebler JM, Zhou B, Crandall ED, Borok Z. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. Am J Respir Cell Mol Biol 2014; 51:210-22. [PMID: 24588076 DOI: 10.1165/rcmb.2013-0353oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
Claudin proteins are major constituents of epithelial and endothelial tight junctions (TJs) that regulate paracellular permeability to ions and solutes. Claudin 18, a member of the large claudin family, is highly expressed in lung alveolar epithelium. To elucidate the role of claudin 18 in alveolar epithelial barrier function, we generated claudin 18 knockout (C18 KO) mice. C18 KO mice exhibited increased solute permeability and alveolar fluid clearance (AFC) compared with wild-type control mice. Increased AFC in C18 KO mice was associated with increased β-adrenergic receptor signaling together with activation of cystic fibrosis transmembrane conductance regulator, higher epithelial sodium channel, and Na-K-ATPase (Na pump) activity and increased Na-K-ATPase β1 subunit expression. Consistent with in vivo findings, C18 KO alveolar epithelial cell (AEC) monolayers exhibited lower transepithelial electrical resistance and increased solute and ion permeability with unchanged ion selectivity. Claudin 3 and claudin 4 expression was markedly increased in C18 KO mice, whereas claudin 5 expression was unchanged and occludin significantly decreased. Microarray analysis revealed changes in cytoskeleton-associated gene expression in C18 KO mice, consistent with observed F-actin cytoskeletal rearrangement in AEC monolayers. These findings demonstrate a crucial nonredundant role for claudin 18 in the regulation of alveolar epithelial TJ composition and permeability properties. Increased AFC in C18 KO mice identifies a role for claudin 18 in alveolar fluid homeostasis beyond its direct contributions to barrier properties that may, at least in part, compensate for increased permeability.
Collapse
Affiliation(s)
- Guanglei Li
- 1 Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kage H, Flodby P, Gao D, Kim YH, Marconett CN, DeMaio L, Kim KJ, Crandall ED, Borok Z. Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 307:L524-36. [PMID: 25106430 DOI: 10.1152/ajplung.00077.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023] Open
Abstract
Claudins are tight junction proteins that regulate paracellular ion permeability of epithelium and endothelium. Claudin 4 has been reported to function as a paracellular sodium barrier and is one of three major claudins expressed in lung alveolar epithelial cells (AEC). To directly assess the role of claudin 4 in regulation of alveolar epithelial barrier function and fluid homeostasis in vivo, we generated claudin 4 knockout (Cldn4 KO) mice. Unexpectedly, Cldn4 KO mice exhibited normal physiological phenotype although increased permeability to 5-carboxyfluorescein and decreased alveolar fluid clearance were noted. Cldn4 KO AEC monolayers exhibited unchanged ion permeability, higher solute permeability, and lower short-circuit current compared with monolayers from wild-type mice. Claudin 3 and 18 expression was similar between wild-type and Cldn4 KO alveolar epithelial type II cells. In response to either ventilator-induced lung injury or hyperoxia, claudin 4 expression was markedly upregulated in wild-type mice, whereas Cldn4 KO mice showed greater degrees of lung injury. RNA sequencing, in conjunction with differential expression and upstream analysis after ventilator-induced lung injury, suggested Egr1, Tnf, and Il1b as potential mediators of increased lung injury in Cldn4 KO mice. These results demonstrate that claudin 4 has little effect on normal lung physiology but may function to protect against acute lung injury.
Collapse
Affiliation(s)
- Hidenori Kage
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Per Flodby
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Danping Gao
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Yong Ho Kim
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Crystal N Marconett
- Departments of Surgery and Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center
| | - Lucas DeMaio
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine
| | - Kwang-Jin Kim
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Departments of Physiology and Biophysics and Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California; Department of Biomedical Engineering and
| | - Edward D Crandall
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Pathology, Keck School of Medicine, University of Southern California; Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center,
| |
Collapse
|
42
|
Atanelishvili I, Liang J, Akter T, Spyropoulos DD, Silver RM, Bogatkevich GS. Thrombin increases lung fibroblast survival while promoting alveolar epithelial cell apoptosis via the endoplasmic reticulum stress marker, CCAAT enhancer-binding homologous protein. Am J Respir Cell Mol Biol 2014; 50:893-902. [PMID: 24279877 DOI: 10.1165/rcmb.2013-0317oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
Apoptosis of alveolar epithelial cells (AECs) and survival of lung fibroblasts are critical events in the pathogenesis of pulmonary fibrosis; however, mechanisms underlying the apoptosis of AECs and the resistance of lung fibroblasts to apoptosis remain obscure. Herein, we demonstrate that the fate of these two cell types depends on the expression of CCAAT enhancer-binding homologous protein (CHOP). We observed that thrombin, which is overexpressed in scleroderma (SSc; systemic sclerosis) and other interstitial lung diseases (ILDs), increases the expression of CHOP in primary AECs and in A549 cells via an Ets1-dependent pathway. In addition, thrombin activates caspase-3 in AECs and induces apoptosis of these cells in a CHOP-dependent manner. In contrast, thrombin decreases endoplasmic reticulum stress-induced CHOP in lung fibroblasts through Myc-dependent mechanisms and protects such cells from apoptosis. Furthermore, when lung fibroblasts are transfected with recombinant CHOP, they then undergo apoptosis, even in the presence of thrombin, suggesting that CHOP signaling pathways are downstream of thrombin. In accordance with the differential effects of thrombin on AECs and lung fibroblasts, we observed strong expression of CHOP in AECs in fibrotic lung tissue isolated from patients with SSc-associated ILD (SSc-ILD), but not in lung myofibroblasts nor in normal lung tissue. Expression of CHOP in SSc lung is accompanied by positive staining for the thrombin receptor, protease-activated receptor-1, and for terminal deoxynucleotidyl transferase dUTP nick end labeling, suggesting roles for both thrombin and CHOP in AEC apoptosis in SSc-ILD. We conclude that regulation of CHOP by thrombin directs AECs toward apoptosis while promoting survival of lung fibroblasts, ultimately contributing to the persistent fibroproliferation seen in SSc-ILD and other fibrosing lung diseases.
Collapse
|
43
|
Silveyra P, Chroneos ZC, DiAngelo SL, Thomas NJ, Noutsios GT, Tsotakos N, Howrylak JA, Umstead TM, Floros J. Knockdown of Drosha in human alveolar type II cells alters expression of SP-A in culture: a pilot study. Exp Lung Res 2014; 40:354-66. [PMID: 25058539 DOI: 10.3109/01902148.2014.929757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
Abstract
Human surfactant protein A (SP-A) plays an important role in surfactant metabolism and lung innate immunity. SP-A is synthesized and secreted by alveolar type II (ATII) cells, one of the two cell types of the distal lung epithelium (ATII and ATI). We have shown that miRNA interactions with sequence polymorphisms on the SP-A mRNA 3'UTRs mediate differential expression of SP-A1 and SP-A2 gene variants in vitro. In the present study, we describe a physiologically relevant model to study miRNA regulation of SP-A in human ATII. For these studies, we purified and cultured human ATII on an air-liquid interface matrix (A/L) or plastic wells without matrix (P). Gene expression analyses confirmed that cells cultured in A/L maintained the ATII phenotype for over 5 days, whereas P-cultured cells differentiated to ATI. When we transfected ATII with siRNAs to inhibit the expression of Drosha, a critical effector of miRNA maturation, the levels of SP-A mRNA and protein increased in a time dependent manner. We next characterized cultured ATII and ATI by studying expression of 1,066 human miRNAs using miRNA PCR arrays. We detected expression of >300 miRNAs with 24 miRNAs differentially expressed in ATII versus ATI, 12 of which predicted to bind SP-A 3'UTRs, indicating that these may be implicated in SP-A downregulation in ATI. Thus, miRNAs not only affect SP-A expression, but also may contribute to the maintenance of the ATII cell phenotype and/or the trans-differentiation of ATII to ATI cells, and may represent new molecular markers that distinguish ATII and ATI.
Collapse
Affiliation(s)
- Patricia Silveyra
- 1Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
A GM-CSF/IL-33 pathway facilitates allergic airway responses to sub-threshold house dust mite exposure. PLoS One 2014; 9:e88714. [PMID: 24551140 PMCID: PMC3925157 DOI: 10.1371/journal.pone.0088714] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2013] [Accepted: 01/09/2014] [Indexed: 11/19/2022] Open
Abstract
Allergic asthma is a chronic immune-inflammatory disease of the airways. Despite aeroallergen exposure being universal, allergic asthma affects only a fraction of individuals. This is likely related, at least in part, to the extent of allergen exposure. Regarding house dust mite (HDM), we previously identified the threshold required to elicit allergic responses in BALB/c mice. Here, we investigated the impact of an initial immune perturbation on the response to sub-threshold HDM exposure. We show that transient GM-CSF expression in the lung facilitated robust eosinophilic inflammation, long-lasting antigen-specific Th2 responses, mucus production and airway hyperresponsiveness. This was associated with increased IL-33 levels and activated CD11b+ DCs expressing OX40L. GM-CSF-driven allergic responses were significantly blunted in IL-33-deficient mice. IL-33 was localized on alveolar type II cells and in vitro stimulation of human epithelial cells with GM-CSF enhanced intracellular IL-33 independently of IL-1α. Likewise, GM-CSF administration in vivo resulted in increased levels of IL-33 but not IL-1α. These findings suggest that exposures to environmental agents associated with GM-CSF production, including airway infections and pollutants, may decrease the threshold of allergen responsiveness and, hence, increase the susceptibility to develop allergic asthma through a GM-CSF/IL-33/OX40L pathway.
Collapse
|
45
|
Agarwal AR, Yin F, Cadenas E. Metabolic shift in lung alveolar cell mitochondria following acrolein exposure. Am J Physiol Lung Cell Mol Physiol 2013; 305:L764-73. [DOI: 10.1152/ajplung.00165.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022] Open
Abstract
Acrolein, an α,β unsaturated electrophile, is an environmental pollutant released in ambient air from diesel exhausts and cooking oils. This study examines the role of acrolein in altering mitochondrial function and metabolism in lung-specific cells. RLE-6TN, H441, and primary alveolar type II (pAT2) cells were exposed to acrolein for 4 h, and its effect on mitochondrial oxygen consumption rates was studied by XF Extracellular Flux analysis. Low-dose acrolein exposure decreased mitochondrial respiration in a dose-dependent manner because of alteration in the metabolism of glucose in all the three cell types. Acrolein inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, leading to decreased substrate availability for mitochondrial respiration in RLE-6TN, H441, and pAT2 cells; the reduced GAPDH activity was compensated in pAT2 cells by an increase in the activity of glucose-6-phosphate dehydrogenase, the regulatory control of the pentose phosphate pathway. The decrease in pyruvate from glucose metabolism resulted in utilization of alternative sources to support mitochondrial energy production: palmitate-BSA complex increased mitochondrial respiration in RLE-6TN and pAT2 cells. The presence of palmitate in alveolar cells for surfactant biosynthesis may prove to be the alternative fuel source for mitochondrial respiration. Accordingly, a decrease in phosphatidylcholine levels and an increase in phospholipase A2 activity were found in the alveolar cells after acrolein exposure. These findings have implications for understanding the decrease in surfactant levels frequently observed in pathophysiological situations with altered lung function following exposure to environmental toxicants.
Collapse
Affiliation(s)
- Amit R. Agarwal
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Fei Yin
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Enrique Cadenas
- Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California
| |
Collapse
|
46
|
Zhao L, Yee M, O'Reilly MA. Transdifferentiation of alveolar epithelial type II to type I cells is controlled by opposing TGF-β and BMP signaling. Am J Physiol Lung Cell Mol Physiol 2013; 305:L409-18. [PMID: 23831617 DOI: 10.1152/ajplung.00032.2013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
Alveolar epithelial type II (ATII) cells are essential for maintaining normal lung homeostasis because they produce surfactant, express innate immune proteins, and can function as progenitors for alveolar epithelial type I (ATI) cells. Although autocrine production of transforming growth factor (TGF)-β1 has been shown to promote the transdifferentiation of primary rat ATII to ATI cells in vitro, mechanisms controlling this process still remain poorly defined. Here, evidence is provided that Tgf-β1, -2, -3 mRNA and phosphorylated SMAD2 and SMAD3 significantly increase as primary cultures of mouse ATII cells transdifferentiate to ATI cells. Concomitantly, bone morphogenetic protein (Bmp)-2 and -4 mRNA, and phosphorylated SMAD1/5/8 expression decrease. Exogenously supplied recombinant human TGF-β1 inhibited BMP signaling and enhanced transdifferentiation by promoting the loss of ATII cell-specific gene expression and weakly stimulating ATI cell-specific gene expression. On the other hand, exogenously supplied recombinant human BMP-4 inhibited TGF-β signaling and delayed transdifferentiation by inhibiting the gain in ATI cell-specific gene expression and weakly delaying the loss of ATII cell-specific gene expression. In mouse lung epithelial (MLE15) cells, small-interfering RNA (siRNA) knockdown of TGF-β receptor type-1 enhanced basal expression of ATII genes while siRNA RNA knockdown of BMP receptors type-1a and -1b enhanced basal expression of ATI genes. Together, these results suggest that the rate of ATII cell transdifferentiation is controlled by the opposing actions of BMP and TGF-β signaling that switch during the process of transdifferentiation.
Collapse
Affiliation(s)
- Lan Zhao
- Dept. of Pediatrics, Box 850, The Univ. of Rochester, School of Medicine and Dentistry, 601 Elmwood Ave., Rochester NY 14642.
| | | | | |
Collapse
|
47
|
Kebaabetswe LP, Haick AK, Miura TA. Differentiated phenotypes of primary murine alveolar epithelial cells and their susceptibility to infection by respiratory viruses. Virus Res 2013; 175:110-9. [PMID: 23639425 PMCID: PMC3683362 DOI: 10.1016/j.virusres.2013.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2012] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 12/31/2022]
Abstract
Alveolar epithelial cells are important targets in severe respiratory viral infection. Murine ATI and ATII cultures are an in vitro model for viral pathogenesis. ATI cells are infected by IAV and MHV-1, not mouse-adapted SARS-CoV. ATII cells are infected by IAV, MHV-1, and mouse-adapted SARS-CoV. ATI and ATII cells express cytokines upon infection by respiratory viruses.
Severe respiratory viral infections are associated with spread to the alveoli of the lungs. There are multiple murine models of severe respiratory viral infections that have been used to identify viral and host factors that contribute to disease severity. Primary cultures of murine alveolar epithelial cells provide a robust in vitro model to perform mechanistic studies that can be correlated with in vivo studies to identify cell type-specific factors that contribute to pathology within the alveoli of the lung during viral infection. In this study, we established an in vitro model to compare the responses of type I (ATI) and type II (ATII) alveolar epithelial cells to infection by respiratory viruses used in murine models: mouse-adapted severe acute respiratory syndrome-associated coronavirus (SARS-CoV, v2163), murine coronavirus MHV-1, and influenza A (H1N1) virus, strain PR8. Murine alveolar cells cultured to maintain an ATII cell phenotype, determined by expression of LBP180, were susceptible to infection by all three viruses. In contrast, ATII cells that were cultured to trans-differentiate into an ATI-like cell phenotype were susceptible to MHV-1 and PR8, but not mouse-adapted SARS-CoV. Epithelial cells produce cytokines in response to viral infections, thereby activating immune responses. Thus, virus-induced cytokine expression was quantified in ATI and ATII cells. Both cell types had increased expression of IL-1β mRNA upon viral infection, though at different levels. While MHV-1 and PR8 induced expression of a number of shared cytokines in ATI cells, there were several cytokines whose expression was induced uniquely by MHV-1 infection. In summary, ATI and ATII cells exhibited differential susceptibilities and cytokine responses to infection by respiratory viruses. This in vitro model will be critical for future studies to determine the roles of these specialized cell types in the pathogenesis of respiratory viral infection.
Collapse
Affiliation(s)
| | | | - Tanya A. Miura
- Corresponding author at: 875 Perimeter Drive, MS 3051, Moscow, ID 83844-3051, USA. Tel.: +1 208 885 4940; fax: +1 208 885 7905.
| |
Collapse
|
48
|
Sen N, Weprin S, Peter Y. Discrimination between lung homeostatic and injury-induced epithelial progenitor subsets by cell-density properties. Stem Cells Dev 2013; 22:2036-46. [PMID: 23461422 DOI: 10.1089/scd.2012.0468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
Stem/progenitor cells and their lineage derivatives are often identified by patterns and intensity of cell clusters of differentiation presentation. However, the cell biochemical façade can prove to be elusive, transient, and subject to interlaboratory disparities. To enhance current methods of lung stem cell isolation and identification and to investigate biophysical changes, which occur during homeostasis and in response to acute lung injury, we separated cells on a discontinuous density gradient, of 1.025-1.074 g/cm(3), and characterized the eluted lineages. At homeostasis, surfactant protein-C (SFTPC)-expressing cells of the alveolar type (AT)-2 lineage possessed average densities ≥1.039 g/cm(3) and aquaporin-5 producing AT1 cells equilibrated at densities <1.039 g/cm(3). While 0.74%±0.32% of lung cells were determined proliferating or postmitotic by BrdU nucleotide uptake, 73% of CD49f-, 72% of c-KIT-, and 61% of SCA-1-positive cells (putative alveolar progenitor lineage markers) showed densities ≤1.039 g/cm(3). CD49f/EpCAM(hi) progenitors, as well as c-KIT(pos)/CD45(neg) cells, could be enriched at the 1.039 g/cm(3) interface. Following acute bleomycin-induced injury, the frequency of BrdU-incorporating cells rose to 0.92%±0.36% and density could largely explain cell-lineage distribution. Specifically, a decline in the density of mitotic/postmitotic SFTPC-positive cells to ≤1.029 g/cm(3), in conjunction with an increase in CD45-positive, and proliferating CD45 and c-KIT cells in the heaviest fraction (≥1.074 g/cm(3)) were observed. These data attest to the generation of AT2 cells from low-density precursors and emphasize a relationship between cell density and molecular expression following injury, expanding on our current understanding of lung and progenitor cell dynamics.
Collapse
Affiliation(s)
- Namita Sen
- Department of Biology, Yeshiva University, New York, NY 10033, USA
| | | | | |
Collapse
|
49
|
Fazlollahi F, Kim YH, Sipos A, Hamm-Alvarez SF, Borok Z, Kim KJ, Crandall ED. Nanoparticle translocation across mouse alveolar epithelial cell monolayers: species-specific mechanisms. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:786-94. [PMID: 23454523 DOI: 10.1016/j.nano.2013.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/13/2012] [Revised: 12/19/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
UNLABELLED Studies of polystyrene nanoparticle (PNP) trafficking across mouse alveolar epithelial cell monolayers (MAECM) show apical-to-basolateral flux of 20 and 120nm amidine-modified PNP is ~65 times faster than that of 20 and 100nm carboxylate-modified PNP, respectively. Calcium chelation with EGTA has little effect on amidine-modified PNP flux, but increases carboxylate-modified PNP flux ~50-fold. PNP flux is unaffected by methyl-β-cyclodextrin, while ~70% decrease in amidine- (but not carboxylate-) modified PNP flux occurs across chlorpromazine- or dynasore-treated MAECM. Confocal microscopy reveals intracellular amidine- and carboxylate-modified PNP and association of amidine- (but not carboxylate-) modified PNP with clathrin heavy chain. These data indicate (1) amidine-modified PNP translocate across MAECM primarily via clathrin-mediated endocytosis and (2) physicochemical properties (e.g., surface charge) determine PNP interactions with mouse alveolar epithelium. Uptake/trafficking of nanoparticles into/across epithelial barriers is dependent on both nanoparticle physicochemical properties and (based on comparison with our prior results) specific epithelial cell type. FROM THE CLINICAL EDITOR In this study of polystyrene nanoparticle trafficking across mouse alveolar epithelial cell monolayers, the authors determined that uptake/trafficking of nanoparticles into/across epithelial barriers is dependent on both nanoparticle physicochemical properties and the specific type of epithelial cells.
Collapse
Affiliation(s)
- Farnoosh Fazlollahi
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Hardman CS, Panova V, McKenzie ANJ. IL-33 citrine reporter mice reveal the temporal and spatial expression of IL-33 during allergic lung inflammation. Eur J Immunol 2012; 43:488-98. [PMID: 23169007 PMCID: PMC3734634 DOI: 10.1002/eji.201242863] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2012] [Revised: 09/28/2012] [Accepted: 11/15/2012] [Indexed: 12/13/2022]
Abstract
Interleukin-33 (IL-33) is an IL-1 family cytokine that signals via its receptor T1/ST2, and is a key regulator of inflammation, notably the type-2 response implicated in allergic asthma. Critical to our understanding of the role of IL-33 is the identification of the cellular sources of IL-33. Although progress has been made in this area, the development of a robust live cell reporter of expression would allow the localisation of IL-33 during ongoing immune responses. We have generated a fluorescent reporter mouse line, Il33Cit/+, to define the expression profile of IL-33 in vivo and demonstrate its temporal and spatial expression during experimental allergic asthma responses. We found that type-2 pneumocytes constitute the major source of IL-33 upon allergic lung inflammation following exposure to OVA, fungal extract or ragweed pollen. Using Il33Cit/Cit mice (IL-33-deficient), we establish a role for IL-33 early in the initiation of type-2 responses and the induction of nuocytes (ILC2). We also demonstrate a potential mechanism of action by which IL-33 rapidly initiates type-2 immune responses. Il33Cit/+ mice have enabled new insights into the initiation of type-2 responses and will provide an important tool for further dissection of this important inflammatory pathway in vivo.
Collapse
Affiliation(s)
- Clare S Hardman
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, UK
| | | | | |
Collapse
|